
Internet Engineering Task Force (IETF) D. Harkins
Request for Comments: 5931 Aruba Networks
Category: Informational G. Zorn
ISSN: 2070-1721 Network Zen
 August 2010

 Extensible Authentication Protocol (EAP) Authentication
 Using Only a Password

Abstract

 This memo describes an Extensible Authentication Protocol (EAP)
 method, EAP-pwd, which uses a shared password for authentication.
 The password may be a low-entropy one and may be drawn from some set
 of possible passwords, like a dictionary, which is available to an
 attacker. The underlying key exchange is resistant to active attack,
 passive attack, and dictionary attack.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Not all documents
 approved by the IESG are a candidate for any level of Internet
 Standard; see Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc5931.

Harkins & Zorn Informational [Page 1]

RFC 5931 EAP Password August 2010

Copyright Notice

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

 1. Introduction . 4
 1.1. Background . 4
 1.2. Keyword Definitions 4
 1.3. Requirements . 4
 1.3.1. Resistance to Passive Attack 4
 1.3.2. Resistance to Active Attack 5
 1.3.3. Resistance to Dictionary Attack 5
 1.3.4. Forward Secrecy 5
 2. Specification of EAP-pwd 5
 2.1. Notation . 5
 2.2. Discrete Logarithm Cryptography 7
 2.2.1. Finite Field Cryptography 7
 2.2.2. Elliptic Curve Cryptography 8
 2.3. Assumptions . 9
 2.4. Instantiating the Random Function 9
 2.5. Key Derivation Function 10
 2.6. Random Numbers . 10
 2.7. Representation and Processing of Input Strings 11
 2.7.1. Identity Strings 11

Harkins & Zorn Informational [Page 2]

RFC 5931 EAP Password August 2010

 2.7.2. Passwords . 11
 2.8. Protocol . 12
 2.8.1. Overview . 12
 2.8.2. Message Flows . 12
 2.8.3. Fixing the Password Element 14
 2.8.3.1. ECC Operation for PWE 15
 2.8.3.2. FFC Operation for pwe 16
 2.8.4. Message Construction 16
 2.8.4.1. ECC Groups . 16
 2.8.4.2. FFC Groups . 17
 2.8.5. Message Processing 18
 2.8.5.1. EAP-pwd-ID Exchange 18
 2.8.5.2. EAP-pwd-Commit Exchange 20
 2.8.5.3. EAP-pwd-Confirm Exchange 21
 2.9. Management of EAP-pwd Keys 22
 2.10. Mandatory-to-Implement Parameters 23
 3. Packet Formats . 23
 3.1. EAP-pwd Header . 23
 3.2. EAP-pwd Payloads . 25
 3.2.1. EAP-pwd-ID . 25
 3.2.2. EAP-pwd-Commit . 26
 3.2.3. EAP-pwd-Confirm 27
 3.3. Representation of Group Elements and Scalars 27
 3.3.1. Elements in FFC Groups 27
 3.3.2. Elements in ECC Groups 28
 3.3.3. Scalars . 28
 4. Fragmentation . 28
 5. IANA Considerations . 29
 6. Security Considerations 31
 6.1. Resistance to Passive Attack 31
 6.2. Resistance to Active Attack 31
 6.3. Resistance to Dictionary Attack 32
 6.4. Forward Secrecy . 34
 6.5. Group Strength . 34
 6.6. Random Functions . 34
 7. Security Claims . 35
 8. Acknowledgements . 37
 9. References . 38
 9.1. Normative References 38
 9.2. Informative References 38

Harkins & Zorn Informational [Page 3]

RFC 5931 EAP Password August 2010

1. Introduction

1.1. Background

 The predominant access method for the Internet today is that of a
 human using a username and password to authenticate to a computer
 enforcing access control. Proof of knowledge of the password
 authenticates the human and computer.

 Typically these passwords are not stored on a user’s computer for
 security reasons and must be entered each time the human desires
 network access. Therefore, the passwords must be ones that can be
 repeatedly entered by a human with a low probability of error. They
 will likely not possess high-entropy, and it may be assumed that an
 adversary with access to a dictionary will have the ability to guess
 a user’s password. It is therefore desirable to have a robust
 authentication method that is secure even when used with a weak
 password in the presence of a strong adversary.

 EAP-pwd is an EAP method that addresses the problem of password-based
 authenticated key exchange -- using a possibly weak password for
 authentication to derive an authenticated and cryptographically
 strong shared secret. This problem was first described by Bellovin
 and Merritt in [BM92] and [BM93]. There have been a number of
 subsequent suggestions ([JAB96], [LUC97], [BMP00], and others) for
 password-based authenticated key exchanges.

1.2. Keyword Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

1.3. Requirements

 Any protocol that claims to solve the problem of password-
 authenticated key exchange must be resistant to active, passive, and
 dictionary attack and have the quality of forward secrecy. These
 characteristics are discussed further in the following sections.

1.3.1. Resistance to Passive Attack

 A passive, or benign, attacker is one that merely relays messages
 back and forth between the peer and server, faithfully, and without
 modification. The contents of the messages are available for
 inspection, but that is all. To achieve resistance to passive
 attack, such an attacker must not be able to obtain any information
 about the password or anything about the resulting shared secret from

Harkins & Zorn Informational [Page 4]

RFC 5931 EAP Password August 2010

 watching repeated runs of the protocol. Even if a passive attacker
 is able to learn the password, she will not be able to determine any
 information about the resulting secret shared by the peer and server.

1.3.2. Resistance to Active Attack

 An active attacker is able to modify, add, delete, and replay
 messages sent between protocol participants. For this protocol to be
 resistant to active attack, the attacker must not be able to obtain
 any information about the password or the shared secret by using any
 of its capabilities. In addition, the attacker must not be able to
 fool a protocol participant into thinking that the protocol completed
 successfully.

 It is always possible for an active attacker to deny delivery of a
 message critical in completing the exchange. This is no different
 than dropping all messages and is not an attack against the protocol.

1.3.3. Resistance to Dictionary Attack

 For this protocol to be resistant to dictionary attack, any advantage
 an adversary can gain must be directly related to the number of
 interactions she makes with an honest protocol participant and not
 through computation. The adversary will not be able to obtain any
 information about the password except whether a single guess from a
 single protocol run is correct or incorrect.

1.3.4. Forward Secrecy

 Compromise of the password must not provide any information about the
 secrets generated by earlier runs of the protocol.

2. Specification of EAP-pwd

2.1. Notation

 The following notation is used in this memo:

 peer-ID
 The peer’s identity, the peer NAI [RFC4282].

 server-ID
 A string that identifies the server to the peer.

 password
 The password shared between the peer and server.

Harkins & Zorn Informational [Page 5]

RFC 5931 EAP Password August 2010

 y = H(x)
 The binary string x is given to a function H, which produces a
 fixed-length output y.

 a | b
 The concatenation of string a with string b.

 [a]b
 A string consisting of the single bit "a" repeated "b" times.

 x mod y
 The remainder of division of x by y. The result will be between
 0 and y.

 g^x mod p
 The multiplication of the value "g" with itself "x" times, modulo
 the value "p".

 inv(Q)
 The inverse of an element, Q, from a finite field.

 len(x)
 The length in bits of the string x.

 chop(x, y)
 The reduction of string x, being at least y bits in length, to y
 bits.

 PRF(x,y)
 A pseudo-random function that takes a key, x, and variable-length
 data, y, and produces a fixed-length output that cannot be
 distinguished (with a significant advantage) from a random
 source.

 LSB(x)
 Returns the least-significant bit of the bitstring "x".

 Ciphersuite
 An encoding of a group to use with EAP-pwd, the definition of
 function H, and a PRF, in that order.

 MK
 The Master Key is generated by EAP-pwd. This is a high-entropy
 secret whose length depends on the random function used.

Harkins & Zorn Informational [Page 6]

RFC 5931 EAP Password August 2010

 MSK
 The Master Session Key exported by EAP-pwd. This is a high-
 entropy secret 512 bits in length.

 EMSK
 The Extended Master Session Key exported by EAP-pwd. This is a
 high-entropy secret 512 bits in length.

2.2. Discrete Logarithm Cryptography

 This protocol uses discrete logarithm cryptography to achieve
 authentication and key agreement (see [SP800-56A]). Each party to
 the exchange derives ephemeral keys with respect to a particular set
 of domain parameters (referred to here as a "group"). A group can be
 based on Finite Field Cryptography (FFC) or Elliptic Curve
 Cryptography (ECC).

2.2.1. Finite Field Cryptography

 Domain parameters for the FFC groups used by EAP-pwd include:

 o A prime, p, determining a prime field GF(p), the integers modulo
 p. The FFC group will be a subgroup of GF(p)*, the multiplicative
 group of non-zero elements in GF(p). The group operation for FFC
 groups is multiplication modulo p.

 o An element, G, in GF(p)* which serves as a generator for the FFC
 group. G is chosen such that its multiplicative order is a
 sufficiently large prime divisor of ((p-1)/2).

 o A prime, r, which is the multiplicative order of G, and thus also
 the size of the cryptographic subgroup of GF(p)* that is generated
 by G.

 An integer scalar, x, acts on an FFC group element, Y, via
 exponentiation modulo p -- Y^x mod p.

 The inverse function for an FFC group is defined such that the
 product of an element and its inverse modulo the group prime equals
 one (1). In other words,

 (q * inv(q)) mod p = 1

 EAP-pwd uses an IANA registry for the definition of groups. Some FFC
 groups in this registry are based on safe primes and the order is not
 included in the domain parameters. In this case only, the order, r,
 MUST be computed as the prime minus one divided by two -- (p-1)/2.
 If the definition of the group includes an order in its domain

Harkins & Zorn Informational [Page 7]

RFC 5931 EAP Password August 2010

 parameters, that value MUST be used in this exchange when an order is
 called for. If an FFC group definition does not have an order in its
 domain parameters and it is not based on a safe prime, it MUST NOT be
 used with EAP-pwd.

2.2.2. Elliptic Curve Cryptography

 Domain parameters for the ECC groups used by EAP-pwd include:

 o A prime, p, determining a prime field GF(p). The cryptographic
 group will be a subgroup of the full elliptic curve group that
 consists of points on an elliptic curve -- elements from GF(p)
 that satisfy the curve’s equation -- together with the "point at
 infinity" that serves as the identity element. The group
 operation for ECC groups is addition of points on the elliptic
 curve.

 o Elements a and b from GF(p) that define the curve’s equation. The
 point (x, y) in GF(p) x GF(p) is on the elliptic curve if and only
 if (y^2 - x^3 - a*x - b) mod p equals zero (0).

 o A point, G, on the elliptic curve, which serves as a generator for
 the ECC group. G is chosen such that its order, with respect to
 elliptic curve addition, is a sufficiently large prime.

 o A prime, r, which is the order of G, and thus is also the size of
 the cryptographic subgroup that is generated by G.

 o A co-factor, f, defined by the requirement that the size of the
 full elliptic curve group (including the "point at infinity") is
 the product of f and r.

 An integer scalar, x, acts on an ECC group element, Y, via repetitive
 addition (Y is added to itself x times), also called point
 multiplication -- x * Y.

 The inverse function for an ECC group is defined such that the sum of
 an element and its inverse is the "point at infinity" (the identity
 for elliptic curve point addition). In other words,

 Q + inv(Q) = "O"

 Only ECC groups over GF(p) can be used by EAP-pwd. ECC groups over
 GF(2^m) SHALL NOT be used by EAP-pwd. While such groups exist in the
 IANA registry used by EAP-pwd, their use in EAP-pwd is not defined.
 In addition, ECC groups with a co-factor greater than one (1) SHALL
 NOT be used by EAP-pwd. At the time of publication, no such groups
 existed in the IANA registry used by EAP-pwd.

Harkins & Zorn Informational [Page 8]

RFC 5931 EAP Password August 2010

2.3. Assumptions

 In order to see how the protocol addresses the requirements above
 (see Section 1.3), it is necessary to state some assumptions under
 which the protocol can be evaluated. They are:

 1. Function H maps a binary string of indeterminate length onto a
 fixed binary string that is x bits in length.

 H: {0,1}^* --> {0,1}^x

 2. Function H is a "random oracle" (see [RANDOR]). Given knowledge
 of the input to H, an adversary is unable to distinguish the
 output of H from a random data source.

 3. Function H is a one-way function. Given the output of H, it is
 computationally infeasible for an adversary to determine the
 input.

 4. For any given input to function H, each of the 2^x possible
 outputs are equally probable.

 5. The discrete logarithm problem for the chosen group is hard.
 That is, given g, p, and y = g^x mod p, it is computationally
 infeasible to determine x. Similarly, for an ECC group given the
 curve definition, a generator G, and Y = x * G, it is
 computationally infeasible to determine x.

 6. There exists a pool of passwords from which the password shared
 by the peer and server is drawn. This pool can consist of words
 from a dictionary, for example. Each password in this pool has
 an equal probability of being the shared password. All potential
 attackers have access to this pool of passwords.

2.4. Instantiating the Random Function

 The protocol described in this memo uses a random function, H. As
 noted in Section 2.3, this is a "random oracle" as defined in
 [RANDOR]. At first glance, one may view this as a hash function. As
 noted in [RANDOR], though, hash functions are too structured to be
 used directly as a random oracle. But they can be used to
 instantiate the random oracle.

 The random function, H, in this memo is instantiated by HMAC-SHA256
 (see [RFC4634]) with a key whose length is 32 octets and whose value
 is zero. In other words,

 H(x) = HMAC-SHA-256([0]32, x)

Harkins & Zorn Informational [Page 9]

RFC 5931 EAP Password August 2010

2.5. Key Derivation Function

 The keys output by this protocol, MSK and EMSK, are each 512 bits in
 length. The shared secret that results from the successful
 termination of this protocol is only 256 bits. Therefore, it is
 necessary to stretch the shared secret using a key derivation
 function (KDF).

 The KDF used in this protocol has a counter-mode with feedback
 construction using a generic pseudo-random function (PRF), according
 to [SP800-108]. The specific value of the PRF is specified along
 with the random function and group when the server sends the first
 EAP-pwd packet to the peer.

 The KDF takes a key to stretch, a label to bind into the key, and an
 indication of the desired length of the output in bits. It uses two
 internal variables, i and L, each of which is 16 bits in length and
 is represented in network order. Algorithmically, it is:

 KDF(key, label, length) {
 i = 1
 L = length
 K(1) = PRF(key, i | label | L)
 res = K(1)
 while (len(res) < length)
 do
 i = i + 1
 K(i) = PRF(key, K(i-1) | i | label | L)
 res = res | K(i)
 done
 return chop(res, length)
 }

 Figure 1: Key Derivation Function

2.6. Random Numbers

 The security of EAP-pwd relies upon each side, the peer and server,
 producing quality secret random numbers. A poor random number chosen
 by either side in a single exchange can compromise the shared secret
 from that exchange and open up the possibility of dictionary attack.

 Producing quality random numbers without specialized hardware entails
 using a cryptographic mixing function (like a strong hash function)
 to distill entropy from multiple, uncorrelated sources of information
 and events. A very good discussion of this can be found in
 [RFC4086].

Harkins & Zorn Informational [Page 10]

RFC 5931 EAP Password August 2010

2.7. Representation and Processing of Input Strings

2.7.1. Identity Strings

 The strings representing the server identity and peer identity MUST
 follow the requirements of [RFC4282] for Network Access Identifiers.
 This ensures a canonical representation of identities by both ends of
 the conversation prior to their use in EAP-pwd.

2.7.2. Passwords

 EAP-pwd requires passwords be input as binary strings. For the
 protocol to successfully terminate, each side must produce identical
 binary strings from the password. This imposes processing
 requirements on a password prior to its use.

 Three techniques for password pre-processing exist for EAP-pwd:

 o None: The input password string SHALL be treated as an ASCII
 string or a hexadecimal string with no treatment or normalization
 performed. The output SHALL be the binary representation of the
 input string.

 o RFC 2759: The input password string SHALL be processed to produce
 the output PasswordHashHash, as defined in [RFC2759], including
 any approved errata to [RFC2759]. This technique is useful when
 the server does not have access to the plaintext password.

 o SASLprep: The input password string is processed according to the
 rules of the [RFC4013] profile of [RFC3454]. A password SHALL be
 considered a "stored string" per [RFC3454], and unassigned code
 points are therefore prohibited. The output SHALL be the binary
 representation of the processed UTF-8 character string.
 Prohibited output and unassigned codepoints encountered in
 SASLprep pre-processing SHALL cause a failure of pre-processing,
 and the output SHALL NOT be used with EAP-pwd.

 Changing a password is out of scope of EAP-pwd, but due to the
 ambiguities in the way internationalized character strings are
 handled, 1) it SHOULD be done using SASLprep to ensure a canonical
 representation of the new password is stored on the server, and 2)
 subsequent invocations of EAP-pwd SHOULD use SASLprep to ensure that
 the client generates an identical binary string from the input
 password.

Harkins & Zorn Informational [Page 11]

RFC 5931 EAP Password August 2010

2.8. Protocol

2.8.1. Overview

 EAP is a two-party protocol spoken between an EAP peer and an
 authenticator. For scaling purposes, the functionality of the
 authenticator that speaks EAP is frequently broken out into a stand-
 alone EAP server. In this case, the EAP peer communicates with an
 EAP server through the authenticator, with the authenticator merely
 being a passthrough.

 An EAP method defines the specific authentication protocol being used
 by EAP. This memo defines a particular method and therefore defines
 the messages sent between the EAP server (or the "EAP server"
 functionality in an authenticator if it is not broken out) and the
 EAP peer for the purposes of authentication and key derivation.

2.8.2. Message Flows

 EAP-pwd defines three message exchanges: an Identity exchange, a
 Commit exchange, and a Confirm exchange. A successful authentication
 is shown in Figure 2.

 The peer and server use the Identity exchange to discover each
 other’s identities and to agree upon a Ciphersuite to use in the
 subsequent exchanges; in addition, the EAP Server uses the EAP-pwd-
 ID/Request message to inform the client of any password pre-
 processing that may be required. In the Commit exchange, the peer
 and server exchange information to generate a shared key and also to
 bind each other to a particular guess of the password. In the
 Confirm exchange, the peer and server prove liveness and knowledge of
 the password by generating and verifying verification data.

Harkins & Zorn Informational [Page 12]

RFC 5931 EAP Password August 2010

 +--------+ +--------+
 | | EAP-pwd-ID/Request | |
 | EAP |<------------------------------------| EAP |
 | peer | | server |
 | | EAP-pwd-ID/Response | |
 | |------------------------------------>| |
 | | | |
 | | EAP-pwd-Commit/Request | |
 | |<------------------------------------| |
 | | | |
 | | EAP-pwd-Commit/Response | |
 | |------------------------------------>| |
 | | | |
 | | EAP-pwd-Confirm/Request | |
 | |<------------------------------------| |
 | | | |
 | | EAP-pwd-Confirm/Response | |
 | |------------------------------------>| |
 | | | |
 | | EAP-Success | |
 | |<------------------------------------| |
 +--------+ +--------+

 Figure 2: A Successful EAP-pwd Exchange

 The components of the EAP-pwd-* messages are as follows:

 EAP-pwd-ID/Request
 Ciphersuite, Token, Password Processing Method, Server_ID

 EAP-pwd-ID/Response
 Ciphersuite, Token, Password Processing Method, Peer_ID

 EAP-pwd-Commit/Request
 Scalar_S, Element_S

 EAP-pwd-Commit/Response
 Scalar_P, Element_P

 EAP-pwd-Confirm/Request
 Confirm_S

 EAP-pwd-Confirm/Response
 Confirm_P

Harkins & Zorn Informational [Page 13]

RFC 5931 EAP Password August 2010

2.8.3. Fixing the Password Element

 Once the EAP-pwd-ID exchange is completed, the peer and server use
 each other’s identities and the agreed upon ciphersuite to fix an
 element in the negotiated group called the Password Element (PWE or
 pwe, for an element in an ECC group or an FFC group, respectively).
 The resulting element must be selected in a deterministic fashion
 using the password but must result in selection of an element that
 will not leak any information about the password to an attacker.
 From the point of view of an attacker who does not know the password,
 the Password Element will be a random element in the negotiated
 group.

 To properly fix the Password Element, both parties must have a common
 view of the string "password". Therefore, if a password pre-
 processing algorithm was negotiated during the EAP-pwd-ID exchange,
 the client MUST perform the specified password pre-processing prior
 to fixing the Password Element.

 Fixing the Password Element involves an iterative hunting-and-pecking
 technique using the prime from the negotiated group’s domain
 parameter set and an ECC- or FFC-specific operation depending on the
 negotiated group.

 First, an 8-bit counter is set to the value one (1). Then, the
 agreed-upon random function is used to generate a password seed from
 the identities and the anti-clogging token from the EAP-pwd-ID
 exchange (see Section 2.8.5.1):

 pwd-seed = H(token | peer-ID | server-ID | password | counter)

 Then, the pwd-seed is expanded using the KDF from the agreed-upon
 Ciphersuite out to the length of the prime:

 pwd-value = KDF(pwd-seed, "EAP-pwd Hunting And Pecking", len(p))

 If the pwd-value is greater than or equal to the prime, p, the
 counter is incremented, and a new pwd-seed is generated and the
 hunting-and-pecking continues. If pwd-value is less than the prime,
 p, it is passed to the group-specific operation which either returns
 the selected Password Element or fails. If the group-specific
 operation fails, the counter is incremented, a new pwd-seed is
 generated, and the hunting-and-pecking continues. This process
 continues until the group-specific operation returns the Password
 Element.

Harkins & Zorn Informational [Page 14]

RFC 5931 EAP Password August 2010

2.8.3.1. ECC Operation for PWE

 The group-specific operation for ECC groups uses pwd-value, pwd-seed,
 and the equation for the curve to produce the Password Element.
 First, pwd-value is used directly as the x-coordinate, x, with the
 equation for the elliptic curve, with parameters a and b from the
 domain parameter set of the curve, to solve for a y-coordinate, y.
 If there is no solution to the quadratic equation, this operation
 fails and the hunting-and-pecking process continues. If a solution
 is found, then an ambiguity exists as there are technically two
 solutions to the equation and pwd-seed is used to unambiguously
 select one of them. If the low-order bit of pwd-seed is equal to the
 low-order bit of y, then a candidate PWE is defined as the point
 (x, y); if the low-order bit of pwd-seed differs from the low-order
 bit of y, then a candidate PWE is defined as the point (x, p - y),
 where p is the prime over which the curve is defined. The candidate
 PWE becomes PWE, and the hunting and pecking terminates successfully.

 Algorithmically, the process looks like this:

 found = 0
 counter = 1
 do {
 pwd-seed = H(token | peer-ID | server-ID | password | counter)
 pwd-value = KDF(pwd-seed, "EAP-pwd Hunting And Pecking", len(p))
 if (pwd-value < p)
 then
 x = pwd-value
 if ((y = sqrt(x^3 + ax + b)) != FAIL)
 then
 if (LSB(y) == LSB(pwd-seed))
 then
 PWE = (x, y)
 else
 PWE = (x, p-y)
 fi
 found = 1
 fi
 fi
 counter = counter + 1
 } while (found == 0)

 Figure 3: Fixing PWE for ECC Groups

Harkins & Zorn Informational [Page 15]

RFC 5931 EAP Password August 2010

2.8.3.2. FFC Operation for pwe

 The group-specific operation for FFC groups takes pwd-value, and the
 prime, p, and order, r, from the group’s domain parameter set (see
 Section 2.2.1 when the order is not part of the defined domain
 parameter set) to directly produce a candidate Password Element, pwe,
 by exponentiating the pwd-value to the value ((p-1)/r) modulo the
 prime. If the result is greater than one (1), the candidate pwe
 becomes pwe, and the hunting and pecking terminates successfully.

 Algorithmically, the process looks like this:

 found = 0
 counter = 1
 do {
 pwd-seed = H(token | peer-ID | server-ID | password | counter)
 pwd-value = KDF(pwd-seed, "EAP-pwd Hunting And Pecking", len(p))
 if (pwd-value < p)
 then
 pwe = pwd-value ^ ((p-1)/r) mod p
 if (pwe > 1)
 then
 found = 1
 fi
 fi
 counter = counter + 1
 } while (found == 0)

 Figure 4: Fixing PWE for FFC Groups

2.8.4. Message Construction

 After the EAP-pwd Identity exchange, the construction of the
 components of subsequent messages depends on the type of group from
 the ciphersuite (ECC or FFC). This section provides an overview of
 the authenticated key exchange. For a complete description of
 message generation and processing, see Sections 2.8.5.2 and 2.8.5.3.

2.8.4.1. ECC Groups

 Using the mapping function F() defined in Section 2.2.2 and the group
 order r:

 Server: EAP-pwd-Commit/Request
 - choose two random numbers, 1 < s_rand, s_mask < r
 - compute Scalar_S = (s_rand + s_mask) mod r
 - compute Element_S = inv(s_mask * PWE)

Harkins & Zorn Informational [Page 16]

RFC 5931 EAP Password August 2010

 Element_S and Scalar_S are used to construct EAP-pwd-Commit/Request

 Peer: EAP-pwd-Commit/Response
 - choose two random numbers, 1 < p_rand, p_mask < r
 - compute Scalar_P = (p_rand + p_mask) mod r
 - compute Element_P = inv(p_mask * PWE)

 Element_P and Scalar_P are used to construct EAP-pwd-Commit/Response

 Server: EAP-pwd-Confirm/Request
 - compute KS = (s_rand * (Scalar_P * PWE + Element_P))
 - compute ks = F(KS)
 - compute Confirm_S = H(ks | Element_S | Scalar_S |
 Element_P | Scalar_P | Ciphersuite)

 Confirm_S is used to construct EAP-pwd-Confirm/Request

 Peer: EAP-pwd-Confirm/Response
 - compute KP = (p_rand * (Scalar_S * PWE + Element_S)),
 - compute kp = F(KP)
 - compute Confirm_P = H(kp | Element_P | Scalar_P |
 Element_S | Scalar_S | Ciphersuite)

 Confirm_P is used to construct EAP-pwd-Confirm/Response

 The EAP Server computes the shared secret as:
 MK = H(ks | Confirm_P | Confirm_S)

 The EAP Peer computes the shared secret as:
 MK = H(kp | Confirm_P | Confirm_S)

 The MSK and EMSK are derived from MK per Section 2.9.

2.8.4.2. FFC Groups

 There is no mapping function, F(), required for an FFC group. Using
 the order, r, for the group (see Section 2.2.1 when the order is not
 part of the defined domain parameters):

 Server: EAP-pwd-Commit/Request
 - choose two random numbers, 1 < s_rand, s_mask < r
 - compute Scalar_S = (s_rand + s_mask) mod r
 - compute Element_S = inv(pwe^s_mask mod p)

 Element_S and Scalar_S are used to construct EAP-pwd-Commit/Request

Harkins & Zorn Informational [Page 17]

RFC 5931 EAP Password August 2010

 Peer: EAP-pwd-Commit/Response
 - choose random two numbers, 1 < p_rand, p_mask < r
 - compute Scalar_P = (p_rand + p_mask) mod r
 - compute Element_P = inv(pwe^p_mask mod p)

 Element_P and Scalar_P are used to construct EAP-pwd-Commit/Response

 Server: EAP-pwd-Confirm/Request
 - compute ks = ((pwe^Scalar_P mod p) * Element_P)^s_rand mod p
 - compute Confirm_S = H(ks | Element_S | Scalar_S |
 Element_P | Scalar_P | Ciphersuite)

 Confirm_S is used to construct EAP-pwd-Confirm/Request

 Peer: EAP-pwd-Confirm/Response
 - compute kp = ((pwe^Scalar_S mod p) * Element_S)^p_rand mod p
 - compute Confirm_P = H(kp | Element_P | Scalar_P |
 Element_S | Scalar_S | Ciphersuite)

 Confirm_P is used to construct EAP-pwd-Confirm/Request

 The EAP Server computes the shared secret as:
 MK = H(ks | Confirm_P | Confirm_S)

 The EAP Peer computes the shared secret as:
 MK = H(kp | Confirm_P | Confirm_S)

 The MSK and EMSK are derived from MK per Section 2.9.

2.8.5. Message Processing

2.8.5.1. EAP-pwd-ID Exchange

 Although EAP provides an Identity method to determine the identity of
 the peer, the value in the Identity Response may have been truncated
 or obfuscated to provide privacy or decorated for routing purposes
 [RFC3748], making it inappropriate for usage by the EAP-pwd method.
 Therefore, the EAP-pwd-ID exchange is defined for the purpose of
 exchanging identities between the peer and server.

 The EAP-pwd-ID/Request contains the following quantities:

 o a ciphersuite

 o a representation of the server’s identity per Section 2.7.1

Harkins & Zorn Informational [Page 18]

RFC 5931 EAP Password August 2010

 o an anti-clogging token

 o a password pre-processing method

 The ciphersuite specifies the finite cyclic group, random function,
 and PRF selected by the server for use in the subsequent
 authentication exchange.

 The value of the anti-clogging token MUST be unpredictable and SHOULD
 NOT be from a source of random entropy. The purpose of the anti-
 clogging token is to provide the server an assurance that the peer
 constructing the EAP-pwd-ID/Response is genuine and not part of a
 flooding attack.

 A password pre-processing method is communicated to ensure
 interoperability by producing a canonical representation of the
 password string between the peer and server (see Section 2.7.2).

 The EAP-pwd-ID/Request is constructed according to Section 3.2.1 and
 is transmitted to the peer.

 Upon receipt of an EAP-pwd-ID/Request, the peer determines whether
 the ciphersuite and pre-processing method are acceptable. If not,
 the peer MUST respond with an EAP-NAK. If acceptable, the peer
 responds to the EAP-pwd-ID/Request with an EAP-pwd-ID/Response,
 constructed according to Section 3.2.1, that acknowledges the
 Ciphersuite, token, and pre-processing method and then adds its
 identity. After sending the EAP-pwd-ID/Response, the peer has the
 identity of the server (from the Request), its own identity (it
 encoded in the Response), a password pre-processing algorithm, and it
 can compute the Password Element as specified in Section 2.8.3. The
 Password Element is stored in state allocated for this exchange.

 The EAP-pwd-ID/Response acknowledges the Ciphersuite from the
 Request, acknowledges the anti-clogging token from the Request
 providing a demonstration of "liveness" on the part of the peer, and
 contains the identity of the peer. Upon receipt of the Response, the
 server verifies that the Ciphersuite acknowledged by the peer is the
 same as that sent in the Request and that the anti-clogging token
 added by the peer in the Response is the same as that sent in the
 Request. If Ciphersuites or anti-clogging tokens differ, the server
 MUST respond with an EAP-Failure message. If the anti-clogging
 tokens are the same, the server knows the peer is an active
 participant in the exchange. If the Ciphersuites are the same, the
 server now knows its own identity (it encoded in the Request) and the
 peer’s identity (from the Response) and can compute the Password

Harkins & Zorn Informational [Page 19]

RFC 5931 EAP Password August 2010

 Element according to Section 2.8.3. The server stores the Password
 Element in state it has allocated for this exchange. The server then
 initiates an EAP-pwd-Commit exchange.

2.8.5.2. EAP-pwd-Commit Exchange

 The server begins the EAP-pwd-Confirm exchange by choosing two random
 numbers, s_rand and s_mask, between 1 and r (where r is described in
 Section 2.1 according to the group established in Section 2.8.5.1)
 such that their sum modulo r is greater than one (1). It then
 computes Element_S and Scalar_S as defined in Section 2.8.4 and
 constructs an EAP-pwd-Commit/Request according to Section 3.2.2.
 Element_S and Scalar_S are added to the state allocated for this
 exchange, and the EAP-pwd-Commit/Request is transmitted to the peer.

 Upon receipt of the EAP-pwd-Commit/Request, the peer validates the
 length of the entire payload based upon the expected lengths of
 Element_S and Scalar_S (which are fixed according to the length of
 the agreed-upon group). If the length is incorrect, the peer MUST
 terminate the exchange. If the length is correct, Element_S and
 Scalar_S are extracted from the EAP-pwd-Commit/Request. Scalar_S is
 then checked to ensure it is between 1 and r, exclusive. If it is
 not, the peer MUST terminate the exchange. If it is, Element_S MUST
 be validated depending on the type of group -- Element validation for
 FFC groups is described in Section 2.8.5.2.1, and Element validation
 for ECC groups is described in Section 2.8.5.2.2. If validation is
 successful, the peer chooses two random numbers, p_rand and p_mask,
 between 1 and r (where r is described in Section 2.1 according to the
 group established in Section 2.8.5.1) such that their sum modulo r is
 greater than one (1), and computes Element_P and Scalar_P. Next, the
 peer computes kp from p_rand, Element_S, Scalar_S, and the Password
 Element according to Section 2.8.4. If kp is the "identity element"
 -- the point at infinity for an ECC group or the value one (1) for an
 FFC group -- the peer MUST terminate the exchange. If not, the peer
 uses Element_P and Scalar_P to construct an EAP-pwd-Commit/Response
 according to Section 3.2.2 and transmits the EAP-pwd-Commit/Response
 to the server.

 Upon receipt of the EAP-pwd-Commit/Response, the server validates the
 length of the entire payload based upon the expected lengths of
 Element_P and Scalar_P (which are fixed according to the agreed-upon
 group). If the length is incorrect, the server MUST respond with an
 EAP-Failure message, and it MUST terminate the exchange and free up
 any state allocated. If the length is correct, Scalar_P and
 Element_P are extracted from the EAP-pwd-Commit/Response and compared
 to Scalar_S and Element_S. If Scalar_P equals Scalar_S and Element_P
 equals Element_S, it indicates a reflection attack and the server
 MUST respond with an EAP-failure and terminate the exchange. If they

Harkins & Zorn Informational [Page 20]

RFC 5931 EAP Password August 2010

 differ, Scalar_P is checked to ensure it is between 1 and r,
 exclusive. If not the server MUST respond with an EAP-failure and
 terminate the exchange. If it is, Element_P is verified depending on
 the type of group -- Element validation for FFC groups is described
 in Section 2.8.5.2.1, and Element validation for ECC groups is
 described in Section 2.8.5.2.2. If validation is successful, the
 server computes ks from s_rand, Element_P, Scalar_P, and the Password
 Element according to Section 2.8.4. If ks is the "identity element"
 -- the point at infinity for an ECC group or the value one (1) for an
 FFC group -- the server MUST respond with an EAP-failure and
 terminate the exchange. Otherwise, the server initiates an EAP-pwd-
 Confirm exchange.

2.8.5.2.1. Element Validation for FFC Groups

 A received FFC Element is valid if: 1) it is between one (1) and the
 prime, p, exclusive; and 2) if modular exponentiation of the Element
 by the group order, r, equals one (1). If either of these conditions
 are not true the received Element is invalid.

2.8.5.2.2. Element Validation for ECC Groups

 Validating a received ECC Element involves: 1) checking whether the
 two coordinates, x and y, are both greater than zero (0) and less
 than the prime defining the underlying field; and 2) checking whether
 the x- and y-coordinates satisfy the equation of the curve (that is,
 that they produce a valid point on the curve that is not the point at
 infinity). If either of these conditions are not met, the received
 Element is invalid; otherwise, the Element is valid.

2.8.5.3. EAP-pwd-Confirm Exchange

 The server computes Confirm_S according to Section 2.8.4, constructs
 an EAP-pwd-Confirm/Request according to Section 3.2.3, and sends it
 to the peer.

 Upon receipt of an EAP-pwd-Confirm/Request, the peer validates the
 length of the entire payload based upon the expected length of
 Confirm_S (whose length is fixed by the agreed-upon random function).
 If the length is incorrect, the peer MUST terminate the exchange and
 free up any state allocated. If the length is correct, the peer
 verifies that Confirm_S is the value it expects based on the value of
 kp. If the value of Confirm_S is incorrect, the peer MUST terminate
 the exchange and free up any state allocated. If the value of
 Confirm_S is correct, the peer computes Confirm_P, constructs an EAP-
 pwd-Confirm/Response according to Section 3.2.3, and sends it off to
 the server. The peer then computes MK (according to Section 2.8.4)
 and the MSK and EMSK (according to Section 2.9) and stores these keys

Harkins & Zorn Informational [Page 21]

RFC 5931 EAP Password August 2010

 in state allocated for this exchange. The peer SHOULD export the MSK
 and EMSK at this time in anticipation of a secure association
 protocol by the lower layer to create session keys. Alternatively,
 the peer can wait until an EAP-Success message from the server before
 exporting the MSK and EMSK.

 Upon receipt of an EAP-pwd-Confirm/Response, the server validates the
 length of the entire payload based upon the expected length of
 Confirm_P (whose length is fixed by the agreed-upon random function).
 If the length is incorrect, the server MUST respond with an EAP-
 Failure message, and it MUST terminate the exchange and free up any
 state allocated. If the length is correct, the server verifies that
 Confirm_P is the value it expects based on the value of ks. If the
 value of Confirm_P is incorrect, the server MUST respond with an EAP-
 Failure message. If the value of Confirm_P is correct, the server
 computes MK (according to Section 2.8.4) and the MSK and EMSK
 (according to Section 2.9). It exports the MSK and EMSK and responds
 with an EAP-Success message. The server SHOULD free up state
 allocated for this exchange.

2.9. Management of EAP-pwd Keys

 [RFC5247] recommends each EAP method define how to construct a
 Method-ID and Session-ID to identify a particular EAP session between
 a peer and server. This information is constructed thusly:

 Method-ID = H(Ciphersuite | Scalar_P | Scalar_S)

 Session-ID = Type-Code | Method-ID

 where Ciphersuite, Scalar_P, and Scalar_S are from the specific
 exchange being identified; H is the random function specified in the
 Ciphersuite; and, Type-Code is the code assigned for EAP-pwd, 52,
 represented as a single octet.

 The authenticated key exchange of EAP-pwd generates a shared and
 authenticated key, MK. The size of MK is dependent on the random
 function, H, asserted in the Ciphersuite. EAP-pwd must export two
 512-bit keys, MSK and EMSK. Regardless of the value of len(MK),
 implementations MUST invoke the KDF defined in Section 2.5 to
 construct the MSK and EMSK. The MSK and EMSK are derived thusly:

 MSK | EMSK = KDF(MK, Session-ID, 1024)

 [RFC4962] mentions the importance of naming keys, particularly when
 key caching is being used. To facilitate such an important
 optimization, names are assigned thusly:

Harkins & Zorn Informational [Page 22]

RFC 5931 EAP Password August 2010

 o EMSK-name = Session-ID | ’E’ | ’M’| ’S’ | ’K’

 o MSK-name = Session-ID | ’M’| ’S’ | ’K’

 where ’E’ is a single octet of value 0x45, ’M’ is a single octet of
 value 0x4d, ’S’ is a single octet of value 0x53, and ’K’ is a single
 octet of value 0x4b.

 This naming scheme allows for key-management applications to quickly
 and accurately identify keys for a particular session or all keys of
 a particular type.

2.10. Mandatory-to-Implement Parameters

 For the purposes of interoperability, compliant EAP-pwd
 implementations SHALL support the following parameters:

 o Diffie-Hellman Group: group 19 defined in [RFC5114]

 o Random Function: defined in Section 2.4

 o PRF: HMAC-SHA256 defined in [RFC4634]

 o Password Pre-Processing: none

3. Packet Formats

3.1. EAP-pwd Header

 The EAP-pwd header has the following structure:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Code | Identifier | Length |
 +-+
 | Type |L|M| PWD-Exch | Total-Length |
 +-+
 | Data...
 +-+

 Figure 5: EAP-pwd Header

 Code

 Either 1 (for Request) or 2 (for Response); see [RFC3748].

Harkins & Zorn Informational [Page 23]

RFC 5931 EAP Password August 2010

 Identifier

 The Identifier field is one octet and aids in matching responses
 with requests. The Identifier field MUST be changed on each
 Request packet.

 Length

 The Length field is two octets and indicates the length of the EAP
 packet including the Code, Identifier, Length, Type, and Data
 fields. Octets outside the range of the Length field should be
 treated as Data Link Layer padding and MUST be ignored on
 reception.

 Type

 52 - EAP-pwd

 L and M bits

 The L bit (Length included) is set to indicate the presence of the
 two-octet Total-Length field, and MUST be set for the first
 fragment of a fragmented EAP-pwd message or set of messages.

 The M bit (more fragments) is set on all but the last fragment.

 PWD-Exch

 The PWD-Exch field identifies the type of EAP-pwd payload
 encapsulated in the Data field. This document defines the
 following values for the PWD-Exch field:

 * 0x00 : Reserved

 * 0x01 : EAP-pwd-ID exchange

 * 0x02 : EAP-pwd-Commit exchange

 * 0x03 : EAP-pwd-Confirm exchange

 All other values of the PWD-Exch field are unassigned.

 Total-Length

 The Total-Length field is two octets in length, and is present
 only if the L bit is set. This field provides the total length of
 the EAP-pwd message or set of messages that is being fragmented.

Harkins & Zorn Informational [Page 24]

RFC 5931 EAP Password August 2010

3.2. EAP-pwd Payloads

 EAP-pwd payloads all contain the EAP-pwd header and encoded
 information. Encoded information is comprised of sequences of data.
 Payloads in the EAP-pwd-ID exchange also include a ciphersuite
 statement indicating what finite cyclic group to use, what
 cryptographic primitive to use for H, and what PRF to use for
 deriving keys.

3.2.1. EAP-pwd-ID

 The Group Description, Random Function, and PRF together, and in that
 order, comprise the Ciphersuite included in the calculation of the
 peer’s and server’s confirm messages.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Group Description | Random Func’n | PRF |
 +-+
 | Token |
 +-+
 | Prep | Identity...
 +-+

 Figure 6: EAP-pwd-ID Payload

 The Group Description field value is taken from the IANA registry for
 "Group Description" created by IKE [RFC2409].

 This document defines the following value for the Random Function
 field:

 o 0x01 : Function defined in this memo in Section 2.4

 The value 0x00 is reserved for private use between mutually
 consenting parties. All other values of the Random Function field
 are unassigned.

 The PRF field has the following value:

 o 0x01 : HMAC-SHA256 [RFC4634]

 The value 0x00 is reserved for private use between mutually
 consenting parties. All other values of the PRF field are
 unassigned.

Harkins & Zorn Informational [Page 25]

RFC 5931 EAP Password August 2010

 The Token field contains an unpredictable value assigned by the
 server in an EAP-pwd-ID/Request and acknowledged by the peer in an
 EAP-pwd-ID/Response (see Section 2.8.5).

 The Prep field represents the password pre-processing technique (see
 Section 2.7.2) to be used by the client prior to generating the
 password seed (see Section 2.8.3). This document defines the
 following values for the Prep field:

 o 0x00 : None

 o 0x01 : RFC2759

 o 0x02 : SASLprep

 All other values of the Prep field are unassigned.

 The Identity field depends on the tuple of PWD-Exch/Code.

 o EAP-pwd-ID/Request : Server_ID

 o EAP-pwd-ID/Response : Peer_ID

 The length of the identity is computed from the Length field in the
 EAP header.

3.2.2. EAP-pwd-Commit

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | |
 ˜ Element ˜
 | |
 ˜ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ˜
 | |
 ˜ Scalar +-+-+-+-+-+-+-+-+
 | |
 +-+

 Figure 7: EAP-pwd-Commit Payload

Harkins & Zorn Informational [Page 26]

RFC 5931 EAP Password August 2010

 The Element and Scalar fields depend on the tuple of PWD-Exch/Code.

 o EAP-pwd-Commit/Request : Element_S, Scalar_S

 o EAP-pwd-Commit/Response : Element_P, Scalar_P

 The Element is encoded according to Section 3.3. The length of the
 Element is inferred by the finite cyclic group from the agreed-upon
 Ciphersuite. The length of the scalar can then be computed from the
 Length in the EAP header.

3.2.3. EAP-pwd-Confirm

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | |
 ˜ Confirm ˜
 | |
 +-+

 Figure 8: EAP-pwd-Confirm Payload

 The Confirm field depends on the tuple of PWD-Exch/Code.

 o EAP-pwd-Confirm/Request : Confirm_S

 o EAP-pwd-Confirm/Response : Confirm_P

 The length of the Confirm field computed from the Length in the EAP
 header.

3.3. Representation of Group Elements and Scalars

 Payloads in the EAP-pwd-Commit exchange contain elements from the
 agreed-upon finite cyclic cryptographic group (either an FCC group or
 an ECC group). To ensure interoperability, field elements and
 scalars MUST be represented in payloads in accordance with the
 requirements described below.

3.3.1. Elements in FFC Groups

 Elements in an FFC group MUST be represented (in binary form) as
 unsigned integers that are strictly less than the prime, p, from the
 group’s domain parameter set. The binary representation of each
 group element MUST have a bit length equal to the bit length of the

Harkins & Zorn Informational [Page 27]

RFC 5931 EAP Password August 2010

 binary representation of p. This length requirement is enforced, if
 necessary, by prepending the binary representation of the integer
 with zeros until the required length is achieved.

3.3.2. Elements in ECC Groups

 Elements in an ECC group are points on the agreed-upon elliptic
 curve. Each such element MUST be represented by the concatenation of
 two components, an x-coordinate and a y-coordinate.

 Each of the two components, the x-coordinate and the y-coordinate,
 MUST be represented (in binary form) as an unsigned integer that is
 strictly less than the prime, p, from the group’s domain parameter
 set. The binary representation of each component MUST have a bit
 length equal to the bit length of the binary representation of p.
 This length requirement is enforced, if necessary, by prepending the
 binary representation of the integer with zeros until the required
 length is achieved.

 Since the field element is represented in a payload by the
 x-coordinate followed by the y-coordinate, it follows that the length
 of the element in the payload MUST be twice the bit length of p. In
 other words, "compressed representation" is not used.

3.3.3. Scalars

 Scalars MUST be represented (in binary form) as unsigned integers
 that are strictly less than r, the order of the generator of the
 agreed-upon cryptographic group. The binary representation of each
 scalar MUST have a bit length equal to the bit length of the binary
 representation of r. This requirement is enforced, if necessary, by
 prepending the binary representation of the integer with zeros until
 the required length is achieved.

4. Fragmentation

 EAP [RFC3748] is a request-response protocol. The server sends
 requests and the peer responds. These request and response messages
 are assumed to be limited to at most 1020 bytes. Messages in EAP-pwd
 can be larger than 1020 bytes and therefore require support for
 fragmentation and reassembly.

 Implementations MUST establish a fragmentation threshold that
 indicates the maximum size of an EAP-pwd payload. When an
 implementation knows the maximum transmission unit (MTU) of its lower
 layer, it SHOULD calculate the fragmentation threshold from that
 value. In lieu of knowledge of the lower layer’s MTU, the
 fragmentation threshold MUST be set to 1020 bytes.

Harkins & Zorn Informational [Page 28]

RFC 5931 EAP Password August 2010

 Since EAP is a simple ACK-NAK protocol, fragmentation support can be
 added in a simple manner. In EAP, fragments that are lost or damaged
 in transit will be retransmitted, and since sequencing information is
 provided by the Identifier field in EAP, there is no need for a
 fragment offset field as is provided in IPv4.

 EAP-pwd fragmentation support is provided through the addition of
 flags within the EAP-Response and EAP-Request packets, as well as a
 Total-Length field of two octets. Flags include the Length included
 (L) and More fragments (M) bits. The L flag is set to indicate the
 presence of the two-octet Total-Length field, and MUST be set for the
 first fragment of a fragmented EAP-pwd message or set of messages.
 The M flag is set on all but the last fragment. The Total-Length
 field is two octets, and provides the total length of the EAP-pwd
 message or set of messages that is being fragmented; this simplifies
 buffer allocation.

 When an EAP-pwd peer receives an EAP-Request packet with the M bit
 set, it MUST respond with an EAP-Response with EAP-Type=EAP-pwd and
 no data. This serves as a fragment ACK. The EAP server MUST wait
 until it receives the EAP-Response before sending another fragment.
 In order to prevent errors in processing of fragments, the EAP server
 MUST increment the Identifier field for each fragment contained
 within an EAP-Request, and the peer MUST include this Identifier
 value in the fragment ACK contained within the EAP-Response.
 Retransmitted fragments will contain the same Identifier value.

 Similarly, when the EAP server receives an EAP-Response with the M
 bit set, it MUST respond with an EAP-Request with EAP-Type=EAP-pwd
 and no data. This serves as a fragment ACK. The EAP peer MUST wait
 until it receives the EAP-Request before sending another fragment.
 In order to prevent errors in the processing of fragments, the EAP
 server MUST increment the Identifier value for each fragment ACK
 contained within an EAP-Request, and the peer MUST include this
 Identifier value in the subsequent fragment contained within an EAP-
 Response.

5. IANA Considerations

 This memo contains new numberspaces to be managed by IANA. The
 policies used to allocate numbers are described in [RFC5226]. IANA
 has allocated a new EAP method type for EAP-pwd (52).

 IANA has created new registries for PWD-Exch messages, random
 functions, PRFs, and password pre-processing methods and has added
 the message numbers, random function, PRF, and pre-processing methods
 specified in this memo to those registries, respectively.

Harkins & Zorn Informational [Page 29]

RFC 5931 EAP Password August 2010

 The following is the initial PWD-Exch message registry layout:

 o 0x00 : Reserved

 o 0x01 : EAP-pwd-ID exchange

 o 0x02 : EAP-pwd-Commit exchange

 o 0x03 : EAP-pwd-Confirm exchange

 The PWD-Exch field is 6 bits long. The value 0x00 is reserved. All
 other values are available through assignment by IANA. IANA is
 instructed to assign values based on "IETF Review" (see [RFC5226]).

 The following is the initial Random Function registry layout:

 o 0x00 : Private Use

 o 0x01 : Function defined in this memo, Section 2.4

 The Random Function field is 8 bits long. The value 0x00 is for
 Private Use between mutually consenting parties. All other values
 are available through assignment by IANA. IANA is instructed to
 assign values based on "Specification Required" (see [RFC5226]). The
 Designated Expert performing the necessary review MUST ensure the
 random function has been cryptographically vetted.

 The following is the initial PRF registry layout:

 o 0x00 : Private Use

 o 0x01 : HMAC-SHA256 as defined in [RFC4634]

 The PRF field is 8 bits long. The value 0x00 is for Private Use
 between mutually consenting parties. All other values are available
 through assignment by IANA. IANA is instructed to assign values
 based on "IETF Review" (see [RFC5226]).

 The following is the initial layout for the password pre-processing
 method registry:

 o 0x00 : None

 o 0x01 : RFC2759

 o 0x02 : SASLprep

Harkins & Zorn Informational [Page 30]

RFC 5931 EAP Password August 2010

 The Prep field is 8 bits long, and all other values are available
 through assignment by IANA. IANA is instructed to assign values
 based on "Specification Required" (see [RFC5226]).

6. Security Considerations

 In Section 1.3, several security properties were presented that
 motivated the design of this protocol. This section will address how
 well they are met.

6.1. Resistance to Passive Attack

 A passive attacker will see Scalar_P, Element_P, Scalar_S, and
 Element_S. She can guess at passwords to compute the password
 element but will not know s_rand or p_rand and therefore will not be
 able to compute MK.

 The secret random value of the peer (server) is effectively hidden by
 adding p_mask (s_mask) to p_rand (s_rand) modulo the order of the
 group. If the order is "r", then there are approximately "r"
 distinct pairs of numbers that will sum to the value Scalar_P
 (Scalar_S). Attempting to guess the particular pair is just as
 difficult as guessing the secret random value p_rand (s_rand), the
 probability of a guess is 1/(r - i) after "i" guesses. For a large
 value of r, this exhaustive search technique is computationally
 infeasible. An attacker would do better by determining the discrete
 logarithm of Element_P (Element_S) using an algorithm like the baby-
 step giant-step algorithm (see [APPCRY]), which runs on the order of
 the square root of r group operations (e.g., a group with order 2^160
 would require 2^80 exponentiations or point multiplications). Based
 on the assumptions made on the finite cyclic group in Section 2.3,
 that is also computationally infeasible.

6.2. Resistance to Active Attack

 An active attacker can launch her attack after an honest server has
 sent EAP-pwd-Commit/Request to an honest peer. This would result in
 the peer sending EAP-pwd-Commit/Response. In this case, the active
 attack has been reduced to that of a passive attacker since p_rand
 and s_rand will remain unknown. The active attacker could forge a
 value of Confirm_P (Confirm_S) and send it to the EAP server (EAP
 peer) in the hope that it will be accepted, but due to the
 assumptions on H made in Section 2.3, that is computationally
 infeasible.

 The active attacker can launch her attack by forging EAP-pwd-Commit/
 Request and sending it to the peer. This will result in the peer
 responding with EAP-pwd-Commit/Response. The attacker can then

Harkins & Zorn Informational [Page 31]

RFC 5931 EAP Password August 2010

 attempt to compute ks, but since she doesn’t know the password, this
 is infeasible. It can be shown that an attack by forging an EAP-pwd-
 Commit/Response is an identical attack with equal infeasibility.

6.3. Resistance to Dictionary Attack

 An active attacker can wait until an honest server sends EAP-pwd-
 Commit/Request and then forge EAP-pwd-Commit/Response and send it to
 the server. The server will respond with EAP-pwd-Confirm/Request.
 Now the attacker can attempt to launch a dictionary attack. She can
 guess at potential passwords, compute the password element, and
 compute kp using her p_rand, Scalar_S, and Element_S from the EAP-
 pwd-Commit/Request and the candidate password element from her guess.
 She will know if her guess is correct when she is able to verify
 Confirm_S in EAP-pwd-Confirm/Request.

 But the attacker committed to a password guess with her forged EAP-
 pwd-Commit/Response when she computed Element_P. That value was used
 by the server in his computation of ks that was used when he
 constructed Confirm_S in EAP-pwd-Confirm/Request. Any guess of the
 password that differs from the one used in the forged EAP-pwd-Commit/
 Response could not be verified as correct since the attacker has no
 way of knowing whether it is correct. She is able to make one guess
 and one guess only per attack. This means that any advantage she can
 gain -- guess a password, if it fails exclude it from the pool of
 possible passwords and try again -- is solely through interaction
 with an honest protocol peer.

 The attacker can commit to the guess with the forged EAP-pwd-Commit/
 Response and then run through the dictionary, computing the password
 element and ks using her forged Scalar_P and Element_P. She will
 know she is correct if she can compute the same value for Confirm_S
 that the server produced in EAP-pwd-Confirm/Request. But this
 requires the attacker to know s_rand, which we noted above was not
 possible.

 The password element PWE/pwe is chosen using a method described in
 Section 2.8.3. Since this is an element in the group, there exists a
 scalar value, q, such that:

 PWE = q * G, for an ECC group

 pwe = g^q mod p, for an FFC group

 Knowledge of q can be used to launch a dictionary attack. For the
 sake of brevity, the attack will be demonstrated assuming an ECC
 group. The attack works thusly:

Harkins & Zorn Informational [Page 32]

RFC 5931 EAP Password August 2010

 The attacker waits until an honest server sends an EAP-pwd-Commit/
 Request. The attacker then generates a random Scalar_P and a random
 p_mask and computes Element_P = p_mask * G. The attacker sends the
 bogus Scalar_P and Element_P to the server and obtains Confirm_S in
 return. Note that the server is unable to detect that Element_P was
 calculated incorrectly.

 The attacker now knows that:

 KS = (Scalar_P * q + p_mask) * s_rand * G

 and

 s_rand * G = Scalar_P * G - ((1/q) mod r * -Element_P)

 Since Scalar_P, p_mask, G, and Element_P are all known, the attacker
 can run through the dictionary, make a password guess, compute PWE
 using the technique in Section 2.8.3, determine q, and then use the
 equations above to compute KS and see if it can verify Confirm_S. But
 to determine q for a candidate PWE, the attacker needs to perform a
 discrete logarithm that was assumed to be computationally infeasible
 in Section 2.3. Therefore, this attack is also infeasible.

 The best advantage an attacker can gain in a single active attack is
 to determine whether a single guess at the password was correct.
 Therefore, her advantage is solely through interaction and not
 computation, which is the definition for resistance to dictionary
 attack.

 Resistance to dictionary attack means that the attacker must launch
 an active attack to make a single guess at the password. If the size
 of the dictionary from which the password was extracted was D, and
 each password in the dictionary has an equal probability of being
 chosen, then the probability of success after a single guess is 1/D.
 After X guesses, and removal of failed guesses from the pool of
 possible passwords, the probability becomes 1/(D-X). As X grows, so
 does the probability of success. Therefore, it is possible for an
 attacker to determine the password through repeated brute-force,
 active, guessing attacks. This protocol does not presume to be
 secure against this, and implementations SHOULD ensure the size of D
 is sufficiently large to prevent this attack. Implementations SHOULD
 also take countermeasures -- for instance, refusing authentication
 attempts for a certain amount of time, after the number of failed
 authentication attempts reaches a certain threshold. No such
 threshold or amount of time is recommended in this memo.

Harkins & Zorn Informational [Page 33]

RFC 5931 EAP Password August 2010

6.4. Forward Secrecy

 The MSK and EMSK are extracted from MK, which is derived from doing
 group operations with s_rand, p_rand, and the password element. The
 peer and server choose random values with each run of the protocol.
 So even if an attacker is able to learn the password, she will not
 know the random values used by either the peer or server from an
 earlier run and will therefore be unable to determine MK, or the MSK
 or EMSK. This is the definition of Forward Secrecy.

6.5. Group Strength

 The strength of the shared secret, MK, derived in Section 2.8.4
 depends on the effort needed to solve the discrete logarithm problem
 in the chosen group. [RFC3766] has a good discussion on the strength
 estimates of symmetric keys derived from discrete logarithm
 cryptography.

 The mandatory-to-implement group defined in this memo is group 19, a
 group from [RFC5114] based on Elliptic Curve Cryptography (see
 Section 2.2.2) with a prime bit length of 256. This group was chosen
 because the current best estimate of a symmetric key derived using
 this group is 128 bits, which is the typical length of a key for the
 Advanced Encryption Standard ([FIPS-197]). While it is possible to
 obtain a equivalent measure of strength using a group based on Finite
 Field Cryptography (see Section 2.2.1), it would require a much
 larger prime and be more memory and compute intensive.

6.6. Random Functions

 The protocol described in this memo uses a function referred to as a
 "random oracle" (as defined in [RANDOR]). A significant amount of
 care must be taken to instantiate a random oracle out of handy
 cryptographic primitives. The random oracle used here is based on
 the notion of a "Randomness Extractor" from [RFC5869].

 This protocol can use any properly instantiated random oracle. To
 ensure that any new value for H will use a properly instantiated
 random oracle, IANA has been instructed (in Section 5) to only
 allocate values from the Random Function registry after being vetted
 by an expert.

 A few of the defined groups that can be used with this protocol have
 a security estimate (see Section 6.5) less than 128 bits, many do not
 though, and to prevent the random function from being the gating
 factor (or a target for attack), any new random function MUST map its
 input to a target of at least 128 bits and SHOULD map its input to a
 target of at least 256 bits.

Harkins & Zorn Informational [Page 34]

RFC 5931 EAP Password August 2010

7. Security Claims

 [RFC3748] requires that documents describing new EAP methods clearly
 articulate the security properties of the method. In addition, for
 use with wireless LANs, [RFC4017] mandates and recommends several of
 these. The claims are:

 a. mechanism: password.

 b. claims:

 * mutual authentication: the peer and server both authenticate
 each other by proving possession of a shared password. This
 is REQUIRED by [RFC4017].

 * forward secrecy: compromise of the password does not reveal
 the secret keys -- MK, MSK, or EMSK -- from earlier runs of
 the protocol.

 * replay protection: an attacker is unable to replay messages
 from a previous exchange to either learn the password or a
 key derived by the exchange. Similarly the attacker is
 unable to induce either the peer or server to believe the
 exchange has successfully completed when it hasn’t.
 Reflection attacks are foiled because the server ensures that
 the scalar and element supplied by the peer do not equal its
 own.

 * key derivation: keys are derived by performing a group
 operation in a finite cyclic group (e.g., exponentiation)
 using secret data contributed by both the peer and server.
 An MSK and EMSK are derived from that shared secret. This is
 REQUIRED by [RFC4017]

 * dictionary attack resistance: this protocol is resistant to
 dictionary attack because an attacker can only make one
 password guess per active attack. The advantage gained by an
 attacker is through interaction not through computation.
 This is REQUIRED by [RFC4017].

 * session independence: this protocol is resistant to active
 and passive attack and does not enable compromise of
 subsequent or prior MSKs or EMSKs from either passive or
 active attack.

 * Denial-of-Service Resistance: it is possible for an attacker
 to cause a server to allocate state and consume CPU cycles
 generating Scalar_S and Element_S. Such an attack is gated,

Harkins & Zorn Informational [Page 35]

RFC 5931 EAP Password August 2010

 though, by the requirement that the attacker first obtain
 connectivity through a lower-layer protocol (e.g. 802.11
 authentication followed by 802.11 association, or 802.3
 "link-up") and respond to two EAP messages --the EAP-ID/
 Request and the EAP-pwd-ID/Request. The EAP-pwd-ID exchange
 further includes an anti-clogging token that provides a level
 of assurance to the server that the peer is, at least,
 performing a rudimentary amount of processing and not merely
 spraying packets. This prevents distributed denial-of-
 service attacks and also requires the attacker to announce,
 and commit to, a lower-layer identity, such as a MAC (Media
 Access Control) address.

 * Man-in-the-Middle Attack Resistance: this exchange is
 resistant to active attack, which is a requirement for
 launching a man-in-the-middle attack. This is REQUIRED by
 [RFC4017].

 * shared state equivalence: upon completion of EAP-pwd, the
 peer and server both agree on MK, MSK, EMSK, Method-ID, and
 Session-ID. The peer has authenticated the server based on
 the Server-ID, and the server has authenticated the peer
 based on the Peer-ID. This is due to the fact that Peer-ID,
 Server-ID, and the shared password are all combined to make
 the password element, which must be shared between the peer
 and server for the exchange to complete. This is REQUIRED by
 [RFC4017].

 * fragmentation: this protocol defines a technique for
 fragmentation and reassembly in Section 4.

 * resistance to "Denning-Sacco" attack: learning keys
 distributed from an earlier run of the protocol, such as the
 MSK or EMSK, will not help an adversary learn the password.

 c. key strength: the strength of the resulting key depends on the
 finite cyclic group chosen. See Section 6.5. This is REQUIRED
 by [RFC4017].

 d. key hierarchy: MSKs and EMSKs are derived from the MK using the
 KDF defined in Section 2.5 as described in Section 2.8.4.

 e. vulnerabilities (note that none of these are REQUIRED by
 [RFC4017]):

 * protected ciphersuite negotiation: the ciphersuite offer made
 by the server is not protected from tampering by an active
 attacker. Downgrade attacks are prevented, though, since

Harkins & Zorn Informational [Page 36]

RFC 5931 EAP Password August 2010

 this is not a "negotiation" with a list of acceptable
 ciphersuites. If a Ciphersuite was modified by an active
 attacker it would result in a failure to confirm the message
 sent by the other party, since the Ciphersuite is bound by
 each side into its confirm message, and the protocol would
 fail as a result.

 * confidentiality: none of the messages sent in this protocol
 are encrypted.

 * integrity protection: messages in the EAP-pwd-Commit exchange
 are not integrity protected.

 * channel binding: this protocol does not enable the exchange
 of integrity-protected channel information that can be
 compared with values communicated via out-of-band mechanisms.

 * fast reconnect: this protocol does not provide a fast-
 reconnect capability.

 * cryptographic binding: this protocol is not a tunneled EAP
 method and therefore has no cryptographic information to
 bind.

 * identity protection: the EAP-pwd-ID exchange is not
 protected. An attacker will see the server’s identity in the
 EAP-pwd-ID/Request and see the peer’s identity in EAP-pwd-ID/
 Response.

8. Acknowledgements

 The authors would like to thank Scott Fluhrer for discovering the
 "password as exponent" attack that was possible in the initial
 version of this memo and for his very helpful suggestions on the
 techniques for fixing the PWE/pwe to prevent it. The authors would
 also like to thank Hideyuki Suzuki for his insight in discovering an
 attack against a previous version of the underlying key exchange
 protocol. Special thanks to Lily Chen for helpful discussions on
 hashing into an elliptic curve and to Jin-Meng Ho for suggesting the
 countermeasures to protect against a small sub-group attack. Rich
 Davis suggested the defensive checks to Commit messages, and his
 various comments greatly improved the quality of this memo and the
 underlying key exchange on which it is based. Scott Kelly suggested
 adding the anti-clogging token to the ID exchange to prevent
 distributed denial-of-service attacks. Dorothy Stanley provided
 valuable suggestions to improve the quality of this memo. The
 fragmentation method used was taken from [RFC5216].

Harkins & Zorn Informational [Page 37]

RFC 5931 EAP Password August 2010

9. References

9.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2759] Zorn, G., "Microsoft PPP CHAP Extensions, Version 2",
 RFC 2759, January 2000.

 [RFC3454] Hoffman, P. and M. Blanchet, "Preparation of
 Internationalized Strings ("stringprep")", RFC 3454,
 December 2002.

 [RFC3748] Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and
 H. Levkowetz, "Extensible Authentication Protocol
 (EAP)", RFC 3748, June 2004.

 [RFC4013] Zeilenga, K., "SASLprep: Stringprep Profile for User
 Names and Passwords", RFC 4013, February 2005.

 [RFC4282] Aboba, B., Beadles, M., Arkko, J., and P. Eronen, "The
 Network Access Identifier", RFC 4282, December 2005.

 [RFC4634] Eastlake, D. and T. Hansen, "US Secure Hash Algorithms
 (SHA and HMAC-SHA)", RFC 4634, July 2006.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

 [SP800-108] Chen, L., "Recommendations for Key Derivation Using
 Pseudorandom Functions", NIST Special
 Publication 800-108, April 2008.

 [SP800-56A] Barker, E., Johnson, D., and M. Smid, "Recommendations
 for Pair-Wise Key Establishment Schemes Using Discrete
 Logarithm Cryptography", NIST Special
 Publication 800-56A, March 2007.

9.2. Informative References

 [APPCRY] Menezes, A., van Oorshot, P., and S. Vanstone, "Handbook
 of Applied Cryptography", CRC Press Series on Discrete
 Mathematics and Its Applications, 1996.

Harkins & Zorn Informational [Page 38]

RFC 5931 EAP Password August 2010

 [BM92] Bellovin, S. and M. Merritt, "Encrypted Key Exchange:
 Password-Based Protocols Secure Against Dictionary
 Attack", Proceedings of the IEEE Symposium on Security
 and Privacy, Oakland, 1992.

 [BM93] Bellovin, S. and M. Merritt, "Augmented Encrypted Key
 Exchange: A Password-Based Protocol Secure against
 Dictionary Attacks and Password File Compromise",
 Proceedings of the 1st ACM Conference on Computer and
 Communication Security, ACM Press, 1993.

 [BMP00] Boyko, V., MacKenzie, P., and S. Patel, "Provably Secure
 Password Authenticated Key Exchange Using Diffie-
 Hellman", Proceedings of Eurocrypt 2000, LNCS
 1807 Springer-Verlag, 2000.

 [FIPS-197] National Institute of Standards and Technology, FIPS Pub
 197: Advanced Encryption Standard (AES), November 2001.

 [JAB96] Jablon, D., "Strong Password-Only Authenticated Key
 Exchange", ACM SIGCOMM Computer Communication
 Review Volume 1, Issue 5, October 1996.

 [LUC97] Lucks, S., "Open Key Exchange: How to Defeat Dictionary
 Attacks Without Encrypting Public Keys", Proceedings of
 the Security Protocols Workshop, LNCS 1361, Springer-
 Verlag, 1997.

 [RANDOR] Bellare, M. and P. Rogaway, "Random Oracles are
 Practical: A Paradigm for Designing Efficient
 Protocols", Proceedings of the 1st ACM Conference on
 Computer and Communication Security, ACM Press, 1993.

 [RFC2409] Harkins, D. and D. Carrel, "The Internet Key Exchange
 (IKE)", RFC 2409, November 1998.

 [RFC3766] Orman, H. and P. Hoffman, "Determining Strengths For
 Public Keys Used For Exchanging Symmetric Keys", BCP 86,
 RFC 3766, April 2004.

 [RFC4017] Stanley, D., Walker, J., and B. Aboba, "Extensible
 Authentication Protocol (EAP) Method Requirements for
 Wireless LANs", RFC 4017, March 2005.

 [RFC4086] Eastlake, D., Schiller, J., and S. Crocker, "Randomness
 Requirements for Security", BCP 106, RFC 4086,
 June 2005.

Harkins & Zorn Informational [Page 39]

RFC 5931 EAP Password August 2010

 [RFC4962] Housley, R. and B. Aboba, "Guidance for Authentication,
 Authorization, and Accounting (AAA) Key Management",
 BCP 132, RFC 4962, July 2007.

 [RFC5114] Lepinski, M. and S. Kent, "Additional Diffie-Hellman
 Groups for Use with IETF Standards", RFC 5114,
 January 2008.

 [RFC5216] Simon, D., Aboba, B., and R. Hurst, "The EAP-TLS
 Authentication Protocol", RFC 5216, March 2008.

 [RFC5247] Aboba, B., Simon, D., and P. Eronen, "Extensible
 Authentication Protocol (EAP) Key Management Framework",
 RFC 5247, August 2008.

 [RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-
 Expand Key Derivation Function (HKDF)", RFC 5869,
 May 2010.

Authors’ Addresses

 Dan Harkins
 Aruba Networks
 1322 Crossman Avenue
 Sunnyvale, CA 94089-1113
 USA

 EMail: dharkins@arubanetworks.com

 Glen Zorn
 Network Zen
 1310 East Thomas Street
 #306
 Seattle, WA 98102
 USA

 Phone: +1 (206) 377-9035
 EMail: gwz@net-zen.net

Harkins & Zorn Informational [Page 40]

