
Independent Submission S. Floyd
Request for Comments: 5690 ICIR
Category: Informational A. Arcia
ISSN: 2070-1721 D. Ros
 TELECOM Bretagne
 J. Iyengar
 Franklin & Marshall College
 February 2010

 Adding Acknowledgement Congestion Control to TCP

Abstract

 This document describes a possible congestion control mechanism for
 acknowledgement (ACKs) traffic in TCP. The document specifies an
 end-to-end acknowledgement congestion control mechanism for TCP that
 uses participation from both TCP hosts: the TCP data sender and the
 TCP data receiver. The TCP data sender detects lost or Explicit
 Congestion Notification (ECN)-marked ACK packets, and tells the TCP
 data receiver the ACK Ratio R to use to respond to the congestion on
 the reverse path from the data receiver to the data sender. The TCP
 data receiver sends roughly one ACK packet for every R data packets
 received. This mechanism is based on the acknowledgement congestion
 control in the Datagram Congestion Control Protocol’s (DCCP’s)
 Congestion Control Identifier (CCID) 2. This acknowledgement
 congestion control mechanism is being specified for further
 evaluation by the network community.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This is a contribution to the RFC Series, independently of any other
 RFC stream. The RFC Editor has chosen to publish this document at
 its discretion and makes no statement about its value for
 implementation or deployment. Documents approved for publication by
 the RFC Editor are not a candidate for any level of Internet
 Standard; see Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc5690.

Floyd, et al. Informational [Page 1]

RFC 5690 TCPM - ACK Congestion Control February 2010

IESG Note

 The content of this RFC was at one time considered by the IETF, and
 therefore it may resemble a current IETF work in progress or a
 published IETF work.

Copyright Notice

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.

Table of Contents

 1. Introduction ..3
 2. Conventions and Terminology4
 3. Overview ..4
 4. Acknowledgement Congestion Control6
 4.1. The ACK Congestion Control Permitted Option6
 4.2. The TCP ACK Ratio Option7
 4.3. The Receiver: Implementing the ACK Ratio7
 4.4. The Sender: Determining Lost or Marked ACK Packets8
 4.4.1. The Sender: Detecting Lost ACK Packets
 after a Congestion Event10
 4.5. The Sender: Adjusting the ACK Ratio10
 4.5.1. Possible Addition: Decreasing the ACK Ratio
 after a Congestion Window Decrease12
 4.6. The Receiver: Sending ACKs for Out-of-Order Data
 Segments ..12
 4.7. The Sender: Response to ACK Packets13
 4.8. Possible Addition: Receiver Bounds on the ACK Ratio15
 5. Possible Complications ...15
 5.1. Possible Complication: Delayed Acknowledgements15
 5.2. Possible Complication: Duplicate Acknowledgements15
 5.3. Possible Complication: Two-Way Traffic16
 5.4. Possible Complication: Reordering of ACK Packets16
 5.5. Possible Complication: Abrupt Changes in the ACK Path17
 5.6. Possible Complication: Corruption17
 5.7. Possible Complication: ACKs That Don’t Contribute
 to Congestion ...17
 5.8. Possible Complication: TCP Implementations that
 Skip ACK Packets ..20

Floyd, et al. Informational [Page 2]

RFC 5690 TCPM - ACK Congestion Control February 2010

 5.9. Possible Complication: Router or Middlebox-Based
 ACK Mechanisms ..21
 5.10. Possible Complication: Data-Limited Senders21
 5.11. Other Issues ...22
 6. Evaluating ACK Congestion Control22
 6.1. Contention in Wireless Links or in Non-Switched Ethernet ..22
 6.2. Keep-Alive and Other Special ACK Packets22
 7. Measurements of ACK Traffic and Congestion23
 8. Acknowledgement Congestion Control in DCCP’s CCID 223
 9. Security Considerations ..24
 10. IANA Considerations ...25
 11. Conclusions ...26
 12. Acknowledgements ..26
 Appendix A. Related Work ..27
 A.1. ECN-Only Mechanisms28
 A.2. Receiver-Only Mechanisms28
 A.3. Middlebox-Based Mechanisms29
 Appendix B. Design Considerations29
 B.1. The TCP ACK Ratio Option, or an AckNow Bit in
 Data Packets? ...29
 Normative References ..30
 Informative References ..30

1. Introduction

 This document describes a congestion control mechanism for
 acknowledgements (ACKs) to TCP. This mechanism is based on the
 acknowledgement congestion control in DCCP’s CCID 2 ([RFC4340],
 [RFC4341]), which is a successor to the TCP acknowledgement
 congestion control mechanism proposed by Balakrishnan, et al. in
 [BPK97].

 In this document we use the terminology of senders and receivers,
 with the sender sending data traffic and the receiver sending
 acknowledgement traffic in response. In CCID 2’s acknowledgement
 congestion control, specified in Section 6.1 of [RFC4341], the
 receiver uses an ACK Ratio R reported to it by the sender, sending
 roughly one ACK packet for every R data packets received. The CCID 2
 sender keeps the acknowledgement rate roughly TCP-friendly by
 monitoring the acknowledgement stream for lost and marked ACK packets
 and modifying the ACK Ratio accordingly. For every round-trip time
 (RTT) containing an ACK congestion event (that is, a lost or marked
 ACK packet), the sender halves the acknowledgement rate by doubling
 the ACK Ratio; for every RTT containing no ACK congestion event, the
 sender additively increases the acknowledgement rate through gradual
 decreases in the ACK Ratio.

Floyd, et al. Informational [Page 3]

RFC 5690 TCPM - ACK Congestion Control February 2010

 The goal of this document is to explore a similar congestion control
 mechanism for acknowledgement traffic for TCP. The assumption is
 that in some environments with congestion on the reverse path,
 reducing the sending rate for ACK traffic traversing the congested
 path can help to reduce the congestion itself. For those
 environments where the reverse path is congested but where TCP ACK
 traffic does not appreciably contribute to that aggregate congestion,
 the goal is for TCP’s ACK congestion control to have a minimal
 negative effect on the performance of the TCP connection.

 Adding acknowledgement congestion control as an option in TCP would
 require the following:

 * An agreement from the TCP hosts on the use of ACK congestion
 control. For the mechanism specified in this document, the TCP
 hosts would use a new TCP option, the ACK Congestion Control
 Permitted option.

 * A mechanism for the TCP sender to detect lost and ECN-marked pure
 acknowledgement packets.

 * A mechanism for adjusting the ACK Ratio. The TCP sender would
 adjust the ACK Ratio as specified in Section 6.1.2 of [RFC4341].

 * A method for the TCP sender to inform the TCP receiver of a new
 value for the ACK Ratio. For the mechanism specified in this
 document, the TCP sender would use a new TCP option, the ACK Ratio
 option.

2. Conventions and Terminology

 MSS refers to the Maximum Segment Size.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

3. Overview

 This section gives an overview of acknowledgement congestion control
 for TCP.

Floyd, et al. Informational [Page 4]

RFC 5690 TCPM - ACK Congestion Control February 2010

 TCP Host A Router TCP Host B
 (data sender) (data receiver)
 ---------- ------ ----------
 <--- SYN with AckCC Permitted.
 SYN/ACK with AckCC Permitted --->
 . . .
 Data packets --->
 <--- one ACK packet
 for every two data packets
 . . .
 Sender detects a lost ACK packet.
 Data packet with an ACK Ratio option of 4 --->
 <--- one ACK packet
 for at most every four data packets
 . . .
 Sender detects a period with no lost ACK packets.
 Data packet with an ACK Ratio option of 3 --->
 <--- one ACK packet
 for at most every three data packets

 Figure 1: Acknowledgement Congestion Control,
 Host B as the Connection Initiator, for a Connection without ECN

 Figure 1 gives an example of acknowledgement congestion control
 (AckCC) with TCP Host B as the connection initiator.

 During connection initiation, TCP host B sends an ACK Congestion
 Control Permitted option on its SYN or SYN/ACK packet. This allows
 TCP host A (now called the sender) to send instructions to TCP host B
 (now called the receiver) about the ACK Ratio to use in responding to
 data packets.

 Also during connection initiation, TCP host A sends an ACK Congestion
 Control Permitted option on its SYN or SYN/ACK packet. In
 combination with TCP host B’s sending of an ACK Congestion Control
 Permitted option, and with the negotiation of ECN-Capability as
 specified in [RFC3168], this would allow TCP host B to send its ACK
 packets as ECN-Capable.

 The TCP receiver starts with an ACK Ratio of two, generally sending
 one ACK packet for every two data packets received.

Floyd, et al. Informational [Page 5]

RFC 5690 TCPM - ACK Congestion Control February 2010

 The TCP sender detects a lost or ECN-marked ACK packet from the TCP
 receiver and sends an ACK Ratio option of four to the receiver. The
 TCP receiver changes to an ACK Ratio of four, sending one ACK packet
 for at most four data packets. The TCP sender uses Appropriate Byte
 Counting and rate-based pacing in responding to these ACK packets.

 The TCP sender detects a period with no lost ACK packets and sends an
 ACK Ratio option of three to the TCP receiver. The TCP receiver
 changes back to an ACK Ratio of three, sending one ACK packet for at
 most three data packets.

4. Acknowledgement Congestion Control

 The goal of the mechanism proposed in this document is to control
 pure ACK traffic on the path from the TCP data receiver to the TCP
 data sender. Note that the approach outlined here is an end-to-end
 one (as is the approach followed by DCCP’s CCID 2 [RFC4341]), but it
 may also take advantage of explicit congestion information from the
 network, conveyed by ECN [RFC3168], if available. The ECN
 specification ([RFC3168], see Section 6.1.4) prohibits a TCP receiver
 from setting the ECT(0) or ECT(1) codepoints in IP packets carrying
 pure ACKs, but *only* as long as the receiver does *not* implement
 any form of ACK congestion control. Unlike some of the related work
 cited in the appendix, in this document we are proposing an end-to-
 end ACK congestion control mechanism that controls congestion on the
 reverse path (the path followed by the ACK traffic) by detecting and
 responding to either marked or dropped ACK packets.

4.1. The ACK Congestion Control Permitted Option

 The TCP end-points would negotiate the use of ACK congestion control
 (AckCC) with a TCP option: the ACK Congestion Control Permitted
 option. The option number would be allocated by IANA.

 The ACK Congestion Control Permitted option can only be sent on
 packets that have the SYN bit set. If TCP end-point A receives an
 ACK Congestion Control Permitted option from TCP end-point B, then
 the TCP end-points may use ACK congestion control on the pure
 acknowledgements sent from B to A. This means that TCP end-point A
 may send ACK Ratio values to TCP end-point B, for TCP end-point B to
 use on pure acknowledgement packets. Equivalently, if TCP end-point
 A *does not* receive an ACK Congestion Control Permitted option from
 TCP end-point B, then TCP end-point A knows not to waste its time
 detecting lost ACK packets and adjusting and sending the ACK Ratio
 values.

Floyd, et al. Informational [Page 6]

RFC 5690 TCPM - ACK Congestion Control February 2010

 If TCP end-point B receives an ACK Congestion Control Permitted
 option from TCP end-point A, then the TCP end-points may use ACK
 congestion control on the pure acknowledgements sent from A to B.

 If TCP end-point B receives an ACK Congestion Control Permitted
 option from TCP end-point A and also sent an ACK Congestion Control
 Permitted option to TCP end-point A, and if ECN-Capability has been
 negotiated, then TCP end-point B can send its pure ACK packets as
 ECN-Capable.

 TCP ACK Congestion Control Permitted Option:

 Kind: TBD1

 +-----------+-----------+
 | Kind=TBD1 | Length=2 |
 +-----------+-----------+

 When ACK congestion control is used, the default initial ACK Ratio is
 two, with the receiver acknowledging at least every other data
 packet.

4.2. The TCP ACK Ratio Option

 The sender uses an ACK Ratio TCP option to communicate the ACK Ratio
 value from the sender to the receiver.

 TCP ACK Ratio Option:

 Kind: TBD2

 +-----------+-----------+-----------+
 | Kind=TBD2 | Length=3 | ACK Ratio |
 +-----------+-----------+-----------+

 The ACK Ratio option is only sent on data packets. Because TCP uses
 reliable delivery for data packets, the TCP sender can tell if the
 TCP receiver has received an ACK Ratio option.

4.3. The Receiver: Implementing the ACK Ratio

 With an ACK Ratio of R, the receiver should send one pure ACK for
 every R newly received data packets unless the delayed ACK timer
 expires first. A receiver could simply maintain a counter that
 increments by one for each new data packet received, and send an ACK
 packet when the counter reaches R. The receiver would reset the
 counter to zero whenever a pure or piggybacked ACK is sent.

Floyd, et al. Informational [Page 7]

RFC 5690 TCPM - ACK Congestion Control February 2010

 If the receiver has buffer limitations, the receiver might have to
 acknowledge K packets, for some K less than the current ACK Ratio R.
 In this case, the sender could observe from the acknowledgements that
 the receiver is acknowledging less than R packets.

 It is possible for there to be lost or marked ACK packets when there
 haven’t yet been any lost or marked data packets. Thus, the sender
 could increase the ACK Ratio R even during the initial slow-start.

 [RFC5681] recommends that the receiver SHOULD acknowledge out-of-
 order data packets immediately, sending an immediate duplicate ACK
 when it receives a data segment above a gap in the sequence space,
 and sending an immediate ACK when it receives a data segment that
 fills in all or part of a gap in the sequence space.

 When ACK congestion control is being used and the ACK Ratio is at
 most two, the TCP receiver acknowledges each out-of-order data packet
 immediately. For an ACK Ratio greater than two, Section 4.6
 specifies in detail the receiver’s behavior for sending ACKs for out-
 of-order data packets.

4.4. The Sender: Determining Lost or Marked ACK Packets

 The TCP data sender uses its knowledge of the ACK Ratio in use by the
 receiver to infer when an ACK packet has been lost.

 Because the TCP sender knows the ACK Ratio R in use by the receiver,
 the TCP sender knows that in the absence of dropped or reordered
 acknowledgement packets, each new acknowledgement received will
 acknowledge at most R additional data packets. Thus, if the sender
 receives an acknowledgement acknowledging more than R data packets,
 and does not receive a subsequent acknowledgement acknowledging a
 strict subset (with a smaller cumulative acknowledgement, or with the
 same cumulative acknowledgement but a strict subset of data
 acknowledged in selective acknowledgement (SACK) blocks), then the
 sender can infer that an ACK packet has been dropped. The use of
 SACK options in ACK packets would help the sender in detecting lost
 ACK packets.

 Similarly, the TCP sender knows that in the absence of dropped or
 delayed data packets from the sender, and in the absence of delayed
 acknowledgements due to a timer expiring at the receiver, each new
 pure acknowledgement received will acknowledge at least R additional
 data packets. In terms of ACK congestion control, the TCP sender
 does not have to take any actions when it receives an acknowledgement
 acknowledging less than R additional packets.

Floyd, et al. Informational [Page 8]

RFC 5690 TCPM - ACK Congestion Control February 2010

 Out-of-order data packets:

 If the ACK Ratio is at most two, then the TCP receiver sends a
 duplicate acknowledgement (DupACK) for every out-of-order data
 packet. In this case, the TCP sender should be able to detect
 lost DupACK packets by counting the number of DupACKs that arrive
 between the beginning of the loss event and the arrival of the
 first full or partial ACK, and comparing this number with the
 number of DupACKs that should have arrived (based on the number of
 packets being ACKed by the full or partial ACK). Simulations
 and/or experiments will be needed to determine whether, in
 practice, it works for the TCP sender to assess lost ACK packets
 during loss events, for an ACK Ratio of at most two.

 If the ACK Ratio is greater than two, the TCP receiver does not
 send a DupACK for every out-of-order data packet, as specified in
 Section 4.6. For simplicity, the TCP sender does not attempt to
 detect lost ACK packets during loss events involving forward-path
 data traffic. That is, as soon as the sender infers a packet loss
 for a forward-path data packet, it stops detection of ACK loss on
 the reverse path. The sender waits until a new cumulative
 acknowledgement is received that covers the retransmitted data,
 and then restarts detection of ACK loss for reverse-path traffic.

 Detecting lost ACK packets after changes in the ACK Ratio:

 In detecting lost ACK packets, the sender relies on its knowledge
 of the ACK Ratio used by the receiver. But when the sender makes
 a change in the ACK Ratio and then receives ACK packets, how does
 the sender know whether the receiver was using the new or the old
 ACK Ratio when it sent those ACK packets? As specified in the
 next section, the sender can make only one of two possible changes
 to the ACK Ratio within one round-trip time. The sender can
 decrease the ACK Ratio by one, from R to R-1, or the sender can
 double the ACK Ratio, increasing it from R to 2R. But, in
 detecting lost ACK packets after an increase in the ACK Ratio, the
 sender needs to know whether the receiver was using the old ACK
 Ratio R or the new ACK Ratio 2R.

 The sender sends ACK Ratio options only on data packets, and these
 data packets are acknowledged by the receiver. One possibility
 would be for the sender to save the sequence number of the last
 data packet that contained an ACK Ratio option and to remember
 whether that ACK Ratio option was for an increase or a decrease in
 the ACK Ratio. Then, if the sender receives an ACK packet
 acknowledging the saved sequence number, the sender knows that the
 receiver has begun using the new ACK Ratio.

Floyd, et al. Informational [Page 9]

RFC 5690 TCPM - ACK Congestion Control February 2010

 It *might* be sufficient for the sender just to save the
 information of whether the last change in the ACK Ratio was an
 increase or a decrease, without saving the sequence number
 associated with the last ACK Ratio option. In this way, if the
 sender recently increased the ACK Ratio from R to 2R, the sender
 could be more cautious in detecting lost ACK packets. Another
 possibility would be that, after sending an ACK Ratio option, the
 sender waits until that data has been ACKed, with the new ACK
 Ratio in use by the receiver, before resuming the detection of
 lost ACK packets. However, we do not explore either of these
 approaches in more detail in this document.

4.4.1. The Sender: Detecting Lost ACK Packets after a Congestion Event

 After a sender’s retransmit timeout or fast retransmit, the sender
 might retransmit a number of data packets dropped from a single
 window of data. In particular, during a loss recovery period (from
 the sender’s detection of the congestion event up until the sender
 receives an acknowledgement of all data packets transmitted before
 the loss recovery period began), retransmitted data packets can fill
 holes in the receiver’s sequence space, resulting in irregular jumps
 in the cumulative acknowledgement field in ACK packets from the
 receiver. These jumps in the cumulative acknowledgement field make
 it difficult for the sender to reliably detect lost ACK packets
 during a loss recovery period.

 Because of this uneven progress of the cumulative acknowledgement
 field during a loss recovery period, the sender should not attempt to
 detect lost ACK packets during a loss recovery period. As a
 consequence, the sender will not increase the ACK Ratio in response
 to ACK packets that are lost during a loss recovery period.

4.5. The Sender: Adjusting the ACK Ratio

 The TCP sender will adjust the ACK Ratio as specified in Section
 6.1.2 of [RFC4341], as follows.

 The ACK Ratio always meets the following three constraints.

 (1) The ACK Ratio is an integer.

 (2) The minimum ACK sending rate: The ACK Ratio does not exceed
 max(2, cwnd/(K*MSS)), rounded up, for K=2. As a result, the TCP
 receiver generally sends at least two ACKs in response to a
 window of at least four full-sized segments.

Floyd, et al. Informational [Page 10]

RFC 5690 TCPM - ACK Congestion Control February 2010

 (3) If the congestion window is at least as large as four full-sized
 segments, then the ACK Ratio is at least two. In other words, an
 ACK Ratio of one is only allowed when the congestion window is at
 most three full-sized segments.

 The sender changes the ACK Ratio within those constraints as follows.

 For each congestion window of data with lost or marked ACK packets,
 the ACK Ratio R is doubled; for each cwnd/(MSS*(R^2 - R)) consecutive
 congestion windows of data with no lost or marked ACK packets, the
 ACK Ratio is decreased by 1. (See Appendix A of RFC 4341 for the
 derivation. Note that Appendix A of RFC 4341 assumes a congestion
 window W in packets, while we use cwnd in bytes.) As stated in the
 previous section, when the ACK Ratio is greater than two, the sender
 does not attempt to detect lost ACK packets during loss events for
 forward-path traffic.

 For a constant congestion window, these modifications to the ACK
 Ratio give an ACK sending rate that is roughly TCP-friendly. Of
 course, cwnd usually varies over time; the dynamics will be rather
 complex, but roughly TCP friendly. We recommend that the sender
 determines when to decrease the ACK Ratio by one (i.e., by
 calculating the number of in-order data packets to count) right after
 an ACK loss event.

 The frequency of ACK Ratio negotiations:

 The sender need not keep the ACK Ratio completely up to date. For
 instance, it may rate-limit ACK Ratio renegotiations to once every
 four or five round-trip times, or to once every second or two.
 The sender should not attempt to change the ACK Ratio more than
 once per round-trip time. In particular, before sending a packet
 with a new value for the ACK Ratio, the sender should verify that
 the receiver has acknowledged a data packet containing an ACK
 Ratio option for the old value of the ACK Ratio. Additionally,
 the sender may enforce a minimum ACK Ratio of two, or it may set
 the ACK Ratio to one for half-connections with persistent
 congestion windows of 1 or 2 packets.

 The minimum ACK sending rate:

 From rule (2) above, the TCP receiver always sends at least K=2
 ACKs for a window of data, even in the face of very heavy
 congestion on the reverse path. We would note, however, that if
 congestion is sufficiently heavy, all the ACK packets are dropped,
 and then the sender falls back on an exponentially backed-off
 timeout. Thus, if congestion is sufficiently heavy on the reverse
 path, then the sender reduces its sending rate on the forward

Floyd, et al. Informational [Page 11]

RFC 5690 TCPM - ACK Congestion Control February 2010

 path, which reduces the rate on the reverse path as well. One
 possibility would be to use a higher minimum ACK-sending rate,
 adding a constant upper bound on the ACK Ratio. That is, if the
 ACK Ratio also had an upper bound of J, independent of cwnd, then
 the receiver would always send at least one ACK for every J data
 packets, regardless of the level of congestion on the reverse
 path.

4.5.1. Possible Addition: Decreasing the ACK Ratio after a Congestion
 Window Decrease

 After a lost or ECN-marked data packet, the data sender halves the
 congestion window, thus halving the sending rate for data packets,
 while making no change to the ACK Ratio R. As a result, after a
 congestion event involving a data packet, the sending rate for ACK
 packets on the return path is also halved. If the congestion event
 was a lost or ECN-marked data packet, this was due to congestion on
 the forward path, which may have been unrelated to conditions on the
 reverse path. Thus, it has been suggested that the sender could
 decrease the ACK Ratio R when it halves the congestion window; in
 this case, the halving of the sending rate for data packets would not
 be accompanied by a halving of the sending rate for ACK packets also.

 However, there are a few cases where a congestion event involving
 data packets could in fact have been caused by congestion on the
 reverse path. As one example, the path could include a congested
 multiaccess link where forward-path and reverse-path traffic can
 interfere with each other. Thus, in this case it might be desirable
 if a congestion event resulted in a reduction in the sending rate of
 ACK packets as well as of data packets.

 As a second example of a congestion event involving congestion of the
 reverse path, a congestion event could be caused not by a dropped or
 ECN-marked data packet, but by a window of dropped ACK packets,
 resulting in a retransmit timeout at the data sender. After a
 retransmit timeout, the TCP sender will slow-start, reducing the
 congestion window to the initial window and setting the ACK Ratio to
 at most two.

 Until further investigation, the sender will not decrease the ACK
 Ratio as a result of a congestion event involving a data packet.

4.6. The Receiver: Sending ACKs for Out-of-Order Data Segments

 RFC 5681 says that "a TCP receiver SHOULD send an immediate duplicate
 ACK when an out-of-order segment arrives". After three duplicate
 ACKs are received, the TCP sender infers a packet loss and implements

Floyd, et al. Informational [Page 12]

RFC 5690 TCPM - ACK Congestion Control February 2010

 fast retransmit and fast recovery, retransmitting the missing packet.
 When the ACK Ratio is at most two, the TCP receiver should still send
 an immediate duplicate ACK when an out-of-order segment arrives.

 In general, when the ACK Ratio is greater than two, the TCP receiver
 still should send an immediate duplicate ACK for each of the first
 three out-of-order segments that arrive in a reordering event. (We
 define a reordering event at the receiver as beginning when an out-
 of-order segment arrives, and ending when the receiver holds no more
 out-of-order segments.) However, when the ACK Ratio is greater than
 two, after the first three duplicate ACKs have been sent, the TCP
 receiver should perform ACK congestion control on the remaining ACKs
 to be sent during the current reordering event. That is, after the
 first three duplicate ACKs have been sent, the TCP receiver should
 return to sending an ACK for every R segments, instead of sending an
 ACK for every out-of-order segment in that reordering event. (We
 note that the fast recovery procedure of the TCP sender might have to
 be modified to take this change into account.) In addition, a
 receiver must not withhold an ACK for more than 500 ms.

 We note that in an environment with systematic reordering in the data
 path (e.g., every set of K data packets arrives in inverted order,
 for some value of K), the guideline above could result in the
 receiver sending an ACK for every data packet, regardless of the ACK
 Ratio. In such an environment with persistent reordering, the
 receiver may decide not to send an immediate duplicate ACK for each
 of the first three out-of-order segments that arrive in a reordering
 event. We leave the investigation of mechanisms for effective ACK
 congestion control in environments with systematic reordering for
 future work.

4.7. The Sender: Response to ACK Packets

 The use of a large ACK Ratio can generate line-rate data bursts at a
 TCP sender. When the ACK Ratio is greater than two, the TCP sender
 should use some form of burst mitigation or rate-based pacing for
 sending data packets in response to a single acknowledgement. The
 use of rate-based pacing will be limited by the timer granularity at
 the TCP sender.

 We note that the interaction of ACK congestion control and burst
 mitigation schemes needs further study.

 Byte counting at the sender:

 In addition to the impact of a large ACK Ratio on the burstiness
 of the TCP sender’s sending rate, a large ACK Ratio can also
 affect the data-sending rate by slowing down the increase of the

Floyd, et al. Informational [Page 13]

RFC 5690 TCPM - ACK Congestion Control February 2010

 congestion window cwnd. As specified in RFC 5681, in slow-start
 the TCP sender increases cwnd by one full-sized segment for each
 new ACK received (in this context, a "new ACK" is an ACK that
 acknowledges new data). RFC 5681 also specifies that in
 congestion avoidance, the TCP sender increases cwnd by roughly
 1/cwnd full-sized segments for each ACK received, resulting in an
 increase in cwnd of roughly one full-sized segment per round-trip
 time. In this case, the use of a large ACK Ratio would slow down
 the increase of the sender’s congestion window.

 RFC 5681 notes that during congestion avoidance, it is also
 acceptable to count the number of bytes acknowledged by new ACKs
 and to increase cwnd based on the number of bytes acknowledged,
 rather than on the number of new ACKs received. Thus, the sender
 should use this form of byte counting with acknowledgement
 congestion control, so that the acknowledgement congestion control
 doesn’t slow down the window increases for the data traffic sent
 by the sender. Because rate-based pacing should be used with
 acknowledgement congestion control, as recommended earlier in this
 section, the TCP sender may increase the congestion window by more
 than two MSS for each ACK.

 We note that for Appropriate Byte Counting (ABC) as specified in
 [RFC3465], during slow-start the sender is allowed to increase the
 congestion window by at most two MSS for each ACK. It has not yet
 been determined whether, with acknowledgement congestion control,
 the TCP sender could use ABC during slow-start. If ABC is used
 with acknowledgement congestion control, then when the TCP sender
 is in slow-start and the ACK Ratio is greater than two, the TCP
 sender may increase the congestion window by more that two MSS in
 response to a single ACK. Section 4.2 of [LL07] explores some of
 the issues with the use of ABC for TCP connections with a fixed
 ACK Ratio greater than two.

 Inferring lost data packets:

 As cited earlier, RFC 5681 infers that a packet has been lost
 after it receives three duplicate acknowledgements. Because ACK
 congestion control is only used when there is congestion on the
 reverse path, after a packet loss, one or more of the three
 duplicate ACKs sent by the receiver could be lost on the reverse
 path, and the receiver might wait until it has received R more
 out-of-order segments before sending the next duplicate ACK. All
 this could slow down fast recovery and fast retransmit quite a
 bit. The use of SACK can help reduce the potential delay in
 detecting a lost packet. With SACK, a TCP sender can use the
 information in the SACK option to detect when the receiver has

Floyd, et al. Informational [Page 14]

RFC 5690 TCPM - ACK Congestion Control February 2010

 received at least three out-of-order data packets and to initiate
 fast retransmit and fast recovery in this case, even if the TCP
 sender has not yet received three duplicate ACKs.

4.8. Possible Addition: Receiver Bounds on the ACK Ratio

 It has been suggested that in some environments, the TCP receiver
 might want to set lower bounds on the ACK Ratio. For example, the
 TCP receiver might know from configuration or from past experience
 that the bandwidth on the return path is limited, and might want to
 set a lower bound (greater than two) on the ACK Ratio R. If this is
 included, this would require a TCP option from the TCP receiver to
 the TCP sender, reporting the lower bound on the ACK Ratio. Care
 would also be needed so that the lower bound on the ACK Ratio was
 only in effect when the TCP sender’s congestion window was
 sufficiently high.

5. Possible Complications

5.1. Possible Complication: Delayed Acknowledgements

 The receiver could send a delayed acknowledgement acknowledging a
 single packet, even when the ACK Ratio is two or more.

 This should not cause false positives (when the TCP sender infers a
 loss when no loss happened). The TCP sender only infers that a pure
 ACK packet has been lost when no data packet has been lost and an ACK
 packet arrives acknowledging more than R new packets.

 Delayed acknowledgements could, however, cause false negatives, with
 the TCP sender unable to detect the loss of an ACK packet sent as a
 delayed acknowledgement. False negatives seem acceptable; this would
 result in approximate ACK congestion control, which would be better
 than no ACK congestion control at all. In particular, when this form
 of false negative occurs, it is because the receiver is sending
 acknowledgements at such a low rate that it is sending delayed
 acknowledgements, rather than acknowledging at least R data packets
 with each acknowledgement.

5.2. Possible Complication: Duplicate Acknowledgements

 As discussed in Section 4.3, RFC 5681 states that "a TCP receiver
 SHOULD send an immediate duplicate ACK when an out-of-order segment
 arrives", and that "a TCP receiver SHOULD send an immediate ACK when
 the incoming segment fills in all or part of a gap in the sequence
 space" [RFC5681]. When ACK congestion control is used, the TCP
 receiver instead uses the guidelines from Section 4.6 to govern the
 sending of duplicate ACKs. More work would be useful to evaluate the

Floyd, et al. Informational [Page 15]

RFC 5690 TCPM - ACK Congestion Control February 2010

 advantages and disadvantages of this approach in terms of the
 potential delay in triggering fast retransmit, and to explore
 alternate possibilities.

5.3. Possible Complication: Two-Way Traffic

 In a TCP connection with two-way traffic, the receiver could send
 some pure ACK packets and some acknowledgements piggybacked on data
 packets. The receiver would still follow the rule of only sending a
 pure ACK packet when there is a need for a delayed ACK or when there
 are R new data packets to acknowledge.

 In a connection with two-way traffic, the TCP sender would not always
 be able to infer when a pure ACK packet had been lost. For example,
 the receiver could send a pure ACK packet acknowledging packet K and,
 soon afterwards, the receiver could send a newly generated data
 packet for the reverse-path flow also acknowledging packet K. The
 pure ACK packet could be dropped in the network, and the sender would
 not be able to detect this drop.

 Fortunately, there are limitations to the potential problems caused
 by undetected ACK losses in two-way traffic. The sender will only
 fail to detect the loss of a pure ACK packet if the ACK packet was
 followed by a data packet with the same acknowledgement number. If
 the reverse-path traffic for the connection is dominated by data
 traffic, then the congestion control for the data traffic is more
 important than the congestion control for the pure ACK traffic. If
 the reverse-path traffic is dominated by pure ACK traffic, then the
 sender would detect any losses of pure ACK packets followed by other
 pure ACK packets, and this would include most of the pure ACK packets
 for that connection. Thus, the sender’s failure to detect the loss
 of a pure ACK packet followed by a data packet with the same
 acknowledgement number would not disable acknowledgement congestion
 control for a TCP connection with two-way traffic.

5.4. Possible Complication: Reordering of ACK Packets

 It is possible for ACK packets to be reordered on the reverse path.
 The TCP sender could either use a parallel mechanism to the DupACK
 threshold to infer when an ACK packet has been lost, as with TCP, or,
 more robustly, the TCP sender could wait an entire round-trip time
 before inferring that an ACK packet has been lost [RFC4653].

Floyd, et al. Informational [Page 16]

RFC 5690 TCPM - ACK Congestion Control February 2010

5.5. Possible Complication: Abrupt Changes in the ACK Path

 What happens when there are abrupt changes in the reverse path, such
 as from vertical handovers? Can there be any problems that would be
 worse than those experienced by a TCP connection that is not using
 ACK congestion control?

5.6. Possible Complication: Corruption

 As with data packets, it is possible for ACK packets to be dropped in
 the network due to corruption rather than congestion. The current
 assumption of ACK congestion control is that all losses should be
 taken as indications of congestion. If there is ever some better
 mechanism for identifying and responding to corrupted TCP data
 packets, the same solution hopefully would apply to corrupted ACK
 packets as well.

 One problem with the interaction of packet corruption and congestion
 control, for both data and ACK packets, is that it is not always
 obvious when the packet corruption is related to congestion and when
 the packet corruption is independent of the level of congestion on
 the corrupting link. In environments where packet corruption exists
 and is independent of the level of congestion on the corrupting link,
 applying ACK congestion control would only make the connection more
 sensitive to ACK packet corruption by reducing the number of ACKs
 that are sent.

5.7. Possible Complication: ACKs that Don’t Contribute to Congestion

 It is possible for the ACK packets in a TCP connection to traverse a
 congested path where ACK packets are dropped but where the ACK
 packets themselves don’t significantly contribute to the congestion
 on the path. In scenarios where ACK packets are dropped but where
 ACK traffic doesn’t make a significant contribution of the congestion
 on the path, the use of ACK congestion control would not contribute
 to reducing the aggregate congestion on the path. In this case, one
 goal is to minimize the negative impact of ACK congestion control on
 the overall performance of the TCP connection.

 J TCP conns. link L -> J TCP conns.
 data -> |---| |---| <- ACKs
 <-------------> | | | | <------------->
 | | <-------------> | |
 <-------------> | | | | <------------->
 K TCP conns. |---| |---| K TCP conns.
 ACKs -> <- link L1 <- data

 Figure 2. A Scenario with J Forward and K Reverse TCP Connections

Floyd, et al. Informational [Page 17]

RFC 5690 TCPM - ACK Congestion Control February 2010

 To explore the relative contribution of ACK traffic on congestion, it
 is useful to consider a simple scenario with a congested
 unidirectional link L carrying data traffic from J TCP connections
 (the forward TCP connections) and ACK traffic from K TCP connections
 (the reverse TCP connections). We assume that all TCP connections
 have the same round-trip time R and the same data packet size S of
 1500 bytes. We further assume that all of the forward TCP
 connections have the same data packet drop rate p and the same
 congestion window W, and that all of the reverse TCP connections have
 the same congestion window W1 and the same ACK packet drop rate p1.
 (The packet drop rate for data packets is defined as the fraction of
 arriving data packets that are dropped; similarly, the packet drop
 rate for ACK packets is the fraction of arriving ACK packets that are
 dropped.) The J TCP connections each use a bandwidth on link L of
 1500*W/R bytes per second, and the K TCP connections, without ACK
 congestion control, each use a bandwidth on link L of 40*(W1/2)/R
 bytes per second. This gives a ratio of 75*(J/K)*(W/W1) for TCP data
 bandwidth to TCP ACK bandwidth on link L. The ratio J/K is the ratio
 between the number of forward and reverse TCP connections on link L,
 and could have a wide range of values (e.g., large for an access link
 from a web server, and small for an access link to a web server).
 For this scenario, the ratio W/W1 is largely a function of the
 different levels of congestion on the forward and reverse paths.

 To explore the possibilities, we will consider some of the range of
 congestion control mechanisms for the congested link. First, we
 consider scenarios where the limitation on the congested path is in
 the link bandwidth in bytes per second.

 Cases (1), (2), (3), (5), and (7) below represent the best scenarios
 for ACK congestion control, where the fraction of packet drops for
 TCP ACK packets roughly matches the TCP ACK packets’ contribution to
 congestion. (In several of these cases this is, at best, a rough
 match because the data packets are a factor in the bandwidth and in
 the queue limitations, while the TCP ACK packets are only a factor in
 the queue limitations.) Cases (4) and (8) below represent
 problematic scenarios where the fraction of packet drops for TCP ACK
 packets is much higher than the TCP ACK packets’ contribution to
 congestion (in terms of taking space in a congested queue, using
 scarce CPU cycles at the congested router, or using scarce
 bandwidth). Case (6) below represents scenarios where ACK congestion
 control would not be effective because it would not be invoked. In
 the scenarios in case (6), the fraction of packet drops for TCP ACK
 packets would be much smaller than the TCP ACK packets’ contribution
 to congestion.

Floyd, et al. Informational [Page 18]

RFC 5690 TCPM - ACK Congestion Control February 2010

 (1) The Drop-Tail queue for link L is measured in packets. In this
 case, the congested queue can accommodate N packets (regardless
 of packet size), there is a limitation of both bandwidth in bytes
 per second and also in queue space in packets, and large data
 packets and small TCP ACK packets should see similar packet drop
 rates. Although TCP ACK packets most likely aren’t a major
 factor in the bandwidth limitation, they can be a significant
 contribution to the limitation of queue space. So, while the
 packet drop rate for ACK packets could be high in times of
 congestion, the ACK packets are contributing to that congestion
 somewhat by using scarce buffer space.

 (2) The Drop-Tail queue is measured in bytes. In this case, the
 congested queue can accommodate M bytes of packets, and TCP ACK
 packets don’t make a significant contribution to either the
 bandwidth limitation or to the limitation in queue space. It is
 also the case that, in this scenario, even if there is heavy
 congestion, the packet drop rate for TCP ACK packets should be
 small (because small ACK packets can often find space on the
 congested queue when large data packets can’t find space). In
 this case, ACK congestion control should not present any
 problems; the TCP ACK packets aren’t contributing significantly
 to congestion and aren’t experiencing significant packet drop
 rates.

 (3) The RED queue is in packet mode and is measured in packets. This
 is similar to case (1) above. Because the queue is measured in
 packets, small TCP ACK packets contribute to the limitation in
 queue space but not to the limitation in link bandwidth. Because
 the queue is in packet mode, large data packets and small TCP ACK
 packets should see similar packet drop rates.

 (4) The RED queue is in packet mode but is measured in bytes.
 Because the queue is measured in bytes, small TCP ACK packets
 don’t contribute significantly to either the limitation in queue
 space or to the limitation in link bandwidth. Because the queue
 is in packet mode, large data packets and small TCP ACK packets
 should see similar packet drop rates. If it existed, this case
 would be problematic, because the TCP ACK packets would not be
 contributing significantly to the congestion but they would see a
 similar packet drop rate as the large data packets that are
 contributing to congestion.

 (5) The RED queue is in byte mode and is measured in bytes. This is
 similar to case (2) above. Because the queue is measured in
 bytes, small TCP ACK packets don’t contribute significantly to
 either the limitation in queue space or to the limitation in link

Floyd, et al. Informational [Page 19]

RFC 5690 TCPM - ACK Congestion Control February 2010

 bandwidth. At the same time, because the queue is in byte mode,
 small TCP ACK packets see much smaller packet drop rates than
 those of large data packets.

 (6) The RED queue is in byte mode but is measured in packets.
 Because the queue is measured in packets, small TCP ACK packets
 contribute to the limitation in queue space but not to the
 limitation in link bandwidth. Because the queue is in byte mode,
 small TCP ACK packets see much smaller packet drop rates than
 those of large data packets. If this case existed, TCP ACK
 packets would contribute somewhat to congestion but would see a
 much smaller packet drop rate than that of large data packets.

 Next, we consider scenarios where the limitation on the congested
 link is in CPU cycles at the router in packets per second, not in
 bandwidth in bytes per second.

 (7) The CPU load imposed by TCP ACK packets is similar to the load
 imposed by other packets (e.g., TCP data packets). ACK
 congestion control would be useful in this scenario, particularly
 if TCP ACK packets saw the same packet drop rates as TCP data
 packets.

 (8) The CPU load imposed by TCP ACK packets is much less than the
 load imposed by other packets (e.g., TCP data packets). If TCP
 ACK packets saw a smaller packet drop rate than TCP data packets,
 then the TCP ACK packet drop rate would roughly match the TCP ACK
 packets’ contribution to congestion, and this would be good. If
 TCP ACK packets saw the same packet drop rate as TCP data
 packets, this case would be problematic, because the TCP ACK
 packets would not be contributing significantly to the
 congestion, but they would see a similar packet drop rate as the
 large data packets that are contributing to congestion.

5.8. Possible Complication: TCP Implementations that Skip ACK Packets

 It has been reported in IETF meetings that current TCP
 implementations do not always acknowledge at least every other data
 packet, as required by the TCP specifications. In particular, it has
 been reported that if a TCP receiver receives many data packets in a
 burst, before it is able to send an acknowledgement, then it might
 send a single acknowledgement for the burst of packets. We note that
 such a behavior would cause complications for a TCP connection that
 used ACK congestion control, as the sender would not be able to
 determine when an ACK packet had been dropped in the network or when
 the packet had been skipped by the receiver because it was processing
 a burst of data packet arrivals.

Floyd, et al. Informational [Page 20]

RFC 5690 TCPM - ACK Congestion Control February 2010

 One possibility for addressing this problem would be for TCP
 receivers using ACK congestion control to be required to send an
 acknowledgement for each R packets, for ACK Ratio R. In this case,
 if the receiver received a large burst of data packets back-to-back,
 the receiver would be required to send a responding burst of ACK
 packets, one for each set of R data packets.

 A second possibility for addressing this problem would be to define a
 TCP option or flag that the TCP receiver could use when sending an
 ACK packet to inform the sender that the TCP receiver ‘skipped’ some
 ACK packets, so that the sender should not infer ACK loss if some
 previous ACK packets seem to be missing.

 Future work will explore the costs and benefits of these two
 approaches.

5.9. Possible Complication: Router or Middlebox-Based ACK Mechanisms

 One possible complication would be the interaction of ACK congestion
 control with router-based or middlebox-based ACK mechanisms, such as
 ACK filtering along the reverse path ([BPK97], [WWCM99], [BA03],
 [KLS07]). We are not aware of the deployment of ACK filtering in the
 Internet, but any testing of ACK congestion control would have to
 look for interactions with any middlebox-based mechanisms regarding
 ACK packets. In particular, we would consider interactions of ACK
 congestion control with the possible deployment of ACK filtering on
 satellite links, cable modems, or the like.

5.10. Possible Complication: Data-Limited Senders

 The mechanism for adjusting the ACK Ratio is designed with the goal
 of having the TCP receiver send at least two ACKs in response to each
 window of at least four full-sized data packets. However, with ACK
 congestion control in combination with a data-limited sender, it is
 possible for the sender to send at least four full-sized data packets
 in a round-trip time, with the receiver sending less than two ACKs in
 response.

 As an example, consider a connection where the sender’s congestion
 window W is greater than four and the ACK Ratio R is at its maximum
 value of W/2. If the sender becomes data-limited and sends less than
 W data packets in a round-trip time, then the receiver can send less
 than two ACK packets in response. This behavior makes the connection
 more sensitive to the loss of an occasional ACK packet.

 Of course, there is still the safety mechanism of the receiver
 sending an ACK packet when the delayed ACK timer expires. However,
 more work would be useful to explore the conflicting goals of a

Floyd, et al. Informational [Page 21]

RFC 5690 TCPM - ACK Congestion Control February 2010

 congestion-controlled ACK flow and a timely ACK response to the
 sender for the specific case of a connection with a data-limited
 sender and a congested ACK path.

5.11. Other Issues

 Are there any problems caused by the combination of two-way traffic
 and reordering? Or other issues that have not yet been addressed?

6. Evaluating ACK Congestion Control

 Evaluating ACK congestion control will have two components: (1)
 evaluating the effects of ACK congestion control on an individual TCP
 connection, and (2) evaluating the effects of ACK congestion control
 on aggregate traffic (including the effects of ACK congestion control
 on the aggregate congestion of the path).

 The first part, evaluating ACK congestion control on the performance
 of an individual TCP connection, will have to examine those scenarios
 where ACK congestion control might help the performance of a TCP
 connection and those scenarios where the use of ACK congestion
 control might cause problems.

 The second part, evaluating the effects of ACK congestion control on
 aggregate traffic, should consider scenarios where the use of ACK
 congestion control helps all of the connections sharing a path by
 reducing the aggregate congestion on the path. This part should also
 see if there are scenarios where ACK congestion control causes
 problems by increasing the burstiness of aggregate traffic or by
 otherwise changing traffic dynamics.

6.1. Contention in Wireless Links or in Non-Switched Ethernet

 One possible benefit of ACK congestion control is that it could
 reduce contention in wireless links, shared Ethernet, or other
 environments with contention between forward-path and reverse-path
 traffic ([AJ03], [KIA07]). At the same time, contention on the
 shared medium won’t necessarily result in dropped ACK packets, and
 therefore wouldn’t necessarily be detected by ACK congestion control.

6.2. Keep-Alive and Other Special ACK Packets

 Some TCP hosts send keep-alive packets when no data or ACK packets
 have been received over a long period of time [KEEP-ALIVE]. This
 keep-alive mechanism is not addressed in TCP specifications.
 However, such keep-alive packets, if used, should not interact with
 ACK congestion control one way or another. For ACK congestion
 control, the ACK Ratio is set small enough to allow the receiver to

Floyd, et al. Informational [Page 22]

RFC 5690 TCPM - ACK Congestion Control February 2010

 generally send at least two ACKs for a window of data. In addition,
 the receiver uses a delayed ACK timer with the ACK Ratio, always
 sending an acknowledgement if the delayed ACK timer expires. Thus,
 ACK congestion control will never cause the receiver to delay
 indefinitely in sending an acknowledgement for a received data
 packet.

 Some TCP implementations send pure ACK packets as window probes, to
 solicit an ACK packet from the other end with current window
 information. Such ACK packets will generally be orthogonal to the
 ACK congestion control specified in this document.

 TCP receivers also can send pure ACK packets as window update packets
 announcing a new value for the receive window, even when the
 acknowledgement number and SACK options in the ACK packet are not
 new. The receiver may send window update packets even if the ACK
 congestion control mechanism would say that it is not time yet to
 send a pure ACK. The sender will not necessarily be able to detect
 the loss of a window update ACK packet.

7. Measurements of ACK Traffic and Congestion

 There are a number of studies about the traffic composition on
 various links in the Internet, reporting the fraction of bandwidth
 used by TCP data and by TCP ACK traffic [Studies].

 Are there any studies that show the relative packet drop rates for
 TCP data and ACK traffic, for particular links or for particular TCP
 connections?

 Are there any studies of congested links that show the fraction of
 traffic on the congested link, or in the congested queue, that
 consist of TCP ACK packets?

8. Acknowledgement Congestion Control in DCCP’s CCID 2

 In the transport protocol DCCP [RFC4340], the congestion control
 mechanism for the CCID 2 profile is based on that of TCP. This
 section briefly discusses some of the issues that have been addressed
 in the acknowledgement congestion control already standardized in
 CCID 2 [RFC4341].

Floyd, et al. Informational [Page 23]

RFC 5690 TCPM - ACK Congestion Control February 2010

 Rate-based pacing:

 For CCID 2, RFC 4341 says that "senders MAY use a form of rate-
 based pacing when sending multiple data packets liberated by a
 single ACK packet, rather than sending all liberated data packets
 in a single burst." However, rate-based pacing is not required in
 CCID 2.

 Increasing the congestion window:

 For CCID 2, RFC 4341 says that "when cwnd < ssthresh, meaning that
 the sender is in slow-start, the congestion window is increased by
 one packet for every two newly acknowledged data packets with ACK
 Vector State 0 (not ECN-marked), up to a maximum of ACK Ratio/2
 packets per acknowledgement. This is a modified form of
 Appropriate Byte Counting [RFC3465] that is consistent with TCP’s
 current standard (which does not include byte counting), but
 allows CCID 2 to increase as aggressively as TCP when CCID 2’s ACK
 Ratio is greater than the default value of two. When cwnd >=
 ssthresh, the congestion window is increased by one packet for
 every window of data acknowledged without lost or marked packets."

9. Security Considerations

 What are the sender’s incentives to cheat on ACK congestion control?
 What are the receiver’s incentives to cheat? What are the avenues
 open for cheating?

 As long as ACK congestion control is optional, neither host can be
 forced to use ACK congestion control if it doesn’t want to. So ACK
 congestion control will only be used if the sender or receiver have
 some chance of receiving some benefit.

 As long as ACK congestion control is optional for TCP, there is
 little incentive for the TCP end nodes to cheat on non-ECN-based ACK
 congestion control. There is nothing now that requires TCP hosts to
 use congestion control in response to dropped ACK packets.

 What avenues for cheating are opened by the use of ECN-Capable ACK
 packets? If the end nodes can use ECN to have ACK packets marked
 rather than dropped, and if the end nodes can then avoid the use of
 ACK congestion control that goes along with the use of ECN on ACK
 packets, then the end nodes could have an incentive to cheat.
 Senders could cheat by not instructing the receiver to use a higher
 ACK Ratio; the receiver would have a hard time detecting this
 cheating. Receivers could cheat by not using the ACK Ratio they were
 instructed to use, but senders could easily detect this cheating.
 However, receivers could also cheat by not using ACK congestion

Floyd, et al. Informational [Page 24]

RFC 5690 TCPM - ACK Congestion Control February 2010

 control and still sending ACK packets as ECN-Capable, so ACK
 congestion control is not a necessary component for receivers to
 cheat about sending ECN-Capable ACK packets. One question would be
 whether there is any way for receivers to cheat about sending ECN-
 Capable ACK packets and not using appropriate ACK congestion control
 without this cheating being easily detected by the sender.

 What about the ability of routers or middleboxes to detect TCP
 receivers that cheat by inappropriately sending ACK packets as ECN-
 Capable? The router will only know if the receiver is authorized to
 send ACK packets as ECN-Capable if the router can see traffic on both
 the forward and reverse paths and monitored both the SYN and SYN/ACK
 packets (and was able to read the TCP options in the packet headers).
 If ACK congestion control has been negotiated, the router will only
 know if ACK congestion control is being used correctly by the
 receiver if it can monitor the ACK Ratio options sent from the sender
 to the receiver. If ACK congestion control is being used, the router
 will not necessarily be able to tell if ACK congestion control is
 being used correctly by the sender, because drops of ACK packets
 might be occurring after the ACK packets have left the router.
 However, if the router sees the ACK Ratio options sent from the
 sender, the router will be able to tell if the sender is correctly
 accounting for those ACK packets that are dropped or ECN-marked on
 the path from the receiver to the router.

10. IANA Considerations

 No IANA action is needed at this time. If this document was advanced
 as Experimental or Proposed Standard, then IANA would allocate the
 option numbers for the two TCP options, the ACK Congestion Control
 Permitted option, and the ACK Ratio option. In such a case, the
 following two lines would be added to the TCP Option Numbers registry
 (maintained by IANA -- http://www.iana.org):

 Kind Length Meaning Reference
 ---- ------ --------------------------------- -----------
 TBD1 2 ACK Congestion Control Permitted [RFCXXXX]
 TBD2 3 ACK Ratio [RFCXXXX]

 In the absence of TCP option numbers allocated by IANA, experimenters
 may use the TCP Option Numbers set aside for Experimentation in RFC
 4727 [RFC4727]. As stressed in Section 1 of RFC 3692 [RFC3692], the
 TCP Option Numbers in the experimental range are intended for
 experimentation and testing and not for wide or general deployments;
 these option numbers could be in use by other experimentors for other
 purposes.

Floyd, et al. Informational [Page 25]

RFC 5690 TCPM - ACK Congestion Control February 2010

11. Conclusions

 This document specifies a congestion control mechanism for
 acknowledgement (ACKs) traffic for TCP and discusses the possible
 complications. We are deferring a recommendation on the use of this
 mechanism for TCP until it has been evaluated more fully.

12. Acknowledgements

 Many thanks for feedback from Mark Allman, Armando Caro, Alfred
 Hoenes, Ilpoo Jarvinen, Sara Landstrom, Anantha Ramaiah, and Michael
 Welzl, and for contributed text from Michael Welzl.

Floyd, et al. Informational [Page 26]

RFC 5690 TCPM - ACK Congestion Control February 2010

Appendix A. Related Work

 There exist several papers dealing with controlling congestion in the
 reverse path of a TCP connection, especially in the context of
 networks with bandwidth asymmetry. Some of these proposals require
 explicit support from routers or middleboxes, whereas others are
 "pure" end-to-end schemes.

 RFC 3449 [RFC3449] discusses TCP performance problems that arise in
 TCP connections over asymmetric paths. Section 3 of RFC 3449
 describes in detail how congestion on the ACK path can affect overall
 TCP performance. RFC 3449 also outlines a number of proposed
 mitigations, including ACK congestion control. The experimental ACK
 congestion control mechanism discussed in that RFC relies on ECN,
 with the TCP sender detecting congestion on the ACK path from ECN-
 marked packets. RFC 3449 also discusses two receiver-based
 mechanisms, the Window Prediction Mechanism (WPM) [CLP98] and
 Acknowledgement based on Cwnd Estimation (ACE) [MJW00], for using a
 dynamic ACK Ratio. RFC 3449 also considers link- and network-layer
 techniques that address congestion on the upstream path. These
 include header compression as well as bandwidth management techniques
 for the upstream link, including ACK filtering and ACK
 reconstruction.

 RFC 3135 [RFC3135], "Performance Enhancing Proxies Intended to
 Mitigate Link-Related Degradations", surveys a range of Performance
 Enhancing Proxies used to improve TCP behavior, including proxies for
 ACK filtering and reconstruction. RFC 2760 [RFC2760], "Ongoing TCP
 Research Related to Satellites", discusses both ACK congestion
 control and ACK filtering and reconstruction, with detailed
 descriptions of the mechanisms proposed by Balakrishnan, et al. in
 [BPK97].

 Landstrom, et al. in [LL07] explore a mechanism where the receiver
 sends only four acknowledgements per window of data, along with the
 sender using a form of Appropriate Byte Counting. In addition, the
 receiver reverts to a lower acknowledgement frequency after a
 timeout, to avoid unnecessary retransmit timeouts. One conclusion of
 the paper is that pacing at the sender introduces an additional delay
 and might not be necessary. A key result of the paper is that, with
 the use of some form of byte counting at the sender, it is possible
 for TCP to use a lower acknowledgement frequency than that of delayed
 acknowledgements.

Floyd, et al. Informational [Page 27]

RFC 5690 TCPM - ACK Congestion Control February 2010

A.1. ECN-Only Mechanisms

 Balakrishnan, et al. in [BPK97] describe the use of ECN to detect
 congestion in the return path, in order to reduce the sending rate of
 ACKs. The use of a RED queue in the reverse path allows for marking
 of ACK packets. The sender echoes back ECN congestion marks to the
 receiver. The receiver keeps an ACK Ratio d (called the "delayed-ACK
 factor"), specifying the number of data segments that have to be
 received before the receiver sends a new ACK. The ACK Ratio d is
 managed using multiplicative-increase, additive-decrease; upon
 reception of a congestion mark, the receiver doubles the value of d
 (hence dividing the ACK sending rate by two). The ACK Ratio
 decreases linearly for each RTT in which no ECN-marked ACKs are
 received. Multiple congestion marks received in an RTT are treated
 as a single congestion event, i.e., d can be doubled at most once per
 RTT. The TCP timestamp option is used to keep track of the RTT
 values.

A.2. Receiver-Only Mechanisms

 In [MJW00], Tam Ming-Chit, et al. propose a receiver-based method for
 calculating an "appropriate" number of ACKs per congestion window
 (cwnd) of data, in order to alleviate congestion on the reverse path.
 The sender’s cwnd is estimated at the receiver by counting the number
 of received packets per RTT (which also has to be estimated by the
 receiver). From this estimate, a simple algorithm is used to compute
 the number of ACKs to be sent per cwnd. The algorithm enforces a
 lower bound on the number of ACKs per cwnd, aiming at minimizing the
 probability of timeout at the sender due to ACK loss. Similarly, the
 ACK Ratio is upper-bounded so as to avoid excessive ACK delay.

 Blandford, et al. [BGG+07] propose an end-to-end, receiver-oriented
 scheme called "smartacking". The algorithm is based upon the
 receiver’s monitoring the inter-segment arrival time for data packets
 and adapting the ACK sending rate in response. When the bottleneck
 link is underutilized, ACKs are sent frequently (up to one ACK per
 received segment) to promote fast growth of the congestion window.
 On the other hand, when the bottleneck is close to full utilization,
 the algorithm tries to reduce control traffic overhead and slow
 congestion window growth by generating ACKs at the minimum rate
 needed to keep the data pipe full.

 Reducing the number of ACKs (or, equivalently, increasing the amount
 of bytes acknowledged by each ACK) can increase the burstiness of the
 TCP sender. Hence, any mechanism as those cited above should be
 coupled with a burst mitigation technique, such as rate-based pacing,
 that paces the sending of data segments ([AB05], [ASA00], [BPK97]).

Floyd, et al. Informational [Page 28]

RFC 5690 TCPM - ACK Congestion Control February 2010

A.3. Middlebox-Based Mechanisms

 ACK filtering (AF) [BPK97] from Balakrishnan, et al. is a router-
 based technique that tries to reduce the number of ACKs sent over the
 congested return link. With AF, an arriving ACK may replace
 preceding, older ACKs at the bottleneck queue. An aggressive
 replacement policy might guarantee that at most one ACK per
 connection is waiting in the queue, alleviating congestion. However,
 as in other proposals, care must be taken to avoid sender timeouts in
 case the (too few) ACKs resulting from the filtering get lost. The
 idea of filtering ACKs has been extended in [YMH03] to deal with SACK
 information.

 Aweya, et al. [AOM02] present a middlebox-based approach for
 mitigating data packet bursts and for controlling the uplink ACK
 congestion. The main idea is to perform pacing on ACK segments on an
 edge device close to the sender, so as to control the ACK arrival
 rate at the sender.

Appendix B. Design Considerations

B.1. The TCP ACK Ratio Option or an AckNow Bit in Data Packets?

 In the ACK congestion control mechanism specified in this document,
 the sender uses the TCP ACK Ratio option to tell the receiver the ACK
 Ratio to use. An alternate approach to the TCP ACK Ratio option
 could be for the sender to use an AckNow bit in the TCP header of
 data packets, telling the receiver to acknowledge this data packet.
 In the discussion below, we call these two approaches the TCP ACK
 Ratio option approach and the AckNow approach.

 An advantage of an AckNow approach is that it would require less
 state from the receiver; the receiver would not need to maintain a
 variable for the current ACK Ratio and would not need to keep track
 of the number of data packets un-ACKed to date.

 However, a disadvantage of the AckNow approach is that the sender
 does not know when packets will be reordered, delayed, or dropped on
 the path to the receiver. In particular, the sender does not have
 control over whether a data packet with the AckNow bit set is
 reordered, delayed, or dropped in the network. For this reason, we
 have chosen the approach of the sender determining the ACK Ratio that
 should be used and sending the ACK Ratio to the receiver, rather than
 the sender telling the receiver exactly which data packets to
 acknowledge.

Floyd, et al. Informational [Page 29]

RFC 5690 TCPM - ACK Congestion Control February 2010

 An additional disadvantage of the AckNow approach is that it would
 add complications and difficulties for the default cases of the
 receiver using an ACK Ratio of one or two, as is done in the absence
 of ACK congestion control.

 For these reasons, we have specified that the sender determines the
 ACK Ratio to use and tells the receiver, rather than the sender
 setting an AckNow bit in the TCP Header of selected data packets.

Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3465] Allman, M., "TCP Congestion Control with Appropriate
 Byte Counting (ABC)", RFC 3465, February 2003.

 [RFC3692] Narten, T., "Assigning Experimental and Testing Numbers
 Considered Useful", BCP 82, RFC 3692, January 2004.

 [RFC4340] Kohler, E., Handley, M., and S. Floyd, "Datagram
 Congestion Control Protocol (DCCP)", RFC 4340, March
 2006.

 [RFC4341] Floyd, S. and E. Kohler, "Profile for Datagram
 Congestion Control Protocol (DCCP) Congestion Control ID
 2: TCP-like Congestion Control", RFC 4341, March 2006.

 [RFC4727] Fenner, B., "Experimental Values In IPv4, IPv6, ICMPv4,
 ICMPv6, UDP, and TCP Headers", RFC 4727, November 2006.

 [RFC5681] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
 Control", RFC 5681, September 2009.

Informative References

 [RFC2760] Allman, M., Ed., Dawkins, S., Glover, D., Griner, J.,
 Tran, D., Henderson, T., Heidemann, J., Touch, J.,
 Kruse, H., Ostermann, S., Scott, K., and J. Semke,
 "Ongoing TCP Research Related to Satellites", RFC 2760,
 February 2000.

 [RFC3135] Border, J., Kojo, M., Griner, J., Montenegro, G., and Z.
 Shelby, "Performance Enhancing Proxies Intended to
 Mitigate Link-Related Degradations", RFC 3135, June
 2001.

Floyd, et al. Informational [Page 30]

RFC 5690 TCPM - ACK Congestion Control February 2010

 [RFC3168] Ramakrishnan, K., Floyd, S., and D. Black, "The Addition
 of Explicit Congestion Notification (ECN) to IP", RFC
 3168, September 2001.

 [RFC3449] Balakrishnan, H., Padmanabhan, V., Fairhurst, G., and M.
 Sooriyabandara, "TCP Performance Implications of Network
 Path Asymmetry", BCP 69, RFC 3449, December 2002.

 [RFC4653] Bhandarkar, S., Reddy, A., Allman, M., and E. Blanton,
 "Improving the Robustness of TCP to Non-Congestion
 Events", RFC 4653, August 2006.

 [ASA00] Aggarwal, A., Savage, S., and T. Anderson,
 "Understanding the Performance of TCP Pacing", INFOCOM
 (3), pp. 1157-1165, 2000.

 [AB05] Allman, M., and E. Blanton, "Notes on Burst Mitigation
 for Transport Protocols", SIGCOMM, Computer
 Communications Review, 35(2):5360, 2005.

 [AJ03] Altman, E., and T. Jimenez, "Novel Delayed ACK
 Techniques for Improving TCP Performance in Multihop
 Wireless Networks", Proc. of the Personal Wireless
 Communications, 2003.

 [AOM02] Aweya, J., Ouellette, M., and D. Y. Montuno, "A Self-
 regulating TCP Acknowledgement (ack) Pacing Scheme",
 International Journal of Network Management,
 12(3):145163, 2002.

 [BA03] Barakat, C., and E. Altman, "On ACK Filtering on a Slow
 Reverse Channel", International Journal of Satellite
 Communications and Networking, V.21 N.3, 2003.

 [BPK97] Balakrishnan, H., Padmanabhan, V., and Katz, R., "The
 Effects of Asymmetry on TCP Performance", Third ACM/IEEE
 Mobicom Conference, September 1997.

 [BGG+07] Blandford, D.K., Goldman, S.A., Gorinsky, S., Zhou, Y.,
 and D.R. Dooly, "Smartacking: Improving TCP Performance
 from the Receiving End", Journal of Internet
 Engineering, 1(1), 2007.

 [CLP98] Calveras, A., Linares, J., and J. Paradells, "Window
 Prediction Mechanism for Improving TCP in Wireless
 Asymmetric Links". Proc. IEEE Global Communications
 Conference (GLOBECOM), Sydney Australia, pp. 533-538,
 November 1998.

Floyd, et al. Informational [Page 31]

RFC 5690 TCPM - ACK Congestion Control February 2010

 [KIA07] Keceli, F., Inan, I., and E. Ayanoglu, "TCP ACK
 Congestion Control and Filtering for Fairness Provision
 in the Uplink of IEEE 802.11 Infrastructure Basic
 Service Set", Proc. IEEE ICC 2007, June 2007.

 [KEEP-ALIVE] Busatto, F., "TCP Keepalive HOWTO", May 2007,
 http://tldp.org/HOWTO/TCP-Keepalive-HOWTO/index.html.

 [KLS07] Kim, H., Lee, H., and S. Shin, "On the Cross-Layer
 Impact of TCP ACK Thinning on IEEE 802.11 Wireless MAC
 Dynamics", IEICE Transactions on Communications, 2007.

 [LL07] Landstrom, S., and Larzon, L.A., "Reducing the TCP
 Acknowledgement Frequency", SIGCOMM, Computer
 Communications Review, July 2007.

 [MJW00] Ming-Chit, I.T., Jinsong, D., and W. Wang, "Improving
 TCP Performance Over Asymmetric Networks", SIGCOMM,
 Computer Communications Review (CCR), Vol.30, No.3,
 2000.

 [Studies] Floyd, S., "Measurement Studies of End-to-End Congestion
 Control in the Internet",
 http://www.icir.org/floyd/ccmeasure.html.

 [WWCM99] Wu, H., Wu, J., Cheng, S., and J. Ma, "ACK Filtering on
 Bandwidth Asymmetry Networks", IEEE Communications,
 1999.

 [YMH03] Yu, L., Minhua, Y., and Z. Huimin, "The Improvement of
 TCP Performance in Bandwidth Asymmetric Network", IEEE
 PIMRC, 1:482-486, September 2003.

Floyd, et al. Informational [Page 32]

RFC 5690 TCPM - ACK Congestion Control February 2010

Authors’ Addresses

 Sally Floyd
 ICSI Center for Internet Research
 1947 Center Street, Suite 600
 Berkeley, CA 94704
 USA

 EMail: floyd@icir.org

 Andres Arcia
 Networking, Security & Multimedia (RSM) Universidad de Los Andes
 TELECOM Bretagne Facultad de Ingenieria
 Rue de la Chataigneraie, CS 17607 Nucleo La Hechicera
 35576 Cesson Sevigne Cedex Merida, Merida 5101
 France Venezuela

 EMail: ae.arcia@telecom-bretagne.eu EMail: amoret@ula.ve
 URI: http://www.ula.ve

 David Ros
 Networking, Security & Multimedia (RSM) Dpt.
 TELECOM Bretagne
 Rue de la Chataigneraie, CS 17607
 35576 Cesson Sevigne Cedex
 France

 EMail: David.Ros@telecom-bretagne.eu

 Janardhan R. Iyengar
 Math and Computer Science
 Franklin & Marshall College
 P. O. Box 3003
 Lancaster, PA 17604-3003
 USA

 EMail: jiyengar@fandm.edu

Floyd, et al. Informational [Page 33]

