
Network Working Group S. Park
Request for Comments: 5636 H. Park
Category: Experimental Y. Won
 J. Lee
 KISA
 S. Kent
 BBN Technologies
 August 2009

 Traceable Anonymous Certificate

Abstract

 This document defines a practical architecture and protocols for
 offering privacy for a user who requests and uses an X.509
 certificate containing a pseudonym, while still retaining the ability
 to map such a certificate to the real user who requested it. The
 architecture is compatible with IETF certificate request formats such
 as PKCS10 (RFC 2986) and CMC (RFC 5272). The architecture separates
 the authorities involved in issuing a certificate: one for verifying
 ownership of a private key (Blind Issuer) and the other for
 validating the contents of a certificate (Anonymity Issuer). The end
 entity (EE) certificates issued under this model are called Traceable
 Anonymous Certificates (TACs).

Status of This Memo

 This memo defines an Experimental Protocol for the Internet
 community. It does not specify an Internet standard of any kind.
 Discussion and suggestions for improvement are requested.
 Distribution of this memo is unlimited.

Copyright Notice

 Copyright (c) 2009 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents in effect on the date of
 publication of this document (http://trustee.ietf.org/license-info).
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document.

Park, et al. Experimental [Page 1]

RFC 5636 Traceable Anonymous Certificate August 2009

Table of Contents

 1. Introduction ..2
 1.1. Conventions Used in This Document4
 2. General Overview ..4
 3. Requirements ..5
 4. Traceable Anonymous Certificate Model6
 5. Issuing a TAC ...7
 5.1. Steps in Issuing a TAC8
 5.2. Mapping a TAC to a User’s Real Identity15
 5.3. TAC Request Message Format Profile17
 5.3.1. PKCS10 Profile17
 5.3.2. CMC Profile ..18
 6. Security Considerations ..19
 7. Acknowledgments ..21
 8. References ...21
 8.1. Normative References21
 8.2. Informative References22
 Appendix A. Traceable Anonymous Certificate ASN.1 Modules24
 Appendix B. TAC Message Exchanges over Transport Layer Security ...26
 B.1. Message Exchanges between a User and the BI or the AI26
 B.2. Message Exchanges between the BI and the AI27
 B.3. Message Exchanges between the Aggrieved Party and the AI
 or the BI ...27
 Appendix C. Cryptographic Message Syntax Profile for TAC Token28
 C.1. Signed-Data Content Type28
 C.1.1. encapContentInfo29
 C.1.2. signerInfos ..29

1. Introduction

 Public Key Infrastructure (PKI) provides a powerful means of
 authenticating individuals, organizations, and computers (e.g., web
 servers). However, when individuals use certificates to access
 resources on the public Internet, there are legitimate concerns about
 personal privacy, and thus there are increasing demands for privacy-
 enhancing techniques on the Internet.

 In a PKI, an authorized entity such as a Certification Authority (CA)
 or a Registration Authority (RA) may be perceived, from a privacy
 perspective, as a "big brother", even when a CA issues a certificate
 containing a Subject name that is a pseudonym. This is because such
 entities can always map a pseudonym in a certificate they issued to
 the name of the real user to whom it was issued. This document
 defines a practical architecture and protocols for offering privacy
 for a user who requests and uses an X.509 certificate containing a
 pseudonym, while still retaining the ability to map such a
 certificate to the real user who requested it.

Park, et al. Experimental [Page 2]

RFC 5636 Traceable Anonymous Certificate August 2009

 A PKI typically serves to identify the holder of a private key (to
 the corresponding public key in a certificate), in a standard
 fashion. The public key, identity, and related information are
 signed by an entity acting as a CA as specified in X.509 [11] and as
 profiled for use in the Internet [2]. During the past decade, PKIs
 have been widely deployed to support various types of communications
 and transactions over the Internet.

 However, with regard to privacy on the Internet, a PKI is generally
 not supportive of privacy, at least in part because of the following
 issues:

 - A certificate typically contains in the Subject field the true
 identity of the user to whom it was issued. This identity is
 disclosed to a relying party (e.g., a web site or the recipient of
 an S/MIME message [18]) whenever the certificate holder presents
 it in a security protocol that requires a user to present a
 certificate. In some protocols, e.g., TLS, a user’s certificate
 is sent via an unencrypted channel prior to establishing a secure
 communication capability.

 - A certificate often is published by the CA, for example, in a
 directory system that may be widely accessible.

 - An anonymous (end entity) certificate [9] is one that indicates
 that the holder’s true identity is not represented in the subject
 field. (Such a certificate might more accurately be called
 "pseudonymous" since an X.509 certificate must contain an
 identifier to comply with PKI format standards, and a CA must not
 issue multiple certificates with the same Subject name to
 different entities. However, we use the more common term
 "anonymous" throughout this document to refer to such
 certificates.) Issuance of anonymous certificates could enhance
 user privacy.

 There is however, a need to balance privacy and accountability when
 issuing anonymous certificates. If a CA/RA is unable to map an
 anonymous certificate to the real user to whom it was issued, the
 user might abuse the anonymity afforded by the certificate because
 there would be no recourse for relying parties.

 A CA or RA generally would be able to map an anonymous certificate to
 the user to whom it was issued, to avoid such problems. To do so,
 the CA/RA would initially identify the user and maintain a database
 that relates the user’s true identity to the pseudonym carried in the
 certificate’s Subject field.

Park, et al. Experimental [Page 3]

RFC 5636 Traceable Anonymous Certificate August 2009

 In a traditional PKI, there is a nominal separation of functions
 between a RA and a CA, but in practice these roles are often closely
 coordinated. Thus, either the RA or CA could, in principle,
 unilaterally map an autonomous certificate to the real user identity.

 The architecture, syntax, and protocol conventions described in this
 document allow anonymous certificates to be issued and used in
 existing PKIs in a way that provides a balance between privacy and a
 conditional ability to map an anonymous certificate to the individual
 to whom it was issued.

 An anonymous certificate (Traceable Anonymous Certificate) in this
 document is issued by a pair of entities that operate in a split
 responsibility mode: a Blind Issuer (BI) and an Anonymity Issuer
 (AI). The conditional traceability offered by this model assumes
 strong separation between the RA and CA roles, and employs technical
 means (threshold cryptography and "blinded" signatures), to
 facilitate that separation. (A blinded signature is one in which the
 value being signed is not made visible to the signer, via
 cryptographic means. Additional details are provided later.)

 The AI has knowledge of the certificate issued to the user, but no
 knowledge of the user’s real identity. The BI knows the user’s real
 identity, but has no knowledge of the certificate issued to that
 user. Only if the AI and BI collaborate can they map the TAC issued
 to a user to the real identity of that user.

1.1. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [1].

2. General Overview

 This section defines the notion of a Traceable Anonymous Certificate
 (referred to as TAC or anonymous certificate in this document). It
 is distinguished from a conventional pseudonymous certificate [8, 9]
 in that a TAC containing a pseudonym in the Subject field will be
 conditionally traceable (as defined that it is not trivial to design
 a system that issues anonymous certificates, consistent with Internet
 PKI standards, when additional constraints are imposed, as
 illustrated by the following scenarios.

 - If a CA issues an anonymous certificate without verifying a true
 identity, it is untraceable, which provides inadequate recourse if
 the user to whom the certificate was issued abuses the anonymity
 it provides. (Even without the ability to trace an anonymous

Park, et al. Experimental [Page 4]

RFC 5636 Traceable Anonymous Certificate August 2009

 certificate to the corresponding user, the certificate can always
 be revoked, but this may not be a sufficient response to abuse.)

 - If a CA issues an anonymous certificate but verifies the real
 identity and maintains a record of that identity, the CA can link
 the pseudonym in the Subject field to the real identity, hence a
 potential "big brother" problem [12].

 - If the CA issues a certificate with a certificate containing a
 user-selected Subject name, and does not verify the user’s
 identity, the certificate is effectively untraceable.

 - If the CA issues an anonymous certificate using a blind signature
 (see below), the CA cannot verify the contents of the certificate,
 making the certificate untraceable and essentially forgeable. (If
 a CA signs a certificate without examining its content, even after
 verifying a user’s identity, certificates issued by the CA are
 essentially forgeable.)

 To address the issues described above, we extend the simple
 separation-of-authority concept already defined in the RA/CA PKI
 model. First we restate the requirements in a more precise and
 concise fashion, and introduce a basic model for achieving the goals
 from a more general perspective [16].

3. Requirements

 This document describes a new separation-of-authority model and
 protocols for certificate issuance in a way that enables issuing
 Traceable Anonymous Certificates, while maintaining compatibility
 with the standards used in existing PKIs. To do this, the following
 requirements must be satisfied.

 - The Traceable Anonymous Certificate MUST be a syntactically valid
 X.509 certificate in which the Subject field contains a pseudonym.

 - There must be technical means to counter a claim by a malicious
 user who later denies having participated in the activities that
 resulted in issuing a TAC. Specifically, when a user is
 identified and requests issuance of a TAC, the mechanisms employed
 MUST ensure that the user to whom the TAC is issued is the one who
 requested the TAC (unless that user transfers the private key to
 another party, unknown to the RA/CA).

Park, et al. Experimental [Page 5]

RFC 5636 Traceable Anonymous Certificate August 2009

 - The traceability and revocation functions MUST support the linkage
 between a user’s true identity and the pseudonym in a certificate
 issued to the user. Thus, the solution MUST enable determining a
 true identity from the anonymous certificate, upon agreement among
 the authorities who collaborated to issue the certificate.

4. Traceable Anonymous Certificate Model

 A TAC is an end entity (EE) certificate issued by a pair of entities
 that operate in a split responsibility mode: a Blind Issuer (BI) and
 an Anonymity Issuer (AI). The pair appear as a single CA to the
 outside world, e.g., they are represented by a single CA certificate.
 The public key in the CA certificate is used to verify certificates
 issued by this CA in the normal fashion, i.e., a relying party
 processes a TAC just like any other EE certificates.

 In this model, the BI acts as a RA. It interacts with a user to
 verify the user’s "real" identity, just like a normal RA. The BI
 maintains a database that can be used to map a TAC to the user to
 whom it was issued, but only with the cooperation of the AI.

 This mapping will be initiated only if there is evidence that the
 user to whom the TAC was issued has abused the anonymity provided by
 the TAC.

 The AI acts as a CA. It validates a certificate request submitted by
 the user, using a standard certificate request format such as PKCS10.
 The AI performs the functions common to a CA, including a private-key
 proof-of-possession (PoP) check, a name uniqueness check among all
 certificates issued by it, assignment of a serial number, etc. To
 effect issuance of the TAC, the AI interacts with the BI, over a
 secure channel, to jointly create the signature on the TAC, and sends
 the signed TAC to the user.

 The AI does this without learning the user’s real identity (either
 from the user or from the BI).

 The result of this split functionality between the BI and the AI is
 that neither can unilaterally act to reveal the real user identity.
 The AI has knowledge of the certificate issued to the user, but no
 knowledge of the user’s real identity. The BI knows the user’s real
 identity, but has no knowledge of the certificate issued to that
 user. Only if the AI and BI collaborate can they map the TAC issued
 to a user to the real identity of that user.

 This system is not perfect. For example, it assumes that the AI and
 BI collaborate to reveal a user’s real identity only under
 appropriate circumstances. The details of the procedural security

Park, et al. Experimental [Page 6]

RFC 5636 Traceable Anonymous Certificate August 2009

 means by which this assurance is achieved are outside the scope of
 this document. Nonetheless, there are security benefits to adopting
 this model described in this document, based on the technical
 approach used to enable separation of the BI and AI functions.

 For example, the BI and AI can be operated by different organizations
 in geographically separate facilities, and managed by different
 staff. As a result, one can have higher confidence in the anonymity
 offered to a user by the system, as opposed to a monolithic CA
 operating model that relies only on procedural security controls to
 ensure anonymity.

5. Issuing a TAC

 The follow subsections describe the procedures and the protocols
 employed to issue a TAC. To begin, BI and AI collaborate to generate
 a public key pair (that represents the CA as seen by relying parties)
 using a threshold signature scheme. Such schemes have been defined
 for RSA. The details of how this is accomplished depend on the
 algorithm in question, and thus are not described here. The reader
 is referred to [15] where procedures for implementing RSA threshold
 signatures are described. A DSA-based threshold signature scheme
 will be incorporated into a future version of TAC [14].

 Note that this split signing model for certificate issuance is an
 especially simple case of a threshold signature; the private key used
 to sign a TAC is divided into exactly two shares, one held by the BI
 and one held by the AI. Both shares must be used, serially, to
 create a signature on a TAC. After the key pair for the (nominal) CA
 has been generated and the private key split between the BI and the
 AI, the public key is published, e.g., in a self-signed certificate
 that represents the TAC CA.

 Another public-key cryptographic function that is an essential part
 of this system is called "blind signing". To create a blind
 signature, one party encrypts a value to be signed, e.g., a hash
 value of a certificate, and passes it to the signer. The signer
 digitally signs the encrypted value, and returns it to the first
 party. The first party inverts the encryption it applied with the
 random value in the first place, to yield a signature on the
 underlying data, e.g., a hash value.

 This technique enables the signer to digitally sign a message,
 without seeing the content of the message. This is the simplest
 approach to blind signing; it requires that the public key needed to
 invert the encryption not be available to the blind signer. Other
 blind signing techniques avoid the need for this restriction, but are
 more complex.

Park, et al. Experimental [Page 7]

RFC 5636 Traceable Anonymous Certificate August 2009

 The tricky part of a cryptographic blinding function is that is must
 be associative and commutative, with regard to a public-key signature
 function. Let B be a blinding function, B-INV is its inverse, and S
 is a public-key signature. The following relationship must hold:
 B-INV(S (B (X))) = B-INV(B(S (X))) = S (X). RSA can be used
 to blind a value with random value and to sign a blinded value
 because the modular exponentiation operation used by RSA for both
 signature and for encryption is associative and commutative.

 The TAC issuance process described below requires an ability for the
 BI, the AI, and the user to employ secure communication channels
 between one another.

 Use of TLS [17] is one suitable means to establish such channels,
 although other options also are acceptable. To this end, this
 document assumes TLS as the default secure communication channel, and
 thus requires that the BI and the AI have X.509 certificates that
 represent them.

 These certificates are independent of the certificate that represents
 the CA (formed by the BI and the AI) and may be either self-signed or
 issued by other CA(s).

 Appendix B provides a top-level description of the application of TLS
 to these message exchanges.

5.1. Steps in Issuing a TAC

 Figure 1 depicts the procedures for issuing a TAC. The lines
 represent steps in the issuance process, and the numbers refer to
 these steps.

 1 +---------------+
 +<-------->| Blind |
 | 2 | Issuer (BI)|
 | +---------------+
 +-------+ | ^
 | user |<------------>| 4 | 5
 +-------+ | v
 | 3 +----------------+
 +--------->| |
 | | Anonymity |
 | | Issuer (AI) |
 +<-------- | |
 6 +----------------+

 Figure 1. TAC Issuance Procedures

Park, et al. Experimental [Page 8]

RFC 5636 Traceable Anonymous Certificate August 2009

 Step 1:

 A user authenticates himself to the BI. This may be effected via
 an in-person meeting or electronically. The same sorts of
 procedures that RAs use for normal certificate issuance are used
 here. Such procedures are not standardized, and thus they are not
 described here in detail. For purposes of the TAC architecture,
 we require the BI to establish a record in a database for the user
 and to generate a (locally) unique identifier, called the UserKey,
 that will serve as a (database) key for the record. The UserKey
 value MUST NOT be generated in a fashion that permits any external
 entity (including the AI) to infer a user’s real identity from its
 value. (For example, if the user’s name is used as an input to a
 one-way hash algorithm to generate the UserKey value, then
 additional random data must be used as an input to prevent simple
 guessing attacks.) Associated with the UserKey in this database is
 an expiration time. The expiration time is used by the BI and AI
 to reject session-level replay attacks in some exchanges, and to
 enable the BI and AI to garbage-collect database records if a user
 initiates but does not complete the certificate request process.

 It is RECOMMENDED that the UserKey be a random or pseudo-random
 value. Whenever the BI passes a UserKey to an external party, or
 accepts the UserKey from an external party (e.g., the AI), the
 value is embedded in a digitally signed CMS object called a Token,
 accompanied by the timestamp noted above. The signature on a
 Token is generated by the BI. (Note that the certificate used is
 just a certificate suitable for use with CMS, and is NOT the
 split-key certificate used to verify TAC.)

 The following ASN.1 syntax represents the UserKey and an
 expiration time:

 UserKey ::= OCTET STRING
 Timeout ::= GeneralizedTime

 In the context of this specification, the GeneralizedTime value
 MUST be expressed in Greenwich Mean Time (Zulu) and MUST include
 seconds (YYYYMMDDHHMMSSZ).

 Step 2:

 BI presents to the user a data structure called a Token. The
 Token must be conveyed to the user via a secure channel, e.g., in
 person or via a secure communication channel. The secure channel
 is required here to prevent a wiretapper from being able to

Park, et al. Experimental [Page 9]

RFC 5636 Traceable Anonymous Certificate August 2009

 acquire the Token. For example, if the user establishes a one-way
 authenticated TLS session to the BI in Step 1, this session could
 be used to pass the Token back to the user.

 The Token serves two purposes. During TAC issuance, the Token is
 used to verify that a request to the AI has been submitted by a
 user who is registered with the BI (and thus there is a record in
 the BI’s database with the real identity of the user). This is
 necessary to ensure that the TAC can later be traced to the user.
 If there is a request to reveal the real identity of a user, the
 AI will release the Token to the entity requesting that a TAC be
 traced, and that entity will pass the Token to the BI, to enable
 tracing the TAC. If the BI does not perform its part of the
 certificate issuance procedure (in Step 6) before the Token
 expires, the BI can delete the Token from the database as a means
 of garbage collection. The timeout value in a Token is selected
 by the BI.

 The Token is a ContentInfo with a contentType of id-kisa-tac-token
 and a content that holds a SignedData of CMS SignedData object
 [6], signed by the BI, where the eContent
 (EncapsulatedContentInfo) is a SEQUENCE consisting of the UserKey
 and Timeout, and eContentType MUST be id-data.

 EncapsulatedContentInfo ::= SEQUENCE {
 eContentType ContentType, -- OBJECT IDENTIFIER : id-data
 eContent [0] EXPLICIT OCTET STRING OPTIONAL }
 -- DER encoded with the input of ’SEQUENCE of the UserKey and
 -- Timeout’

 id-data OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840)
 rsadsi(113549) pkcs(1) pkcs7(7) 1 }

 The signature (SignatureValue of SignerInfo) is generated using
 the BI’s private signature key, corresponding to the public key
 present in the BI’s certificate. (Note that this certificate is
 just a certificate suitable for use with TLS, and is NOT the
 split-key certificate used to verify a TAC.) The certificate (or
 certificates) MUST be present. Appendix A provides the ASN.1
 syntax for the Token, as a profiled CMS ContentInfo object.
 Appendix C provides the CMS SignedData object profile for wrapping
 the Token.

 Token ::= ContentInfo

 Upon receipt of the Token, the user SHOULD verify the signature
 using the BI public key and note the Timeout value to ensure that
 the certificate request process is completed prior to that time.

Park, et al. Experimental [Page 10]

RFC 5636 Traceable Anonymous Certificate August 2009

 Step 3:

 The user prepares a certificate request in a standard format,
 e.g., PKCS10 [3] or CMC [4]. The Subject field of the certificate
 contains a pseudonym generated by the user. It is anticipated
 that the CA (BI + AI) may provide software for users to employ in
 constructing certificate requests.

 If so, then this software can generate a candidate Subject name to
 minimize the likelihood of a collision. If the user selects a
 candidate pseudonym without such support, the likelihood of a
 subject name collision probably will be greater, increasing the
 likelihood that the certificate request will be rejected or that
 the AI will have to generate a pseudonym for the user.

 After constructing the certificate request, the user sends it,
 along with the Token from Step 2, to the AI, via a secure channel.
 This channel MUST be encrypted and one-way authenticated, i.e.,
 the user MUST be able to verify that it is communicating with the
 AI, but the AI MUST NOT be able to verify the real identity of the
 user. Typical use of TLS for secure web site access satisfies
 this requirement. The certificate request of PKCS10 [3] or CMC
 [4] carries the Token from Step 2.

 The Token is carried as an attribute in a certificate request
 (CertificationRequestInfo.attributes) where the attrType MUST be
 id-kisa-tac below in PKCS10 format. The Token is set to
 attrValues (Certificate Request Controls) where the attrType MUST
 be id-kisa-tac in CMC [4] format. The TAC request message profile
 is described in the section 5.3.

 Step 4:

 The AI, upon receipt of the certificate request containing a
 Token, verifies that the request is consistent with the processing
 defined for the request format (PKCS10). If a Subject name is
 present, it verifies that the proposed pseudonym is unique. The
 AI also verifies the signature on the Token and, if it is valid,
 checks the Timeout value to reject a replay attack based on a
 "timed-out" Token.

 A Token with an old Timeout value is rejected out-of-hand by the
 AI. (After a Token’s Timeout time is reached, the AI deletes the
 Token from its cache.) Next, the AI compares the received Token
 against a cache of recent (i.e., not "timed out"), validated
 Tokens. The AI matches the resubmitted request to the original
 request, and responds accordingly. For example, if a duplicate is
 detected, the certificate request can be rejected as a replay.

Park, et al. Experimental [Page 11]

RFC 5636 Traceable Anonymous Certificate August 2009

 If the Subject field contains a Subject name already issued by the
 AI, the AI MUST either reject the certificate request, or
 substitute a pseudonym it generates, depending on the policy of
 the TAC CA. If the certificate request is acceptable, the AI
 assigns a serial number and constructs a tbsCertificate (i.e., the
 final form of the certificate payload, ready to be signed).

 The AI then computes a hash over this data structure and blinds
 the hash value. (The AI blinds the hash value using a key from a
 public-key encryption pair where neither key is ever made public.
 The other key from this pair is used by the AI in Step 6 to "un-
 blind" the signed hash value.)

 The AI sends the CMS ContentInfo object of TokenandBlindHash to
 the BI, via a two-way authenticated and encrypted channel. The
 two-way authentication and encryption is required to ensure that
 the AI is sending these values to the BI, to allow the BI to
 verify that the values were transmitted by the AI, and to prevent
 a wiretapper from acquiring the Token. A TLS session in which
 both parties employ certificates to authenticate one another is
 the RECOMMENDED way to achieve this communication.

 The TokenandBlindHash is a CMS ContentInfo with a contentType of
 id-kisa-tac-tokenandblindhash and a content that holds a
 SignedData of CMS SignedData object [6], signed by the AI, where
 the eContent (EncapsulatedContentInfo) is a SEQUENCE consisting of
 the Token and BlindedCertificateHash, and eContentType MUST be
 id-data.

 EncapsulatedContentInfo ::= SEQUENCE {
 eContentType ContentType, -- OBJECT IDENTIFIER : id-data
 eContent [0] EXPLICIT OCTET STRING OPTIONAL }
 -- DER encoded with the input of ’SEQUENCE of the Token and
 -- BlindedCertificateHash’

 The signature (SignatureValue of SignerInfo) is generated using
 the AI’s private signature key, corresponding to the public key
 present in the AI’s certificate. (Note that this certificate is
 just a certificate suitable for use with TLS, and is NOT the
 split-key certificate used to issue a TAC.) The certificate (or
 certificates) MUST be present.

 The following ASN.1 syntax represents the Token and
 BlindedCertificateHash:

 Token ::= ContentInfo
 BlinedCertificateHash ::= OCTET STRING

Park, et al. Experimental [Page 12]

RFC 5636 Traceable Anonymous Certificate August 2009

 Token is the value of ContentInfo in the certificate request
 message (CertificationRequestInfo.attributes) from Step 3.

 BlindedCertificateHash is the blinded hash value for the
 tbsCertificate.

 Appendix A provides the ASN.1 syntax for the Token, as a profiled
 CMS ContentInfo object. Appendix C provides the CMS SignedData
 object profile for wrapping the Token.

 TokenandBlindHash ::= ContentInfo

 Step 5:

 The BI receives the Token and blinded certificate hash via the
 secure channel described above. First the BI verifies the
 signature on the TokenandBlindHash generated by AI and then
 verifies the signature on the Token to ensure that it is a
 legitimate Token generated by the BI. Next, the BI checks its
 database to ensure that the UserKey value from the Token is
 present and that the Token has not been used to authorize issuance
 of a certificate previously.

 This check is performed to ensure that the BI has authenticated
 the user and entered the user’s real identity into the BI’s
 database. Each Token authorizes issuance of only one certificate,
 so the check also ensures that the same Token has not been used to
 authorize issuance of more than one certificate. These checks
 ensure that the certificate issued by the AI to this user will be
 traceable, if needed.

 The BI uses its share of the threshold private signature key to
 sign the blinded certificate hash and returns the CMS SignedData
 back to the AI. The eContent of the SignedData is a SEQUENCE
 consisting of the Token and PartiallySignedCertificateHash.

 The following ASN.1 syntax represents the Token and
 PartiallySignedCertificateHash:

 Token ::= ContentInfo
 PartiallySignedCertificateHash ::= OCTET STRING

 Token is the token value of the TokenandBlindHash (where the
 eContent is a SEQUENCE consisting of the Token and
 PartiallySignedCertificateHash) from Step 4.

Park, et al. Experimental [Page 13]

RFC 5636 Traceable Anonymous Certificate August 2009

 PartiallySignedCertificateHash is the signature value generated by
 BI’s share of the threshold private signature key on
 BlindedCertificateHash from Step 4.

 The TokenandPartiallySignedCertificateHash is a CMS ContentInfo
 with a contentType of id-kisa-tac-tokenandpartially and a content
 that holds a SignedData of CMS SignedData object [6], signed by
 the BI, where the eContent (EncapsulatedContentInfo) is a SEQUENCE
 consisting of the Token and PartiallySignedCertificateHash, and
 eContentType MUST be id-data.

 EncapsulatedContentInfo ::= SEQUENCE {
 eContentType ContentType, -- OBJECT IDENTIFIER : id-data
 eContent [0] EXPLICIT OCTET STRING OPTIONAL }
 -- DER encoded with the input of ’SEQUENCE of the Token and
 -- PartiallySignedCertificateHash’

 The signature (SignatureValue of SignerInfo) is generated using
 the BI’s private signature key, corresponding to the public key
 present in the BI’s certificate. (Note that this certificate is
 just a certificate suitable for use with TLS, and is NOT the
 split-key certificate used to issue a TAC.) The certificate (or
 certificates) MUST be present. Appendix A provides the ASN.1
 syntax for the Token, as a profiled CMS SignedData object.
 Appendix C provides the CMS SignedData object profile for wrapping
 the Token.

 TokenandPartiallySignedCertificateHash ::= ContentInfo

 Step 6:

 Upon receipt of the TokenandPartiallySignedCertificateHash, the AI
 verifies the signature on the PartiallySignedCertificateHash,
 generated by BI and then matches the Token against its list of
 outstanding requests to the BI. The AI then "un-blinds" the
 blindHashValue, using the other key from the key pair employed in
 Step 4. This reveals the partially signed certificate hash. The
 AI then applies its part of the split private key to complete the
 signature of the certificate for the user.

 It records the certificate and the Token value in its database, to
 enable later tracing of the certificate to the real user identity,
 if needed. The AI transmits the completed certificate to the
 user, via the response message from the request protocol employed
 by the user in Step 3, PKCS10.

Park, et al. Experimental [Page 14]

RFC 5636 Traceable Anonymous Certificate August 2009

 The user may now employ the certificate with any PKI-enabled
 application or protocol that makes use of X.509 certificates
 (consistent with the key usage, and Extended Key Usage (EKU)
 values in the certificate). Note that the user should be prepared
 to accommodate delays in the certificate issuance process. For
 example, a connection between the user and the AI might fail
 sometime after the user submits a certificate request at the end
 of Step 3 and before the AI returns the certificate at the end of
 Step 6. If this happens, the user should resubmit the request.
 The AI and BI retain sufficient state to be able to match the
 resubmitted request to the original request, and respond
 accordingly. If the process failed in steps 5 or 6, the AI
 returns an error indication to the user.

5.2. Mapping a TAC to a User’s Real Identity

 If a user to whom a TAC has been issued abuses the anonymity provided
 by the TAC, the TAC can be traced to the identity of that user.
 Mapping a TAC to a user’s real identity is a four-step process,
 described below and illustrated in Figure 2.

 C +---------------+
 +<-------->| Blind |
 | D | Issuer (BI)|
 | +---------------+
 +---------+ |
 | Relying |<---------->|
 | Party | |
 +---------+ |
 | A +----------------+
 +<-------->| Anonymity |
 B | Issuer (AI) |
 +----------------+

 Figure 2. Revealing a TAC User’s Real Identity

 Step A:

 The AI verifies the assertion by an aggrieved party that a TAC
 user has abused the anonymity provided by his TAC. The procedures
 used by AI to verify that such abuse has occurred are outside the
 scope of this document. No protocol is defined here for the
 interaction between the aggrieved party and AI. The only
 technical requirement is that the TAC of the offending user be
 provided to the AI. If the AI determines that there is sufficient
 evidence of abuse to trace the TAC to the user, the AI revokes the
 TAC, by listing its serial number on the next Certificate
 Revocation List (CRL) issued by the AI.

Park, et al. Experimental [Page 15]

RFC 5636 Traceable Anonymous Certificate August 2009

 An AI unilaterally manages the CRL for a TAC. Because RFC 5280
 implementations are not required to process indirect CRLs, we
 create a second certificate for the CA, under the TAC CA. Revoked
 EE certificates issued by the TAC CA are recorded on this CRL and
 validated using this second CA certificate.

 This CA certificate will have the cRLSign bit set in the KeyUsage
 extension, but not the keyCertSign bit. The private key for this
 certificate will be held by the AI, so that it can issue CRLs
 unilaterally.

 The Subject DN (Distinguished Name) will be the same in both CA
 certificates, which reinforces the notion that the CRL issuer is
 the same entity as the TAC issuer, and that this CRL is not an
 indirect CRL. Because the CRL issuer does not issue any
 certificates itself, there is no possible serial number conflict.
 This will be the only CA certificate issued under the TAC CA
 certificate (and thus it will be signed jointly by the BI and AI).
 We recommend that the CRL for this CA certificate be similarly
 long-lived, as it too needs to be signed by the BI and AI. Each
 EE TAC certificate MUST contain a CRL Distribution Point that
 points to the CRL issued by this CA, to ensure that relying
 parties know to check this CRL vs. the CRL that covers only the
 CRL CA. (If the AI uses the Online Certificate Status Protocol
 (OCSP) [13] to convey the revocation status of TACs, an equivalent
 procedure is employed.) If it is later determined that the
 revocation was not warranted, a new TAC can be issued, to preserve
 the anonymity of the user in future transactions.

 Step B:

 The AI searches its database, e.g., based on the serial number in
 the TAC, to locate the Token that was passed between the AI and BI
 during the issuance process (Steps 5 and 6 above). The AI passes
 this Token to the aggrieved party via an encrypted and two-way
 authenticated channel. Encryption is required to prevent
 disclosure of the Token, and two-way authentication is required to
 ensure that the aggrieved party and the AI know that they are
 communicating with each other. Two-way authenticated TLS is the
 RECOMMENDED means of implementing this channel, though other
 approaches are allowed.

 Steps C and D:

 The aggrieved party transits the Token to the BI, via an encrypted
 and two-way authenticated channel. The channel MUST be encrypted
 to prevent disclosure of the Token, and two-way authentication is
 required to ensure that the aggrieved party and the BI know that

Park, et al. Experimental [Page 16]

RFC 5636 Traceable Anonymous Certificate August 2009

 they are communicating with each other. If specified by the
 Certificate Policy (CP) for the TAC CA, the BI will independently
 determine that there is sufficient evidence of abuse to trace the
 TAC to the user, before proceeding. The BI verifies its signature
 on the Token, to verify that this is a Token generated by it and
 presumably released to the aggrieved party by the AI. Next, the
 BI searches its database using the UserKey value extracted from
 the Token. The BI retrieves the user’s real identity and provides
 it to the aggrieved party. (By requiring the aggrieved party to
 interact with both the AI and the BI, the BI can verify that it is
 dealing with an aggrieved party, not with the AI acting
 unilaterally.)

5.3. TAC Request Message Format Profile

 TAC request MAY use either PKCS10 or CMC. An AI MUST support PKCS10
 and MAY support CMC.

5.3.1. PKCS10 Profile

 This profile refines the specification in PKCS10 [3], as it relates
 to TAC. A Certificate Request Message object, formatted according to
 PKCS10, is passed to the AI.

 This profile applies the following additional constraints to fields
 that may appear in a CertificationRequestInfo:

 Version
 This field is mandatory and MUST have the value 0.

 Subject
 This field MUST be present. If the value of this field is
 empty, the AI will generate a subject name that is unique in
 the context of certificates issued by this issuer. If the
 Subject field contains a Subject name already issued by the AI,
 the AI MUST either reject the certificate request, or
 substitute a pseudonym it generates, depending on the policy of
 the TAC CA.

 SubjectPublicKeyInfo
 This field specifies the subject’s public key and the algorithm
 with which the key is used.

 Attributes
 PKCS10 [3] defines the attributes field as key-value pairs
 where the key is an OID and the value’s structure depends on
 the key. The attribute field MUST include the id-kisa-tac
 attribute, which holds the Token and is defined below. The

Park, et al. Experimental [Page 17]

RFC 5636 Traceable Anonymous Certificate August 2009

 Attributes field MAY also contain X509v3 Certificate Extensions
 and any PKCS9 [7] extensionRequest attributes that the
 subscriber would like to have included in the certificate. The
 profile for extensions in certificate requests is specified in
 RFC 5280 [2].

5.3.2. CMC Profile

 This profile refines the Certificate Request messages in Certificate
 Management over CMS in CMC [4], as they relate to TACs.

 A Certificate Request message, formatted according to CMC [4], is
 passed to the AI.

 With the exception of the public-key-related fields, the CA is
 permitted to alter any requested field when issuing a corresponding
 certificate.

 This profile recommends the full PKI Request of the two types of PKI
 requests (Simple or Full PKI Request), and the PKI Request SHOULD be
 encapsulated in SignedData with an eContentType of id-cct-PKIData.

 This profile applies the following additional constraints to fields
 that may appear in a Certificate Request Template of Certificate
 Request Message Format (CRMF) [5]:

 Version
 This field MAY be absent, or MAY specify the request of a
 Version 3 Certificate. It SHOULD be omitted.

 SerialNumber
 As per CRMF [5], this field is assigned by the CA and MUST be
 omitted in this profile.

 SigningAlgorithm
 As per CRMF [5], this field is assigned by the CA and MUST be
 omitted in this profile.

 Issuer
 This field is assigned by the CA and MUST be omitted in this
 profile.

 Validity
 This field MAY be omitted. If omitted, the AI will issue a
 Certificate with Validity dates as determined by the TAC CA
 policy. If specified, then the CA MAY override the requested
 values with dates as determined by the TAC CA policy.

Park, et al. Experimental [Page 18]

RFC 5636 Traceable Anonymous Certificate August 2009

 Subject
 This field MUST be present. If the value of this field is
 empty, the AI MUST generate a subject name that is unique in
 the context of certificates issued by this issuer. If the
 Subject field contains a Subject name already issued by the AI,
 the AI MUST either reject the certificate request, or
 substitute a pseudonym it generates, depending on the policy of
 the TAC CA.

 PublicKey
 This field MUST be present.

 This profile also refines constraints that may appear in a
 Certificate Request controls: The Token is set to attrValues (in
 CertRequest.controls) where the attrType MUST be id-kisa-tac.

 See Section 5.3.1, "PKCS10 Profile", for the certification request
 formats based on PKCS10.

6. Security Considerations

 The anonymity provided by the architecture and protocols defined in
 this document is conditional. Moreover, if the user employs the same
 TAC for multiple transactions (with the same or different parties),
 the transactions can be linked through the use of the same TAC.
 Thus, the anonymity guarantee is "weak" even though the user’s real
 identity is still hidden.

 To achieve stronger anonymity, a user may acquire multiple TACs,
 through distinct iterations of the protocol. Since each TAC is
 generated independently, it should not be possible for a relying
 party to discover a link between pseudonyms unless the tracing
 feature of this scheme is invoked. If the TAC has a long validity
 interval, this increases the probability that the identity of a TAC
 user will be discovered, e.g., as a result of linking user
 transactions across multiple servers. Thus, we recommend that each
 TAC CA consider carefully how long the validity for a TAC certificate
 should be. In the course of issuing a TAC, the AI and the user
 interact directly. Thus, the AI may have access to lower-layer
 information (e.g., an IP address) that might reveal the user’s
 identity. A user concerned about this sort of possible identity
 compromise should use appropriate measures to conceal such
 information, e.g., a network anonymity service such as Tor [10].

 This document makes no provisions for certificate renewal or rekey;
 we recommend TAC users acquire new TACs periodically, to further
 reduce the likelihood of linkage. It also may be possible to
 determine the identity of a user via information carried by lower-

Park, et al. Experimental [Page 19]

RFC 5636 Traceable Anonymous Certificate August 2009

 level protocols, or by other, application-specific means. For
 example, the IP address of the user might be used to identify him.
 For this reason, we recommend that a TAC be used primarily to access
 web services with anonymity. Note that the TAC architecture
 described in this document is not capable of using certificates for
 use with S/MIME, because there is no provision to issue two
 certificates (one for encryption and one for signatures) that contain
 the same (anonymous) Subject name. An analogous problem might arise
 if a user visits a site (and does not conceal his identity), the site
 deposits a "cookie" into the user’s browser cache, and the user later
 visits a site and employs a TAC with the presumption of anonymity.

 The use of a TAC is a tool to help a user preserve anonymity, but it
 is not, per se, a guarantee of anonymity. We recommend that each TAC
 CA issue certificates with only one lifetime, in order to avoid the
 complexity that might arise otherwise. If a TAC CA offered
 certificates with different lifetimes, then it would need to
 communicate this information from the BI to AI in a way that does not
 unduly compromise the anonymity of the user.

 This architecture uses the UserKey to link a TAC to the corresponding
 real user identity. The UserKey is generated in a fashion to ensure
 that it cannot be examined to determine a user’s real identity.
 UserKey values are maintained in two distinct databases: the BI
 database maps a UserKey to a real user identity, and the AI database
 maps a TAC to a UserKey. The UserKey is always carried in a signed
 data object, a Token. The Token is signed to allow the BI to verify
 its authenticity, to prevent attacks based on guessing UserKey
 values. The Token also carries a Timeout value to allow the AI and
 BI to reject session-level replay attacks, and to facilitate garbage
 collection of AI and BI databases.

 Threshold cryptography is employed to enable strong separation of the
 BI and AI functions, and to ensure that both must cooperate to issue
 certificates under the aegis of a TAC CA. (The AI and BI must ensure
 that the threshold cryptographic scheme they employ does not provide
 an advantage to either party based on the way the key-splitting is
 effected.) Blind signatures are used with threshold cryptography to
 preserve the separation of functions, i.e., to prevent the BI from
 learning the hash value of the TAC issued by the AI.

 Message exchanges between a user and the BI or the AI, between the AI
 and BI, and between an aggrieved party and the AI and BI all make use
 of secure channels. These channels are encrypted to prevent
 disclosure of the Token value and of the pseudonym in the TAC request
 and response and in a tracing request. The channels are two-way
 authenticated to allow the AI and BI to verify their respective
 identities when communication with one another, and one-way

Park, et al. Experimental [Page 20]

RFC 5636 Traceable Anonymous Certificate August 2009

 authenticated to allow the user to verify their identities when he
 communicates with them. Two-way authentication is employed for
 communication between an aggrieved party and the AI and BI, to allow
 all parties to verify the identity of one another.

 There is an opportunity for the AI to return the wrong UserKey to
 an aggrieved party, which will result in tracing a certificate to
 the wrong real user identity. This appears to be unavoidable in
 any scheme of this sort, since the database maintained by the BI
 is intentionally ignorant of any info relating a UserKey to a TAC.

 A TAC CA MUST describe in its CP how long it will retain the data
 about certificates it issued, beyond the lifetime of these
 certificates. This will help a prospective TAC subject gauge the
 likelihood of unauthorized use of his identity as a result of a
 compromise of this retained data. It also alerts relying parties of
 the timeframe (after expiration of a certificate) in which an alleged
 abuse must be brought to the attention of the AI and BI, before the
 data linking a certificate to the real user identity is destroyed.

7. Acknowledgments

 Tim Polk (NIST), Stefan Santesson (ACC-sec.com), Jim Schaad (Soaring
 Hawk), David A. Cooper (NIST), SeokLae Lee, JongHyun Baek, SoonTae
 Park (KISA), Taekyoung Kwon (Sejong University), JungHee Cheon (Seoul
 National University), and YongDae Kim (Minnesota University) have
 significantly contributed to work on the concept of TAC and have
 identified security issues. Their comments enhanced the maturity of
 the document.

8. References

8.1. Normative References

 [1] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [2] Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R.,
 and W. Polk, "Internet X.509 Public Key Infrastructure
 Certificate and Certificate Revocation List (CRL) Profile", RFC
 5280, May 2008.

 [3] Nystrom, M. and B. Kaliski, "PKCS #10: Certification Request
 Syntax Specification Version 1.7", RFC 2986, November 2000.

 [4] Schaad, J. and M. Myers, "Certificate Management over CMS
 (CMC)", RFC 5272, June 2008.

Park, et al. Experimental [Page 21]

RFC 5636 Traceable Anonymous Certificate August 2009

 [5] Schaad, J., "Internet X.509 Public Key Infrastructure
 Certificate Request Message Format (CRMF)", RFC 4211, September
 2005.

 [6] Housley, R., "Cryptographic Message Syntax (CMS)", RFC 3852,
 July 2004.

 [7] Nystrom, M. and B. Kaliski, "PKCS #9: Selected Object Classes
 and Attribute Types Version 2.0", RFC 2985, November 2000.

8.2. Informative References

 [8] S. Brands, "Rethinking public key infrastructures and digital
 certificates - Building in Privacy", PhD thesis, Eindhoven
 Institute of Technology, Eindhoven, The Netherlands, 1999.

 [9] D. Chaum, "Blind signature system", CRYPTO ’83, Plenum Press,
 page 153, 1984.

 [10] "Tor: anonymity online", http://www.torproject.org.

 [11] X.509, "Information technology - Open Systems Interconnection -
 The Directory: Public-key and attribute certificate frameworks",
 ITU-T Recommendation X.509, March 2000. Also available as
 ISO/IEC 9594-8, 2001.

 [12] S. Rafaeli, M. Rennhard, L. Mathy, B. Plattner, and D.
 Hutchison, "An Architecture for Pseudonymous e-Commerce",
 AISB’01 Symposium on Information Agents for Electronic Commerce,
 pp. 33-41, 2001.

 [13] Myers, M., Ankney, R., Malpani, A., Galperin, S., and C. Adams,
 "X.509 Internet Public Key Infrastructure Online Certificate
 Status Protocol - OCSP", RFC 2560, June 1999.

 [14] Philip MacKenzie and Michael K. Reiter, "Two-Party Generation of
 DSA Signature", Crypto 2001.

 [15] Shaohua Tang, "Simple Threshold RSA Signature Scheme Based on
 Simple Secret Sharing", in "Computational Intelligence and
 Security", CIS 2005, Part II, Springer, pp. 186-191, 2005.

 [16] Taekyoung Kwon, Jung Hee Cheon, Yongdae Kim, Jae-Il Lee,
 "Privacy Protection in PKIs: A Separation-of-Authority
 Approach", in "Information Security Applications", WISA 2006,
 Springer, pp. 297-311, 2007.

Park, et al. Experimental [Page 22]

RFC 5636 Traceable Anonymous Certificate August 2009

 [17] Dierks, T. and E. Rescorla, "The Transport Layer Security (TLS)
 Protocol Version 1.2", RFC 5246, August 2008.

 [18] Ramsdell, B., Ed., "Secure/Multipurpose Internet Mail Extensions
 (S/MIME) Version 3.1 Certificate Handling", RFC 3850, July 2004.

Park, et al. Experimental [Page 23]

RFC 5636 Traceable Anonymous Certificate August 2009

Appendix A. Traceable Anonymous Certificate ASN.1 Modules

DEFINITIONS IMPLICIT TAGS ::=

--
-- Copyright (c) 2009 IETF Trust and the persons identified as
-- authors of the code. All rights reserved.
--
-- Redistribution and use in source and binary forms, with or
-- without modification, are permitted provided that the following
-- conditions are met:
--
-- - Redistributions of source code must retain the above
-- copyright notice, this list of conditions and the following
-- disclaimer.
--
-- - Redistributions in binary form must reproduce the above
-- copyright notice, this list of conditions and the following
-- disclaimer in the documentation and/or other materials provided
-- with the distribution.
--
-- - Neither the name of Internet Society, IETF or IETF Trust, nor
-- the names of specific contributors, may be used to endorse or
-- promote products derived from this software without specific
-- prior written permission.
--
--
--
-- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
-- CONTRIBUTORS ’AS IS’ AND ANY EXPRESS OR IMPLIED WARRANTIES,
-- INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
-- MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-- DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
-- BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-- EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
-- TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
-- DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
-- ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
-- OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
-- OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-- POSSIBILITY OF SUCH DAMAGE.
--
-- This version of the ASN.1 module is part of RFC 5636;
-- see the RFC itself for full legal notices.
--

Park, et al. Experimental [Page 24]

RFC 5636 Traceable Anonymous Certificate August 2009

BEGIN

 -- EXPORTS All
 -- The types and values defined in this module are exported for
 -- use in the other ASN.1 modules. Other applications may use
 -- them for their own purposes.

 IMPORTS

 -- Imports from RFC 3280 [PROFILE], Appendix A.1
 AlgorithmIdentifier, Certificate, CertificateList,
 CertificateSerialNumber, Name FROM PKIX1Explicit88
 { iso(1) identified-organization(3) dod(6)
 internet(1) security(5) mechanisms(5) pkix(7)
 mod(0) pkix1-explicit(18) }

 -- Imports from CMS
 ContentInfo, SignedData FROM
 CryptographicMessageSyntax2004{ iso(1)
 member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
 smime(16) modules(0) cms-2004(24)}

UserKey ::= OCTET STRING

Timeout ::= GeneralizedTime

BlinedCertificateHash ::= OCTET STRING

PartiallySignedCertificateHash ::= OCTET STRING

EncapsulatedContentInfo ::= SEQUENCE {
 eContentType ContentType, -- OBJECT IDENTIFIER : id-data
 eContent [0] EXPLICIT OCTET STRING OPTIONAL }

id-data OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840)
rsadsi(113549) pkcs(1) pkcs7(7) 1 }

Token ::= ContentInfo

TokenandBlindHash ::= ContentInfo

TokenandPartiallySignedCertificateHash ::= ContentInfo

id-KISA OBJECT IDENTIFIER ::= {iso(1) member-body(2) korea(410)
kisa(200004)}

id-npki OBJECT IDENTIFIER ::= {id-KISA 10}

Park, et al. Experimental [Page 25]

RFC 5636 Traceable Anonymous Certificate August 2009

id-attribute OBJECT IDENTIFIER ::= {id-npki 1}

id-kisa-tac OBJECT IDENTIFIER ::= {id-attribute 1}

id-kisa-tac-token OBJECT IDENTIFIER ::= { id-kisa-tac 1}

id-kisa-tac-tokenandblindbash OBJECT IDENTIFIER ::= { id-kisa-tac 2}

id-kisa-tac-tokenandpartially OBJECT IDENTIFIER ::= { id-kisa-tac 3}

END

Appendix B. TAC Message Exchanges over Transport Layer Security

 TAC message exchanges between a user and the BI or the AI, between
 the AI and BI, and between an aggrieved party and the AI and BI all
 make use of secure channels to prevent disclosure of the Token value
 and of the pseudonym in the TAC request and response and in a tracing
 request. The Transport Layer Security Protocol v1.2 (TLS) [17] is a
 suitable security protocol to protect these message exchanges, and
 this document recommends use of TLS to protect these exchanges. The
 following text describes how the handshake part of TLS should be
 employed to protect each type of exchange. Note that no specific
 cipher suites are specified for use here; the choice of suites is up
 to the client and servers, as is commonly the case.

B.1. Message Exchanges between a User and the BI or the AI

 The channels between a User and the BI or the AI are one-way
 authenticated to allow the user to verify their identities when he
 communicates with them.

 User BI or AI

 ClientHello -------->

 ServerHello
 Certificate
 <-------- ServerHelloDone
 ClientKeyExchange
 [ChangeCipherSpec]
 Finished -------->
 [ChangeCipherSpec]
 <--------- Finished
 TAC Message <---------> TAC Message

 Figure 3. TAC Message exchanges between a User and the BI or the AI

Park, et al. Experimental [Page 26]

RFC 5636 Traceable Anonymous Certificate August 2009

B.2. Message Exchanges between the BI and the AI

 The channels between the BI and the AI are two-way authenticated to
 allow the AI and BI to verify their respective identities when
 communication with one another.

 BI AI

 ClientHello -------->
 ServerHello
 Certificate
 CertificateRequest
 <-------- ServerHelloDone
 Certificate
 ClientKeyExchange
 CertificateVerify
 [ChangeCipherSpec]
 Finished -------->
 [ChangeCipherSpec]
 <--------- Finished
 TAC Message <---------> TAC Message

 Figure 4. TAC Message exchanges between BI and AI

B.3. Message Exchanges between the Aggrieved Party and the AI or the BI

 The channels between a User and the BI or the AI are two-way
 authenticated, to allow both parties to verify the identity of one
 another.

 User BI or AI

 ClientHello -------->
 ServerHello
 Certificate
 CertificateRequest
 <-------- ServerHelloDone
 Certificate
 ClientKeyExchange
 CertificateVerify
 [ChangeCipherSpec]
 Finished -------->
 [ChangeCipherSpec]
 <--------- Finished
 TAC Message <---------> TAC Message

 Figure 5. TAC Message Exchanges between an Aggrieved Party and
 the BI or the AI

Park, et al. Experimental [Page 27]

RFC 5636 Traceable Anonymous Certificate August 2009

Appendix C. Cryptographic Message Syntax Profile for TAC Token

 Using the Cryptographic Message Syntax(CMS)[6], TAC Token is a type
 of signed-data object. The general format of a CMS object is:

 ContentInfo ::= SEQUENCE {
 contentType ContentType,
 content [0] EXPLICIT ANY DEFINED BY contentType }

 ContentType ::= OBJECT IDENTIFIER

 As a TAC is a signed-data object, it uses the corresponding OID,
 1.2.840.113549.1.1.2.

C.1. Signed-Data Content Type

 According to the CMS specification, the signed-data content type
 shall have ASN.1 type SignedData:

 SignedData ::= SEQUENCE {
 version CMSVersion,
 digestAlgorithms DigestAlgorithmIdentifiers,
 encapContentInfo EncapsulatedContentInfo,
 certificates [0] IMPLICIT CertificateSet OPTIONAL,
 crls [1] IMPLICIT RevocationInfoChoices OPTIONAL,
 signerInfos SignerInfos }

 DigestAlgorithmIdentifiers ::= SET OF DigestAlgorithmIdentifier

 SignerInfos ::= SET OF SignerInfo

 The elements of the signed-data content type are as follows:

 Version
 The version is the syntax version number. It MUST be 3,
 corresponding to the signerInfo structure having version number
 3.

 digestAlgorithms
 This field specifies digest Algorithms.

 encapContentInfo
 This element is defined in Appendix C.1.1.

Park, et al. Experimental [Page 28]

RFC 5636 Traceable Anonymous Certificate August 2009

 certificates
 The certificates element MUST be included and MUST contain only
 the single PKI EE certificate needed to validate this CMS
 Object. The CertificateSet type is defined in section 10 of
 RFC3852 [6].

 crls
 The crls element MUST be omitted.

 signerInfos
 This element is defined in Appendix C.1.2.

C.1.1. encapContentInfo

 encapContentInfo is the signed content, consisting of a content type
 identifier and the content itself.

 EncapsulatedContentInfo ::= SEQUENCE{
 eContentType ContentType,
 eContent [0] EXPLICIT OCTET STRING OPTIONAL }

 ContentType ::= OBJECT IDENTIFIER

 The elements of this signed content type are as follows:

 eContentType
 The ContentType for an TAC Token is id-data and has the
 numerical value of 1.2.840.113549.1.7.1.

 eContent
 The content of a TAC Token is the DER-encoded SEQUENCE of
 UserKey and Timeout.

C.1.2. signerInfos

 SignerInfo is defined under CMS as:

 SignerInfo ::= SEQUENCE {
 version CMSVersion,
 sid SignerIdentifier,
 digestAlgorithm DigestAlgorithmIdentifier,
 signedAttrs [0] IMPLICIT SignedAttributes OPTIONAL,
 signatureAlgorithm SignatureAlgorithmIdentifier,
 signature SignatureValue,
 unsignedAttrs [1] IMPLICIT UnsignedAttributes OPTIONAL }

Park, et al. Experimental [Page 29]

RFC 5636 Traceable Anonymous Certificate August 2009

 The contents of the SignerInfo element are as follows:

 Version
 The version number MUST be 3, corresponding with the choice of
 SubjectKeyIdentifier for the sid.

 sid
 The sid is defined as:

 SignerIdentifier ::= CHOICE {
 issuerAndSerialNumber IssuerAndSerialNumber,
 subjectKeyIdentifier [0] SubjectKeyIdentifier }

 For a TAC Token, the sid MUST be a SubjectKeyIdentifier.

 digestAlgorithm
 This field specifies digest Algorithms.

 signedAttrs
 The signedAttr element MUST be omitted.

 SignatureAlgorithm
 This field specifies the signature Algorithm.

 Signature
 The signature value is defined as:

 SignatureValue ::= OCTET STRING

 The signature characteristics are defined by the digest and
 signature algorithms.

 UnsignedAttrs
 unsignedAttrs MUST be omitted.

Park, et al. Experimental [Page 30]

RFC 5636 Traceable Anonymous Certificate August 2009

Authors’ Addresses

 SangHwan Park
 Korea Internet & Security Agency
 78, Garak-Dong, Songpa-Gu, Seoul, Korea
 EMail: shpark@kisa.or.kr

 Haeryong Park
 Korea Internet & Security Agency
 78, Garak-Dong, Songpa-Gu, Seoul, Korea
 EMail: hrpark@kisa.or.kr

 YooJae Won
 Korea Internet & Security Agency
 78, Garak-Dong, Songpa-Gu, Seoul, Korea
 EMail: yjwon@kisa.or.kr

 JaeIl Lee
 Korea Internet & Security Agency
 78, Garak-Dong, Songpa-Gu, Seoul, Korea
 EMail: jilee@kisa.or.kr

 Stephen Kent
 BBN Technologies
 10 Moulton Street Cambridge, MA 02138
 EMail: kent@bbn.com

Park, et al. Experimental [Page 31]

