
Network Working Group R. Sparks, Ed.
Request for Comments: 5393 Tekelec
Updates: 3261 S. Lawrence
Category: Standards Track Nortel Networks, Inc.
 A. Hawrylyshen
 Ditech Networks Inc.
 B. Campen
 Tekelec
 December 2008

 Addressing an Amplification Vulnerability
 in Session Initiation Protocol (SIP) Forking Proxies

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (c) 2008 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (http://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document.

Abstract

 This document normatively updates RFC 3261, the Session Initiation
 Protocol (SIP), to address a security vulnerability identified in SIP
 proxy behavior. This vulnerability enables an attack against SIP
 networks where a small number of legitimate, even authorized, SIP
 requests can stimulate massive amounts of proxy-to-proxy traffic.

 This document strengthens loop-detection requirements on SIP proxies
 when they fork requests (that is, forward a request to more than one
 destination). It also corrects and clarifies the description of the
 loop-detection algorithm such proxies are required to implement.
 Additionally, this document defines a Max-Breadth mechanism for
 limiting the number of concurrent branches pursued for any given
 request.

Sparks, et al. Standards Track [Page 1]

RFC 5393 Amplification Vulnerability in SIP December 2008

Table of Contents

 1. Introduction ..3
 2. Conventions and Definitions3
 3. Vulnerability: Leveraging Forking to Flood a Network3
 4. Updates to RFC 3261 ...7
 4.1. Strengthening the Requirement to Perform Loop Detection7
 4.2. Correcting and Clarifying the RFC 3261
 Loop-Detection Algorithm7
 4.2.1. Update to Section 16.67
 4.2.2. Update to Section 16.38
 4.2.3. Impact of Loop Detection on Overall Network
 Performance ...9
 4.2.4. Note to Implementers9
 5. Max-Breadth ..10
 5.1. Overview ..10
 5.2. Examples ..11
 5.3. Formal Mechanism ..12
 5.3.1. Max-Breadth Header Field12
 5.3.2. Terminology ..13
 5.3.3. Proxy Behavior13
 5.3.3.1. Reusing Max-Breadth14
 5.3.4. UAC Behavior14
 5.3.5. UAS Behavior14
 5.4. Implementer Notes ...14
 5.4.1. Treatment of CANCEL14
 5.4.2. Reclamation of Max-Breadth on 2xx Responses14
 5.4.3. Max-Breadth and Automaton UAs14
 5.5. Parallel and Sequential Forking15
 5.6. Max-Breadth Split Weight Selection15
 5.7. Max-Breadth’s Effect on Forking-Based
 Amplification Attacks15
 5.8. Max-Breadth Header Field ABNF Definition16
 6. IANA Considerations ..16
 6.1. Max-Breadth Header Field16
 6.2. 440 Max-Breadth Exceeded Response16
 7. Security Considerations ..16
 7.1. Alternate Solutions That Were Considered and Rejected17
 8. Acknowledgments ..19
 9. References ...19
 9.1. Normative References19
 9.2. Informative References19

Sparks, et al. Standards Track [Page 2]

RFC 5393 Amplification Vulnerability in SIP December 2008

1. Introduction

 Interoperability testing uncovered a vulnerability in the behavior of
 forking SIP proxies as defined in [RFC3261]. This vulnerability can
 be leveraged to cause a small number of valid SIP requests to
 generate an extremely large number of proxy-to-proxy messages. A
 version of this attack demonstrates fewer than ten messages
 stimulating potentially 2^71 messages.

 This document specifies normative changes to the SIP protocol to
 address this vulnerability. According to this update, when a SIP
 proxy forks a request to more than one destination, it is required to
 ensure it is not participating in a request loop.

 This normative update alone is insufficient to protect against
 crafted variations of the attack described here involving multiple
 Addresses of Record (AORs). To further address the vulnerability,
 this document defines the Max-Breadth mechanism to limit the total
 number of concurrent branches caused by a forked SIP request. The
 mechanism only limits concurrency. It does not limit the total
 number of branches a request can traverse over its lifetime.

 The mechanisms in this update will protect against variations of the
 attack described here that use a small number of resources, including
 most unintentional self-inflicted variations that occur through
 accidental misconfiguration. However, an attacker with access to a
 sufficient number of distinct resources will still be able to
 stimulate a very large number of messages. The number of concurrent
 messages will be limited by the Max-Breadth mechanism, so the entire
 set will be spread out over a long period of time, giving operators
 better opportunity to detect the attack and take corrective measures
 outside the protocol. Future protocol work is needed to prevent this
 form of the attack.

2. Conventions and Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

3. Vulnerability: Leveraging Forking to Flood a Network

 This section describes setting up an attack with a simplifying
 assumption: that two accounts on each of two different RFC 3261
 compliant proxy/registrar servers that do not perform loop detection
 are available to an attacker. This assumption is not necessary for
 the attack but makes representing the scenario simpler. The same
 attack can be realized with a single account on a single server.

Sparks, et al. Standards Track [Page 3]

RFC 5393 Amplification Vulnerability in SIP December 2008

 Consider two proxy/registrar services, P1 and P2, and four Addresses
 of Record, a@P1, b@P1, a@P2, and b@P2. Using normal REGISTER
 requests, establish bindings to these AORs as follows (non-essential
 details elided):

 REGISTER sip:P1 SIP/2.0
 To: <sip:a@P1>
 Contact: <sip:a@P2>, <sip:b@P2>

 REGISTER sip:P1 SIP/2.0
 To: <sip:b@P1>
 Contact: <sip:a@P2>, <sip:b@P2>

 REGISTER sip:P2 SIP/2.0
 To: <sip:a@P2>
 Contact: <sip:a@P1>, <sip:b@P1>

 REGISTER sip:P2 SIP/2.0
 To: <sip:b@P2>
 Contact: <sip:a@P1>, <sip:b@P1>

 With these bindings in place, introduce an INVITE request to any of
 the four AORs, say a@P1. This request will fork to two requests
 handled by P2, which will fork to four requests handled by P1, which
 will fork to eight messages handled by P2, and so on. This message
 flow is represented in Figure 1.

 |
 a@P1
 / \
 / \
 / \
 / \
 a@P2 b@P2
 / \ / \
 / \ / \
 / \ / \
 a@P1 b@P1 a@P1 b@P1
 / \ / \ / \ / \
 a@P2 b@P2 a@P2 b@P2 a@P2 b@P2 a@P2 b@P2
 /\ /\ /\ /\ /\ /\ /\ /\
 .
 .
 .

 Figure 1: Attack Request Propagation

Sparks, et al. Standards Track [Page 4]

RFC 5393 Amplification Vulnerability in SIP December 2008

 Requests will continue to propagate down this tree until Max-Forwards
 reaches zero. If the endpoint and two proxies involved follow RFC
 3261 recommendations, the tree will be 70 rows deep, representing
 2^71-1 requests. The actual number of messages may be much larger if
 the time to process the entire tree’s worth of requests is longer
 than Timer C at either proxy. In this case, a storm of 408 responses
 and/or a storm of CANCEL requests will also be propagating through
 the tree along with the INVITE requests. Remember that there are
 only two proxies involved in this scenario - each having to hold the
 state for all the transactions it sees (at least 2^70 simultaneously
 active transactions near the end of the scenario).

 The attack can be simplified to one account at one server if the
 service can be convinced that contacts with varying attributes
 (parameters, schemes, embedded headers) are sufficiently distinct,
 and these parameters are not used as part of AOR comparisons when
 forwarding a new request. Since RFC 3261 mandates that all URI
 parameters must be removed from a URI before looking it up in a
 location service and that the URIs from the Contact header field are
 compared using URI equality, the following registration should be
 sufficient to set up this attack using a single REGISTER request to a
 single account:

 REGISTER sip:P1 SIP/2.0
 To: <sip:a@P1>
 Contact: <sip:a@P1;unknown-param=whack>,<sip:a@P1;unknown-param=thud>

 This attack was realized in practice during one of the SIP
 Interoperability Test (SIPit) sessions. The scenario was extended to
 include more than two proxies, and the participating proxies all
 limited Max-Forwards to be no larger than 20. After a handful of
 messages to construct the attack, the participating proxies began
 bombarding each other. Extrapolating from the several hours the
 experiment was allowed to run, the scenario would have completed in
 just under 10 days. Had the proxies used the RFC 3261 recommended
 Max-Forwards value of 70, and assuming they performed linearly as the
 state they held increased, it would have taken 3 trillion years to
 complete the processing of the single INVITE request that initiated
 the attack. It is interesting to note that a few proxies rebooted
 during the scenario and rejoined in the attack when they restarted
 (as long as they maintained registration state across reboots). This
 points out that if this attack were launched on the Internet at
 large, it might require coordination among all the affected elements
 to stop it.

 Loop detection, as specified in this document, at any of the proxies
 in the scenarios described so far would have stopped the attack
 immediately. (If all the proxies involved implemented this loop

Sparks, et al. Standards Track [Page 5]

RFC 5393 Amplification Vulnerability in SIP December 2008

 detection, the total number of stimulated messages in the first
 scenario described would be reduced to 14; in the variation involving
 one server, the number of stimulated messages would be reduced to
 10.) However, there is a variant of the attack that uses multiple
 AORs where loop detection alone is insufficient protection. In this
 variation, each participating AOR forks to all the other
 participating AORs. For small numbers of participating AORs (10, for
 example), paths through the resulting tree will not loop until very
 large numbers of messages have been generated. Acquiring a
 sufficient number of AORs to launch such an attack on networks
 currently available is quite feasible.

 In this scenario, requests will often take many hops to complete a
 loop, and there are a very large number of different loops that will
 occur during the attack. In fact, if N is the number of
 participating AORs, and provided N is less than or equal to Max-
 Forwards, the amount of traffic generated by the attack is greater
 than N!, even if all proxies involved are performing loop detection.

 Suppose we have a set of N AORs, all of which are set up to fork to
 the entire set. For clarity, assume AOR 1 is where the attack
 begins. Every permutation of the remaining N-1 AORs will play out,
 defining (N-1)! distinct paths, without repeating any AOR. Then,
 each of these paths will fork N ways one last time, and a loop will
 be detected on each of these branches. These final branches alone
 total N! requests ((N-1)! paths, with N forks at the end of each
 path).

 ___N____Requests_
 | 1 | 1 |
 | 2 | 4 |
 | 3 | 15 |
 | 4 | 64 |
 | 5 | 325 |
 | 6 | 1956 |
 | 7 | 13699 |
 | 8 | 109600 |
 | 9 | 986409 |
 | 10 | 9864100 |

 Forwarded Requests vs. Number of Participating AORs

 In a network where all proxies are performing loop detection, an
 attacker is still afforded rapidly increasing returns on the number
 of AORs they are able to leverage. The Max-Breadth mechanism defined
 in this document is designed to limit the effectiveness of this
 variation of the attack.

Sparks, et al. Standards Track [Page 6]

RFC 5393 Amplification Vulnerability in SIP December 2008

 In all of the scenarios, it is important to notice that at each
 forking proxy, an additional branch could be added pointing to a
 single victim (that might not even be a SIP-aware element), resulting
 in a massive amount of traffic being directed towards the victim from
 potentially as many sources as there are AORs participating in the
 attack.

4. Updates to RFC 3261

4.1. Strengthening the Requirement to Perform Loop Detection

 The following requirements mitigate the risk of a proxy falling
 victim to the attack described in this document.

 When a SIP proxy forks a particular request to more than one
 location, it MUST ensure that request is not looping through this
 proxy. It is RECOMMENDED that proxies meet this requirement by
 performing the loop-detection steps defined in this document.

 The requirement to use this document’s refinement of the loop-
 detection algorithm from RFC 3261 is set at should-strength to allow
 for future Standards-Track mechanisms that will allow a proxy to
 determine it is not looping. For example, a proxy forking to
 destinations established using the sip-outbound mechanism [OUTBOUND]
 would know those branches will not loop.

 A SIP proxy forwarding a request to only one location MAY perform
 loop detection but is not required to. When forwarding to only one
 location, the amplification risk being exploited is not present, and
 the Max-Forwards mechanism will protect the network to the extent it
 was designed (always keep in mind the constant multiplier due to
 exhausting Max-Forwards while not forking). A proxy is not required
 to perform loop detection when forwarding a request to a single
 location even if it happened to have previously forked that request
 (and performed loop detection) in its progression through the
 network.

4.2. Correcting and Clarifying the RFC 3261 Loop-Detection Algorithm

4.2.1. Update to Section 16.6

 This section replaces all of item 8 in Section 16.6 of RFC 3261 (item
 8 begins on page 105 and ends on page 106 of RFC 3261).

Sparks, et al. Standards Track [Page 7]

RFC 5393 Amplification Vulnerability in SIP December 2008

 8. Add a Via Header Field Value

 The proxy MUST insert a Via header field value into the copy before
 the existing Via header field values. The construction of this value
 follows the same guidelines of Section 8.1.1.7. This implies that
 the proxy will compute its own branch parameter, which will be
 globally unique for that branch, and will contain the requisite magic
 cookie. Note that following only the guidelines in Section 8.1.1.7
 will result in a branch parameter that will be different for
 different instances of a spiraled or looped request through a proxy.

 Proxies required to perform loop detection by RFC 5393 have an
 additional constraint on the value they place in the Via header
 field. Such proxies SHOULD create a branch value separable into two
 parts in any implementation-dependent way.

 The remainder of this section’s description assumes the existence of
 these two parts. If a proxy chooses to employ some other mechanism,
 it is the implementer’s responsibility to verify that the detection
 properties defined by the requirements placed on these two parts are
 achieved.

 The first part of the branch value MUST satisfy the constraints of
 Section 8.1.1.7. The second part is used to perform loop detection
 and distinguish loops from spirals.

 This second part MUST vary with any field used by the location
 service logic in determining where to retarget or forward this
 request. This is necessary to distinguish looped requests from
 spirals by allowing the proxy to recognize if none of the values
 affecting the processing of the request have changed. Hence, the
 second part MUST depend at least on the received Request-URI and any
 Route header field values used when processing the received request.
 Implementers need to take care to include all fields used by the
 location service logic in that particular implementation.

 This second part MUST NOT vary with the request method. CANCEL and
 non-200 ACK requests MUST have the same branch parameter value as the
 corresponding request they cancel or acknowledge. This branch
 parameter value is used in correlating those requests at the server
 handling them (see Sections 17.2.3 and 9.2).

4.2.2. Update to Section 16.3

 This section replaces all of item 4 in Section 16.3 of RFC 3261 (item
 4 appears on page 95 of RFC 3261).

Sparks, et al. Standards Track [Page 8]

RFC 5393 Amplification Vulnerability in SIP December 2008

 4. Loop-Detection Check

 Proxies required to perform loop detection by RFC 5393 MUST perform
 the following loop-detection test before forwarding a request. Each
 Via header field value in the request whose sent-by value matches a
 value placed into previous requests by this proxy MUST be inspected
 for the "second part" defined in Section 4.2.1 of RFC 5393. This
 second part will not be present if the message was not forked when
 that Via header field value was added. If the second field is
 present, the proxy MUST perform the second-part calculation described
 in Section 4.2.1 of RFC 5393 on this request and compare the result
 to the value from the Via header field. If these values are equal,
 the request has looped and the proxy MUST reject the request with a
 482 (Loop Detected) response. If the values differ, the request is
 spiraling and processing continues to the next step.

4.2.3. Impact of Loop Detection on Overall Network Performance

 These requirements and the recommendation to use the loop-detection
 mechanisms in this document make the favorable trade of exponential
 message growth for work that is, at worst, order n^2 as a message
 crosses n proxies. Specifically, this work is order m*n where m is
 the number of proxies in the path that fork the request to more than
 one location. In practice, m is expected to be small.

 The loop-detection algorithm expressed in this document requires a
 proxy to inspect each Via element in a received request. In the
 worst case, where a message crosses N proxies, each of which loop
 detect, proxy k does k inspections, and the overall number of
 inspections spread across the proxies handling this request is the
 sum of k from k=1 to k=N which is N(N+1)/2.

4.2.4. Note to Implementers

 A common way to create the second part of the branch parameter value
 when forking a request is to compute a hash over the concatenation of
 the Request-URI, any Route header field values used during processing
 the request, and any other values used by the location service logic
 while processing this request. The hash should be chosen so that
 there is a low probability that two distinct sets of these parameters
 will collide. Because the maximum number of inputs that need to be
 compared is 70, the chance of a collision is low even with a
 relatively small hash value, such as 32 bits. CRC-32c as specified
 in [RFC4960] is a specific acceptable function, as is MD5 [RFC1321].
 Note that MD5 is being chosen purely for non-cryptographic
 properties. An attacker who can control the inputs in order to
 produce a hash collision can attack the connection in a variety of
 other ways. When forming the second part using a hash,

Sparks, et al. Standards Track [Page 9]

RFC 5393 Amplification Vulnerability in SIP December 2008

 implementations SHOULD include at least one field in the input to the
 hash that varies between different transactions attempting to reach
 the same destination to avoid repeated failure should the hash
 collide. The Call-ID and CSeq fields would be good inputs for this
 purpose.

 A common point of failure to interoperate at SIPit events has been
 due to parsers objecting to the contents of another element’s Via
 header field values when inspecting the Via stack for loops.
 Implementers need to take care to avoid making assumptions about the
 format of another element’s Via header field value beyond the basic
 constraints placed on that format by RFC 3261. In particular,
 parsing a header field value with unknown parameter names, parameters
 with no values, or parameter values with or without quoted strings
 must not cause an implementation to fail.

 Removing, obfuscating, or in any other way modifying the branch
 parameter values in Via header fields in a received request before
 forwarding it removes the ability for the node that placed that
 branch parameter into the message to perform loop detection. If two
 elements in a loop modify branch parameters this way, a loop can
 never be detected.

5. Max-Breadth

5.1. Overview

 The Max-Breadth mechanism defined here limits the total number of
 concurrent branches caused by a forked SIP request. With this
 mechanism, all proxyable requests are assigned a positive integral
 Max-Breadth value, which denotes the maximum number of concurrent
 branches this request may spawn through parallel forking as it is
 forwarded from its current point. When a proxy forwards a request,
 its Max-Breadth value is divided among the outgoing requests. In
 turn, each of the forwarded requests has a limit on how many
 concurrent branches it may spawn. As branches complete, their
 portion of the Max-Breadth value becomes available for subsequent
 branches, if needed. If there is insufficient Max-Breadth to carry
 out a desired parallel fork, a proxy can return the 440 (Max-Breadth
 Exceeded) response defined in this document.

 This mechanism operates independently from Max-Forwards. Max-
 Forwards limits the depth of the tree a request may traverse as it is
 forwarded from its origination point to each destination it is forked
 to. As Section 3 shows, the number of branches in a tree of even
 limited depth can be made large (exponential with depth) by
 leveraging forking. Each such branch has a pair of SIP transaction

Sparks, et al. Standards Track [Page 10]

RFC 5393 Amplification Vulnerability in SIP December 2008

 state machines associated with it. The Max-Breadth mechanism limits
 the number of branches that are active (those that have running
 transaction state machines) at any given point in time.

 Max-Breadth does not prevent forking. It only limits the number of
 concurrent parallel forked branches. In particular, a Max-Breadth of
 1 restricts a request to pure serial forking rather than restricting
 it from being forked at all.

 A client receiving a 440 (Max-Breadth Exceeded) response can infer
 that its request did not reach all possible destinations. Recovery
 options are similar to those when receiving a 483 (Too Many Hops)
 response, and include affecting the routing decisions through
 whatever mechanisms are appropriate to result in a less broad search,
 or refining the request itself before submission to make the search
 space smaller.

5.2. Examples

 UAC Proxy A Proxy B Proxy C
 | INVITE | | |
 | Max-Breadth: 60 | INVITE | |
 | Max-Forwards: 70 | Max-Breadth: 30 | |
 |-------------------->| Max-Forwards: 69 | |
 | |------------------->| |
 | | INVITE | |
 | | Max-Breadth: 30 | |
 | | Max-Forwards: 69 | |
 | |--------------------------------------->|
 | | | |

 Parallel Forking

 UAC Proxy A Proxy B Proxy C
 | INVITE | | |
 | Max-Breadth: 60 | INVITE | |
 | Max-Forwards: 70 | Max-Breadth: 60 | |
 |-------------------->| Max-Forwards: 69 | |
 | |------------------->| |
 | | some error response| |
 | |<-------------------| |
 | | INVITE | |
 | | Max-Breadth: 60 | |
 | | Max-Forwards: 69 | |
 | |--------------------------------------->|
 | | | |

 Sequential Forking

Sparks, et al. Standards Track [Page 11]

RFC 5393 Amplification Vulnerability in SIP December 2008

 UAC Proxy A Proxy B Proxy C
 | INVITE | | |
 | Max-Breadth: 60 | INVITE | |
 | Max-Forwards: 70 | Max-Breadth: 60 | INVITE |
 |-------------------->| Max-Forwards: 69 | Max-Breadth: 60 |
 | |------------------->| Max-Forwards: 68 |
 | | |------------------>|
 | | | |
 | | | |
 | | | |

 No Forking

 MB == Max-Breadth MF == Max-Forwards

 | MB: 4
 | MF: 5
 MB: 2 P MB: 2
 MF: 4 / \ MF: 4
 +---------------+ +------------------+
 MB: 1 P MB: 1 MB: 1 P MB: 1
 MF: 3 / \ MF: 3 MF: 3 / \ MF: 3
 +---+ +-------+ +----+ +-------+
 P P P P
 MB: 1 | MB: 1 | MB: 1 | MB: 1 |
 MF: 2 | MF: 2 | MF: 2 | MF: 2 |
 P P P P
 MB: 1 | MB: 1 | MB: 1 | MB: 1 |
 MF: 1 | MF: 1 | MF: 1 | MF: 1 |
 P P P P
 .
 .
 .

 Max-Breadth and Max-Forwards Working Together

5.3. Formal Mechanism

5.3.1. Max-Breadth Header Field

 The Max-Breadth header field takes a single positive integer as its
 value. The Max-Breadth header field value takes no parameters.

Sparks, et al. Standards Track [Page 12]

RFC 5393 Amplification Vulnerability in SIP December 2008

5.3.2. Terminology

 For each "response context" (see Section 16 of [RFC3261]) in a proxy,
 this mechanism defines two positive integral values: Incoming Max-
 Breadth and Outgoing Max-Breadth. Incoming Max-Breadth is the value
 in the Max-Breadth header field in the request that formed the
 response context. Outgoing Max-Breadth is the sum of the Max-Breadth
 header field values in all forwarded requests in the response context
 that have not received a final response.

5.3.3. Proxy Behavior

 If a SIP proxy receives a request with no Max-Breadth header field
 value, it MUST add one, with a value that is RECOMMENDED to be 60.
 Proxies MUST have a maximum allowable Incoming Max-Breadth value,
 which is RECOMMENDED to be 60. If this maximum is exceeded in a
 received request, the proxy MUST overwrite it with a value that
 SHOULD be no greater than its allowable maximum.

 All proxied requests MUST contain a single Max-Breadth header field
 value.

 SIP proxies MUST NOT allow the Outgoing Max-Breadth to exceed the
 Incoming Max-Breadth in a given response context.

 If a SIP proxy determines a response context has insufficient
 Incoming Max-Breadth to carry out a desired parallel fork, and the
 proxy is unwilling/unable to compensate by forking serially or
 sending a redirect, that proxy MUST return a 440 (Max-Breadth
 Exceeded) response.

 Notice that these requirements mean a proxy receiving a request with
 a Max-Breadth of 1 can only fork serially, but it is not required to
 fork at all -- it can return a 440 instead. Thus, this mechanism is
 not a tool a user agent can use to force all proxies in the path of a
 request to fork serially.

 A SIP proxy MAY distribute Max-Breadth in an arbitrary fashion
 between active branches. A proxy SHOULD NOT use a smaller amount of
 Max-Breadth than was present in the original request unless the
 Incoming Max-Breadth exceeded the proxy’s maximum acceptable value.
 A proxy MUST NOT decrement Max-Breadth for each hop or otherwise use
 it to restrict the "depth" of a request’s propagation.

Sparks, et al. Standards Track [Page 13]

RFC 5393 Amplification Vulnerability in SIP December 2008

5.3.3.1. Reusing Max-Breadth

 Because forwarded requests that have received a final response do not
 count towards the Outgoing Max-Breadth, whenever a final response
 arrives, the Max-Breadth that was used on that branch becomes
 available for reuse. Proxies SHOULD be prepared to reuse this Max-
 Breadth in cases where there may be elements left in the target-set.

5.3.4. UAC Behavior

 A User Agent Client (UAC) MAY place a Max-Breadth header field value
 in outgoing requests. If so, this value is RECOMMENDED to be 60.

5.3.5. UAS Behavior

 This mechanism does not affect User Agent Server (UAS) behavior. A
 UAS receiving a request with a Max-Breadth header field will ignore
 that field while processing the request.

5.4. Implementer Notes

5.4.1. Treatment of CANCEL

 Since CANCEL requests are never proxied, a Max-Breadth header field
 value is meaningless in a CANCEL request. Sending a CANCEL in no way
 affects the Outgoing Max-Breadth in the associated INVITE response
 context. Receiving a CANCEL in no way affects the Incoming Max-
 Breadth of the associated INVITE response context.

5.4.2. Reclamation of Max-Breadth on 2xx Responses

 Whether 2xx responses free up Max-Breadth is mostly a moot issue,
 since proxies are forbidden to start new branches in this case. But,
 there is one caveat. A proxy may receive multiple 2xx responses for
 a single forwarded INVITE request. Also, [RFC2543] implementations
 may send back a 6xx followed by a 2xx on the same branch.
 Implementations that subtract from the Outgoing Max-Breadth when they
 receive a 2xx response to an INVITE request must be careful to avoid
 bugs caused by subtracting multiple times for a single branch.

5.4.3. Max-Breadth and Automaton UAs

 Designers of automaton user agents (UAs) (including B2BUAs, gateways,
 exploders, and any other element that programmatically sends requests
 as a result of incoming SIP traffic) should consider whether Max-
 Breadth limitations should be placed on outgoing requests. For
 example, it is reasonable to design B2BUAs to carry the Max-Breadth
 value from incoming requests into requests that are sent as a result.

Sparks, et al. Standards Track [Page 14]

RFC 5393 Amplification Vulnerability in SIP December 2008

 Also, it is reasonable to place Max-Breadth constraints on sets of
 requests sent by exploders when they may be leveraged in an
 amplification attack.

5.5. Parallel and Sequential Forking

 Inherent in the definition of this mechanism is the ability of a
 proxy to reclaim apportioned Max-Breadth while forking sequentially.
 The limitation on outgoing Max-Breadth is applied to concurrent
 branches only.

 For example, if a proxy receives a request with a Max-Breadth of 4
 and has 8 targets to forward it to, that proxy may parallel fork to 4
 of these targets initially (each with a Max-Breadth of 1, totaling an
 Outgoing Max-Breadth of 4). If one of these transactions completes
 with a failure response, the outgoing Max-Breadth drops to 3,
 allowing the proxy to forward to one of the 4 remaining targets
 (again, with a Max-Breadth of 1).

5.6. Max-Breadth Split Weight Selection

 There are a variety of mechanisms for controlling the weight of each
 fork branch. Fork branches that are given more Max-Breadth are more
 likely to complete quickly (because it is less likely that a proxy
 down the line will be forced to fork sequentially). By the same
 token, if it is known that a given branch will not fork later on, a
 Max-Breadth of 1 may be assigned with no ill effect. This would be
 appropriate, for example, if a proxy knows the branch is using the
 SIP outbound extension [OUTBOUND].

5.7. Max-Breadth’s Effect on Forking-Based Amplification Attacks

 Max-Breadth limits the total number of active branches spawned by a
 given request at any one time, while placing no constraint on the
 distance (measured in hops) that the request can propagate. (i.e.,
 receiving a request with a Max-Breadth of 1 means that any forking
 must be sequential, not that forking is forbidden)

 This limits the effectiveness of any amplification attack that
 leverages forking because the amount of state/bandwidth needed to
 process the traffic at any given point in time is capped.

Sparks, et al. Standards Track [Page 15]

RFC 5393 Amplification Vulnerability in SIP December 2008

5.8. Max-Breadth Header Field ABNF Definition

 This specification extends the grammar for the Session Initiation
 Protocol by adding an extension-header. The ABNF [RFC5234]
 definition is as follows.

 Max-Breadth = "Max-Breadth" HCOLON 1*DIGIT

6. IANA Considerations

 This specification registers a new SIP header field and a new SIP
 response according to the processes defined in [RFC3261].

6.1. Max-Breadth Header Field

 This information appears in the Header Fields sub-registry of the SIP
 Parameters registry.

 RFC 5393 (this specification)

 Header Field Name: Max-Breadth

 Compact Form: none

6.2. 440 Max-Breadth Exceeded Response

 This information appears in the Response Codes sub-registry of the
 SIP Parameters registry.

 Response code: 440

 Default Reason Phrase: Max-Breadth Exceeded

7. Security Considerations

 This document is entirely about documenting and addressing a
 vulnerability in SIP proxies as defined by RFC 3261 that can lead to
 an exponentially growing message exchange attack.

 The Max-Breadth mechanism defined here does not decrease the
 aggregate traffic caused by the forking-loop attack. It only serves
 to spread the traffic caused by the attack over a longer period by
 limiting the number of concurrent branches that are being processed
 at the same time. An attacker could pump multiple requests into a
 network that uses the Max-Breadth mechanism and gradually build
 traffic to unreasonable levels. Deployments should monitor carefully
 and react to gradual increases in the number of concurrent
 outstanding transactions related to a given resource to protect

Sparks, et al. Standards Track [Page 16]

RFC 5393 Amplification Vulnerability in SIP December 2008

 against this possibility. Operators should anticipate being able to
 temporarily disable any resources identified as being used in such an
 attack. A rapid increase in outstanding concurrent transactions
 system-wide may be an indication of the presence of this kind of
 attack across many resources. Deployments in which it is feasible
 for an attacker to obtain a very large number of resources are
 particularly at risk. If detecting and intervening in each instance
 of the attack is insufficient to reduce the load, overload may occur.

 Implementers and operators are encouraged to follow the
 recommendations being developed for handling overload conditions (see
 [REQS] and [DESIGN]).

 Designers of protocol gateways should consider the implications of
 this kind of attack carefully. As an example, if a message transits
 from a SIP network into the Public Switched Telephone Network (PSTN)
 and subsequently back into a SIP network, and information about the
 history of the request on either side of the protocol translation is
 lost, it becomes possible to construct loops that neither Max-
 Forwards nor loop detection can protect against. This, combined with
 forking amplification on the SIP side of the loop, will result in an
 attack as described in this document that the mechanisms here will
 not abate, not even to the point of limiting the number of concurrent
 messages in the attack. These considerations are particularly
 important for designers of gateways from SIP to SIP (as found in
 B2BUAs, for example). Many existing B2BUA implementations are under
 some pressure to hide as much information about the two sides
 communicating with them as possible. Implementers of such
 implementations may be tempted to remove the data that might be used
 by the loop-detection, Max-Forwards, or Max-Breadth mechanisms at
 other points in the network, taking on the responsibility for
 detecting loops (or forms of this attack). However, if two such
 implementations are involved in the attack, neither will be able to
 detect it.

7.1. Alternate Solutions That Were Considered and Rejected

 Alternative solutions that were discussed include:

 Doing nothing - rely on suing the offender: While systems that have
 accounts have logs that can be mined to locate abusers, it isn’t
 clear that this provides a credible deterrent or defense against
 the attack described in this document. Systems that don’t
 recognize the situation and take corrective/preventative action
 are likely to experience failure of a magnitude that precludes
 retrieval of the records documenting the setup of the attack. (In
 one scenario, the registrations can occur in a radically different
 time period than the INVITE transaction. The INVITE request

Sparks, et al. Standards Track [Page 17]

RFC 5393 Amplification Vulnerability in SIP December 2008

 itself may have come from an innocent). It’s even possible that
 the scenario may be set up unintentionally. Furthermore, for some
 existing deployments, the cost and audit ability of an account is
 simply an email address. Finding someone to punish may be
 impossible. Finally, there are individuals who will not respond
 to any threat of legal action, and the effect of even a single
 successful instance of this kind of attack would be devastating to
 a service provider.

 Putting a smaller cap on Max-Forwards: The effect of the attack is
 exponential with respect to the initial Max-Forwards value.
 Turning this value down limits the effect of the attack. This
 comes at the expense of severely limiting the reach of requests in
 the network, possibly to the point that existing architectures
 will begin to fail.

 Disallowing registration bindings to arbitrary contacts: The way
 registration binding is currently defined is a key part of the
 success of the kind of attack documented here. The alternative of
 limiting registration bindings to allow only binding to the
 network element performing the registration, perhaps to the
 extreme of ignoring bits provided in the Contact in favor of
 transport artifacts observed in the registration request, has been
 discussed (particularly in the context of the mechanisms being
 defined in [OUTBOUND]). Mechanisms like this may be considered
 again in the future, but are currently insufficiently developed to
 address the present threat.

 Deprecate forking: This attack does not exist in a system that
 relies entirely on redirection and initiation of new requests by
 the original endpoint. Removing such a large architectural
 component from the system at this time was deemed too extreme a
 solution.

 Don’t reclaim breadth: An alternative design of the Max-Breadth
 mechanism that was considered and rejected was to not allow the
 breadth from completed branches to be reused (see
 Section 5.3.3.1). Under this alternative, an introduced request
 would cause, at most, the initial value of Max-Breadth
 transactions to be generated in the network. While that approach
 limits any variant of the amplification vulnerability described
 here to a constant multiplier, it would dramatically change the
 potential reach of requests, and there is belief that it would
 break existing deployments.

Sparks, et al. Standards Track [Page 18]

RFC 5393 Amplification Vulnerability in SIP December 2008

8. Acknowledgments

 Thanks go to the implementers that subjected their code to this
 scenario and helped analyze the results at SIPit 17. Eric Rescorla
 provided guidance and text for the hash recommendation note.

9. References

9.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 June 2002.

 [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008.

9.2. Informative References

 [DESIGN] Hilt, V., "Design Considerations for Session Initiation
 Protocol (SIP) Overload Control", Work in Progress,
 July 2008.

 [OUTBOUND] Jennings, C. and R. Mahy, "Managing Client Initiated
 Connections in the Session Initiation Protocol (SIP)",
 Work in Progress, October 2008.

 [REQS] Rosenberg, J., "Requirements for Management of Overload
 in the Session Initiation Protocol", Work in Progress,
 July 2008.

 [RFC1321] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321,
 April 1992.

 [RFC2543] Handley, M., Schulzrinne, H., Schooler, E., and J.
 Rosenberg, "SIP: Session Initiation Protocol", RFC 2543,
 March 1999.

 [RFC4960] Stewart, R., "Stream Control Transmission Protocol",
 RFC 4960, September 2007.

Sparks, et al. Standards Track [Page 19]

RFC 5393 Amplification Vulnerability in SIP December 2008

Authors’ Addresses

 Robert Sparks (editor)
 Tekelec
 17210 Campbell Road
 Suite 250
 Dallas, Texas 75254-4203
 USA

 EMail: RjS@nostrum.com

 Scott Lawrence
 Nortel Networks, Inc.
 600 Technology Park
 Billerica, MA 01821
 USA

 Phone: +1 978 288 5508
 EMail: scott.lawrence@nortel.com

 Alan Hawrylyshen
 Ditech Networks Inc.
 823 E. Middlefield Rd
 Mountain View, CA 94043
 USA

 Phone: +1 650 623 1300
 EMail: alan.ietf@polyphase.ca

 Byron Campen
 Tekelec
 17210 Campbell Road
 Suite 250
 Dallas, Texas 75254-4203
 USA

 EMail: bcampen@estacado.net

Sparks, et al. Standards Track [Page 20]

