
Network Working Group J. Rosenberg
Request for Comments: 5390 Cisco
Category: Informational December 2008

 Requirements for Management of Overload in the
 Session Initiation Protocol

Status of This Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard of any kind. Distribution of this
 memo is unlimited.

Copyright Notice

 Copyright (c) 2008 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (http://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document.

Abstract

 Overload occurs in Session Initiation Protocol (SIP) networks when
 proxies and user agents have insufficient resources to complete the
 processing of a request. SIP provides limited support for overload
 handling through its 503 response code, which tells an upstream
 element that it is overloaded. However, numerous problems have been
 identified with this mechanism. This document summarizes the
 problems with the existing 503 mechanism, and provides some
 requirements for a solution.

Rosenberg Informational [Page 1]

RFC 5390 Overload Requirements December 2008

Table of Contents

 1. Introduction ..2
 2. Causes of Overload ..2
 3. Terminology ...4
 4. Current SIP Mechanisms ..4
 5. Problems with the Mechanism5
 5.1. Load Amplification ...5
 5.2. Underutilization ...9
 5.3. The Off/On Retry-After Problem9
 5.4. Ambiguous Usages ..10
 6. Solution Requirements ..10
 7. Security Considerations ..13
 8. Acknowledgements ...13
 9. References ...14
 9.1. Normative Reference14
 9.2. Informative References14

1. Introduction

 Overload occurs in Session Initiation Protocol (SIP) [RFC3261]
 networks when proxies and user agents have insufficient resources to
 complete the processing of a request or a response. SIP provides
 limited support for overload handling through its 503 response code.
 This code allows a server to tell an upstream element that it is
 overloaded. However, numerous problems have been identified with
 this mechanism.

 This document describes the general problem of SIP overload and
 reviews the current SIP mechanisms for dealing with overload. It
 then explains some of the problems with these mechanisms. Finally,
 the document provides a set of requirements for fixing these
 problems.

2. Causes of Overload

 Overload occurs when an element, such as a SIP user agent or proxy,
 has insufficient resources to successfully process all of the traffic
 it is receiving. Resources include all of the capabilities of the
 element used to process a request, including CPU processing, memory,
 I/O, or disk resources. It can also include external resources such
 as a database or DNS server, in which case the CPU, processing,
 memory, I/O, and disk resources of those servers are effectively part
 of the logical element processing the request. Overload can occur
 for many reasons, including:

Rosenberg Informational [Page 2]

RFC 5390 Overload Requirements December 2008

 Poor Capacity Planning: SIP networks need to be designed with
 sufficient numbers of servers, hardware, disks, and so on, in
 order to meet the needs of the subscribers they are expected to
 serve. Capacity planning is the process of determining these
 needs. It is based on the number of expected subscribers and the
 types of flows they are expected to use. If this work is not done
 properly, the network may have insufficient capacity to handle
 predictable usages, including regular usages and predictably high
 ones (such as high voice calling volumes on Mother’s Day).

 Dependency Failures: A SIP element can become overloaded because a
 resource on which it is dependent has failed or become overloaded,
 greatly reducing the logical capacity of the element. In these
 cases, even minimal traffic might cause the server to go into
 overload. Examples of such dependency overloads include DNS
 servers, databases, disks, and network interfaces.

 Component Failures: A SIP element can become overloaded when it is a
 member of a cluster of servers that each share the load of
 traffic, and one or more of the other members in the cluster fail.
 In this case, the remaining elements take over the work of the
 failed elements. Normally, capacity planning takes such failures
 into account, and servers are typically run with enough spare
 capacity to handle failure of another element. However, unusual
 failure conditions can cause many elements to fail at once. This
 is often the case with software failures, where a bad packet or
 bad database entry hits the same bug in a set of elements in a
 cluster.

 Avalanche Restart: One of the most troubling sources of overload is
 avalanche restart. This happens when a large number of clients
 all simultaneously attempt to connect to the network with a SIP
 registration. Avalanche restart can be caused by several events.
 One is the "Manhattan Reboots" scenario, where there is a power
 failure in a large metropolitan area, such as Manhattan. When
 power is restored, all of the SIP phones, whether in PCs or
 standalone devices, simultaneously power on and begin booting.
 They will all then connect to the network and register, causing a
 flood of SIP REGISTER messages. Another cause of avalanche
 restart is failure of a large network connection, for example, the
 access router for an enterprise. When it fails, SIP clients will
 detect the failure rapidly using the mechanisms in [OUTBOUND].
 When connectivity is restored, this is detected, and clients re-
 REGISTER, all within a short time period. Another source of
 avalanche restart is failure of a proxy server. If clients had

Rosenberg Informational [Page 3]

RFC 5390 Overload Requirements December 2008

 all connected to the server with TCP, its failure will be
 detected, followed by re-connection and re-registration to another
 server. Note that [OUTBOUND] does provide some remedies to this
 case.

 Flash Crowds: A flash crowd occurs when an extremely large number of
 users all attempt to simultaneously make a call. One example of
 how this can happen is a television commercial that advertises a
 number to call to receive a free gift. If the gift is compelling
 and many people see the ad, many calls can be simultaneously made
 to the same number. This can send the system into overload.

 Denial of Service (DoS) Attacks: An attacker, wishing to disrupt
 service in the network, can cause a large amount of traffic to be
 launched at a target server. This can be done from a central
 source of traffic or through a distributed DoS attack. In all
 cases, the volume of traffic well exceeds the capacity of the
 server, sending the system into overload.

 Unfortunately, the overload problem tends to compound itself. When a
 network goes into overload, this can frequently cause failures of the
 elements that are trying to process the traffic. This causes even
 more load on the remaining elements. Furthermore, during overload,
 the overall capacity of functional elements goes down, since much of
 their resources are spent just rejecting or treating load that they
 cannot actually process. In addition, overload tends to cause SIP
 messages to be delayed or lost, which causes retransmissions to be
 sent, further increasing the amount of work in the network. This
 compounding factor can produce substantial multipliers on the load in
 the system. Indeed, in the case of UDP, with as many as seven
 retransmits of an INVITE request prior to timeout, overload can
 multiply the already-heavy message volume by as much as seven!

3. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

4. Current SIP Mechanisms

 SIP provides very basic support for overload. It defines the 503
 response code, which is sent by an element that is overloaded. RFC
 3261 defines it thus:

 The server is temporarily unable to process the request due to
 a temporary overloading or maintenance of the server. The
 server MAY indicate when the client should retry the request in

Rosenberg Informational [Page 4]

RFC 5390 Overload Requirements December 2008

 a Retry-After header field. If no Retry-After is given, the
 client MUST act as if it had received a 500 (Server Internal
 Error) response.

 A client (proxy or UAC) receiving a 503 (Service Unavailable)
 SHOULD attempt to forward the request to an alternate server.
 It SHOULD NOT forward any other requests to that server for the
 duration specified in the Retry-After header field, if present.

 Servers MAY refuse the connection or drop the request instead of
 responding with 503 (Service Unavailable).

 The objective is to provide a mechanism to move the work of the
 overloaded server to another server so that the request can be
 processed. The Retry-After header field, when present, is meant to
 allow a server to tell an upstream element to back off for a period
 of time, so that the overloaded server can work through its backlog
 of work.

 RFC 3261 also instructs proxies to not forward 503 responses
 upstream, at SHOULD NOT strength. This is to avoid the upstream
 server of mistakingly concluding that the proxy is overloaded when,
 in fact, the problem was an element further downstream.

5. Problems with the Mechanism

 At the surface, the 503 mechanism seems workable. Unfortunately,
 this mechanism has had numerous problems in actual deployment. These
 problems are described here.

5.1. Load Amplification

 The principal problem with the 503 mechanism is that it tends to
 substantially amplify the load in the network when the network is
 overloaded, causing further escalation of the problem and introducing
 the very real possibility of congestive collapse. Consider the
 topology in Figure 1.

Rosenberg Informational [Page 5]

RFC 5390 Overload Requirements December 2008

 +------+
 > | |
 / | S1 |
 / | |
 / +------+
 /
 /
 /
 /
 +------+ / +------+
 --------> | |/ | |
 | P1 |---------> | S2 |
 --------> | |\ | |
 +------+ \ +------+
 \
 \
 \
 \
 \
 \ +------+
 \ | |
 > | S3 |
 | |
 +------+

 Figure 1

 Proxy P1 receives SIP requests from many sources and acts solely as a
 load balancer, proxying the requests to servers S1, S2, and S3 for
 processing. The input load increases to the point where all three
 servers become overloaded. Server S1, when it receives its next
 request, generates a 503. However, because the server is loaded, it
 might take some time to generate the 503. If SIP is being run over
 UDP, this may result in request retransmissions, which further
 increase the work on S1. Even in the case of TCP, if the server is
 loaded and the kernel cannot send TCP acknowledgements fast enough,
 TCP retransmits may occur. When the 503 is received by P1, it
 retries the request on S2. S2 is also overloaded and eventually
 generates a 503, but in the interim may also be hit with retransmits.
 P1 once again tries another server, this time S3, which also
 eventually rejects it with a 503.

 Thus, the processing of this request, which ultimately failed,
 involved four SIP transactions (client to P1, P1 to S1, P1 to S2, P1
 to S3), each of which may have involved many retransmissions -- up to
 seven in the case of UDP. Thus, under unloaded conditions, a single
 request from a client would generate one request (to S1, S2, or S3)
 and two responses (from S1 to P1, then P1 to the client). When the

Rosenberg Informational [Page 6]

RFC 5390 Overload Requirements December 2008

 network is overloaded, a single request from the client, before
 timing out, could generate as many as 18 requests and as many
 responses when UDP is used! The situation is better with TCP (or any
 reliable transport in general), but even if there was never a TCP
 segment retransmitted, a single request from the client can generate
 three requests and four responses. Each server had to expend
 resources to process these messages. Thus, more messages and more
 work were sent into the network at the point at which the elements
 became overloaded. The 503 mechanism works well when a single
 element is overloaded. But when the problem is overall network load,
 the 503 mechanism actually generates more messages and more work for
 all servers, ultimately resulting in the rejection of the request
 anyway.

 The problem becomes amplified further if one considers proxies
 upstream from P1, as shown in Figure 2.

Rosenberg Informational [Page 7]

RFC 5390 Overload Requirements December 2008

 +------+
 > | | <
 / | S1 | \\
 / | | \\
 / +------+ \\
 / \
 / \\
 / \\
 / \
 +------+ / +------+ +------+
 | | / | | | |
 | P1 | ---------> | S2 |<----------| P2 |
 | | \ | | | |
 +------+ \ +------+ +------+
 ^ \ / ^
 \ \ // /
 \ \ // /
 \ \ // /
 \ \ / /
 \ \ +------+ // /
 \ \ | | // /
 \ > | S3 | < /
 \ | | /
 \ +------+ /
 \ /
 \ /
 \ /
 \ /
 \ /
 \ /
 \ /
 \ /
 +------+
 | |
 | PA |
 | |
 +------+
 ^ ^
 | |
 | |

 Figure 2

 Here, proxy PA receives requests and sends these to proxies P1 or P2.
 P1 and P2 both load balance across S1 through S3. Assuming again S1
 through S3 are all overloaded, a request arrives at PA, which tries
 P1 first. P1 tries S1, S2, and then S3, and each transaction results
 in many request retransmits if UDP is used. Since P1 is unable to

Rosenberg Informational [Page 8]

RFC 5390 Overload Requirements December 2008

 eventually process the request, it rejects it. However, since all of
 its downstream dependencies are busy, it decides to send a 503. This
 propagates to PA, which tries P2, which tries S1 through S3 again,
 resulting in a 503 once more. Thus, in this case, we have doubled
 the number of SIP transactions and overall work in the network
 compared to the previous case. The problem here is that the fact
 that S1 through S3 were overloaded was known to P1, but this
 information was not passed back to PA and through to P2, so that P2
 retries S1 through S3 again.

5.2. Underutilization

 Interestingly, there are also examples of deployments where the
 network capacity was greatly reduced as a consequence of the overload
 mechanism. Consider again Figure 1. Unfortunately, RFC 3261 is
 unclear on the scope of a 503. When it is received by P1, does the
 proxy cease sending requests to that IP address? To the hostname?
 To the URI? Some implementations have chosen the hostname as the
 scope. When the hostname for a URI points to an SRV record in the
 DNS, which, in turn, maps to a cluster of downstream servers (S1, S2,
 and S3 in the example), a 503 response from a single one of them will
 make the proxy believe that the entire cluster is overloaded.
 Consequently, proxy P1 will cease sending any traffic to any element
 in the cluster, even though there are elements in the cluster that
 are underutilized.

5.3. The Off/On Retry-After Problem

 The Retry-After mechanism allows a server to tell an upstream element
 to stop sending traffic for a period of time. The work that would
 have otherwise been sent to that server is instead sent to another
 server. The mechanism is an all-or-nothing technique. A server can
 turn off all traffic towards it, or none. There is nothing in
 between. This tends to cause highly oscillatory behavior under even
 mild overload. Consider a proxy P1 that is balancing requests
 between two servers S1 and S2. The input load just reaches the point
 where both S1 and S2 are at 100% capacity. A request arrives at P1
 and is sent to S1. S1 rejects this request with a 503, and decides
 to use Retry-After to clear its backlog. P1 stops sending all
 traffic to S1. Now, S2 gets traffic, but it is seriously overloaded
 -- at 200% capacity! It decides to reject a request with a 503 and a
 Retry-After, which now forces P1 to reject all traffic until S1’s
 Retry-After timer expires. At that point, all load is shunted back
 to S1, which reaches overload, and the cycle repeats.

 It’s important to observe that this problem is only observed for
 servers where there are a small number of upstream elements sending
 it traffic, as is the case in these examples. If a proxy is accessed

Rosenberg Informational [Page 9]

RFC 5390 Overload Requirements December 2008

 by a large number of clients, each of which sends a small amount of
 traffic, the 503 mechanism with Retry-After is quite effective when
 utilized with a subset of the clients. This is because spreading the
 503 out amongst the clients has the effect of providing the proxy
 more fine-grained controls on the amount of work it receives.

5.4. Ambiguous Usages

 Unfortunately, the specific instances under which a server is to send
 a 503 are ambiguous. The result is that implementations generate 503
 for many reasons, only some of which are related to actual overload.
 For example, RFC 3398 [RFC3398], which specifies interworking from
 SIP to ISDN User Part (ISUP), defines the usage of 503 when the
 gateway receives certain ISUP cause codes from downstream switches.
 In these cases, the gateway has ample capacity; it’s just that this
 specific request could not be processed because of a downstream
 problem. All subsequent requests might succeed if they take a
 different route in the Public Switched Telephone Network (PSTN).

 This causes two problems. First, during periods of overload, it
 exacerbates the problems above because it causes additional 503 to be
 fed into the system, causing further work to be generated in
 conditions of overload. Second, it becomes hard for an upstream
 element to know whether to retry when a 503 is received. There are
 classes of failures where trying on another server won’t help, since
 the reason for the failure was that a common downstream resource is
 unavailable. For example, if servers S1 and S2 share a database and
 the database fails, a request sent to S1 will result in a 503, but
 retrying on S2 won’t help since the same database is unavailable.

6. Solution Requirements

 In this section, we propose requirements for an overload control
 mechanism for SIP that addresses these problems.

 REQ 1: The overload mechanism shall strive to maintain the overall
 useful throughput (taking into consideration the quality-of-
 service needs of the using applications) of a SIP server at
 reasonable levels, even when the incoming load on the network is
 far in excess of its capacity. The overall throughput under load
 is the ultimate measure of the value of an overload control
 mechanism.

 REQ 2: When a single network element fails, goes into overload, or
 suffers from reduced processing capacity, the mechanism should
 strive to limit the impact of this on other elements in the
 network. This helps to prevent a small-scale failure from
 becoming a widespread outage.

Rosenberg Informational [Page 10]

RFC 5390 Overload Requirements December 2008

 REQ 3: The mechanism should seek to minimize the amount of
 configuration required in order to work. For example, it is
 better to avoid needing to configure a server with its SIP message
 throughput, as these kinds of quantities are hard to determine.

 REQ 4: The mechanism must be capable of dealing with elements that
 do not support it, so that a network can consist of a mix of
 elements that do and don’t support it. In other words, the
 mechanism should not work only in environments where all elements
 support it. It is reasonable to assume that it works better in
 such environments, of course. Ideally, there should be
 incremental improvements in overall network throughput as
 increasing numbers of elements in the network support the
 mechanism.

 REQ 5: The mechanism should not assume that it will only be deployed
 in environments with completely trusted elements. It should seek
 to operate as effectively as possible in environments where other
 elements are malicious; this includes preventing malicious
 elements from obtaining more than a fair share of service.

 REQ 6: When overload is signaled by means of a specific message, the
 message must clearly indicate that it is being sent because of
 overload, as opposed to other, non overload-based failure
 conditions. This requirement is meant to avoid some of the
 problems that have arisen from the reuse of the 503 response code
 for multiple purposes. Of course, overload is also signaled by
 lack of response to requests. This requirement applies only to
 explicit overload signals.

 REQ 7: The mechanism shall provide a way for an element to throttle
 the amount of traffic it receives from an upstream element. This
 throttling shall be graded so that it is not all-or-nothing as
 with the current 503 mechanism. This recognizes the fact that
 "overload" is not a binary state and that there are degrees of
 overload.

 REQ 8: The mechanism shall ensure that, when a request was not
 processed successfully due to overload (or failure) of a
 downstream element, the request will not be retried on another
 element that is also overloaded or whose status is unknown. This
 requirement derives from REQ 1.

 REQ 9: That a request has been rejected from an overloaded element
 shall not unduly restrict the ability of that request to be
 submitted to and processed by an element that is not overloaded.
 This requirement derives from REQ 1.

Rosenberg Informational [Page 11]

RFC 5390 Overload Requirements December 2008

 REQ 10: The mechanism should support servers that receive requests
 from a large number of different upstream elements, where the set
 of upstream elements is not enumerable.

 REQ 11: The mechanism should support servers that receive requests
 from a finite set of upstream elements, where the set of upstream
 elements is enumerable.

 REQ 12: The mechanism should work between servers in different
 domains.

 REQ 13: The mechanism must not dictate a specific algorithm for
 prioritizing the processing of work within a proxy during times of
 overload. It must permit a proxy to prioritize requests based on
 any local policy, so that certain ones (such as a call for
 emergency services or a call with a specific value of the
 Resource-Priority header field [RFC4412]) are given preferential
 treatment, such as not being dropped, being given additional
 retransmission, or being processed ahead of others.

 REQ 14: The mechanism should provide unambiguous directions to
 clients on when they should retry a request and when they should
 not. This especially applies to TCP connection establishment and
 SIP registrations, in order to mitigate against avalanche restart.

 REQ 15: In cases where a network element fails, is so overloaded
 that it cannot process messages, or cannot communicate due to a
 network failure or network partition, it will not be able to
 provide explicit indications of the nature of the failure or its
 levels of congestion. The mechanism must properly function in
 these cases.

 REQ 16: The mechanism should attempt to minimize the overhead of the
 overload control messaging.

 REQ 17: The overload mechanism must not provide an avenue for
 malicious attack, including DoS and DDoS attacks.

 REQ 18: The overload mechanism should be unambiguous about whether a
 load indication applies to a specific IP address, host, or URI, so
 that an upstream element can determine the load of the entity to
 which a request is to be sent.

 REQ 19: The specification for the overload mechanism should give
 guidance on which message types might be desirable to process over
 others during times of overload, based on SIP-specific
 considerations. For example, it may be more beneficial to process
 a SUBSCRIBE refresh with Expires of zero than a SUBSCRIBE refresh

Rosenberg Informational [Page 12]

RFC 5390 Overload Requirements December 2008

 with a non-zero expiration (since the former reduces the overall
 amount of load on the element), or to process re-INVITEs over new
 INVITEs.

 REQ 20: In a mixed environment of elements that do and do not
 implement the overload mechanism, no disproportionate benefit
 shall accrue to the users or operators of the elements that do not
 implement the mechanism.

 REQ 21: The overload mechanism should ensure that the system remains
 stable. When the offered load drops from above the overall
 capacity of the network to below the overall capacity, the
 throughput should stabilize and become equal to the offered load.

 REQ 22: It must be possible to disable the reporting of load
 information towards upstream targets based on the identity of
 those targets. This allows a domain administrator who considers
 the load of their elements to be sensitive information, to
 restrict access to that information. Of course, in such cases,
 there is no expectation that the overload mechanism itself will
 help prevent overload from that upstream target.

 REQ 23: It must be possible for the overload mechanism to work in
 cases where there is a load balancer in front of a farm of
 proxies.

7. Security Considerations

 Like all protocol mechanisms, a solution for overload handling must
 prevent against malicious inside and outside attacks. This document
 includes requirements for such security functions.

 Any mechanism that improves the behavior of SIP elements under load
 will result in more predictable performance in the face of
 application-layer denial-of-service attacks.

8. Acknowledgements

 The author would like to thank Steve Mayer, Mouli Chandramouli,
 Robert Whent, Mark Perkins, Joe Stone, Vijay Gurbani, Steve Norreys,
 Volker Hilt, Spencer Dawkins, Matt Mathis, Juergen Schoenwaelder, and
 Dale Worley for their contributions to this document.

Rosenberg Informational [Page 13]

RFC 5390 Overload Requirements December 2008

9. References

9.1. Normative Reference

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

9.2. Informative References

 [OUTBOUND] Jennings, C. and R. Mahy, "Managing Client Initiated
 Connections in the Session Initiation Protocol (SIP)",
 Work in Progress, October 2008.

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 June 2002.

 [RFC3398] Camarillo, G., Roach, A., Peterson, J., and L. Ong,
 "Integrated Services Digital Network (ISDN) User Part
 (ISUP) to Session Initiation Protocol (SIP) Mapping",
 RFC 3398, December 2002.

 [RFC4412] Schulzrinne, H. and J. Polk, "Communications Resource
 Priority for the Session Initiation Protocol (SIP)",
 RFC 4412, February 2006.

Author’s Address

 Jonathan Rosenberg
 Cisco
 Edison, NJ
 US

 EMail: jdrosen@cisco.com
 URI: http://www.jdrosen.net

Rosenberg Informational [Page 14]

