
Networking Working Group M. Ramadas
Request for Comments: 5326 ISTRAC, ISRO
Category: Experimental S. Burleigh
 NASA/Jet Propulsion Laboratory
 S. Farrell
 Trinity College Dublin
 September 2008

 Licklider Transmission Protocol - Specification

Status of This Memo

 This memo defines an Experimental Protocol for the Internet
 community. It does not specify an Internet standard of any kind.
 Discussion and suggestions for improvement are requested.
 Distribution of this memo is unlimited.

IESG Note

 This RFC is not a candidate for any level of Internet Standard. It
 represents the consensus of the Delay Tolerant Networking (DTN)
 Research Group of the Internet Research Task Force (IRTF). It may be
 considered for standardization by the IETF in the future, but the
 IETF disclaims any knowledge of the fitness of this RFC for any
 purpose and in particular notes that the decision to publish is not
 based on IETF review for such things as security, congestion control,
 or inappropriate interaction with deployed protocols. See RFC 3932
 for more information.

Abstract

 This document describes the Licklider Transmission Protocol (LTP),
 designed to provide retransmission-based reliability over links
 characterized by extremely long message round-trip times (RTTs)
 and/or frequent interruptions in connectivity. Since communication
 across interplanetary space is the most prominent example of this
 sort of environment, LTP is principally aimed at supporting "long-
 haul" reliable transmission in interplanetary space, but it has
 applications in other environments as well.

 This document is a product of the Delay Tolerant Networking Research
 Group and has been reviewed by that group. No objections to its
 publication as an RFC were raised.

Ramadas, et al. Experimental [Page 1]

RFC 5326 LTP - Specification September 2008

Table of Contents

 1. Introduction ..3
 2. Terminology ...4
 3. Segment Structure ...9
 3.1. Segment Header ..10
 3.1.1. Segment Type Flags11
 3.1.2. Segment Type Codes13
 3.1.3. Segment Class Masks14
 3.1.4. Extensions Field14
 3.2. Segment Content ...16
 3.2.1. Data Segment (DS)16
 3.2.2. Report Segment (RS)17
 3.2.3. Report Acknowledgment Segment19
 3.2.4. Session Management Segments20
 3.3. Segment Trailer ...20
 4. Requests from Client Service20
 4.1. Transmission Request21
 4.2. Cancellation Request22
 5. Requirements from the Operating Environment23
 6. Internal Procedures ..24
 6.1. Start Transmission ..25
 6.2. Start Checkpoint Timer25
 6.3. Start RS Timer ..25
 6.4. Stop Transmission ...25
 6.5. Suspend Timers ..26
 6.6. Resume Timers ...26
 6.7. Retransmit Checkpoint27
 6.8. Retransmit RS ...27
 6.9. Signify Red-Part Reception28
 6.10. Signify Green-Part Segment Arrival28
 6.11. Send Reception Report28
 6.12. Signify Transmission Completion30
 6.13. Retransmit Data ..30
 6.14. Stop RS Timer ..31
 6.15. Start Cancel Timer32
 6.16. Retransmit Cancellation Segment32
 6.17. Acknowledge Cancellation32
 6.18. Stop Cancel Timer ..33
 6.19. Cancel Session ...33
 6.20. Close Session ..33
 6.21. Handle Miscolored Segment33
 6.22. Handling System Error Conditions34
 7. Notices to Client Service35
 7.1. Session Start ...35
 7.2. Green-Part Segment Arrival36
 7.3. Red-Part Reception ..36
 7.4. Transmission-Session Completion36

Ramadas, et al. Experimental [Page 2]

RFC 5326 LTP - Specification September 2008

 7.5. Transmission-Session Cancellation37
 7.6. Reception-Session Cancellation37
 7.7. Initial-Transmission Completion37
 8. State Transition Diagrams38
 8.1. Sender ..39
 8.2. Receiver ..44
 9. Security Considerations ..48
 9.1. Denial of Service Considerations48
 9.2. Replay Handling ...49
 9.3. Implementation Considerations50
 10. IANA Considerations ...51
 10.1. UDP Port Number for LTP51
 10.2. LTP Extension Tag Registry51
 11. Acknowledgments ...51
 12. References ..52
 12.1. Normative References52
 12.2. Informative References52

1. Introduction

 This document serves as the main protocol specification of LTP and is
 part of a series of documents describing LTP. Other documents in
 this series include the motivation document [LTPMTV] and the protocol
 extensions document [LTPEXT]. We strongly recommend reading the
 protocol motivation document before reading this document, to
 establish sufficient background and motivation for the specification.

 LTP does Automatic Repeat reQuest (ARQ) of data transmissions by
 soliciting selective-acknowledgment reception reports. It is
 stateful, and has no negotiation or handshakes.

 In an Interplanetary Internet setting deploying the Bundle Protocol
 that is being developed by the Delay Tolerant Networking Research
 Group, LTP is intended to serve as a reliable "convergence layer"
 protocol operating in pairwise fashion between adjacent
 Interplanetary Internet nodes that are in direct radio frequency (RF)
 communication. In that operational scenario, and potentially in some
 other deployments of the Bundle Protocol, LTP runs directly over a
 data-link layer protocol; when this is the case, forward error
 correction coding and/or checksum mechanisms in the underlying data-
 link layer protocol must ensure the integrity of the data passed
 between the communicating entities.

 Since no mechanisms for flow control or congestion control are
 included in the design of LTP, this protocol is not intended or
 appropriate for ubiquitous deployment in the global Internet.

Ramadas, et al. Experimental [Page 3]

RFC 5326 LTP - Specification September 2008

 When LTP is run over UDP, it must only be used for software
 development or in private local area networks. When LTP is not run
 over UDP, it must be run directly over a protocol (nominally a link-
 layer protocol) that meets the requirements specified in Section 5.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [B97].

2. Terminology

 (1) Engine ID

 A number that uniquely identifies a given LTP engine, within some
 closed set of communicating LTP engines. Note that when LTP is
 operating underneath the Delay-Tolerant Networking (DTN) [DTN] Bundle
 Protocol [BP], the convergence layer adapter mediating the two will
 be responsible for translating between DTN endpoint IDs and LTP
 engine IDs in an implementation-specific manner.

 (2) Block

 An array of contiguous octets of application data handed down by the
 upper layer protocol (typically Bundle Protocol) to be transmitted
 from one LTP client service instance to another.

 Any subset of a block comprising contiguous octets beginning at the
 start of the block is termed a "block prefix", and any such subset of
 the block ending with the end of the block is termed a "block
 suffix".

 (3) Red-Part

 The block prefix that is to be transmitted reliably, i.e., subject to
 acknowledgment and retransmission.

 (4) Green-Part

 The block suffix that is to be transmitted unreliably, i.e., not
 subject to acknowledgments or retransmissions. If present, the
 green-part of a block begins at the octet following the end of the
 red-part.

 (5) Session

 A thread of LTP protocol activity conducted between two peer engines
 for the purpose of transmitting a block. Data flow in a session is
 unidirectional: data traffic flows from the sending peer to the

Ramadas, et al. Experimental [Page 4]

RFC 5326 LTP - Specification September 2008

 receiving peer, while data-acknowledgment traffic flows from the
 receiving peer to the sending peer.

 (6) Sender

 The data sending peer of a session.

 (7) Receiver

 The data receiving peer of a session.

 (8) Client Service Instance

 A software entity, such as an application or a higher-layer protocol
 implementation, that is using LTP to transfer data.

 (9) Segment

 The unit of LTP data transmission activity. It is the data structure
 transmitted from one LTP engine to another in the course of a
 session. Each LTP segment is of one of the following types: data
 segment, report segment, report-acknowledgment segment, cancel
 segment, cancel-acknowledgment segment.

 (10) Reception Claim

 An assertion of reception of some number of contiguous octets of
 application data (a subset of a block) characterized by: the offset
 of the first received octet, and the number of contiguous octets
 received (beginning at the offset).

 (11) Scope

 Scope identifies a subset of a block and comprises two numbers --
 upper bound and lower bound.

 For a data segment, lower bound is the offset of the segment’s
 application data from the start of the block (in octets), while upper
 bound is the sum of the offset and length of the segment’s
 application data (in octets). For example, a segment with a block
 offset of 1000 and length of 500 would have a lower bound of 1000 and
 upper bound of 1500.

 For a report segment, upper bound is the end of the block prefix to
 which the reception claims in the report apply, while lower bound is
 the end of the (smaller) interior block prefix to which the reception
 claims in the report do *not* apply. That is, data at any offset
 equal to or greater than the report’s lower bound but less than its

Ramadas, et al. Experimental [Page 5]

RFC 5326 LTP - Specification September 2008

 upper bound and not designated as "received" by any of the report’s
 reception claims must be assumed not received, and therefore eligible
 for retransmission. For example, if a report segment carried a lower
 bound of 1000 and an upper bound of 5000, and the reception claims
 indicated reception of data within offsets 1000-1999 and 3000-4999,
 data within the block offsets 2000-2999 can be considered missing and
 eligible for retransmission.

 Reception reports (which may comprise multiple report segments) also
 have scope, as defined in Section 6.11.

 (12) End of Block (EOB)

 The last data segment transmitted as part of the original
 transmission of a block. This data segment also indicates that the
 segment’s upper bound is the total length of the block (in octets).

 (13) End of Red-Part (EORP)

 The segment transmitted as part of the original transmission of a
 block containing the last octet of the block’s red-part. This data
 segment also indicates that the segment’s upper bound is the length
 of the block’s red-part (in octets).

 (14) Checkpoint

 A data segment soliciting a reception report from the receiving LTP
 engine. The EORP segment must be flagged as a checkpoint, as must
 the last segment of any retransmission; these are "mandatory
 checkpoints". All other checkpoints are "discretionary checkpoints".

 (15) Reception Report

 A sequence of one or more report segments reporting on all block data
 reception within some scope.

 (16) Synchronous Reception Report

 A reception report that is issued in response to a checkpoint.

 (17) Asynchronous Reception Report

 A reception report that is issued in response to some implementation-
 defined event other than the arrival of a checkpoint.

Ramadas, et al. Experimental [Page 6]

RFC 5326 LTP - Specification September 2008

 (18) Primary Reception Report

 A reception report that is issued in response to some event other
 than the arrival of a checkpoint segment that was itself issued in
 response to a reception report. Primary reception reports include
 all asynchronous reception reports and all synchronous reception
 reports that are sent in response to discretionary checkpoints or to
 the EORP segment for a session.

 (19) Secondary Reception Report

 A reception report that is issued in response to the arrival of a
 checkpoint segment that was itself issued in response to a reception
 report.

 (20) Self-Delimiting Numeric Value (SDNV)

 The design of LTP attempts to reconcile minimal consumption of
 transmission bandwidth with

 (a) extensibility to satisfy requirements not yet identified, and

 (b) scalability across a very wide range of network sizes and
 transmission payload sizes.

 The SDNV encoding scheme is modeled after the Abstract Syntax
 Notation One [ASN1] scheme for encoding Object Identifier values. In
 a data field encoded as an SDNV, the most significant bit (MSB) of
 each octet of the SDNV serves to indicate whether or not the octet is
 the last octet of the SDNV. An octet with an MSB of 1 indicates that
 it is either the first or a middle octet of a multi-octet SDNV; the
 octet with an MSB of 0 is the last octet of the SDNV. The value
 encoded in an SDNV is found by concatenating the 7 least significant
 bits of each octet of the SDNV, beginning at the first octet and
 ending at the last octet.

Ramadas, et al. Experimental [Page 7]

RFC 5326 LTP - Specification September 2008

 The following examples illustrate the encoding scheme for various
 hexadecimal values.

 0xABC : 1010 1011 1100
 is encoded as

 {100 1010 1} {0 011 1100}
 - -

 = 10010101 00111100

 0x1234 : 0001 0010 0011 0100
 = 1 0010 0011 0100
 is encoded as

 {10 1 0010 0} {0 011 0100}
 - -

 = 10100100 00110100

 0x4234 : 0100 0010 0011 0100
 =100 0010 0011 0100
 is encoded as

 {1000000 1} {1 00 0010 0} {0 011 0100}
 - - -

 = 10000001 10000100 00110100

 0x7F : 0111 1111
 =111 1111
 is encoded as

 {0 111 1111}
 -

 = 01111111

 Note:

 Care must be taken to make sure that the value to be encoded is
 padded with zeroes at the most significant bit end (NOT at the least
 significant bit end) to make its bitwise length a multiple of 7
 before encoding.

 While there is no theoretical limit on the size of an SDNV field, we
 note that the overhead of the SDNV scheme is 1:7, i.e., 1 bit of
 overhead for every 7 bits of actual data to be encoded. Thus, a

Ramadas, et al. Experimental [Page 8]

RFC 5326 LTP - Specification September 2008

 7-octet value (a 56-bit quantity with no leading zeroes) would be
 encoded in an 8-octet SDNV; an 8-octet value (a 64-bit quantity with
 no leading zeroes) would be encoded in a 10-octet SDNV. In general,
 an N-bit quantity with no leading zeroes would be encoded in a
 ceil(N/7) octet SDNV, where ceil is the integer ceiling function.
 Clearly, for fields that typically carry larger values such as RSA
 public keys, the SDNV overhead could become unacceptable. Hence,
 when adopting the SDNV scheme for other purposes related to this
 document, such as any protocol extensions, we RECOMMEND that if the
 typical data field value is expected to be larger than 8 octets, then
 the data field should be specified as a {LENGTH, VALUE} tuple, with
 the LENGTH parameter encoded as an SDNV followed by LENGTH octets
 housing the VALUE of the data field.

 We also note that SDNV is clearly not the best way to represent every
 numeric value. When the maximum possible value of a number is known
 without question, the cost of additional bits may not be justified.
 For example, an SDNV is a poor way to represent an integer whose
 value typically falls in the range 128 to 255. In general, though,
 we believe that the SDNV representation of various protocol data
 fields in LTP segments yields the smallest segment sizes without
 sacrificing scalability.

3. Segment Structure

 Each LTP segment comprises

 (a) a "header" in the format defined below.

 (b) zero or more octets of "content".

 (c) zero or more octets of "trailer" as indicated by information
 in the "Extensions field" of the header.

 LTP segments are of four general types depending on the nature of the
 content carried:

 Data segments flow from the sender to the receiver and carry
 client service (application) data.

 A report segment flows from the receiver to the sender and carries
 data reception claims together with the upper and lower bounds of
 the block scope to which the claims pertain.

 A report-acknowledgment segment flows from the sender to the
 receiver and acknowledges reception of a report segment. It
 carries the serial number of the report being acknowledged.

Ramadas, et al. Experimental [Page 9]

RFC 5326 LTP - Specification September 2008

 Session management segments may be generated by both the sender
 and the receiver and are of two general sub-types: cancellation
 and cancellation-acknowledgment. A cancellation segment initiates
 session cancellation procedures at the peer and carries a single
 byte reason-code to indicate the reason for session cancellation.
 Cancellation-acknowledgment segments merely acknowledge reception
 of a cancellation segment and have no content.

 The overall segment structure is illustrated below:

 Bit 0 1 2 3 4 5 6 7
 ^ +-----+-----+-----+-----+-----+-----+-----+-----+
 | | Version number | Segment Type Flags | Control
 | +-----------------------+-----------------------+ -byte
 | | |
 | / Session ID \
 | \ /
 Header +-----------------------+-----------------------+
 | | Header Extension Cnt. | Trailer Extension Cnt.| Extensions
 | +-----------------------+-----------------------+
 | | |
 | / Header Extensions \
 | \ /
 V +---+
 | |
 | |
 | |
 | Segment Content |
 / \
 \ /
 | |
 | |
 | |
 ^ +---+
 | | |
 Trailer / Trailer Extensions \
 | \ /
 V +---+

3.1. Segment Header

 An LTP segment header comprises three data items: a single-octet
 control byte, the session ID, and the Extensions field.

 Control byte comprises the following:

 Version number (4 bits): MUST be set to the binary value 0000 for
 this version of the protocol.

Ramadas, et al. Experimental [Page 10]

RFC 5326 LTP - Specification September 2008

 Segment type flags (4 bits): described in Section 3.1.1.

 Session ID uniquely identifies, among all transmissions between the
 sender and receiver, the session of which the segment is one token.
 It comprises the following:

 Session originator (SDNV): the engine ID of the sender.

 Session number (SDNV): typically a random number (for anti-DoS
 reasons), generated by the sender.

 The format and resolution of session number are matters that are
 private to the LTP sender; the only requirement imposed by LTP is
 that every session initiated by an LTP engine MUST be uniquely
 identified by the session ID.

 The Extensions field is described in Section 3.1.4.

3.1.1. Segment Type Flags

 The last 4 bits of the control byte in the segment header are flags
 that indicate the nature of the segment. In order (most significant
 bit first), these flags are CTRL, EXC, Flag 1, and Flag 0.

 A value of 0 in the CTRL (Control) flag identifies the segment as a
 data segment, while a value of 1 identifies it as a control segment.
 A data segment with the EXC (Exception) flag set to 0 is a red-part
 segment; a data segment with EXC set to 1 is a green-part segment.
 For a control segment, having the EXC flag set to 1 indicates that
 the segment pertains to session cancellation activity. Any data
 segment (whether red-part or green-part) with both Flag 1 and Flag 0
 set to 1 indicates EOB. Any data segment (whether red-part or
 green-part) with both Flag 1 and Flag 0 set to 0 indicates data
 without any additional protocol significance. Any red-part data
 segment with either flag bit non-zero is a checkpoint. Any red-part
 data segment with Flag 1 set to 1 indicates the end of red-part.

Ramadas, et al. Experimental [Page 11]

RFC 5326 LTP - Specification September 2008

 Put another way:

 if (CTRL flag = 0)
 segment is a data segment if (EXC flag = 0)
 segment contains only red-part data if (Flag 1 = 1)
 segment is a checkpoint segment is the last segment in the
 red part of the block if (Flag 0 = 1)
 segment is the last segment in the block
 else // segment is not end of red-part
 if (Flag 0 = 1)
 segment is a checkpoint
 else
 segment contains only green-part data if (Flag 1 = 1)
 if (Flag 0 = 1)
 segment is the last segment in the block
 else
 segment is a control segment if (EXC flag = 0)
 segment pertains to report activity if (flag 0 = 0)
 segment is a report segment
 else
 segment is an acknowledgment of a report segment
 else
 segment pertains to session cancellation activity if (Flag 1 =
 0)
 segment pertains to cancellation by block sender if (Flag 0
 = 1)
 segment is a cancellation by sender
 else
 segment is an acknowledgment of a cancellation by sender
 else
 segment pertains to cancellation by block receiver if (Flag
 0 = 1)
 segment is a cancellation by receiver
 else
 segment is an acknowledgment of a cancellation by
 receiver

Ramadas, et al. Experimental [Page 12]

RFC 5326 LTP - Specification September 2008

3.1.2. Segment Type Codes

 Combinations of the settings of the segment type flags CTRL, EXC,
 Flag 1, and Flag 0 constitute segment type codes, which serve as
 concise representations of detailed segment nature.

 CTRL EXC Flag 1 Flag 0 Code Nature of segment
 ---- --- ------ ------ ---- ---------------------------------------
 0 0 0 0 0 Red data, NOT {Checkpoint, EORP or EOB}
 0 0 0 1 1 Red data, Checkpoint, NOT {EORP or EOB}
 0 0 1 0 2 Red data, Checkpoint, EORP, NOT EOB
 0 0 1 1 3 Red data, Checkpoint, EORP, EOB

 0 1 0 0 4 Green data, NOT EOB
 0 1 0 1 5 Green data, undefined
 0 1 1 0 6 Green data, undefined
 0 1 1 1 7 Green data, EOB

 1 0 0 0 8 Report segment
 1 0 0 1 9 Report-acknowledgment segment
 1 0 1 0 10 Control segment, undefined
 1 0 1 1 11 Control segment, undefined

 1 1 0 0 12 Cancel segment from block sender
 1 1 0 1 13 Cancel-acknowledgment segment
 to block sender

 1 1 1 0 14 Cancel segment from block receiver
 1 1 1 1 15 Cancel-acknowledgment segment
 to block receiver

Ramadas, et al. Experimental [Page 13]

RFC 5326 LTP - Specification September 2008

3.1.3. Segment Class Masks

 For the purposes of this specification, some bit patterns in the
 segment type flags field correspond to "segment classes" that are
 designated by mnemonics. The mnemonics are intended to evoke the
 characteristics shared by all types of segments characterized by
 these flag bit patterns.

 CTRL EXC Flag 1 Flag 0 Mnemonic Description
 ---- --- ------ ------ -------- ---------------------------
 0 0 - 1
 -- or --
 0 0 1 - CP Checkpoint

 0 0 1 - EORP End of red-part;
 red-part size = offset + length

 0 - 1 1 EOB End of block;
 block size = offset + length

 1 0 0 0 RS Report segment;
 carries reception claims

 1 0 0 1 RA Report-acknowledgment segment

 1 1 0 0 CS Cancel segment from block sender

 1 1 0 1 CAS Cancel-acknowledgment segment
 to block sender

 1 1 1 0 CR Cancel segment from block receiver

 1 1 1 1 CAR Cancel-acknowledgment segment
 to block receiver

 1 1 - 0 Cx Cancel segment (generic)

 1 1 - 1 CAx Cancel-acknowledgment segment
 (generic)

3.1.4. Extensions Field

 The Extensions field enables the inclusion of zero or more functional
 extensions to the basic LTP segment, each in type-length-value (TLV)
 representation as explained below.

Ramadas, et al. Experimental [Page 14]

RFC 5326 LTP - Specification September 2008

 The first octet of the Extensions field indicates the number of
 extensions present in the segment: the high-order 4 bits indicate the
 number of extension TLVs in the header (immediately following the
 extensions count octet and preceding the segment’s content), while
 the low-order 4 bits indicate the number of extension TLVs in the
 trailer (immediately following the segment’s content). That is, each
 segment may have from 0 to 15 extension TLVs in its header and from 0
 to 15 extension TLVs in its trailer. In the absence of any extension
 TLVs, all bits of this extensions count octet MUST be set to zero.

 Note that it is valid for header extensions to be immediately
 followed by trailer extensions; for example, since a CAx segment has
 no contents, it may have header extensions immediately followed by
 trailer extensions.

 Each extension consists of a one-octet tag identifying the type of
 the extension, followed by a length parameter in SDNV form, followed
 by a value of the specified length.

 The diagram below illustrates the extension TLVs as they may occur in
 the header or trailer.

 +--------+----///-----///--+
 |ext-tag | length | value |
 +--------+-------///-------+----------///-------+
 |ext-tag | length | value |
 +--------+-----///-----///-+---------////-------+
 |ext-tag | length | value |
 +--------+----------+----------+

 The IANA maintains an LTP Extension Tag registry as shown below. See
 the IANA considerations section below for details of code point
 assignment in the Unassigned range.

 Extension tag Meaning
 ------------- -------
 0x00 LTP authentication extension [LTPEXT]
 0x01 LTP cookie extension [LTPEXT]
 0x02-0xAF Unassigned
 0xB0-0xBF Reserved
 0xC0-0xFF Private / Experimental Use

 Note that since the last quarter of the extension-tag space is for
 experimental use, implementations should be aware that collisions for
 these tags are possible.

Ramadas, et al. Experimental [Page 15]

RFC 5326 LTP - Specification September 2008

3.2. Segment Content

3.2.1. Data Segment (DS)

 The content of a data segment includes client service data and the
 metadata enabling the receiving client service instance to receive
 and make use of that data.

 Client service ID (SDNV)

 The client service ID number identifies the upper-level service to
 which the segment is to be delivered by the receiver. It is
 functionally analogous to a TCP port number. If multiple
 instances of the client service are present at the destination,
 multiplexing must be done by the client service itself on the
 basis of information encoded within the transmitted block.

 Offset (SDNV)

 Offset indicates the location of the segment’s client service data
 within the session’s transmitted block. It is the number of bytes
 in the block prior to the byte from which the first octet of the
 segment’s client service data was copied.

 Length (SDNV)

 The length of the ensuing client service data, in octets.

 If the data segment is a checkpoint, the segment MUST additionally
 include the following two serial numbers (checkpoint serial number
 and report serial number) to support efficient retransmission. Data
 segments that are not checkpoints MUST NOT have these two fields in
 the header and MUST continue on directly with the client service
 data.

 Checkpoint serial number (SDNV)

 The checkpoint serial number uniquely identifies the checkpoint
 among all checkpoints issued by the block sender in a session.
 The first checkpoint issued by the sender MUST have this serial
 number chosen randomly for security reasons, and it is RECOMMENDED
 that the sender use the guidelines in [ESC05] for this. Any
 subsequent checkpoints issued by the sender MUST have the serial
 number value found by incrementing the prior checkpoint serial
 number by 1. When a checkpoint segment is retransmitted, however,
 its serial number MUST be the same as when it was originally
 transmitted. The checkpoint serial number MUST NOT be zero.

Ramadas, et al. Experimental [Page 16]

RFC 5326 LTP - Specification September 2008

 Report serial number (SDNV)

 If the checkpoint was queued for transmission in response to the
 reception of an RS (Section 6.13), then its value MUST be the
 report serial number value of the RS that caused the data segment
 to be queued for transmission.

 Otherwise, the value of report serial number MUST be zero.

 Client service data (array of octets)

 The client service data carried in the segment is a copy of a
 subset of the bytes in the original client service data block,
 starting at the indicated offset.

3.2.2. Report Segment (RS)

 The content of an RS comprises one or more data reception claims,
 together with the upper and lower bounds of the scope within the data
 block to which the claims pertain. It also includes two serial
 numbers to support efficient retransmission.

 Report serial number (SDNV)

 The report serial number uniquely identifies the report among all
 reports issued by the receiver in a session. The first report
 issued by the receiver MUST have this serial number chosen
 randomly for security reasons, and it is RECOMMENDED that the
 receiver use the guidelines in [ESC05] for this. Any subsequent
 RS issued by the receiver MUST have the serial number value found
 by incrementing the last report serial number by 1. When an RS is
 retransmitted however, its serial number MUST be the same as when
 it was originally transmitted. The report serial number MUST NOT
 be zero.

 Checkpoint serial number (SDNV)

 The value of the checkpoint serial number MUST be zero if the
 report segment is NOT a response to reception of a checkpoint,
 i.e., the reception report is asynchronous; otherwise, it MUST be
 the checkpoint serial number of the checkpoint that caused the RS
 to be issued.

 Upper bound (SDNV)

 The upper bound of a report segment is the size of the block
 prefix to which the segment’s reception claims pertain.

Ramadas, et al. Experimental [Page 17]

RFC 5326 LTP - Specification September 2008

 Lower bound (SDNV)

 The lower bound of a report segment is the size of the (interior)
 block prefix to which the segment’s reception claims do NOT
 pertain.

 Reception claim count (SDNV)

 The number of data reception claims in this report segment.

 Reception claims

 Each reception claim comprises two elements: offset and length.

 Offset (SDNV)

 The offset indicates the successful reception of data beginning
 at the indicated offset from the lower bound of the RS. The
 offset within the entire block can be calculated by summing
 this offset with the lower bound of the RS.

 Length (SDNV)

 The length of a reception claim indicates the number of
 contiguous octets of block data starting at the indicated
 offset that have been successfully received.

 Reception claims MUST conform to the following rules:

 A reception claim’s length shall never be less than 1 and shall
 never exceed the difference between the upper and lower bounds
 of the report segment.

 The offset of a reception claim shall always be greater than
 the sum of the offset and length of the prior claim, if any.

 The sum of a reception claim’s offset and length and the lower
 bound of the report segment shall never exceed the upper bound
 of the report segment.

 Implied requests for retransmission of client service data can be
 inferred from an RS’s data reception claims. However, *nothing* can
 be inferred regarding reception of block data at any offset equal to
 or greater than the segment’s upper bound or at any offset less than
 the segment’s lower bound.

Ramadas, et al. Experimental [Page 18]

RFC 5326 LTP - Specification September 2008

 For example, if the scope of a report segment has lower bound 0 and
 upper bound 6000, and the report contains a single data reception
 claim with offset 0 and length 6000, then the report signifies
 successful reception of the first 6000 bytes of the block. If the
 total length of the block is 6000, then the report additionally
 signifies successful reception of the entire block.

 If on the other hand, the scope of a report segment has lower bound
 1000 and upper bound 6000, and the report contains two data reception
 claims, one with offset 0 and length 2000 and the other with offset
 3000 and length 500, then the report signifies successful reception
 only of bytes 1000-2999 and 4000-4499 of the block. From this we can
 infer that bytes 3000-3999 and 4500-5999 of the block need to be
 retransmitted, but we cannot infer anything about reception of the
 first 1000 bytes or of any subsequent data beginning at block offset
 6000.

3.2.3. Report Acknowledgment Segment

 The content of an RA is simply the report serial number of the RS in
 response to which the segment was generated.

 Report serial number (SDNV)

 This field returns the report serial number of the RS being
 acknowledged.

Ramadas, et al. Experimental [Page 19]

RFC 5326 LTP - Specification September 2008

3.2.4. Session Management Segments

 Cancel segments (Cx) carry a single byte reason-code with the
 following semantics:

 Reason-Code Mnemonic Semantics
 ----------- -------- ---------------------------------------
 00 USR_CNCLD Client service canceled session.

 01 UNREACH Unreachable client service.

 02 RLEXC Retransmission limit exceeded.

 03 MISCOLORED Received either a red-part data segment
 at block offset above any green-part
 data segment offset or a green-part
 data segment at block offset below any
 red-part data segment offset.

 04 SYS_CNCLD A system error condition caused
 unexpected session termination.

 05 RXMTCYCEXC Exceeded the Retransmission-Cycles limit.

 06-FF Reserved

 The Cancel-acknowledgments (CAx) have no content.

 Note: The reason we use different cancel segment types for the
 originator and recipient is to allow a loopback mode to work without
 disturbing any replay protection mechanism in use.

3.3. Segment Trailer

 The segment trailer consists of a sequence of zero to 15 extension
 TLVs as described in Section 3.1.4 above.

4. Requests from Client Service

 In all cases, the representation of request parameters is a local
 implementation matter, as are validation of parameter values and
 notification of the client service in the event that a request is
 found to be invalid.

Ramadas, et al. Experimental [Page 20]

RFC 5326 LTP - Specification September 2008

4.1. Transmission Request

 In order to request transmission of a block of client service data,
 the client service MUST provide the following parameters to LTP:

 Destination client service ID.

 Destination LTP engine ID.

 Client service data to send, as an array of bytes.

 Length of the data to be sent.

 Length of the red-part of the data. This value MUST be in the
 range from zero to the total length of data to be sent.

 On reception of a valid transmission request from a client service,
 LTP proceeds as follows.

 First, the array of data to be sent is subdivided as necessary, with
 each subdivision serving as the client service data of a single new
 LTP data segment. The algorithm used for subdividing the data is a
 local implementation matter; it is expected that data size
 constraints imposed by the underlying communication service, if any,
 will be accommodated in this algorithm.

 The last (and only the last) of the resulting data segments must be
 marked as the EOB (end of block).

 Note that segment type indicates that the client service data in a
 given LTP segment either is or is not in the red-part of the block.
 To prevent segment type ambiguity, each data segment MUST contain
 either only red-part data or only green-part data. Therefore, when
 the length of the block’s red-part is N, the total length of the
 block is M, and N is not equal to M, the (N+1)th byte of the block
 SHOULD be the first byte of client service data in a green-part data
 segment. Note that this means that at the red-part boundary, LTP may
 send a segment of size lesser than the link MTU size. For bandwidth
 efficiency reasons, implementations MAY choose to instead mark the
 entire segment (within which the red-part boundary falls) as red-
 part, causing green-part data falling within the segment to also be
 treated as red-part.

 If the length of the block’s red-part is greater than zero, then the
 last data segment containing red-part data must be marked as the EORP
 (end of red-part) segment by setting the appropriate segment type
 flag bits (Section 3.1.2). Zero or more preceding data segments
 containing red-part data (selected according to an algorithm that is

Ramadas, et al. Experimental [Page 21]

RFC 5326 LTP - Specification September 2008

 a local implementation matter) MAY additionally be marked as a CP
 (Checkpoint), and serve as additional discretionary checkpoints
 (Section 3.1.2).

 All data segments are appended to the (conceptual) application data
 queue bound for the destination engine, for subsequent transmission.

 Finally, a session start notice (Section 7.1) is sent back to the
 client service that requested the transmission.

4.2. Cancellation Request

 In order to request cancellation of a session, either as the sender
 or as the receiver of the associated data block, the client service
 must provide the session ID identifying the session to be canceled.

 On reception of a valid cancellation request from a client service,
 LTP proceeds as follows.

 First, the internal "Cancel Session" procedure (Section 6.19) is
 invoked.

 Next, if the session is being canceled by the sender (i.e., the
 session originator part of the session ID supplied in the
 cancellation request is the local LTP engine ID):

 - If none of the data segments previously queued for transmission
 as part of this session have yet been de-queued and transmitted
 -- i.e., if the destination engine cannot possibly be aware of
 this session -- then the session is simply closed; the "Close
 Session" procedure (Section 6.20) is invoked.

 - Otherwise, a CS (cancel by block sender) segment with the
 reason-code USR_CNCLD MUST be queued for transmission to the
 destination LTP engine specified in the transmission request
 that started this session.

 Otherwise (i.e., the session is being canceled by the receiver):

 - If there is no transmission queue-set bound for the sender
 (possibly because the local LTP engine is running on a receive-
 only device), then the session is simply closed; the "Close
 Session" procedure (Section 6.20) is invoked.

 - Otherwise, a CR (cancel by block receiver) segment with reason-
 code USR_CNCLD MUST be queued for transmission to the block
 sender.

Ramadas, et al. Experimental [Page 22]

RFC 5326 LTP - Specification September 2008

5. Requirements from the Operating Environment

 LTP is designed to run directly over a data-link layer protocol.

 LTP MUST only be deployed directly over UDP, for software development
 purposes or for use in private local area networks, for example, in a
 sparse sensor network where the link, when available, is only used
 for LTP traffic.

 In either case, the protocol layer immediately underlying LTP is
 referred to as the "local data-link layer" for the purposes of this
 specification.

 When the local data-link layer protocol is UDP, (a) the content of
 each UDP datagram MUST be an integral number of LTP segments and (b)
 the LTP authentication [LTPEXT] extension SHOULD be used unless the
 end-to-end path is one in which either the likelihood of datagram
 content corruption is negligible or the consequences of receiving and
 processing corrupt LTP segments are insignificant (as during software
 development). In addition, the LTP authentication [LTPEXT] extension
 SHOULD be used to ensure data integrity unless the end-to-end path is
 one in which either the likelihood of datagram content corruption is
 negligible (as in some private local area networks) or the
 consequences of receiving and processing corrupt LTP segments are
 insignificant (as perhaps during software development).

 When the local data-link layer protocol is not UDP, the content of
 each local data-link layer protocol frame MUST be an integral number
 of LTP segments.

 The local data-link layer protocol MUST be a protocol that, together
 with the operating environment in which that protocol is implemented,
 satisfies the following requirements:

 - It is required to inform LTP whenever the link to a specific LTP
 destination is brought up or torn down. Similarly, it is
 required to inform the local LTP engine whenever it is known
 that a remote LTP engine is set to begin or stop communication
 with the local engine based on the engines’ operating schedules.

 - It is required to provide link state cues to LTP upon
 transmission of the CP, RS (report), EORP, EOB, and Cx (cancel)
 segments so that timers can be started.

 - It is required to provide, upon request, the current distance
 (in light seconds) to any peer engine in order to calculate
 timeout intervals.

Ramadas, et al. Experimental [Page 23]

RFC 5326 LTP - Specification September 2008

 A MIB (Management Information Base) with the above parameters,
 updated periodically by the local data-link layer and the operating
 environment, should be made available to the LTP engine for its
 operations. The details of the MIB are, however, beyond the scope of
 this document.

 The underlying data-link layer is required to never deliver
 incompletely received LTP segments to LTP. In the absence of the use
 of LTP authentication [LTPEXT], LTP also requires the underlying
 local data-link layer protocol to perform data integrity checking of
 the segments received. Specifically, the local data-link layer
 protocol is required to detect any corrupted segments received and to
 silently discard them.

6. Internal Procedures

 This section describes the internal procedures that are triggered by
 the occurrence of various events during the lifetime of an LTP
 session.

 Whenever the content of any of the fields of the header of any
 received LTP segment does not conform to this specification document,
 the segment is assumed to be corrupt and MUST be discarded
 immediately and processed no further. This procedure supersedes all
 other procedures described below.

 All internal procedures described below that are triggered by the
 arrival of a data segment are superseded by the following procedure
 in the event that the client service identified by the data segment
 does not exist at the local LTP engine:

 - If there is no transmission queue-set bound for the block sender
 (possibly because the local LTP engine is running on a receive-
 only device), then the received data segment is simply
 discarded.

 - Otherwise, if the data segment contains data from the red-part
 of the block, a CR with reason-code UNREACH MUST be enqueued for
 transmission to the block sender. A CR with reason-code UNREACH
 SHOULD be similarly enqueued for transmission to the data sender
 even if the data segment contained data from the green-part of
 the block; note however that (for example) in the case where the
 block receiver knows that the sender of this green-part data is
 functioning in a "beacon" (transmit-only) fashion, a CR need not
 be sent. In either case, the received data segment is
 discarded.

Ramadas, et al. Experimental [Page 24]

RFC 5326 LTP - Specification September 2008

6.1. Start Transmission

 This procedure is triggered by the arrival of a link state cue
 indicating the start of transmission to a specified remote LTP
 engine.

 Response: the de-queuing and delivery of segments to the LTP engine
 specified in the link state cue begins.

6.2. Start Checkpoint Timer

 This procedure is triggered by the arrival of a link state cue
 indicating the de-queuing (for transmission) of a CP segment.

 Response: the expected arrival time of the RS segment that will be
 produced on reception of this CP segment is computed, and a countdown
 timer is started for this arrival time. However, if it is known that
 the remote LTP engine has ceased transmission (Section 6.5), then
 this timer is immediately suspended, because the computed expected
 arrival time may require an adjustment that cannot yet be computed.

6.3. Start RS Timer

 This procedure is triggered by the arrival of a link state cue
 indicating the de-queuing (for transmission) of an RS segment.

 Response: the expected arrival time of the RA (report acknowledgment)
 segment in response to the reception of this RS segment is computed,
 and a countdown timer is started for this arrival time. However, as
 in Section 6.2, if it is known that the remote LTP engine has ceased
 transmission (Section 6.5), then this timer is immediately suspended,
 because the computed expected arrival time may require an adjustment
 that cannot yet be computed.

6.4. Stop Transmission

 This procedure is triggered by the arrival of a link state cue
 indicating the cessation of transmission to a specified remote LTP
 engine.

 Response: the de-queuing and delivery to the underlying communication
 system of segments from traffic queues bound for the LTP engine
 specified in the link state cue ceases.

Ramadas, et al. Experimental [Page 25]

RFC 5326 LTP - Specification September 2008

6.5. Suspend Timers

 This procedure is triggered by the arrival of a link state cue
 indicating the cessation of transmission from a specified remote LTP
 engine to the local LTP engine. Normally, this event is inferred
 from advance knowledge of the remote engine’s planned transmission
 schedule.

 Response: countdown timers for the acknowledging segments that the
 remote engine is expected to return are suspended as necessary based
 on the following procedure.

 The nominal remote engine acknowledge transmission time is computed
 as the sum of the transmission time of the original segment (to which
 the acknowledging segment will respond) and the one-way light time to
 the remote engine, plus N seconds of "additional anticipated latency"
 (AAL) encompassing anticipated transmission delays other than signal
 propagation time. N is determined in an implementation-specific
 manner. For example, when LTP is deployed in deep-space vehicles,
 the one-way light time to the remote engine may be very large while N
 may be relatively small, covering processing and queuing delays. N
 may be a network management parameter, for which 2 seconds seems like
 a reasonable default value. As another example, when LTP is deployed
 in a terrestrial "data mule" environment, one-way light time latency
 is effectively zero while N may need to be some dynamically computed
 function of the data mule circulation schedule.

 If the nominal remote engine acknowledge transmission time is greater
 than or equal to the current time (i.e., the acknowledging segment
 may be presented for transmission during the time that transmission
 at the remote engine is suspended), then the countdown timer for this
 acknowledging segment is suspended.

6.6. Resume Timers

 This procedure is triggered by the arrival of a link state cue
 indicating the start of transmission from a specified remote LTP
 engine to the local LTP engine. Normally, this event is inferred
 from advance knowledge of the remote engine’s planned transmission
 schedule.

 Response: expected arrival time is adjusted for every acknowledging
 segment that the remote engine is expected to return, for which the
 countdown timer has been suspended. First, the transmission delay
 interval is calculated as follows:

Ramadas, et al. Experimental [Page 26]

RFC 5326 LTP - Specification September 2008

 - The nominal remote engine acknowledge transmission time is
 computed as the sum of the transmission time of the original
 segment (to which the acknowledging segment will respond) and
 the one-way light time to the remote engine, plus N seconds of
 AAL Section 6.5.

 - If the nominal remote engine acknowledge transmission time is
 greater than the current time, i.e., the remote engine resumed
 transmission prior to presentation of the acknowledging segment
 for transmission, then the transmission delay interval is zero.

 - Otherwise, the transmission delay interval is computed as the
 current time less the nominal remote engine acknowledge
 transmission time.

 The expected arrival time is increased by the computed transmission
 delay interval for each of the suspended countdown timers, and the
 timers are resumed.

6.7. Retransmit Checkpoint

 This procedure is triggered by the expiration of a countdown timer
 associated with a CP segment.

 Response: if the number of times this CP segment has been queued for
 transmission exceeds the checkpoint retransmission limit established
 for the local LTP engine by network management, then the session of
 which the segment is one token is canceled: the "Cancel Session"
 procedure (Section 6.19) is invoked, a CS with reason-code RLEXC is
 appended to the (conceptual) application data queue, and a
 transmission-session cancellation notice (Section 7.5) is sent back
 to the client service that requested the transmission.

 Otherwise, a new copy of the CP segment is appended to the
 (conceptual) application data queue for the destination LTP engine.

6.8. Retransmit RS

 This procedure is triggered by either (a) the expiration of a
 countdown timer associated with an RS segment or (b) the reception of
 a CP segment for which one or more RS segments were previously issued
 -- a redundantly retransmitted checkpoint.

 Response: if the number of times any affected RS segment has been
 queued for transmission exceeds the report retransmission limit
 established for the local LTP engine by network management, then the
 session of which the segment is one token is canceled: the "Cancel
 Session" procedure (Section 6.19) is invoked, a CR segment with

Ramadas, et al. Experimental [Page 27]

RFC 5326 LTP - Specification September 2008

 reason-code RLEXC is queued for transmission to the LTP engine that
 originated the session, and a reception-session cancellation notice
 (Section 7.6) is sent to the client service identified in each of the
 data segments received in this session.

 Otherwise, a new copy of each affected RS segment is queued for
 transmission to the LTP engine that originated the session.

6.9. Signify Red-Part Reception

 This procedure is triggered by the arrival of a CP segment when the
 EORP for this session has been received (ensuring that the size of
 the data block’s red-part is known; this includes the case where the
 CP segment itself is the EORP segment) and all data in the red-part
 of the block being transmitted in this session have been received.

 Response: a red-part reception notice (Section 7.3) is sent to the
 specified client service.

6.10. Signify Green-Part Segment Arrival

 This procedure is triggered by the arrival of a data segment whose
 content is a portion of the green-part of a block.

 Response: a green-part segment arrival notice (Section 7.2) is sent
 to the specified client service.

6.11. Send Reception Report

 This procedure is triggered by either (a) the original reception of a
 CP segment (the checkpoint serial number identifying this CP is new)
 (b) an implementation-specific circumstance pertaining to a
 particular block reception session for which no EORP has yet been
 received ("asynchronous" reception reporting).

 Response: if the number of reception problems detected for this
 session exceeds a limit established for the local LTP engine by
 network management, then the affected session is canceled: the
 "Cancel Session" procedure (Section 6.19) is invoked, a CR segment
 with reason-code RLEXC is issued and is, in concept, appended to the
 queue of internal operations traffic bound for the LTP engine that
 originated the session, and a reception-session cancellation notice
 (Section 7.6) is sent to the client service identified in each of the
 data segments received in this session. One possible limit on
 reception problems would be the maximum number of reception reports
 that can be issued for any single session.

Ramadas, et al. Experimental [Page 28]

RFC 5326 LTP - Specification September 2008

 If such a limit is not reached, a reception report is issued as
 follows.

 If production of the reception report was triggered by reception of a
 checkpoint:

 - The upper bound of the report SHOULD be the upper bound (the sum
 of the offset and length) of the checkpoint data segment, to
 minimize unnecessary retransmission. Note: If a discretionary
 checkpoint is lost but subsequent segments are received, then by
 the time the retransmission of the lost checkpoint is received
 the receiver would have segments at block offsets beyond the
 upper bound of the checkpoint. For deployments where bandwidth
 economy is not critical, the upper bound of a synchronous
 reception report MAY be the maximum upper bound value among all
 red-part data segments received so far in the affected session.

 - If the checkpoint was itself issued in response to a report
 segment, then this report is a "secondary" reception report. In
 that case, the lower bound of the report SHOULD be the lower
 bound of the report segment to which the triggering checkpoint
 was itself a response, to minimize unnecessary retransmission.
 Note: For deployments where bandwidth economy is not critical,
 the lower bound of the report MAY instead be zero.

 - If the checkpoint was not issued in response to a report
 segment, this report is a "primary" reception report. The lower
 bound of the first primary reception report issued for any
 session MUST be zero. The lower bound of each subsequent
 primary reception report issued for the same session SHOULD be
 the upper bound of the prior primary reception report issued for
 the session, to minimize unnecessary retransmission. Note: For
 deployments where bandwidth economy is not critical, the lower
 bound of every primary reception report MAY be zero.

 If production of the reception report is "asynchronous" as noted
 above:

 - The upper bound of the report MUST be the maximum upper bound
 among all red-part data segments received so far for this
 session.

 - The lower bound of the first asynchronous reception report
 issued for any session for which no other primary reception
 reports have yet been issued MUST be zero. The lower bound of
 each subsequent asynchronous reception report SHOULD be the
 upper bound of the prior primary reception report issued for the

Ramadas, et al. Experimental [Page 29]

RFC 5326 LTP - Specification September 2008

 session, to minimize unnecessary retransmission. Note: For
 deployments where bandwidth economy is not critical, the lower
 bound of every asynchronous reception report MAY be zero.

 In all cases, if the applicable lower bound of the scope of a report
 is determined to be greater than or equal to the applicable upper
 bound (for example, due to out-of-order arrival of discretionary
 checkpoints) then the reception report MUST NOT be issued.
 Otherwise:

 As many RS segments must be produced as are needed in order to report
 on all data reception within the scope of the report, given whatever
 data size constraints are imposed by the underlying communication
 service. The RS segments are, in concept, appended to the queue of
 internal operations traffic bound for the LTP engine that originated
 the indicated session. The lower bound of the first RS segment of
 the report MUST be the reception report’s lower bound. The upper
 bound of the last RS segment of the report MUST be the reception
 report’s upper bound.

6.12. Signify Transmission Completion

 This procedure is triggered at the earliest time at which (a) all
 data in the block are known to have been transmitted *and* (b) the
 entire red-part of the block -- if of non-zero length -- is known to
 have been successfully received. Condition (a) is signaled by
 arrival of a link state cue indicating the de-queuing (for
 transmission) of the EOB segment for the block. Condition (b) is
 signaled by reception of an RS segment whose reception claims, taken
 together with the reception claims of all other RS segments
 previously received in the course of this session, indicate complete
 reception of the red-part of the block.

 Response: a transmission-session completion notice (Section 7.4) is
 sent to the local client service associated with the session, and the
 session is closed: the "Close Session" procedure (Section 6.20) is
 invoked.

6.13. Retransmit Data

 This procedure is triggered by the reception of an RS segment.

 Response: first, an RA segment with the same report serial number as
 the RS segment is issued and is, in concept, appended to the queue of
 internal operations traffic bound for the receiver. If the RS
 segment is redundant -- i.e., either the indicated session is unknown
 (for example, the RS segment is received after the session has been
 completed or canceled) or the RS segment’s report serial number

Ramadas, et al. Experimental [Page 30]

RFC 5326 LTP - Specification September 2008

 matches that of an RS segment that has already been received and
 processed -- then no further action is taken. Otherwise, the
 procedure below is followed.

 If the report’s checkpoint serial number is not zero, then the
 countdown timer associated with the indicated checkpoint segment is
 deleted.

 Note: All retransmission buffer space occupied by data whose
 reception is claimed in the report segment can (in concept) be
 released.

 If the segment’s reception claims indicate incomplete data reception
 within the scope of the report segment:

 - If the number of transmission problems for this session exceeds
 a limit established for the local LTP engine by network
 management, then the session of which the segment is one token
 is canceled: the "Cancel Session" procedure (Section 6.19) is
 invoked, a CS with reason-code RLEXC is appended to the
 transmission queue specified in the transmission request that
 started this session, and a transmission-session cancellation
 notice (Section 7.5) is sent back to the client service that
 requested the transmission. One possible limit on transmission
 problems would be the maximum number of retransmission CP
 segments that may be issued for any single session.

 - If the number of transmission problems for this session has not
 exceeded any limit, new data segments encapsulating all block
 data whose non-reception is implied by the reception claims are
 appended to the transmission queue bound for the receiver. The
 last -- and only the last -- data segment must be marked as a CP
 segment carrying a new CP serial number (obtained by
 incrementing the last CP serial number used) and the report
 serial number of the received RS segment.

6.14. Stop RS Timer

 This procedure is triggered by the reception of an RA.

 Response: the countdown timer associated with the original RS segment
 (identified by the report serial number of the RA segment) is
 deleted. If no other countdown timers associated with RS segments
 exist for this session, then the session is closed: the "Close
 Session" procedure (Section 6.20) is invoked.

Ramadas, et al. Experimental [Page 31]

RFC 5326 LTP - Specification September 2008

6.15. Start Cancel Timer

 This procedure is triggered by arrival of a link state cue indicating
 the de-queuing (for transmission) of a Cx segment.

 Response: the expected arrival time of the CAx segment that will be
 produced on reception of this Cx segment is computed and a countdown
 timer for this arrival time is started. However, if it is known that
 the remote LTP engine has ceased transmission (Section 6.5), then
 this timer is immediately suspended, because the computed expected
 arrival time may require an adjustment that cannot yet be computed.

6.16. Retransmit Cancellation Segment

 This procedure is triggered by the expiration of a countdown timer
 associated with a Cx segment.

 Response: if the number of times this Cx segment has been queued for
 transmission exceeds the cancellation retransmission limit
 established for the local LTP engine by network management, then the
 session of which the segment is one token is simply closed: the
 "Close Session" procedure (Section 6.20) is invoked.

 Otherwise, a copy of the cancellation segment (retaining the same
 reason-code) is queued for transmission to the appropriate LTP
 engine.

6.17. Acknowledge Cancellation

 This procedure is triggered by the reception of a Cx segment.

 Response: in the case of a CS segment where there is no transmission
 queue-set bound for the sender (possibly because the receiver is a
 receive-only device), then no action is taken. Otherwise:

 - If the received segment is a CS segment, a CAS (cancel
 acknowledgment to block sender) segment is issued and is, in
 concept, appended to the queue of internal operations traffic
 bound for the sender.

 - If the received segment is a CR segment, a CAR (cancel
 acknowledgment to block receiver) segment is issued and is, in
 concept, appended to the queue of internal operations traffic
 bound for the receiver.

Ramadas, et al. Experimental [Page 32]

RFC 5326 LTP - Specification September 2008

 It is possible that the Cx segment has been retransmitted because a
 previous responding acknowledgment CAx (cancel acknowledgment)
 segment was lost, in which case there will no longer be any record of
 the session of which the segment is one token. If so, no further
 action is taken.

 Otherwise: the "Cancel Session" procedure (Section 6.19) is invoked
 and a reception-session cancellation notice (Section 7.6) is sent to
 the client service identified in each of the data segments received
 in this session. Finally, the session is closed: the "Close Session"
 procedure (Section 6.20) is invoked.

6.18. Stop Cancel Timer

 This procedure is triggered by the reception of a CAx segment.

 Response: the timer associated with the Cx segment is deleted, and
 the session of which the segment is one token is closed, i.e., the
 "Close Session" procedure (Section 6.20) is invoked.

6.19. Cancel Session

 This procedure is triggered internally by one of the other procedures
 described above.

 Response: all segments of the affected session that are currently
 queued for transmission can be deleted from the outbound traffic
 queues. All countdown timers currently associated with the session
 are deleted. Note: If the local LTP engine is the sender, then all
 remaining data retransmission buffer space allocated to the session
 can be released.

6.20. Close Session

 This procedure is triggered internally by one of the other procedures
 described above.

 Response: any remaining countdown timers associated with the session
 are deleted. The session state record (SSR|RSR) for the session is
 deleted; existence of the session is no longer recognized.

6.21. Handle Miscolored Segment

 This procedure is triggered by the arrival of either (a) a red-part
 data segment whose block offset begins at an offset higher than the
 block offset of any green-part data segment previously received for
 the same session or (b) a green-part data segment whose block offset
 is lower than the block offset of any red-part data segment

Ramadas, et al. Experimental [Page 33]

RFC 5326 LTP - Specification September 2008

 previously received for the same session. The arrival of a segment
 matching either of the above checks is a violation of the protocol
 requirement of having all red-part data as the block prefix and all
 green-part data as the block suffix.

 Response: the received data segment is simply discarded.

 The Cancel Session procedure (Section 6.19) is invoked and a CR
 segment with reason-code MISCOLORED SHOULD be enqueued for
 transmission to the data sender.

 Note: If there is no transmission queue-set bound for the sender
 (possibly because the local LTP engine is running on a receive-only
 device), or if the receiver knows that the sender is functioning in a
 "beacon" (transmit-only) fashion, a CR segment need not be sent.

 A reception-session cancellation notice (Section 7.6) is sent to the
 client service.

6.22. Handling System Error Conditions

 It is possible (especially for long-lived LTP sessions) that an
 unexpected operating system error condition may occur during the
 lifetime of an LTP session. An example is the case where the system
 faces severe memory crunch forcing LTP sessions into a scenario
 similar to that of TCP SACK [SACK] reneging. But unlike TCP SACK
 reception reports, which are advisory, LTP reception reports are
 binding, and reneging is NOT permitted on previously made reception
 claims.

 Under any such irrecoverable system error condition, the following
 response is to be initiated: the Cancel Session procedure (Section
 6.19) is invoked. If the error condition is observed on the sender,
 a CS segment with reason-code SYS_CNCLD SHOULD be enqueued for
 transmission to the receiver, and a transmission-session cancellation
 notice (Section 7.5) is sent to the client service; on the other
 hand, if it is observed on the receiver, a CR segment with the same
 reason-code SYS_CNCLD SHOULD be enqueued for transmission to the
 sender, and a reception-session cancellation notice (Section 7.6) is
 sent to the client service.

 Note that as in (Section 6.21), if there is no transmission queue-set
 bound for the sender (possibly because the local LTP engine is
 running on a receive-only device), or if the receiver knows that the
 sender of this green-part data is functioning in a "beacon"
 (transmit-only) fashion, a CR segment need not be sent.

Ramadas, et al. Experimental [Page 34]

RFC 5326 LTP - Specification September 2008

 There may be other implementation-specific limits that may cause an
 LTP implementation to initiate session-cancellation procedures. One
 such limit is the maximum number of retransmission-cycles seen. A
 retransmission cycle at the LTP Sender comprises the two related
 events: the transmission of all outstanding CP segments from the
 sender, and the reception of all RS segments issued from the receiver
 in response to those CP segments. A similar definition would apply
 at the LTP Receiver but relate to the reception of the CP segments
 and transmission of all RS segments in response. Note that the
 retransmitted CP and RS segments remain part of their original
 retransmission-cycle. Also, a single CP segment may cause multiple
 RS segments to be generated if a reception report would not fit in a
 single data link-MTU-sized RS segment; all RS segments that are part
 of a reception report belong to the same retransmission cycle to
 which the CP segment belongs. In the presence of severe channel
 error conditions, many retransmission cycles may elapse before red-
 part transmission is deemed successful; an implementation may
 therefore impose a retransmission-cycle limit to shield itself from a
 resource-crunch situation. If an LTP sender notices the
 retransmission-cycle limit being exceeded, it SHOULD initiate the
 Cancel Session procedure (Section 6.19), queuing a CS segment with
 reason-code RXMTCYCEXC and sending a transmission-session
 cancellation notice (Section 7.5) to the client service.

7. Notices to Client Service

 In all cases, the representation of notice parameters is a local
 implementation matter.

7.1. Session Start

 The Session Start notice returns the session ID identifying a newly
 created session.

 At the sender, the session start notice informs the client service of
 the initiation of the transmission session. On receiving this notice
 the client service may, for example, release resources of its own
 that are allocated to the block being transmitted, or remember the
 session ID so that the session can be canceled in the future if
 necessary. At the receiver, this notice indicates the beginning of a
 new reception session, and is delivered upon arrival of the first
 data segment carrying a new session ID.

Ramadas, et al. Experimental [Page 35]

RFC 5326 LTP - Specification September 2008

7.2. Green-Part Segment Arrival

 The following parameters are provided by the LTP engine when a green-
 part segment arrival notice is delivered:

 Session ID of the transmission session.

 Array of client service data bytes contained in the data segment.

 Offset of the data segment’s content from the start of the block.

 Length of the data segment’s content.

 Indication as to whether or not the last byte of this data
 segment’s content is also the end of the block.

 Source LTP engine ID.

7.3. Red-Part Reception

 The following parameters are provided by the LTP engine when a red-
 part reception notice is delivered:

 Session ID of the transmission session.

 Array of client service data bytes that constitute the red-part of
 the block.

 Length of the red-part of the block.

 Indication as to whether or not the last byte of the red-part is
 also the end of the block.

 Source LTP engine ID.

7.4. Transmission-Session Completion

 The sole parameter provided by the LTP engine when a transmission-
 session completion notice is delivered is the session ID of the
 transmission session.

 A transmission-session completion notice informs the client service
 that all bytes of the indicated data block have been transmitted and
 that the receiver has received the red-part of the block.

Ramadas, et al. Experimental [Page 36]

RFC 5326 LTP - Specification September 2008

7.5. Transmission-Session Cancellation

 The parameters provided by the LTP engine when a transmission-session
 cancellation notice is delivered are:

 Session ID of the transmission session.

 The reason-code sent or received in the Cx segment that initiated
 the cancellation sequence.

 A transmission-session cancellation notice informs the client service
 that the indicated session was terminated, either by the receiver or
 else due to an error or a resource quench condition in the local LTP
 engine. There is no assurance that the destination client service
 instance received any portion of the data block.

7.6. Reception-Session Cancellation

 The parameters provided by the LTP engine when a reception
 cancellation notice is delivered are:

 Session ID of the transmission session.

 The reason-code explaining the cancellation.

 A reception-session cancellation notice informs the client service
 that the indicated session was terminated, either by the sender or
 else due to an error or a resource quench condition in the local LTP
 engine. No subsequent delivery notices will be issued for this
 session.

7.7. Initial-Transmission Completion

 The session ID of the transmission session is included with the
 initial-transmission completion notice.

 This notice informs the client service that all segments of a block
 (both red-part and green-part) have been transmitted. This notice
 only indicates that original transmission is complete; retransmission
 of any lost red-part data segments may still be necessary.

Ramadas, et al. Experimental [Page 37]

RFC 5326 LTP - Specification September 2008

8. State Transition Diagrams

 The following mnemonics have been used in the sender and LTP receiver
 state transition diagrams that follow:

 TE Timer Expiry
 RDS Regular Red Data Segment (NOT {CP|EORP|EOB})
 GDS Regular Green Data Segment (NOT EOB)
 RL EXC Retransmission Limit Exceeded
 RP Red-Part
 GP Green-Part
 FG Fully-Green

 Note that blocks represented in rectangles, as in

 +---------+
 | FG_XMIT |
 +---------+

 specify actual states in the state-transition diagrams, while blocks
 represented with jagged edges, as in

 /\/\/\/\
 | Cncld |
 \/\/\/\/

 are either pointers to a state or place-holders for sequences of
 state transitions.

Ramadas, et al. Experimental [Page 38]

RFC 5326 LTP - Specification September 2008

8.1. Sender
 LTP Sender State Transition Diagram

 /\/\/\/\
 | Cncld |
 \/\/\/\/
 +--------+ | +------+
 Rcv CR; | V V V | Rcv RS;
 Snd CAR | +-------------+ | Snd RA
 +-------+ CLOSED +----+
 +---------------------------->+------+------+
 | | Blk. Trans. Req
 | Zero RP +
 | Xmit ________________________/ \ Non-Zero RP
 | GDS; / \
 | +---+ | +------------------+ | +------+
 | | V V | /\/\ Rcv RS V V V |
 | | +---------+ +<-| RX |<---+ +---------+ |
 | +<-+ FG_XMIT | | \/\/ +---+ +--->+ Xmit RDS;
 | +----+----+ | | RP_XMIT | |
 | | | /\/\ +---+ +--->+ Xmit {RDS, CP};
 +<--------+ +<-| CP |<---+ +-----+---+ Start CP Tmr
 | Xmit \/\/ CP TE | \
 | {GDS, EOB}; | |
 | Xmit {RDS, CP, EORP}; | +-------+
 | Start CP Tmr | |
 | | |
 | +------------------+ | +---+ | Xmit {RDS,
 | | /\/\ Rcv RS V V V | | CP, EORP,
 | +<-| RX |<---+ +---------+ | | EOB};
 | | \/\/ +---+ | | | Start
 | | | GP_XMIT +->+ | CP Tmr
	/\/\ +---+	Xmit
+<-	CP	<---+ +-----+---+ GDS;
\/\/ CP TE		
Xmit {GDS, EOB};	+---------+	
+------------------+		
	/\/\ Rcv RS V V V	
+<-	RX	<---+ +-------------+
	\/\/ +---+	
		WAIT_RP_ACK
	/\/\ +---+	
+<-	CP	<---+ +-----+-------+
\/\/ CP TE	RP acknowledged fully;	
V		
 +--+

Ramadas, et al. Experimental [Page 39]

RFC 5326 LTP - Specification September 2008

 LTP Sender State Transition Diagram (contd.)

 /\/\ /\/\
 |CP| |CX |
 \/\/ \/\/
 | | | Snd CS,
 | | RL EXC; | Start CS Tmr;
 | | |
 | | /\/\ | +---+
 | +------>| CX | V V |
 | \/\/ +---------+ | CS TE,
 | | CS_SENT | | RL NOT EXC;
 V RL NOT EXC; +-+--+--+-+ | Rxmt CS,
 Rxmt CP, | | | | Restart
 Start CP Tmr; CS TE, | | +---+ CS Tmr
 RL EXC; | |
 | | Rcv CAS;
 V V
 /\/\/\/\
 | Cncld |
 \/\/\/\/

 /\/\
 | RX |
 \/\/
 | Cncl CP Tmr (if any)
 V Snd RA
 +---------+ +----+
 | CHK_RPT | | |
 +-+--+----+ RP in scope V |
 | | \ NOT rcvd. fully +---------+ | Rxmt
 Redundant | | RP +--------------------->| RP_RXMT | | missing
 RS rcvd; | | in scope +----+--+-+ | RDS;
 | | rcvd. fully | | |
 V V Rxmt last | +----+
 missing RDS |
 (marked CP) |
 Start CP Tmr; |
 V

 Asynchronous cancel request may be received from the local client
 service while the LTP sender is in any of the states shown. If it
 was not already in the sequence of state transitions beginning at the
 CX marker, the internal procedure Cancel Session (Section 6.19) is
 followed, and the LTP sender moves from its current state into the
 sequence beginning at the CX marker initiating session cancellation
 with reason-code USR_CNCLD. From the CX marker, the CS segment with
 appropriate reason-code (USR_CNCLD or RLEXC depending on how the CX

Ramadas, et al. Experimental [Page 40]

RFC 5326 LTP - Specification September 2008

 sequence was entered) is queued for transmission to the LTP receiver
 and the sender enters the Cancel-from-Sender Sent (CS_SENT) state.
 The internal procedure Start Cancel Timer (Section 6.15) is started
 upon receiving a link state cue indicating the beginning of
 transmission of the CS segment. Upon receiving the acknowledging CAS
 segment from the receiver, the LTP sender moves to the CLOSED state
 (via the ’Cncld’ pointer). If the CS timer expires, the internal
 procedure Retransmit Cancellation Segment (Section 6.16) is followed:

 - If the network management set retransmission limit is exceeded,
 the session is simply closed and the LTP sender follows the
 Cncld marker to the CLOSED state. If the retransmission limit
 is not exceeded however, the CS segment is queued for a
 retransmission and the LTP sender stays in the CS_SENT state.
 The CS timer is started upon receiving a link state cue
 indicating the beginning of actual transmission according to the
 internal procedure Start Cancel Timer (Section 6.15).

 Asynchronous cancel request may also be received from the receiver
 LTP in the form of a CR segment when the LTP sender is in any of the
 states. Upon receiving such a CR segment, the internal procedure
 Acknowledge Cancellation (Section 6.17) is invoked: The LTP sender
 sends a CAR segment in response and returns to the CLOSED state.

 The LTP sender stays in the CLOSED state until receiving a Block
 Transmission Request (Blk. Trans. Req) from the client service
 instance. Upon receiving the request, it moves to either the Fully
 Green Transmission State (FG_XMIT) if no portion of the block was
 requested to be transmitted as red or to the Red-Part Transmission
 State (RP_XMIT) state if a non-zero block-prefix was requested to be
 transmitted red.

 In the FG_XMIT state, the block is segmented as multiple green LTP
 data segments respecting the link MTU size and the segments are
 queued for transmission to the remote engine. The last such segment
 is marked as EOB, and the LTP sender returns to the CLOSED state
 after queuing it for transmission.

 Similarly, from the RP_XMIT state, multiple red data segments are
 queued for transmission, respecting the link MTU size. The sender
 LTP may optionally mark some of the red data segments as asynchronous
 checkpoints; the internal procedure Start Checkpoint Timer (Section
 6.2) is followed upon receiving a link state cue indicating the
 transmission of the asynchronous checkpoints. If the block
 transmission request comprises a non-zero green part, the LTP sender
 marks the last red data segment as CP and EORP, and after queuing it
 for transmission, moves to the Green Part Transmission (GP_XMIT)
 state. If the block transmission request was fully red however, the

Ramadas, et al. Experimental [Page 41]

RFC 5326 LTP - Specification September 2008

 last red data segment is marked as CP, EORP, and EOB and the sender
 LTP moves directly to the Wait-for-Red-Part-Acknowledgment
 (WAIT_RP_ACK) state. In both of the above state-transitions, the
 internal procedure Start Checkpoint Timer (Section 6.2) is followed
 upon receiving a link state cue indicating the beginning of
 transmission of the queued CP segments. In the GP_XMIT state, the
 green-part of the block is segmented as green data segments and
 queued for transmission to the LTP receiver; the last green segment
 of the block is additionally marked as EOB, and after queueing it for
 transmission the LTP sender moves to the WAIT_RP_ACK state.

 While the LTP sender is at any of the RP_XMIT, GP_XMIT, or
 WAIT_RP_ACK states, it might be interrupted by the occurrence of the
 following events:

 1. An RS might be received from the LTP receiver (either in
 response to a previously transmitted CP segment or sent
 asynchronously for accelerated retransmission). The LTP sender
 then moves to perform the sequence of state transitions
 beginning at the RX marker (second part of the diagram), and
 retransmits data if necessary, illustrating the internal
 procedure Retransmit Data (Section 6.13):

 First, if the RS segment had a non-zero CP serial number, the
 corresponding CP timer is canceled. Then an RA segment
 acknowledging the received RS segment is queued for
 transmission to the LTP receiver and the LTP sender moves to
 the Check Report state (CHK_RPT). If the RS segment was
 redundantly transmitted by the LTP receiver (possibly because
 either the last transmitted RA segment got lost or the RS
 segment timer expired prematurely at the receiver), the LTP
 sender does nothing more and returns back to the interrupted
 state. Similarly, if all red data within the scope of the RS
 segment is reported as received, there is no work to be done
 and the LTP sender returns to the interrupted state. However,
 if the RS segment indicated incomplete reception of data within
 its scope, the LTP sender moves to the Red-Part Retransmit
 state (RP_RXMT) where missing red data segments within scope
 are queued for transmission. The last such segment is marked
 as a CP, and the LTP sender returns to the interrupted state.
 The internal procedure (Section 6.2) is followed upon receiving
 a link state cue indicating the beginning of transmission of
 the CP segment.

 2. A previously set CP timer might expire. Now the LTP sender
 follows the states beginning at the CP marker (second part of
 the diagram), and follows the internal procedure Retransmit
 Checkpoint (Section 6.7):

Ramadas, et al. Experimental [Page 42]

RFC 5326 LTP - Specification September 2008

 If the CP Retransmission Limit set by network management for
 the session has been exceeded, the LTP sender proceeds towards
 canceling the session (with reason-code RLEXC) as indicated by
 the sequence of state transitions following the CX marker.
 Otherwise (if the Retransmission Limit is not exceeded yet),
 the CP segment is queued for retransmission and the LTP sender
 returns to the interrupted state. The internal procedure Start
 Checkpoint Timer (Section 6.2) is started again upon receiving
 a link state cue indicating the beginning of transmission of
 the segment.

 The LTP sender stays at the WAIT_RP_ACK state after reaching it until
 the red-part data is fully acknowledged as received by the receiver
 LTP, and then returns to the CLOSED state following the internal
 procedure Close Session (Section 6.20).

 Note that while at the CLOSED state, the LTP sender might receive an
 RS segment (if the last transmitted RA segment before session close
 got lost or if the LTP receiver retransmitted the RS segment
 prematurely), in which case it retransmits an acknowledging RA
 segment and stays in the CLOSED state. If the session was canceled
 by the receiver by issuing a CR segment, the receiver may retransmit
 the CR segment (either prematurely or because the acknowledging CAR
 segment got lost). In this case, the LTP sender retransmits the
 acknowledging CAR segment and stays in the CLOSED state.

Ramadas, et al. Experimental [Page 43]

RFC 5326 LTP - Specification September 2008

8.2. Receiver
 LTP Receiver State Transition Diagram

 /\/\/\/\
 +----+ +----+ Cncld |
 Rcv CS; | V V \/\/\/\/
 Snd CAS | +-------------+
 +--+ CLOSED +<--------------------------+
 +------+------+ |
 +----+ | Rcv first DS |
 Rcv RA; | V V |
 Cncl RS Tmr | +--------+ |
 +---+ DS_REC | |
 +----------------------------->+-+--+-+-+<----------------------+---+ |
Svc. does not exist			RS TE			
/\/\ or Rcv miscolored seg.			/\/\			
	CX	<-----------------------+	+------------->	RX	---->+	
\/\/	\/\/					
Rcv RDS;	Rcv GDS;					
+-----------+------------+						
V V						
/\/\ RS TE +--------------+ +--------+						
+<-	RX	<------+ RCV_RP		RCV_GP		
\/\/ +-+----+--+--+-+ +--+-+-+-+						
Rcvd RDS;				Rcvd {RDS, CP,		
				EORP, EOB};		+------>
+<----------------+			Snd RS,		\/\/	
			Start RS Tmr		Rcvd GDS;	
Rcvd {RDS, CP};				+---------------->+		
Snd RS, Start RS Tmr		+-------+ +-----+				
+<---------------------+			Rcvd {GDS, EOB};			
	+-----+		+------+			
Rcvd {RDS, CP, EORP};		V V V V				
Snd RS, Start RS Tmr		+----------------+	Rcv RDS;			
			+-->+			
			WAIT_RP_REC		Rcv {RDS, CP};	
			+-->+ Snd RS, Start			
 +<------------------------+ | +---+--+-+-+-----+ | RS Tmr |
 | RS TE | | | | Rcv RA; | |
 | V | | | Cncl | |
 | /\/\ | | | RS Tmr | |
 +---| RX | | | +-------->+ |
 \/\/ | | |
 /\/\ | | |
 | CX |<------------------------+ | RP rcvd. fully |
 \/\/ Rcv miscolored seg. +--------------------------->+

Ramadas, et al. Experimental [Page 44]

RFC 5326 LTP - Specification September 2008

 Receiver State Transition Diagram (contd.)

 /\/\
 | RX |
 \/\/
 | |
 | | RL EXC; /\/\
 RL NOT EXC; | +---------->| CX |
 Rxmt RS, | \/\/
 Start RS Tmr |
 V

 /\/\
 | CX |
 \/\/
 | Snd CR,
 | Start CR Tmr;
 |
 | +----+
 V V |
 +---------+ | CR TE,
 | CR_SENT | | RL NOT EXC;
 +-+--+--+-+ | Rxmt CR,
 | | | | Restart
 CR TE, | | +---+ CR Tmr
 RL EXC; | |
 | | Rcv CAR;
 V V
 /\/\/\/\
 | Cncld |
 \/\/\/\/

 Asynchronous cancel requests are handled in a manner similar to the
 way they are handled in the LTP sender. If the cancel request was
 made from the local client service instance and the LTP receiver was
 not already in the CR_SENT state, a CR segment with reason-code
 USR_CNCLD SHOULD be sent to the LTP sender following the sequence of
 state transitions beginning at the CX marker as described above. If
 the asynchronous cancel request is received from the LTP sender, a
 CAS segment is sent and the LTP receiver moves to the CLOSED state
 (independent of the state the LTP receiver may be in).

 The LTP receiver begins at the CLOSED state and enters the Data
 Segment Reception (DS_REC) state upon receiving the first data
 segment. If the client service ID referenced in the data segment was
 non-existent, a Cx segment with reason-code UNREACH SHOULD be sent to
 the LTP sender via the Cancellation sequence beginning with the CX
 marker (second part of the diagram). If the received segment was

Ramadas, et al. Experimental [Page 45]

RFC 5326 LTP - Specification September 2008

 found to be miscolored, the internal procedure Handle Miscolored
 Segment (Section 6.21) is followed, and a CX segment with reason-code
 MISCOLORED SHOULD be sent to the LTP sender with the Cancellation
 sequence beginning with the CX marker.

 Otherwise, the LTP receiver enters the Receive Red-Part state
 (RCV_RP) or the Receive Green-Part state (RCV_GP) depending on
 whether the segment received was red or green, respectively.

 In the RCV_RP state, a check is made of the nature of the received
 red DS. If the segment was a regular red data segment, the receiver
 LTP just returns to the DS_REC state. For red data segments marked
 also as CP and as CP & EORP, a responding RS segment is queued for
 transmission to the sender following either the internal procedure
 Retransmit RS (Section 6.8) or Send Reception Report (Section 6.11)
 depending on whether the CP segment was a retransmission (an RS
 segment corresponding to the checkpoint serial number in the CP
 segment was previously issued) or not, respectively. The LTP
 receiver then returns to the DS_REC state. If the block transmission
 was fully red and the segment was marked as CP, EORP, and EOB, the
 LTP receiver enters the Wait-for-Red-Part-Reception state
 (WAIT_RP_REC). In all cases, the internal procedure Start RS Timer
 (Section 6.3) is followed upon receiving link state cues indicating
 the beginning of transmission of the RS segments.

 In the RCV_GP state, if the received green data segment was not
 marked EOB, the LTP receiver returns to the DS_REC state. Otherwise,
 it enters the WAIT_RP_REC state to receive the red-part of the block
 fully.

 A previously set RS timer may expire and interrupt the LTP receiver
 while in the DS_REC, RCV_RP, RCV_GP, or WAIT_RP_REC state. If so,
 the internal procedure Retransmit RS (Section 6.8) is followed as
 illustrated in the states beginning at the RX marker (shown in the
 second part of the diagram) before returning to the interrupted
 state:

 - A check is made here to see if the retransmission limit set by
 the network management has been exceeded in the number of RSs
 sent in the session. If so, a CR segment with reason-code RLEXC
 SHOULD be sent to the LTP sender and the sequence indicated by
 the CX marker is followed. Otherwise, the RS segment is queued
 for retransmission and the associated RS timer is started
 following the internal procedure Start RS Timer (Section 6.3)
 upon receiving a link state cue indicating the beginning of its
 transmission.

Ramadas, et al. Experimental [Page 46]

RFC 5326 LTP - Specification September 2008

 The LTP receiver may also receive RA segments from the sender in
 response to the RS segments sent while in the DS_REC state. If so,
 then the RS timer corresponding to the report serial number mentioned
 in the RA segment is canceled following the internal procedure Stop
 RS Timer (Section 6.14).

 The LTP receiver stays in the WAIT_RP_REC state until the entire red-
 part of the block is received, and moves to the CLOSED state upon
 full red-part reception. In this state, a check is made upon
 reception of every red-part data segment to see if it is at a block
 offset higher than any green-part data segment received. If so, the
 internal procedure Handle Miscolored Segment (Section 6.21) is
 invoked and the sequence of state transitions beginning with the CX
 marker is followed; a CX segment with reason-code MISCOLORED SHOULD
 be sent to the LTP sender with the Cancellation sequence beginning
 with the CX marker.

 Note that if there were no red data segments received in the session
 yet, including the case where the session was indeed fully green or
 the pathological case where the entire red-part of the block gets
 lost but at least the green data segment marked EOB is received (the
 LTP receiver has no indication of whether the session had a red-part
 transmission), the LTP receiver assumes the "RP rcvd. fully"
 condition to be true and moves to the CLOSED state from the
 WAIT_RP_REC state.

 In the WAIT_RP_REC state, the LTP receiver may receive the
 retransmitted red data segments. Upon receiving red data segments
 marked CP, it queues the responding RS segment for transmission based
 on either internal procedure Retransmit RS (Section 6.8) or Send
 Reception Report (Section 6.11) depending on whether the CP was found
 to be a retransmission or not, respectively. The internal procedure
 Start RS Timer is invoked upon receiving a link state cue indicating
 the beginning of transmission of the RS segment. If an RA segment is
 received, the RS timer corresponding to the report segment mentioned
 is canceled and the LTP receiver stays in the state until the entire
 red-part is received.

 In the sequence of state transitions beginning at the CX marker, the
 CR segment with the given reason-code (depending on how the sequence
 is entered) is queued for transmission, and the CR timer is started
 upon reception of the link state cue indicating actual transmission
 following the internal procedure Start Cancel Timer (Section 6.15).
 If the CAR segment is received from the LTP sender, the LTP receiver
 returns to the CLOSED state (via the Cncld marker) following the
 internal procedure Stop Cancel Timer (Section 6.18). If the CR timer
 expires asynchronously, the internal procedure Retransmit
 Cancellation Segment (Section 6.16) is followed:

Ramadas, et al. Experimental [Page 47]

RFC 5326 LTP - Specification September 2008

 - A check is made to see if the retransmission limit set by the
 network management for the number of CR segments per session has
 been exceeded. If so, the LTP receiver returns to the CLOSED
 state following the Cncld marker. Otherwise, a CR segment is
 scheduled for retransmission with the CR timer being started
 following the internal procedure Start Cancel Timer (Section
 6.15) upon reception of a link state cue indicating actual
 transmission.

 The LTP receiver might also receive a retransmitted CS segment at the
 CLOSED state (either if the CAS segment previously transmitted was
 lost or if the CS timer expired prematurely at the LTP sender). In
 such a case, the CAS is scheduled for retransmission.

9. Security Considerations

9.1. Denial of Service Considerations

 Implementers SHOULD consider the likelihood of the following Denial
 of Service (DoS) attacks:

 - A fake Cx could be inserted, thus bringing down a session.

 - Various acknowledgment segments (RA, RS, etc.) could be deleted,
 causing timers to expire, and having the potential to disable
 communication altogether if done with a knowledge of the
 communications schedule. This could be achieved either by
 mounting a DoS attack on a lower-layer service in order to
 prevent it from sending an acknowledgment segment, or by simply
 jamming the transmission (all of which are more likely for
 terrestrial applications of LTP).

 - An attacker might also corrupt some bits, which is tantamount to
 deleting that segment.

 - An attacker may flood an LTP engine with segments for the
 internal operations queue and prevent transmission of legitimate
 data segments.

Ramadas, et al. Experimental [Page 48]

RFC 5326 LTP - Specification September 2008

 - An attacker could attempt to fill up the storage in an engine by
 sending many large messages to it. In terrestrial LTP
 applications, this may be much more serious since spotting the
 additional traffic may not be possible from any network
 management point.

 If any of the above DoS attacks is likely, then one or more of the
 following anti-DoS mechanisms ought to be employed:

 - Session numbers SHOULD be partly random making it harder to
 insert valid segments.

 - An engine that suspects that either it or its peer is under DoS
 attack could frequently checkpoint its data segments (if it were
 the sender) or send asynchronous RSs (if it were the receiver),
 thus eliciting an earlier response from its peer or timing out
 earlier due to the failure of an attacker to respond.

 - Serial numbers (checkpoint serial numbers, report serial
 numbers) MUST begin each session anew using random numbers
 rather than from 0.

 - The authentication header [LTPEXT].

9.2. Replay Handling

 The following algorithm is given as an example of how an LTP
 implementation MAY handle replays.

 1. On receipt of an LTP segment, check against a cache for replay.
 If this is a replay segment and if a pre-cooked response is
 available (stored from the last time this segment was processed),
 then send the pre-cooked response. If there is no pre-cooked
 response, then silently drop the inbound segment. This can all be
 done without attempting to decode the buffer.

 2. If the inbound segment does not decode correctly, then silently
 drop the segment. If the segment decodes properly, then add its
 hash to the replay cache and return a handle to the entry.

 3. For those cases where a pre-cooked response should be stored,
 store the response using the handle received from the previous
 step. These cases include:

 (a) when the inbound packet is a CP segment, the RS segment sent
 in response gets stored as pre-cooked,

Ramadas, et al. Experimental [Page 49]

RFC 5326 LTP - Specification September 2008

 (b) when the Incoming packet is an RS segment, the RA segment is
 stored as pre-cooked, and

 (c) when the incoming packet is a Cx segment, the CAx segment sent
 in response gets stored pre-cooked.

 4. Occasionally clean out the replay cache -- how frequently this
 happens is an implementation issue.

 The downside of this algorithm is that receiving a totally bogus
 segment still results in a replay cache search and attempted LTP
 decode operation. It is not clear that it is possible to do much
 better though, since all an attacker would have to do to get past the
 replay cache would be to tweak a single bit in the inbound segment
 each time, which is certainly cheaper than the hash+lookup+decode
 combination, though also certainly more expensive than simply sending
 the same octets many times.

 The benefit of doing this is that implementers no longer need to
 analyze many bugs/attacks based on replaying packets, which in
 combination with the use of LTP authentication should defeat many
 attempted DoS attacks.

9.3. Implementation Considerations

 SDNV

 Implementations SHOULD make sanity checks on SDNV length fields
 and SHOULD check that no SDNV field is too long when compared with
 the overall segment length.

 Implementations SHOULD check that SDNV values are within suitable
 ranges where possible.

 Byte ranges

 Various report and other segments contain offset and length
 fields. Implementations MUST ensure that these are consistent and
 sane.

 Randomness

 Various fields in LTP (e.g., serial numbers) MUST be initialized
 using random values. Good sources of randomness that are not
 easily guessable SHOULD be used [ESC05]. The collision of random
 values is subject to the birthday paradox, which means that a
 collision is likely after roughly the square root of the space has
 been seen (e.g., 2^16 in the case of a 32-bit random value).

Ramadas, et al. Experimental [Page 50]

RFC 5326 LTP - Specification September 2008

 Implementers MUST ensure that they use sufficiently long random
 values so that the birthday paradox doesn’t cause a problem in
 their environment.

10. IANA Considerations

10.1. UDP Port Number for LTP

 The UDP port number 1113 with the name "ltp-deepspace" has been
 reserved for LTP deployments. An LTP implementation may be
 implemented to operate over UDP datagrams using this port number for
 study and testing over the Internet.

10.2. LTP Extension Tag Registry

 The IANA has created and now maintains a registry for known LTP
 Extension Tags (as indicated in Section 3.1). The registry has been
 populated using the initial values given in Section 3.1 above. IANA
 may assign LTP Extension Tag values from the range 0x02-0xAF
 (inclusive) using the Specification Required rule [GUIDE]. The
 specification concerned can be an RFC (whether Standards Track,
 Experimental, or Informational), or a specification from any other
 standards development organization recognized by IANA or with a
 liaison with the IESG, specifically including CCSDS
 (http://www.ccsds.org/). Any use of Reserved values (0xB0-0xBF
 inclusive) requires an update this specification.

11. Acknowledgments

 Many thanks to Tim Ray, Vint Cerf, Bob Durst, Kevin Fall, Adrian
 Hooke, Keith Scott, Leigh Torgerson, Eric Travis, and Howie Weiss for
 their thoughts on this protocol and its role in Delay-Tolerant
 Networking architecture.

 Part of the research described in this document was carried out at
 the Jet Propulsion Laboratory, California Institute of Technology,
 under a contract with the National Aeronautics and Space
 Administration. This work was performed under DOD Contract DAA-B07-
 00-CC201, DARPA AO H912; JPL Task Plan No. 80-5045, DARPA AO H870;
 and NASA Contract NAS7-1407.

 Thanks are also due to Shawn Ostermann, Hans Kruse, Dovel Myers, and
 Jayram Deshpande at Ohio University for their suggestions and advice
 in making various design decisions. This work was done when
 Manikantan Ramadas was a graduate student at the EECS Dept., Ohio
 University, in the Internetworking Research Group Laboratory.

Ramadas, et al. Experimental [Page 51]

RFC 5326 LTP - Specification September 2008

 Part of this work was carried out at Trinity College Dublin as part
 of the SeNDT contract funded by Enterprise Ireland’s research
 innovation fund.

12. References

12.1. Normative References

 [B97] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [GUIDE] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226, May
 2008.

 [LTPMTV] Burleigh, S., Ramadas, M., and S. Farrell,"Licklider
 Transmission Protocol - Motivation", RFC 5325, September
 2008.

 [LTPEXT] Farrell, S., Ramadas, M., and S. Burleigh, "Licklider
 Transmission Protocol - Security Extensions", RFC 5327,
 September 2008.

12.2. Informative References

 [ASN1] Abstract Syntax Notation One (ASN.1). ASN.1 Encoding Rules:
 Specification of Basic Encoding Rules (BER), Canonical
 Encoding Rules (CER), and Distinguished Encoding Rules
 (DER). ITU-T Rec. X.690 (2002) | ISO/IEC 8825-1:2002.

 [BP] Scott, K. and S. Burleigh, "Bundle Protocol Specification",
 RFC 5050, November 2007.

 [DTN] K. Fall, "A Delay-Tolerant Network Architecture for
 Challenged Internets", In Proceedings of ACM SIGCOMM 2003,
 Karlsruhe, Germany, Aug 2003.

 [ESC05] D. Eastlake, J. Schiller and S. Crockerr, "Randomness
 Recommendations for Security", RFC 4086, June 2005.

 [SACK] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, "TCP
 Selective Acknowledgement Options", RFC 2018, October 1996.

Ramadas, et al. Experimental [Page 52]

RFC 5326 LTP - Specification September 2008

Authors’ Addresses

 Manikantan Ramadas
 ISRO Telemetry Tracking and Command Network (ISTRAC)
 Indian Space Research Organization (ISRO)
 Plot # 12 & 13, 3rd Main, 2nd Phase
 Peenya Industrial Area
 Bangalore 560097
 India
 Telephone: +91 80 2364 2602
 EMail: mramadas@gmail.com

 Scott C. Burleigh
 Jet Propulsion Laboratory
 4800 Oak Grove Drive
 M/S: 301-490
 Pasadena, CA 91109-8099
 Telephone: +1 (818) 393-3353
 Fax: +1 (818) 354-1075
 EMail: Scott.Burleigh@jpl.nasa.gov

 Stephen Farrell
 Computer Science Department
 Trinity College Dublin
 Ireland
 Telephone: +353-1-896-1761
 EMail: stephen.farrell@cs.tcd.ie

Ramadas, et al. Experimental [Page 53]

RFC 5326 LTP - Specification September 2008

Full Copyright Statement

 Copyright (C) The IETF Trust (2008).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78 and at http://www.rfc-editor.org/copyright.html,
 and except as set forth therein, the authors retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Ramadas, et al. Experimental [Page 54]

