
Network Working Group N. Freed
Request for Comments: 5260 Sun Microsystems
Category: Standards Track July 2008

 Sieve Email Filtering: Date and Index Extensions

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Abstract

 This document describes the "date" and "index" extensions to the
 Sieve email filtering language. The "date" extension gives Sieve the
 ability to test date and time values in various ways. The "index"
 extension provides a means to limit header and address tests to
 specific instances of header fields when header fields are repeated.

Table of Contents

 1. Introduction . 2
 2. Conventions Used in This Document 2
 3. Capability Identifiers . 3
 4. Date Test . 3
 4.1. Zone and Originalzone Arguments 4
 4.2. Date-part Argument . 4
 4.3. Comparator Interactions with Date-part Arguments 5
 4.4. Examples . 6
 5. Currentdate Test . 6
 5.1. Examples . 6
 6. Index Extension . 7
 6.1. Example . 8
 7. Security Considerations 8
 8. IANA Considerations . 9
 9. References . 9
 9.1. Normative References 9
 9.2. Informative References 10
 Appendix A. Julian Date Conversions 11
 Appendix B. Acknowledgements 12

Freed Standards Track [Page 1]

RFC 5260 Sieve Date and Index Extensions July 2008

1. Introduction

 Sieve [RFC5228] is a language for filtering email messages at or
 around the time of final delivery. It is designed to be
 implementable on either a mail client or mail server. It is meant to
 be extensible, simple, and independent of access protocol, mail
 architecture, and operating system. It is suitable for running on a
 mail server where users may not be allowed to execute arbitrary
 programs, such as on black box Internet Message Access Protocol
 [RFC3501] servers, as it does not have user-controlled loops or the
 ability to run external programs.

 The "date" extension provides a new date test to extract and match
 date/time information from structured header fields. The date test
 is similar in concept to the address test specified in [RFC5228],
 which performs similar operations on addresses in header fields.

 The "date" extension also provides a currentdate test that operates
 on the date and time when the Sieve script is executed.

 Some header fields containing date/time information, e.g., Received:,
 naturally occur more than once in a single header. In such cases it
 is useful to be able to restrict the date test to some subset of the
 fields that are present. For example, it may be useful to apply a
 date test to the last (earliest) Received: field. Additionally, it
 may also be useful to apply similar restrictions to either the header
 or address tests specified in [RFC5228].

 For this reason, this specification also defines an "index"
 extension. This extension adds two additional tagged arguments
 :index and :last to the header, address, and date tests. If present,
 these arguments specify which occurrence of the named header field is
 to be tested.

2. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 The terms used to describe the various components of the Sieve
 language are taken from Section 1.1 of [RFC5228]. Section 2 of the
 same document describes basic Sieve language syntax and semantics.
 The date-time syntactic element defined using ABNF notation [RFC5234]
 in [RFC3339] is also used here.

Freed Standards Track [Page 2]

RFC 5260 Sieve Date and Index Extensions July 2008

3. Capability Identifiers

 The capability strings associated with the two extensions defined in
 this document are "date" and "index".

4. Date Test

 Usage: date [<":zone" <time-zone: string>> / ":originalzone"]
 [COMPARATOR] [MATCH-TYPE] <header-name: string>
 <date-part: string> <key-list: string-list>

 The date test matches date/time information derived from headers
 containing [RFC2822] date-time values. The date/time information is
 extracted from the header, shifted to the specified time zone, and
 the value of the given date-part is determined. The test returns
 true if the resulting string matches any of the strings specified in
 the key-list, as controlled by the comparator and match keywords.
 The date test returns false unconditionally if the specified header
 field does not exist, the field exists but does not contain a
 syntactically valid date-time specification, the date-time isn’t
 valid according to the rules of the calendar system (e.g., January
 32nd, February 29 in a non-leap year), or the resulting string fails
 to match any key-list value.

 The type of match defaults to ":is" and the default comparator is
 "i;ascii-casemap".

 Unlike the header and address tests, the date test can only be
 applied to a single header field at a time. If multiple header
 fields with the same name are present, only the first field that is
 found is used. (Note, however, that this behavior can be modified
 with the "index" extension defined below.) These restrictions
 simplify the test and keep the meaning clear.

 The "relational" extension [RFC5231] adds a match type called
 ":count". The count of a date test is 1 if the specified field
 exists and contains a valid date; 0, otherwise.

 Implementations MUST support extraction of RFC 2822 date-time
 information that either makes up the entire header field (e.g., as it
 does in a standard Date: header field) or appears at the end of a
 header field following a semicolon (e.g., as it does in a standard
 Received: header field). Implementations MAY support extraction of
 date and time information in RFC2822 or other formats that appears in
 other positions in header field content. In the case of a field
 containing more than one date or time value, the last one that
 appears SHOULD be used.

Freed Standards Track [Page 3]

RFC 5260 Sieve Date and Index Extensions July 2008

4.1. Zone and Originalzone Arguments

 The :originalzone argument specifies that the time zone offset
 originally in the extracted date-time value should be retained. The
 :zone argument specifies a specific time zone offset that the date-
 time value is to be shifted to prior to testing. It is an error to
 specify both :zone and :originalzone.

 The value of time-zone MUST be an offset relative to UTC with the
 following syntax:

 time-zone = ("+" / "-") 4DIGIT

 The "+" or "-" indicates whether the time-of-day is ahead of (i.e.,
 east of) or behind (i.e., west of) UTC. The first two digits
 indicate the number of hours difference from Universal Time, and the
 last two digits indicate the number of minutes difference from
 Universal Time. Note that this agrees with the RFC 2822 format for
 time zone offsets, not the ISO 8601 format.

 If both the :zone and :originalzone arguments are omitted, the local
 time zone MUST be used.

4.2. Date-part Argument

 The date-part argument specifies a particular part of the resulting
 date/time value to match against the key-list. Possible case-
 insensitive values are:

 "year" => the year, "0000" .. "9999".
 "month" => the month, "01" .. "12".
 "day" => the day, "01" .. "31".
 "date" => the date in "yyyy-mm-dd" format.
 "julian" => the Modified Julian Day, that is, the date
 expressed as an integer number of days since
 00:00 UTC on November 17, 1858 (using the Gregorian
 calendar). This corresponds to the regular
 Julian Day minus 2400000.5. Sample routines to
 convert to and from modified Julian dates are
 given in Appendix A.
 "hour" => the hour, "00" .. "23".
 "minute" => the minute, "00" .. "59".
 "second" => the second, "00" .. "60".
 "time" => the time in "hh:mm:ss" format.
 "iso8601" => the date and time in restricted ISO 8601 format.
 "std11" => the date and time in a format appropriate
 for use in a Date: header field [RFC2822].

Freed Standards Track [Page 4]

RFC 5260 Sieve Date and Index Extensions July 2008

 "zone" => the time zone in use. If the user specified a
 time zone with ":zone", "zone" will
 contain that value. If :originalzone is specified
 this value will be the original zone specified
 in the date-time value. If neither argument is
 specified the value will be the server’s default
 time zone in offset format "+hhmm" or "-hhmm". An
 offset of 0 (Zulu) always has a positive sign.
 "weekday" => the day of the week expressed as an integer between
 "0" and "6". "0" is Sunday, "1" is Monday, etc.

 The restricted ISO 8601 format is specified by the date-time ABNF
 production given in [RFC3339], Section 5.6, with the added
 restrictions that the letters "T" and "Z" MUST be in upper case, and
 a time zone offset of zero MUST be represented by "Z" and not
 "+00:00".

4.3. Comparator Interactions with Date-part Arguments

 Not all comparators are suitable with all date-part arguments. In
 general, the date-parts can be compared and tested for equality with
 either "i;ascii-casemap" (the default) or "i;octet", but there are
 two exceptions:

 julian This is an integer, and may or may not have leading zeros.
 As such, "i;ascii-numeric" is almost certainly the best
 comparator to use with it.

 std11 This is provided as a means to obtain date/time values in a
 format appropriate for inclusion in email header fields. The
 wide range of possible syntaxes for a std11 date/time --
 which implementations of this extension are free to use when
 composing a std11 string -- makes this format a poor choice
 for comparisons. Nevertheless, if a comparison must be
 performed, this is case-insensitive, and therefore "i;ascii-
 casemap" needs to be used.

 "year", "month", "day", "hour", "minute", "second" and "weekday" all
 use fixed-width string representations of integers, and can therefore
 be compared with "i;octet", "i;ascii-casemap", and "i;ascii-numeric"
 with equivalent results.

 "date" and "time" also use fixed-width string representations of
 integers, and can therefore be compared with "i;octet" and "i;ascii-
 casemap"; however, "i;ascii-numeric" can’t be used with it, as
 "i;ascii-numeric" doesn’t allow for non-digit characters.

Freed Standards Track [Page 5]

RFC 5260 Sieve Date and Index Extensions July 2008

4.4. Examples

 The Date: field can be checked to test when the sender claims to have
 created the message and act accordingly:

 require ["date", "relational", "fileinto"];
 if allof(header :is "from" "boss@example.com",
 date :value "ge" :originalzone "date" "hour" "09",
 date :value "lt" :originalzone "date" "hour" "17")
 { fileinto "urgent"; }

 Testing the initial Received: field can provide an indication of when
 a message was actually received by the local system:

 require ["date", "relational", "fileinto"];
 if anyof(date :is "received" "weekday" "0",
 date :is "received" "weekday" "6")
 { fileinto "weekend"; }

5. Currentdate Test

 Usage: currentdate [":zone" <time-zone: string>]
 [COMPARATOR] [MATCH-TYPE]
 <date-part: string>
 <key-list: string-list>

 The currentdate test is similar to the date test, except that it
 operates on the current date/time rather than a value extracted from
 the message header. In particular, the ":zone" and date-part
 arguments are the same as those in the date test.

 All currentdate tests in a single Sieve script MUST refer to the same
 point in time during execution of the script.

 The :count value of a currentdate test is always 1.

5.1. Examples

 The simplest use of currentdate is to have an action that only
 operates at certain times. For example, a user might want to have
 messages redirected to their pager after business hours and on
 weekends:

Freed Standards Track [Page 6]

RFC 5260 Sieve Date and Index Extensions July 2008

 require ["date", "relational"];
 if anyof(currentdate :is "weekday" "0",
 currentdate :is "weekday" "6",
 currentdate :value "lt" "hour" "09",
 currentdate :value "ge" "hour" "17")
 { redirect "pager@example.com"; }

 Currentdate can be used to set up vacation [RFC5230] responses in
 advance and to stop response generation automatically:

 require ["date", "relational", "vacation"];
 if allof(currentdate :value "ge" "date" "2007-06-30",
 currentdate :value "le" "date" "2007-07-07")
 { vacation :days 7 "I’m away during the first week in July."; }

 Currentdate may also be used in conjunction with the variables
 extension to pass time-dependent arguments to other tests and
 actions. The following Sieve places messages in a folder named
 according to the current month and year:

 require ["date", "variables", "fileinto"];
 if currentdate :matches "month" "*" { set "month" "${1}"; }
 if currentdate :matches "year" "*" { set "year" "${1}"; }
 fileinto "${month}-${year}";

 Finally, currentdate can be used in conjunction with the editheader
 extension to insert a header-field containing date/time information:

 require ["variables", "date", "editheader"];
 if currentdate :matches "std11" "*"
 {addheader "Processing-date" "${0}";}

6. Index Extension

 The "index" extension, if specified, adds optional :index and :last
 arguments to the header, address, and date tests as follows:

 Syntax: date [":index" <fieldno: number> [":last"]]
 [<":zone" <time-zone: string>> / ":originalzone"]
 [COMPARATOR] [MATCH-TYPE] <header-name: string>
 <date-part: string> <key-list: string-list>

 Syntax: header [":index" <fieldno: number> [":last"]]
 [COMPARATOR] [MATCH-TYPE]
 <header-names: string-list> <key-list: string-list>

Freed Standards Track [Page 7]

RFC 5260 Sieve Date and Index Extensions July 2008

 Syntax: address [":index" <fieldno: number> [":last"]]
 [ADDRESS-PART] [COMPARATOR] [MATCH-TYPE]
 <header-list: string-list> <key-list: string-list>

 If :index <fieldno> is specified, the attempts to match a value are
 limited to the header field fieldno (beginning at 1, the first named
 header field). If :last is also specified, the count is backwards; 1
 denotes the last named header field, 2 the second to last, and so on.
 Specifying :last without :index is an error.

 :index only counts separate header fields, not multiple occurrences
 within a single field. In particular, :index cannot be used to test
 a specific address in an address list contained within a single
 header field.

 Both header and address allow the specification of more than one
 header field name. If more than one header field name is specified,
 all the named header fields are counted in the order specified by the
 header-list.

6.1. Example

 Mail delivery may involve multiple hops, resulting in the Received:
 field containing information about when a message first entered the
 local administrative domain being the second or subsequent field in
 the message. As long as the field offset is consistent, it can be
 tested:

 # Implement the Internet-Draft cutoff date check assuming the
 # second Received: field specifies when the message first
 # entered the local email infrastructure.
 require ["date", "relational", "index"];
 if date :value "gt" :index 2 :zone "-0500" "received"
 "iso8601" "2007-02-26T09:00:00-05:00",
 { redirect "aftercutoff@example.org"; }

7. Security Considerations

 The facilities defined here, like the facilities in the base Sieve
 specification, operate on message header information that can easily
 be forged. Note, however, that some fields are inherently more
 reliable than others. For example, the Date: field is typically
 inserted by the message sender and can be altered at any point. By
 contrast, the uppermost Received: field is typically inserted by the
 local mail system and is therefore difficult for the sender or an
 intermediary to falsify.

Freed Standards Track [Page 8]

RFC 5260 Sieve Date and Index Extensions July 2008

 Use of the currentdate test makes script behavior inherently less
 predictable and harder to analyze. This may have consequences for
 systems that use script analysis to try and spot problematic scripts.

 All of the security considerations given in the base Sieve
 specification also apply to these extensions.

8. IANA Considerations

 The following templates specify the IANA registrations of the two
 Sieve extensions specified in this document:

 To: iana@iana.org
 Subject: Registration of new Sieve extensions

 Capability name: date
 Description: The "date" extension gives Sieve the ability
 to test date and time values.
 RFC number: RFC 5260
 Contact address: Sieve discussion list <ietf-mta-filters@imc.org>

 Capability name: index
 Description: The "index" extension provides a means to
 limit header and address tests to specific
 instances when more than one field of a
 given type is present.
 RFC number: RFC 5260
 Contact address: Sieve discussion list <ietf-mta-filters@imc.org>

9. References

9.1. Normative References

 [CALGO199] Tantzen, R., "Algorithm 199: Conversions Between Calendar
 Date and Julian Day Number", Collected Algorithms from
 CACM 199.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2822] Resnick, P., "Internet Message Format", RFC 2822,
 April 2001.

 [RFC3339] Klyne, G., Ed. and C. Newman, "Date and Time on the
 Internet: Timestamps", RFC 3339, July 2002.

 [RFC5228] Guenther, P. and T. Showalter, "Sieve: An Email Filtering
 Language", RFC 5228, January 2008.

Freed Standards Track [Page 9]

RFC 5260 Sieve Date and Index Extensions July 2008

 [RFC5231] Segmuller, W. and B. Leiba, "Sieve Email Filtering:
 Relational Extension", RFC 5231, January 2008.

 [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008.

9.2. Informative References

 [RFC3501] Crispin, M., "INTERNET MESSAGE ACCESS PROTOCOL - VERSION
 4rev1", RFC 3501, March 2003.

 [RFC5230] Showalter, T. and N. Freed, "Sieve Email Filtering:
 Vacation Extension", RFC 5230, January 2008.

Freed Standards Track [Page 10]

RFC 5260 Sieve Date and Index Extensions July 2008

Appendix A. Julian Date Conversions

 The following C routines show how to translate day/month/year
 information to and from modified Julian dates. These routines are
 straightforward translations of the Algol routines specified in CACM
 Algorithm 199 [CALGO199].

 Given the day, month, and year, jday returns the modified Julian
 date.

 int jday(int year, int month, int day)
 {
 int j, c, ya;

 if (month > 2)
 month -= 3;
 else
 {
 month += 9;
 year--;
 }
 c = year / 100;
 ya = year - c * 100;
 return (c * 146097 / 4 + ya * 1461 / 4 + (month * 153 + 2) / 5 +
 day + 1721119);
 }

Freed Standards Track [Page 11]

RFC 5260 Sieve Date and Index Extensions July 2008

 Given j, the modified Julian date, jdate returns the day, month, and
 year.

 void jdate(int j, int *year, int *month, int *day)
 {
 int y, m, d;

 j -= 1721119;
 y = (j * 4 - 1) / 146097;
 j = j * 4 - y * 146097 - 1;
 d = j / 4;
 j = (d * 4 + 3) / 1461;
 d = d * 4 - j * 1461 + 3;
 d = (d + 4) / 4;
 m = (d * 5 - 3) / 153;
 d = d * 5 - m * 153 - 3;
 *day = (d + 5) / 5;
 *year = y * 100 + j;
 if (m < 10)
 *month = m + 3;
 else
 {
 *month = m - 9;
 *year += 1;
 }
 }

Appendix B. Acknowledgements

 Dave Cridland contributed the text describing the proper comparators
 to use with different date-parts. Cyrus Daboo, Frank Ellerman,
 Alexey Melnikov, Chris Newman, Dilyan Palauzov, and Aaron Stone
 provided helpful suggestions and corrections.

Author’s Address

 Ned Freed
 Sun Microsystems
 800 Royal Oaks
 Monrovia, CA 91016-6347
 USA

 Phone: +1 909 457 4293
 EMail: ned.freed@mrochek.com

Freed Standards Track [Page 12]

RFC 5260 Sieve Date and Index Extensions July 2008

Full Copyright Statement

 Copyright (C) The IETF Trust (2008).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Freed Standards Track [Page 13]

