
Network Working Group E. Boschi
Request for Comments: 5153 Hitachi Europe
Category: Informational L. Mark
 Fraunhofer FOKUS
 J. Quittek
 M. Stiemerling
 NEC
 P. Aitken
 Cisco Systems, Inc.
 April 2008

 IP Flow Information Export (IPFIX) Implementation Guidelines

Status of This Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard of any kind. Distribution of this
 memo is unlimited.

Abstract

 The IP Flow Information Export (IPFIX) protocol defines how IP Flow
 information can be exported from routers, measurement probes, or
 other devices. This document provides guidelines for the
 implementation and use of the IPFIX protocol. Several sets of
 guidelines address Template management, transport-specific issues,
 implementation of Exporting and Collecting Processes, and IPFIX
 implementation on middleboxes (such as firewalls, network address
 translators, tunnel endpoints, packet classifiers, etc.).

Table of Contents

 1. Introduction . 3
 1.1. IPFIX Documents Overview 3
 1.2. Overview of the IPFIX Protocol 3
 2. Terminology . 4
 3. Template Management Guidelines 4
 3.1. Template Management 4
 3.2. Template Records versus Options Template Records 5
 3.3. Using Scopes . 6
 3.4. Multiple Information Elements of the Same Type 6
 3.5. Selecting Message Size 6
 4. Exporting Process Guidelines 7
 4.1. Sets . 7
 4.2. Information Element Coding 7
 4.3. Using Counters . 8
 4.4. Padding . 8

Boschi, et al. Informational [Page 1]

RFC 5153 IPFIX Implementation Guidelines April 2008

 4.4.1. Alignment of Information Elements within a Data
 Record . 9
 4.4.2. Alignment of Information Element Specifiers within
 a Template Record 9
 4.4.3. Alignment of Records within a Set 9
 4.4.4. Alignment of Sets within an IPFIX Message 9
 4.5. Time Issues . 10
 4.6. IPFIX Message Header Export Time and Data Record Time . . 10
 4.7. Devices without an Absolute Clock 11
 5. Collecting Process Guidelines 11
 5.1. Information Element (De)Coding 11
 5.2. Reduced-Size Encoding of Information Elements 12
 5.3. Template Management 12
 6. Transport-Specific Guidelines 12
 6.1. SCTP . 12
 6.2. UDP . 15
 6.3. TCP . 18
 7. Guidelines for Implementation on Middleboxes 18
 7.1. Traffic Flow Scenarios at Middleboxes 20
 7.2. Location of the Observation Point 21
 7.3. Reporting Flow-Related Middlebox Internals 22
 7.3.1. Packet Dropping Middleboxes 23
 7.3.2. Middleboxes Changing the DSCP 23
 7.3.3. Middleboxes Changing IP Addresses and Port Numbers . . 24
 8. Security Guidelines . 25
 8.1. Introduction to TLS and DTLS for IPFIX Implementers . . . 25
 8.2. X.509-Based Identity Verification for IPFIX over TLS
 or DTLS . 25
 8.3. Implementing IPFIX over TLS over TCP 26
 8.4. Implementing IPFIX over DTLS over UDP 26
 8.5. Implementing IPFIX over DTLS over SCTP 27
 9. Extending the Information Model 27
 9.1. Adding New IETF-Specified Information Elements 27
 9.2. Adding Enterprise-Specific Information Elements 28
 10. Common Implementation Mistakes 28
 10.1. IPFIX and NetFlow Version 9 28
 10.2. Padding of the Data Set 29
 10.3. Field ID Numbers . 30
 10.4. Template ID Numbers 30
 11. Security Considerations 30
 12. Acknowledgments . 31
 13. References . 31
 13.1. Normative References 31
 13.2. Informative References 31

Boschi, et al. Informational [Page 2]

RFC 5153 IPFIX Implementation Guidelines April 2008

1. Introduction

 The IPFIX protocol [RFC5101] defines how IP Flow information can be
 exported from routers, measurement probes, or other devices. In this
 document, we provide guidelines for its implementation.

 The guidelines are split into seven main sets. These sets address
 implementation aspects for Template management, Exporting Process,
 Collecting Process, transport, implementation on middleboxes,
 security, and extending the information model.

 Finally, this document contains a list of common mistakes related to
 issues that had been misinterpreted in the first IPFIX
 implementations and that created (and still might create)
 interoperability problems.

1.1. IPFIX Documents Overview

 The IPFIX protocol [RFC5101] provides network administrators with
 access to IP Flow information. The architecture for the export of
 measured IP Flow information out of an IPFIX Exporting Process to a
 Collecting Process is defined in the IPFIX architecture [IPFIX-ARCH],
 per the requirements defined in [RFC3917].

 The IPFIX architecture [IPFIX-ARCH] specifies how IPFIX Data Records
 and Templates are carried via a congestion-aware transport protocol
 from IPFIX Exporting Processes to IPFIX Collecting Processes.

 IPFIX has a formal description of IPFIX Information Elements, their
 name, type, and additional semantic information, as specified in the
 IPFIX information model [RFC5102].

 Finally, the IPFIX applicability statement [IPFIX-AS] describes what
 type of applications can use the IPFIX protocol and how they can use
 the information provided. It furthermore shows how the IPFIX
 framework relates to other architectures and frameworks.

1.2. Overview of the IPFIX Protocol

 In the IPFIX protocol, { type, length, value } tuples are expressed
 in Templates containing { type, length } pairs, specifying which
 { value } fields are present in Data Records conforming to the
 Template, giving great flexibility as to what data is transmitted.

 Since Templates are sent very infrequently compared with Data
 Records, this results in significant bandwidth savings.

Boschi, et al. Informational [Page 3]

RFC 5153 IPFIX Implementation Guidelines April 2008

 Different Data Records may be transmitted simply by sending new
 Templates specifying the { type, length } pairs for the new data
 format. See [RFC5101] for more information.

 The IPFIX information model [RFC5102] defines a large number of
 standard Information Elements that provide the necessary
 { type } information for Templates.

 The use of standard elements enables interoperability among different
 vendors’ implementations. The list of standard elements may be
 extended in the future through the process defined in Section 9,
 below. Additionally, non-standard enterprise-specific elements may
 be defined for private use.

2. Terminology

 The terminology used in this document is fully aligned with the
 terminology defined in [RFC5101]. Therefore, the terms defined in
 the IPFIX terminology are capitalized in this document, as in other
 IPFIX documents ([RFC5101], [RFC5102], [IPFIX-ARCH]).

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 This document is Informational. It does not specify a protocol and
 does not use RFC 2119 key words [RFC2119] such as "MUST" and
 "SHOULD", except in quotations and restatements from the IPFIX
 standards documents. The normative specification of the protocol is
 given in the IPFIX protocol [RFC5101] and information model [RFC5102]
 documents.

3. Template Management Guidelines

3.1. Template Management

 The Exporting Process should always endeavor to send Template Records
 before the related Data Records. However, since the Template Record
 may not arrive before the corresponding Data Records, the Collecting
 Process MAY store Data Records with an unknown Template ID pending
 the arrival of the corresponding Template (see Section 9 of
 [RFC5101]). If no Template becomes available, we recommend logging
 the event and discarding the corresponding Data Records, and for SCTP
 and TCP we recommend resetting the Transport Session. The amount of
 time the Collecting Process waits for a Template before resetting
 should be configurable. We recommend a default of 30 minutes. Note

Boschi, et al. Informational [Page 4]

RFC 5153 IPFIX Implementation Guidelines April 2008

 that when using UDP as the transport protocol, this delay should be
 bound, when possible, by the Template Retransmit and the Template
 Expiry times (see Section 6.2).

 The Exporting Process must be able to resend active Templates.
 Templates must be resent in the case of a Stream Control Transport
 Protocol (SCTP) association restart, a User Datagram Protocol (UDP)
 template refresh, or a Transmission Control Protocol (TCP) connection
 restart.

 The Exporting Process is responsible for the management of Template
 IDs. Should an insufficient number of Template IDs be available, the
 Exporting Process must send a Template Withdrawal Message in order to
 free up the allocation of unused Template IDs. Note that UDP doesn’t
 use the Template Withdrawal Message, and the Template lifetime on the
 Collecting Process relies on timeout.

3.2. Template Records versus Options Template Records

 The IPFIX protocol [RFC5101] defines and specifies the use of
 Templates and Options Templates. Templates define the layout of Data
 Records, which represent Flow data. Options Templates additionally
 specify scope Information Elements, which can be used to define
 scoped Data Records. Scoped Data Records generally export control
 plane data (such as metadata about processes in the IPFIX collection
 architecture) or data otherwise applicable to multiple Flow Data
 Records (such as common properties as in [IPFIX-REDUCING]).

 Aside from Section 4 of [RFC5101], which defines specific Options
 Templates to use for reporting Metering Process and Exporting Process
 statistics and configuration information, the choice to use Options
 Templates is left up to the implementer. Indeed, there is a trade-
 off between bandwidth efficiency and complexity in the use of Options
 Templates and scoped Data Records.

 For example, control plane information about an Observation Point
 could be exported with every Flow Record measured at that Observation
 Point, or in a single Data Record described by an Options Template,
 scoped to the Observation Point identifier. In the former case,
 simplicity of decoding the data is gained in exchange for redundant
 export of the same data with every applicable Flow Record. The
 latter case is more bandwidth-efficient, but at the expense of
 requiring the Collecting Process to maintain the relationship between
 each applicable Flow Record and the Observation Point.

 A generalized method of using Options Templates to increase bandwidth
 efficiency is fully described in [IPFIX-REDUCING].

Boschi, et al. Informational [Page 5]

RFC 5153 IPFIX Implementation Guidelines April 2008

3.3. Using Scopes

 The root scope for all IPFIX Messages is the Observation Domain,
 which appears in the Message Header. In other words, all Data
 Records within a message implicitly belong to the Observation Domain.
 All Data Records described by Options Templates (and only those) must
 be restricted to an additional scope within the Observation Domain,
 as defined by the scope Information Elements in the Options Template
 Record.

 In IPFIX, any Information Element can be used for scope. However,
 Information Elements such as counters, timestamps, padding elements,
 Flow properties like timeout, Flow end reason, duration, or Min/Max
 Flow properties [RFC5102] may not be appropriate.

 Note that it is sometimes necessary to export information about
 entities that exist outside any Observation Domain, or within
 multiple Observation Domains (e.g., information about Metering
 Processes scoped to meteringProcessID). Such information SHOULD be
 exported in an IPFIX Message with Observation Domain ID 0 (see
 [RFC5101], Section 3.1).

3.4. Multiple Information Elements of the Same Type

 The Exporting Process and Collecting Process MUST support the use of
 multiple Information Elements of the same type in a single Template
 [RFC5101]. This was first required by Packet Sampling (PSAMP)
 [PSAMP-PROTO] for the export of multiple Selector IDs. Note that the
 IPFIX protocol recommends that Metering Processes SHOULD use packet
 treatment order when exporting multiple Information Elements of the
 same type in the same record ([RFC5101] Section 8). This implies
 that ordering is important, and changes to the order of multiple
 identical Information Elements could cause information loss.
 Therefore, we strongly recommend preservation of the order of
 multiple Information Elements of the same type by Exporting and
 Collecting Processes for correct processing and storage.

3.5. Selecting Message Size

 Section 10.3.3 of the IPFIX protocol defines the maximum message size
 for IPFIX Messages transported over UDP to be constrained by the path
 MTU, or if the path MTU is not available, 512 bytes, which is the
 minimum datagram size all IP implementations must support (see also
 Section 8.4). However, no maximum message size is imposed on other
 transport protocols, beyond the 65535-byte limit imposed by the 16-
 bit Message Length field in the IPFIX Message Header specified in
 Section 3.1 of [RFC5101].

Boschi, et al. Informational [Page 6]

RFC 5153 IPFIX Implementation Guidelines April 2008

 An IPFIX Exporting Process operating over SCTP or TCP may export
 IPFIX Messages up to this 64-kB limit, and an IPFIX Collecting
 Process must accept any IPFIX Message up to that size.

4. Exporting Process Guidelines

4.1. Sets

 A Set is identified by a Set ID [RFC5101]. A Set ID has an integral
 data type and its value is in the range of 0-65535. The Set ID
 values of 0 and 1 are not used for historical reasons [RFC3954]. A
 value of 2 identifies a Template Set. A value of 3 identifies an
 Options Template Set. Values from 4 to 255 are reserved for future
 use. Values above 255 are used for Data Sets. In this case, the Set
 ID corresponds to the Template ID of the used Template.

 A Data Set received with an unknown Set ID may be stored pending the
 arrival of the corresponding Template (see Section 9 of [RFC5101]).
 If no Template becomes available, we recommend logging the event and
 discarding the corresponding Data Records, and for SCTP and TCP we
 recommend resetting the Transport Session. The amount of time the
 Collecting Process waits for a Template before resetting should be
 configurable. We recommend a default of 30 minutes. Note that when
 using UDP as the transport protocol, this delay should be bound, when
 possible, by the Template Retransmit and the Template Expiry times
 (see Section 6.2).

 The arrival of a Set with a reserved Set ID should be logged, and the
 Collector must ignore the Set.

4.2. Information Element Coding

 [IPFIX-ARCH] does not specify which entities are responsible for the
 encoding and decoding of Information Elements transferred via IPFIX.
 An IPFIX device can do the encoding either within the Metering
 Process or within the Exporting Process. The decoding of the
 Information Elements can be done by the Collecting Process or by the
 data processing application.

 If an IPFIX node simply relays IPFIX Records (like a proxy), then no
 decoding or encoding of Information Elements is needed. In this
 case, the Exporting Process may export unknown Information Elements,
 i.e., Information Elements with an unknown Information Element
 identifier.

Boschi, et al. Informational [Page 7]

RFC 5153 IPFIX Implementation Guidelines April 2008

4.3. Using Counters

 IPFIX offers both Delta and Total counters (e.g., octetDeltaCount,
 octetTotalCount). If information about a Flow is only ever exported
 once, then it’s not important whether Delta or Total counters are
 used. However, if further information about additional packets in a
 Flow is exported after the first export, then either:

 o the metering system must reset its counters to zero after the
 first export and report the new counter values using Delta
 counters, or

 o the metering system must carefully maintain its counters and
 report the running total using Total counters.

 At first, reporting the running total may seem to be the obvious
 choice. However, this requires that the system accurately maintains
 information about the Flow over a long time without any loss or
 error, because when reported to a Collecting Process, the previous
 total values will be replaced with the new information.

 Delta counters offer some advantages: information about Flows doesn’t
 have to be permanently maintained, and any loss of information has
 only a small impact on the total stored at the Collecting Process.
 Finally, Deltas may be exported in fewer bytes than Total counters
 using the IPFIX "Reduced Size Encoding" scheme [RFC5101].

 Note that Delta counters have an origin of zero and that a Collecting
 Process receiving Delta counters for a Flow that is new to the
 Collecting Process must assume the Deltas are from zero.

4.4. Padding

 The IPFIX information model defines an Information Element for
 padding called paddingOctets [RFC5102]. It is of type octetArray,
 and the IPFIX protocol allows encoding it as a fixed-length array as
 well as a variable-length array.

 The padding Information Element can be used to align Information
 Elements within Data Records, Records within Sets, and Sets within
 IPFIX Messages, as described below.

Boschi, et al. Informational [Page 8]

RFC 5153 IPFIX Implementation Guidelines April 2008

4.4.1. Alignment of Information Elements within a Data Record

 The padding Information Element gives flexible means for aligning
 Information Elements within a Data Record. Aligning within a Data
 Record can be useful, because internal data structures can be easily
 converted into Flow Records at the Exporter and vice versa at the
 Collecting Process.

 Alignment of Information Elements within a Data Record is achieved by
 inserting an instance of the paddingOctets Information Element with
 appropriate length before each unaligned Information Element. This
 insertion is explicitly specified within the Template Record or
 Options Template Record, respectively, that corresponds to the Data
 Record.

4.4.2. Alignment of Information Element Specifiers within a Template
 Record

 There is no means for aligning Information Element specifiers within
 Template Records. However, there is limited need for such a method,
 as Information Element specifiers are always 32-bit aligned, and 32-
 bit alignment is generally sufficient.

4.4.3. Alignment of Records within a Set

 There is no means for aligning Template Records within a Set.
 However, there is limited need for such a method, as Information
 Element specifiers are always 32-bit aligned, and 32-bit alignment is
 generally sufficient.

 Data Records can be aligned within a Set by appending instances of
 the paddingOctets Information Element at the end of the Record.
 Since all Data Records within a Set have the same structure and size,
 aligning one Data Record implies aligning all the Data Records within
 a single Set.

4.4.4. Alignment of Sets within an IPFIX Message

 If Records are already aligned within a Set by using paddingOctets
 Information Elements, then this alignment will already be achieved.
 But for aligning Sets within an IPFIX Message, padding Information
 Elements can be used at the end of the Set so that the subsequent Set
 starts at an aligned boundary. This padding mechanism is described
 in Section 3.3.1 of [RFC5101] and can be applied even if the Records
 within the Set are not aligned. However, it should be noted that
 this method is limited by the constraint that "the padding length
 MUST be shorter than any allowable Record in the Set", to prevent the
 padding from being misinterpreted as an additional Data Record.

Boschi, et al. Informational [Page 9]

RFC 5153 IPFIX Implementation Guidelines April 2008

4.5. Time Issues

 IPFIX Messages contain the export time in the Message Header. In
 addition, there is a series of Information Elements defined to
 transfer time values. [RFC5102] defines four abstract data types to
 transfer time values in second, millisecond, microsecond, and
 nanosecond resolution.

 The accuracy and precision of these values depend on the accuracy and
 the precision of the Metering Process clock. The accuracy and
 precision of the Exporting Process clock, and the synchronization of
 the Metering Process and Exporting Process clocks, are also important
 when using the delta timestamp Information Elements. To ensure
 accuracy, the clocks should be synchronized to a UTC time source.
 Normally, it would be sufficient to derive the time from a remote
 time server using the Network Time Protocol (NTP) [RFC1305]. IPFIX
 Devices operating with time values of microsecond or nanosecond
 resolution need direct access to a time source, for example, to a GPS
 (Global Positioning System) unit.

 The most important consideration in selecting timestamp Information
 Elements is to use a precision appropriate for the timestamps as
 generated from the Metering Process. Specifically, an IPFIX Device
 should not export timestamp Information Elements of higher precision
 than the timestamps used by the Metering Process (e.g., millisecond-
 precision Flows should not be exported with flowStartMicroseconds and
 flowEndMicroseconds).

4.6. IPFIX Message Header Export Time and Data Record Time

 Section 5 of [RFC5101] defines a method for optimized export of time-
 related Information Elements based upon the Export Time field of the
 IPFIX Message Header. The architectural separation of the Metering
 Process and Exporting Process in [IPFIX-ARCH] raises some
 difficulties with this method, of which implementers should be aware.

 Since the Metering Process has no information about the export time
 of the IPFIX Message (that is, when the message leaves the Exporting
 Process), it cannot properly use the delta time Information Elements;
 it must store absolute timestamps and transmit these to the Exporting
 Process. The Exporting Process must then convert these to delta
 timestamps once the export time is known. This increases the
 processing burden on the Exporting Process. Note also that the
 absolute timestamps require more storage than their delta timestamp
 counterparts. However, this method can result in reduced export
 bandwidth.

Boschi, et al. Informational [Page 10]

RFC 5153 IPFIX Implementation Guidelines April 2008

 Alternatively, the Exporting Process may simply export absolute
 timestamp Information Elements. This simplifies the Exporting
 Process’ job and reduces processing burden, but increases export
 bandwidth requirements.

4.7. Devices without an Absolute Clock

 Exporting just relative times in a device without an absolute clock
 is often not sufficient. For instance, observed traffic could be
 retained in the device’s cache for some time before being exported
 (e.g., if the Exporter runs once per minute), or stuck in an Inter
 Process Communication (IPC) queue, or stuck in the export stack, or
 delayed in the network between the Exporter and Collector.

 For these reasons, it can be difficult for the Collecting Process to
 convert the relative times exported using the flowStartSysUpTime and
 flowEndSysUpTime Information Elements to absolute times with any sort
 of accuracy without knowing the systemInitTimeMilliseconds.
 Therefore, the sending of the flowStartSysUpTime and flowEndSysUpTime
 Information Elements without also sending the
 systemInitTimeMilliseconds Information Element is not recommended.

5. Collecting Process Guidelines

5.1. Information Element (De)Coding

 Section 9 of [RFC5101] specifies: "The Collecting Process MUST note
 the Information Element identifier of any Information Element that it
 does not understand and MAY discard that Information Element from the
 Flow Record". The Collecting Process may accept Templates with
 Information Elements of unknown types. In this case, the value
 received for these Information Elements should be decoded as an octet
 array.

 Alternatively, the Collecting Process may ignore Templates and
 subsequent Data Sets that contain Information Elements of unknown
 types.

 It is recommended that Collecting Processes provide means to flexibly
 add types of new Information Elements to their knowledge base. An
 example is a configuration file that is read by the Collecting
 Process and that contains a list of Information Element identifiers
 and their corresponding types. Particularly for adding enterprise-
 specific Information Elements, such a feature can be very useful.

Boschi, et al. Informational [Page 11]

RFC 5153 IPFIX Implementation Guidelines April 2008

5.2. Reduced-Size Encoding of Information Elements

 Since a Collector may receive data from the same device and
 Observation Domain in two Templates using different reduced-size
 encodings, it is recommended that the data be stored using full-size
 encoding, to ensure that the values can be stored or even aggregated
 together.

5.3. Template Management

 Template IDs are generated dynamically by the Exporting Process.
 They are unique per Transport Session and Observation Domain.

 Therefore, for each Transport Session, the Collecting Process has to
 maintain a list of Observation Domains. For each Observation Domain,
 the Collecting Process has to maintain a list of current Template IDs
 in order to decode subsequent Data Records.

 Note that a restart of the Transport Session may lead to a Template
 ID renumbering.

6. Transport-Specific Guidelines

 IPFIX can use SCTP, TCP, or UDP as a transport protocol. IPFIX
 implementations MUST support SCTP with partial reliability extensions
 (PR-SCTP), and MAY support TCP and/or UDP (see [RFC5101], Section
 10.1). In the IPFIX documents, the terms SCTP and PR-SCTP are often
 used interchangeably to mean SCTP with partial reliability
 extensions.

6.1. SCTP

 PR-SCTP is the preferred transport protocol for IPFIX because it is
 congestion-aware, reducing total bandwidth usage in the case of
 congestion, but with a simpler state machine than TCP. This saves
 resources on lightweight probes and router line cards.

 SCTP, as specified in [RFC4960] with the PR-SCTP extension defined in
 [RFC3758], provides several features not available in TCP or UDP.
 The two of these most universally applicable to IPFIX
 implementations, and which IPFIX implementers need to know about, are
 multiple streams and per-message partial reliability.

 An SCTP association may contain multiple streams. Streams are useful
 for avoiding head-of-line blocking, thereby minimizing end-to-end
 delay from the Exporting Process to the Collecting Process. Example

Boschi, et al. Informational [Page 12]

RFC 5153 IPFIX Implementation Guidelines April 2008

 applications for this feature would be using one SCTP stream per
 Observation Domain, one stream per type of data (or Template ID), or
 one stream for Flow data and one for metadata.

 An Exporting Process may request any number of streams, and may send
 IPFIX Messages containing any type of Set (Data Set, Template Set,
 etc.) on any stream. A Collecting Process MUST be able to process
 any Message received on any stream.

 Stream negotiation is a feature of the SCTP protocol. Note, however,
 that the IPFIX protocol doesn’t provide any mechanism for the
 Exporter to convey any information about which streams are in use to
 the Collector. Therefore, stream configuration must be done out of
 band.

 One extra advantage of the PR-SCTP association is its ability to send
 messages with different levels of reliability, selected according to
 the application. For example, billing or security applications might
 require reliable delivery of all their IPFIX Messages, while capacity
 planning applications might be more tolerant of message loss. SCTP
 allows IPFIX Messages for all these applications to be transported
 over the same association with the appropriate level of reliability.

 IPFIX Messages may be sent with full or partial reliability, on a
 per-message basis. Fully reliable delivery guarantees that the IPFIX
 Message will be received at the Collecting Process or that that SCTP
 association will be reset, as with TCP. Partially reliable delivery
 does not guarantee the receipt of the IPFIX Message at the Collecting
 Process. This feature may be used to allow Messages to be dropped
 during network congestion, i.e., while observing a Denial of Service
 attack.

 [RFC3758] defines the concept of a Partial Reliability policy, which
 specifies the interface used to control partially reliable delivery.
 It also defines a single example Partial Reliability policy called
 "timed reliability", which uses a single parameter: lifetime. The
 lifetime is specified per message in milliseconds, and after it
 expires, no further attempt will be made to transmit the message.
 Longer lifetimes specify more retransmission attempts per message and
 therefore higher reliability; however, it should be noted that the
 absolute reliability provided by a given lifetime is highly dependent
 on network conditions, so an Exporting Process using the timed
 reliability service should provide a mechanism for configuring the
 lifetime of exported IPFIX Messages. Another possible Partial
 Reliability policy could be limited retransmission, which guarantees
 a specified number of retransmissions for each message. It is up to
 the implementer to decide which Partial Reliability policy is most
 appropriate for its application.

Boschi, et al. Informational [Page 13]

RFC 5153 IPFIX Implementation Guidelines April 2008

 There is an additional service provided by SCTP and useful in
 conjunction with PR-SCTP: unordered delivery. This also works on a
 per-message basis by declaring that a given message should be
 delivered to the receiver as soon as it is queued rather than kept in
 sequence; however, it should be noted that unless explicitly
 requested by the sender, even messages sent partially reliably will
 still be delivered in order. Unordered delivery should not be used
 when the order of IPFIX Messages may matter: e.g., a Template or
 Options Template. Unordered delivery should not be used when Total
 counters are used, as reordering could result in the counter value
 decreasing at the Collecting Process and even being left with a stale
 value if the last message processed is stale.

 By convention, when the IPFIX documents state a requirement for
 reliable delivery (as, for example, the IPFIX protocol document does
 for Template Sets, Options Template Sets, and Template Withdrawal
 Messages), an IPFIX Exporting Process must not use partially reliable
 delivery for those Messages. By default, and explicitly if the IPFIX
 documents call for "partially reliable" or "unreliable" delivery, an
 IPFIX Exporting Process may use partially reliable delivery if the
 other requirements of the application allow.

 The Collecting Process may check whether IPFIX Messages are lost by
 checking the Sequence Number in the IPFIX header. The Collecting
 Process should use the Sequence Number in the IPFIX Message Header to
 determine whether any messages are lost when sent with partial
 reliability. Sequence Numbers should be tracked independently for
 each stream.

 The following may be done to mitigate message loss:

 o Increase the SCTP buffer size on the Exporter.

 o Increase the bandwidth available for communicating the exported
 Data Records.

 o Use sampling, filtering, or aggregation in the Metering Process to
 reduce the amount of exported data (see [RFC5101], Section
 10.4.2.3).

 o If partial reliability is used, switch to fully reliable delivery
 on the Exporting Process or increase the level of partial
 reliability (e.g., when using timed reliability, by specifying a
 longer lifetime for exported IPFIX Messages).

Boschi, et al. Informational [Page 14]

RFC 5153 IPFIX Implementation Guidelines April 2008

 If the SCTP association is brought down because the IFPIX Messages
 can’t be exported reliably, the options are:

 o Increase the SCTP buffer size on the Exporter.

 o Increase the bandwidth available for communicating the exported
 Data Records.

 o Use sampling, filtering, or aggregation in the Metering Process to
 reduce the amount of exported data.

 Note that Templates must not be resent when using SCTP, without an
 intervening Template Withdrawal or SCTP association reset. Note also
 that since Template Sets and Template Withdrawal Messages may be sent
 on any SCTP stream, a Template Withdrawal Message may withdraw a
 Template sent on a different stream, and a Template Set may reuse a
 Template ID withdrawn by a Template Withdrawal Message sent on a
 different stream. Therefore, an Exporting Process sending Template
 Withdrawal Messages should ensure to the extent possible that the
 Template Withdrawal Messages and subsequent Template Sets reusing the
 withdrawn Template IDs are received and processed at the Collecting
 Process in proper order. The Exporting Process can achieve this by
 one of two possible methods: 1. by sending a Template Withdrawal
 Message reliably, in order, and on the same stream as the subsequent
 Template Set reusing its ID; or 2. by waiting an appropriate amount
 of time (on the scale of one minute) after sending a Template
 Withdrawal Message before attempting to reuse the withdrawn Template
 ID.

6.2. UDP

 UDP is useful in simple systems where an SCTP stack is not available,
 and where there is insufficient memory for TCP buffering.

 However, UDP is not a reliable transport protocol, and IPFIX Messages
 sent over UDP might be lost as with partially reliable SCTP streams.
 UDP is not the recommended protocol for IPFIX and is intended for use
 in cases in which IPFIX is replacing an existing NetFlow
 infrastructure, with the following properties:

 o A dedicated network,

 o within a single administrative domain,

 o where SCTP is not available due to implementation constraints, and

 o the Collector is as topologically close as possible to the
 Exporter.

Boschi, et al. Informational [Page 15]

RFC 5153 IPFIX Implementation Guidelines April 2008

 Note that because UDP itself provides no congestion control
 mechanisms, it is recommended that UDP transport be used only on
 managed networks, where the network path has been explicitly
 provisioned for IPFIX traffic through traffic engineering mechanisms,
 such as rate limiting or capacity reservations.

 An important example of an explicitly provisioned, managed network
 for IPFIX is the use of IPFIX to replace a functioning NetFlow
 implementation on a dedicated network. In this situation, the
 dedicated network should be provisioned in accordance with the
 NetFlow deployment experience that Flow export traffic generated by
 monitoring an interface will amount to 2-5% of the monitored
 interface’s bandwidth.

 As recommended in [TSVWG-UDP], an application should not send UDP
 messages that result in IP packets that exceed the MTU of the path to
 the destination and should enable UDP checksums (see Sections 3.2 and
 3.4 of [TSVWG-UDP], respectively).

 Since IPFIX assumes reliable transport of Templates over SCTP, this
 necessitates some changes for IPFIX Template management over UDP.
 Templates sent from the Exporting Process to the Collecting Process
 over UDP MUST be resent at regular time intervals; these intervals
 MUST be configurable (see Section 10.3 of [RFC5101]).

 We recommend a default Template-resend time of 10 minutes,
 configurable between 1 minute and 1 day.

 Note that this could become an interoperability problem; e.g., if an
 Exporter resends Templates once per day, while a Collector expires
 Templates hourly, then they may both be IPFIX-compatible, but not be
 interoperable.

 Retransmission time intervals that are too short waste bandwidth on
 unnecessary Template retransmissions. On the other hand, time
 intervals that are too long introduce additional costs or risk of
 data loss by potentially requiring the Collector to cache more data
 without having the Templates available to decode it.

 To increase reliability and limit the amount of potentially lost
 data, the Exporting Process may resend additional Templates using a
 packet-based schedule. In this case, Templates are resent depending
 on the number of data packets sent. Similarly to the time interval,
 resending a Template every few packets introduces additional
 overhead, while resending after a large amount of packets have
 already been sent means high costs due to the data caching and
 potential data loss.

Boschi, et al. Informational [Page 16]

RFC 5153 IPFIX Implementation Guidelines April 2008

 We recommend a default Template-resend interval of 20 packets,
 configurable between 1 and 1000 data packets.

 Note that a sufficiently small resend time or packet interval may
 cause a system to become stuck, continually resending Templates or
 Options Data. For example, if the resend packet interval is 2 (i.e.,
 Templates or Options Data are to be sent in every other packet) but
 more than two packets are required to send all the information, then
 the resend interval will have expired by the time the information has
 been sent, and Templates or Options Data will be sent continuously --
 possibly preventing any data from being sent at all. Therefore, the
 resend intervals should be considered from the last data packet, and
 should not be tied to specific Sequence Numbers.

 The Collecting Process should use the Sequence Number in the IPFIX
 Message Header to determine whether any messages are lost.

 The following may be done to mitigate message loss:

 o Move the Collector topologically closer to the Exporter.

 o Increase the bandwidth of the links through which the Data Records
 are exported.

 o Use sampling, filtering, or aggregation in the Metering Process to
 reduce the amount of exported data.

 o Increase the buffer size at the Collector and/or the Exporter.

 Before using a Template for the first time, the Exporter may send it
 in several different IPFIX Messages spaced out over a period of
 packets in order to increase the likelihood that the Collector has
 received the Template.

 Template Withdrawal Messages MUST NOT be sent over UDP (per Section
 10.3.6 of [RFC5101]). The Exporter must rely on expiration at the
 Collector to expire old Templates or to reuse Template IDs.

 We recommend that the Collector implements a Template Expiry of three
 times the Exporter refresh rate.

 However, since the IPFIX protocol doesn’t provide any mechanism for
 the Exporter to convey any information about the Template Expiry time
 to the Collector, configuration must be done out of band.

Boschi, et al. Informational [Page 17]

RFC 5153 IPFIX Implementation Guidelines April 2008

 If no out-of-band configuration is made, we recommend to initially
 set a Template Expiry time at the Collector of 60 minutes. The
 Collecting Process may estimate each Exporting Process’s resend time
 and adapt the Expiry time for the corresponding Templates
 accordingly.

6.3. TCP

 TCP can be used as a transport protocol for IPFIX if one of the
 endpoints has no support for SCTP, but a reliable transport is needed
 and/or the network between the Exporter and the Collector has not
 explicitly been provisioned for the IPFIX traffic. TCP is one of the
 core protocols of the Internet and is widely supported.

 The Exporting Process may resend Templates (per UDP, above), but it’s
 not required to do so, per Section 10.4.2.2 of [RFC5101]:

 "A Collecting Process MUST record all Template and Options Template
 Records for the duration of the connection, as an Exporting Process
 is not required to re-export Template Records."

 If the available bandwidth between Exporter and Collector is not
 sufficient or the Metering Process generates more Data Records than
 the Collector is capable of processing, then TCP congestion control
 may cause the Exporter to block. Options in this case are:

 o Increase the TCP buffer size on the Exporter.

 o Increase the bandwidth of the links through which the Data Records
 are exported.

 o Use sampling, filtering, or aggregation in the Metering Process to
 reduce the amount of exported data.

7. Guidelines for Implementation on Middleboxes

 The term middlebox is defined in [RFC3234] as:

 "any intermediary device performing functions other than the normal,
 standard functions of an IP router on the datagram path between a
 source host and destination host."

 The list of middleboxes discussed in [RFC3234] contains:

 1. Network Address Translation (NAT),

 2. NAT-Protocol Translation (NAT-PT),

Boschi, et al. Informational [Page 18]

RFC 5153 IPFIX Implementation Guidelines April 2008

 3. SOCKS gateway,

 4. IP tunnel endpoints,

 5. packet classifiers, markers, schedulers,

 6. transport relay,

 7. TCP performance enhancing proxies,

 8. load balancers that divert/munge packets,

 9. IP firewalls,

 10. application firewalls,

 11. application-level gateways,

 12. gatekeepers / session control boxes,

 13. transcoders,

 14. proxies,

 15. caches,

 16. modified DNS servers,

 17. content and applications distribution boxes,

 18. load balancers that divert/munge URLs,

 19. application-level interceptors,

 20. application-level multicast,

 21. involuntary packet redirection,

 22. anonymizers.

 It is likely that since the publication of RFC 3234 new kinds of
 middleboxes have been added.

 While the IPFIX specifications [RFC5101] based the requirements on
 the export protocol only (as the IPFIX name implies), these sections
 cover the guidelines for the implementation of the Metering Process
 by recommending which Information Elements to export for the
 different middlebox considerations.

Boschi, et al. Informational [Page 19]

RFC 5153 IPFIX Implementation Guidelines April 2008

7.1. Traffic Flow Scenarios at Middleboxes

 Middleboxes may delay, reorder, drop, or multiply packets; they may
 change packet header fields and change the payload. All these
 actions have an impact on traffic Flow properties. In general, a
 middlebox transforms a unidirectional original traffic Flow T that
 arrives at the middlebox into a transformed traffic Flow T’ that
 leaves the middlebox.

 +-----------+
 T ---->| middlebox |----> T’
 +-----------+

 Figure 1: Unidirectional traffic Flow traversing a middlebox

 Note that in an extreme case, T’ may be an empty traffic Flow (a Flow
 with no packets), for example, if the middlebox is a firewall and
 blocks the Flow.

 In case of a middlebox performing a multicast function, a single
 original traffic Flow may be transformed into more than one
 transformed traffic Flow.

 +------> T’
 |
 +---------+-+
 T ---->| middlebox |----> T’’
 +---------+-+
 |
 +------> T’’’

 Figure 2: Unidirectional traffic Flow traversing a middlebox with
 multicast function

 For bidirectional traffic Flows, we identify Flows on different sides
 of the middlebox; say, T_l on the left side and T_r on the right
 side.

 +-----------+
 T_l <--->| middlebox |<---> T_r
 +-----------+

 Figure 3: Bidirectional unicast traffic Flow traversing a middlebox

 In case of a NAT, T_l might be a traffic Flow in a private address
 realm and T_r the translated traffic Flow in the public address
 realm. If the middlebox is a NAT-PT, then T_l may be an IPv4 traffic
 Flow and T_r the translated IPv6 traffic Flow.

Boschi, et al. Informational [Page 20]

RFC 5153 IPFIX Implementation Guidelines April 2008

 At tunnel endpoints, Flows are multiplexed or demultiplexed. In
 general, tunnel endpoints can deal with bidirectional traffic Flows.

 +------> T_r1
 v
 +---------+-+
 T_l <--->| middlebox |<---> T_r2
 +---------+-+
 ^
 +------> T_r3

 Figure 4: Multiple data reduction

 An example is a traffic Flow T_l of a tunnel and Flows T_rx that are
 multiplexed into or demultiplexed out of a tunnel. According to the
 IPFIX definition of traffic Flows in [RFC5101], T and T’ or T_l and
 T_rx, respectively, are different Flows in general.

 However, from an application point of view, they might be considered
 as closely related or even as the same Flow, for example, if the
 payloads they carry are identical.

7.2. Location of the Observation Point

 Middleboxes might be integrated with other devices. An example is a
 router with a NAT or a firewall at a line card. If an IPFIX
 Observation Point is located at the line card, then the properties of
 measured traffic Flows may depend on the side of the integrated
 middlebox at which packets were captured for traffic Flow
 measurement.

 Consequently, an Exporting Process reporting traffic Flows measured
 at a device that hosts one or more middleboxes should clearly
 indicate to Collecting Processes the location of the used Observation
 Point(s) with respect to the middlebox(es). This can be done by
 using Options with Observation Point as scope and elements like, for
 instance, lineCardID or samplerID. Otherwise, processing the
 measured Flow data could lead to wrong results.

 At first glance, choosing an Observation Point that covers the entire
 middlebox looks like an attractive choice. But this leads to
 ambiguities for all kinds of middleboxes. Within the middlebox,
 properties of packets are modified, and it should be clear at a
 Collecting Process whether packets were observed and metered before
 or after modification. For example, it must be clear whether a
 reported source IP address was observed before or after a NAT changed
 it or whether a reported packet count was measured before or after a

Boschi, et al. Informational [Page 21]

RFC 5153 IPFIX Implementation Guidelines April 2008

 firewall dropped packets. For this reason, [RFC5102] provides
 Information Elements with prefix "post" for Flow properties that are
 changed within a middlebox.

 If an Observation Point is located inside a middlebox, the middlebox
 must have well-defined and well-separated internal functions, for
 example, a combined NAT and firewall, and the Observation Point
 should be located on a boundary between middlebox functions rather
 than within one of the functions.

7.3. Reporting Flow-Related Middlebox Internals

 While this document recommends IPFIX implementations using
 Observation Points outside of middlebox functions, there are a few
 special cases where reporting Flow-related internals of a middlebox
 is of interest.

 For many applications that use traffic measurement results, it is
 desirable to get more information than can be derived from just
 observing packets on one side of a middlebox. If, for example,
 packets are dropped by the middlebox acting as a firewall, NAT, or
 traffic shaper, then information about how many observed packets are
 dropped may be of high interest.

 This section gives recommendations on middlebox internal information
 that may be reported if the IPFIX Observation Point is co-located
 with one or more middleboxes. Since the internal information to be
 reported depends on the kind of middlebox, it is discussed per kind.

 The recommendations cover middleboxes that act per packet and that do
 not modify the application-level payload of the packet (except by
 dropping the entire packet) and that do not insert additional packets
 into an application-level or transport-level traffic stream.

 Covered are the packet-level middleboxes of kinds 1, 2, 3, 5, 9, 10,
 21, and 22 (according to the enumeration given at the beginning of
 Section 7 of this document). Not covered are 4, 6-8 and 11-20. TCP
 performance-enhancing proxies (7) are not covered because they may
 add ACK packets to a TCP connection.

 Still, if possible, IPFIX implementations co-located with uncovered
 middleboxes (i.e., of type 7 or 11-20) should follow the
 recommendations given in this section if they can be applied in a way
 that reflects the intention of these recommendations.

Boschi, et al. Informational [Page 22]

RFC 5153 IPFIX Implementation Guidelines April 2008

7.3.1. Packet Dropping Middleboxes

 If an IPFIX Observation Point is co-located with one or more
 middleboxes that potentially drop packets, then the corresponding
 IPFIX Exporting Process should be able to report the number of
 packets that were dropped per reported Flow.

 Concerned kinds of middleboxes are NAT (1), NAT-PT (2), SOCKS gateway
 (3), packet schedulers (5), IP firewalls (9) and application-level
 firewalls (10).

7.3.2. Middleboxes Changing the DSCP

 If an IPFIX Observation Point is co-located with one or more
 middleboxes that potentially modify the Diffserv Code Point (DSCP,
 see [RFC2474]) in the IP header, then the corresponding IPFIX
 Exporting Process should be able to report both the observed incoming
 DSCP value and also the DSCP value on the ’other’ side of the
 middlebox (if this is a constant value for the particular traffic
 flow). The related Information Elements specified in [RFC5102] are:
 IpClassOfService and postIpClassOfService.

 Note that the current IPFIX information model only contains
 Information Elements supporting packets observed before the DSCP
 change, i.e. ipClassOfService and postIpClassOfService, where the
 latter reports the value of the IP TOS field after the DSCP change.
 We recommend, whenever possible, to move the Observation Point to the
 point before the DSCP change and report the Observed and post-
 values. If reporting the value of the IP TOS field before DSCP
 change is required, "pre" values can be exported using enterprise-
 specific Information Elements.

 Note also that a classifier may change the same DSCP value of packets
 from the same Flow to different values depending on the packet or
 other conditions. Also, it is possible that packets of a single
 unidirectional arriving Flow contain packets with different DSCP
 values that are all set to the same value by the middlebox. In both
 cases, there is a constant value for the DSCP field in the IP packet
 header to be observed on one side of the middlebox, but on the other
 side the value may vary. In such a case, reliable reporting of the
 DSCP value on the ’other’ side of the middlebox is not possible by
 just reporting a single value. According to the IPFIX information
 model [RFC5102], the first value observed for the DSCP is reported by
 the IPFIX protocol in that case.

 This recommendation applies to packet markers (5).

Boschi, et al. Informational [Page 23]

RFC 5153 IPFIX Implementation Guidelines April 2008

7.3.3. Middleboxes Changing IP Addresses and Port Numbers

 If an IPFIX Observation Point is co-located with one or more
 middleboxes that potentially modify the:

 o IP version field,

 o IP source address header field,

 o IP destination address header field,

 o Source transport port number, or

 o Destination transport port number

 in one of the headers, then the corresponding IPFIX Exporting Process
 should be able to report the ’translated’ value of these fields, as
 far as they have constant values for the particular traffic Flow, in
 addition to the observed values of these fields.

 If the changed values are not constant for the particular traffic
 Flow but still reporting is desired, then it is recommended that the
 general rule from [RFC5102] for Information Elements with changing
 values is applied: the reported value is the one that applies to the
 first packet observed for the reported Flow.

 Note that the ’translated’ value of the fields can be the values
 before or after the translation depending on the Flow direction and
 the location of the Observation Point with respect to the middlebox.
 We always call the value that is not the one observed at the
 Observation Point the translated value.

 Note also that a middlebox may change the same port number value of
 packets from the same Flow to different values depending on the
 packet or other conditions. Also, it is possible that packets of
 different unidirectional arriving Flows with different source/
 destination port number pairs may be mapped to a single Flow with a
 single source/destination port number pair by the middlebox. In both
 cases, there is a constant value for the port number pair to be
 observed on one side of the middlebox, but on the other side the
 values may vary. In such a case, reliable reporting of the port
 number pairs on the ’other’ side of the middlebox is not possible.
 According to the IPFIX information model [RFC5102], the first value
 observed for each port number is reported by the IPFIX protocol in
 that case.

Boschi, et al. Informational [Page 24]

RFC 5153 IPFIX Implementation Guidelines April 2008

 This recommendation applies to NAT (1), NAT-PT (2), SOCKS gateway (3)
 and involuntary packet redirection (21) middleboxes. It may also be
 applied to anonymizers (22), though it should be noted that this
 carries the risk of losing the effect of anonymization.

8. Security Guidelines

8.1. Introduction to TLS and DTLS for IPFIX Implementers

 Transport Layer Security (TLS) [RFC4346] and Datagram Transport Layer
 Security (DTLS) [RFC4347] are the REQUIRED protocols for securing
 network traffic exported with IPFIX (see Section 11 of [RFC5101]).
 TLS requires a reliable transport channel and is selected as the
 security mechanism for TCP. DTLS is a version of TLS capable of
 securing datagram traffic and is selected for UDP, SCTP, and PR-SCTP.

 When mapping TLS terminology used in [RFC4346] to IPFIX terminology,
 keep in mind that the IPFIX Exporting Process, as it is the
 connection initiator, corresponds to the TLS client, and the IPFIX
 Collecting Process corresponds to the TLS server. These terms apply
 only to the bidirectional TLS handshakes done at Transport Session
 establishment and completion time; aside from TLS connection set up
 between the Exporting Process and the Collecting Process, and
 teardown at the end of the session, the unidirectional Flow of
 messages from Exporting Process to Collecting Process operates over
 TLS just as over any other transport layer for IPFIX.

8.2. X.509-Based Identity Verification for IPFIX over TLS or DTLS

 When using TLS or DTLS to secure an IPFIX Transport Session, the
 Collecting Process and Exporting Process must use strong mutual
 authentication. In other words, each IPFIX endpoint must have its
 own X.509 certificate [RFC3280] and private key, and the Collecting
 Process, which acts as the TLS or DTLS server, must send a
 Certificate Request to the Exporting Process during the TLS
 handshake, and fail to establish a session if the Exporting Process
 does not present a valid certificate.

 Each Exporting Process and Collecting Process must verify the
 identity of its peer against a set of authorized peers. This may be
 done by configuring a set of authorized distinguished names and
 comparing the peer certificate’s subject distinguished name against
 each name in the set. However, if a private certification authority
 (CA) is used to sign the certificates identifying the Collecting
 Processes and Exporting Processes, and the set of certificates signed
 by that private CA may be restricted to those identifying peers
 authorized to communicate with each other, it is sufficient to merely
 verify that the peer’s certificate is issued by this private CA.

Boschi, et al. Informational [Page 25]

RFC 5153 IPFIX Implementation Guidelines April 2008

 When verifying the identity of its peer, an IPFIX Exporting Process
 or Collecting Process must verify that the peer certificate’s subject
 common name or subjectAltName extension dNSName matches the fully-
 qualified domain name (FQDN) of the peer. This involves retrieving
 the expected domain name from the peer certificate and the address of
 the peer, then verifying that the two match via a DNS lookup. Such
 verification should require both that forward lookups (FQDN to peer
 address) and reverse lookups (peer address to FQDN) match. In
 deployments without DNS infrastructure, it is acceptable to represent
 the FQDN as an IPv4 dotted-quad or a textual IPv6 address as in
 [RFC1924].

8.3. Implementing IPFIX over TLS over TCP

 Of the security solutions specified for IPFIX, TLS over TCP is as of
 this writing the most mature and widely implemented. Until stable
 implementations of DTLS over SCTP are widely available (see
 Section 8.5, below), it is recommended that applications requiring
 secure transport for IPFIX Messages use TLS over TCP.

 When using TLS over TCP, IPFIX Exporting Processes and Collecting
 Processes should behave in all other aspects as if using TCP as the
 transport protocol, especially as regards the handling of Templates
 and Template withdrawals.

8.4. Implementing IPFIX over DTLS over UDP

 An implementation of the DTLS protocol version 1, described in
 [RFC4347] and required to secure IPFIX over UDP, is available in
 OpenSSL [OPENSSL] as of version 0.9.8. However, DTLS support is as
 of this writing under active development and certain implementations
 might be unstable. We recommend extensive testing of DTLS-based
 IPFIX implementations to build confidence in the DTLS stack over
 which your implementation runs.

 When using DTLS over UDP, IPFIX Exporting Processes and Collecting
 Processes should behave in all other aspects as if using UDP as the
 transport protocol, especially as regards the handling of Templates
 and Template timeouts.

 Note that the selection of IPFIX Message sizes for DTLS over UDP must
 account for overhead per packet introduced by the DTLS layer.

Boschi, et al. Informational [Page 26]

RFC 5153 IPFIX Implementation Guidelines April 2008

8.5. Implementing IPFIX over DTLS over SCTP

 As of this writing, there is no publicly available implementation of
 DTLS over SCTP as described in [RFC4347] and [TUEXEN].

 When using DTLS over SCTP, IPFIX Exporting Processes and Collecting
 Processes should behave in all other aspects as if using SCTP as the
 transport protocol, especially as regards the handling of Templates
 and the use of reliable transport for Template and scope information.

 An implementation of the DTLS protocol version 1, described in
 [RFC4347] and required to secure IPFIX over SCTP, is available in
 OpenSSL [OPENSSL] as of version 0.9.8. However, DTLS support is as
 of this writing under active development and certain implementations
 might be unstable. We recommend extensive testing of DTLS-based
 IPFIX implementations to build confidence in the DTLS stack over
 which your implementation runs.

9. Extending the Information Model

 IPFIX supports two sets of Information Elements: IANA-registered
 Information Elements and enterprise-specific Information Elements.
 New Information Elements can be added to both sets as described in
 this section. If an Information Element is considered of general
 interest, it should be added to the set of IETF-specified Information
 Elements that is maintained by IANA.

 Alternatively, private enterprises can define proprietary Information
 Elements for internal purposes. There are several potential reasons
 for doing so. For example, the Information Element might only relate
 to proprietary features of a device or protocol of the enterprise.
 Also, pre-standard product delivery or commercially sensitive product
 features might cause the need for enterprise-specific Information
 Elements.

 The IPFIX information model [RFC5102] document contains an XML-based
 specification of Template, abstract data types, and IPFIX Information
 Elements, which may be used to create consistent machine-readable
 extensions to the IPFIX information model. This description can be
 used for automatically checking syntactic correctness of the
 specification of IPFIX Information Elements and for generating code
 that deals with processing IPFIX Information Elements.

9.1. Adding New IETF-Specified Information Elements

 New IPFIX Information Elements that are considered to be of general
 interest should be added to the set of IETF-specified Information
 Elements that is maintained by IANA.

Boschi, et al. Informational [Page 27]

RFC 5153 IPFIX Implementation Guidelines April 2008

 The introduction of new Information Elements in the IANA registry is
 subject to expert review. As described in Section 7.1 of [RFC5102],
 an expert review is performed by one of a group of experts designated
 by an IETF Operations and Management Area Director. The experts will
 initially be drawn from the Working Group Chairs and document editors
 of the IPFIX and PSAMP Working Groups. The group of experts must
 double check the Information Elements definitions with already
 defined Information Elements for completeness, accuracy, redundancy,
 and correct naming following the naming conventions in [RFC5102],
 Section 2.3.

 The specification of new IPFIX Information Elements must use the
 Template specified in [RFC5102], Section 2.1, and must be published
 using a well-established and persistent publication medium.

9.2. Adding Enterprise-Specific Information Elements

 Enterprises or other organizations holding a registered Structure of
 Management Information (SMI) network management private enterprise
 code number can specify enterprise-specific Information Elements.
 Their identifiers can be chosen arbitrarily within the range of
 1-32767 and have to be coupled with a Private Enterprise Identifier
 [PEN]. Enterprise identifiers MUST be registered as SMI network
 management private enterprise code numbers with IANA. The registry
 can be found at http://www.iana.org/assignments/enterprise-numbers.

10. Common Implementation Mistakes

 The issues listed in this section were identified during
 implementation and interoperability testing. They do not stem from
 insufficient clarity in the protocol, but each of these was an actual
 mistake made in a tested IPFIX implementation. They are listed here
 for the convenience of future implementers.

10.1. IPFIX and NetFlow Version 9

 A large group of mistakes stems from the fact that many implementers
 started implementing IPFIX from an existing version of NetFlow
 version 9 [RFC3954]. Despite their similarity, the two protocols
 differ in many aspects. We list here some of the most important
 differences.

 o Transport protocol: NetFlow version 9 initially ran over UDP,
 while IPFIX must have a congestion-aware transport protocol.
 IPFIX specifies PR-SCTP as its mandatory protocol, while TCP and
 UDP are optional.

Boschi, et al. Informational [Page 28]

RFC 5153 IPFIX Implementation Guidelines April 2008

 o IPFIX differentiates between IANA-registered and enterprise-
 specific Information Elements. Enterprise-specific Information
 Elements can be specified by coupling a non-IANA-registered
 Information Element identifier with an Enterprise ID
 (corresponding to the vendor that defined the Information
 Element).

 o Options Templates: in IPFIX, an Options Template must have a
 scope, and the scope is not allowed to be of length zero. The
 NetFlow version 9 specifications [RFC3954] don’t specify that the
 scope must not be of length zero.

 Message Header:

 o Set ID: Even if the packet headers are different between IPFIX and
 NetFlow version 9, similar fields are used in both of them. The
 difference between the two protocols is in the values that these
 fields can assume. A typical example is the Set ID values: the
 Set ID values of 0 and 1 are used in NetFlow version 9, while they
 are not used in IPFIX.

 o Length field: in NetFlow version 9, this field (called count)
 contains the number of Records. In IPFIX, it indicates the total
 length of the IPFIX Message, measured in octets (including Message
 Header and Set(s)).

 o Timestamp: the NetFlow version 9 header has an additional
 timestamp: sysUpTime. It indicates the time in milliseconds since
 the last reboot of the Exporting Process.

 o The version number is different. NetFlow version 9 uses the
 version number 9, while IPFIX uses the version number 10.

10.2. Padding of the Data Set

 [RFC5101] specifies that the Exporting Process MAY insert some octets
 for set padding to align Data Sets within a Message. The padding
 length must be shorter than any allowable Record in that set.

 It is important to respect this limitation: if the padding length is
 equal to or longer than the length of the shortest Record, it will be
 interpreted as another Record.

 An alternative is to use the paddingOctets Information Element in the
 Template definition.

Boschi, et al. Informational [Page 29]

RFC 5153 IPFIX Implementation Guidelines April 2008

10.3. Field ID Numbers

 Information Element numbers in IPFIX have the range 0-32767
 (0-0x7FFF). Information Element numbers outside this range (i.e.,
 with the high bit set) are taken to be enterprise-specific
 Information Elements, which have an additional four-byte Private
 Enterprise Number following the Information Element number and
 length. Inadvertently setting the high bit of the Information
 Element number by selecting a number out of this range will therefore
 cause Template scanning errors.

10.4. Template ID Numbers

 Template IDs are generated as required by the Exporting Process.
 When the same set of Information Elements is exported at different
 times, the corresponding Template is usually identified by different
 Template IDs. Similarly, if multiple co-existing Templates are
 composed of the same set of Information Elements, they are also
 identified by different Template IDs. The Collecting Process does
 not know in advance which Template ID a particular Template will use.

11. Security Considerations

 This document describes the implementation guidelines of IPFIX. The
 security requirements for the IPFIX target applications are addressed
 in the IPFIX requirements document [RFC3917]. These requirements are
 considered for the specification of the IPFIX protocol [RFC5101], for
 which a Security Considerations Section exists.

 Section 7 of this document recommends that IPFIX Exporting Processes
 report internals about middleboxes. These internals may be security-
 relevant, and the reported information needs to be protected
 appropriately for reasons given below.

 Reporting of packets dropped by firewalls and other packet-dropping
 middleboxes carries the risk that this information can be used by
 attackers for analyzing the configuration of the middlebox and for
 developing attacks against it. Address translation may be used for
 hiding the network structure behind an address translator. If an
 IPFIX Exporting Process reports the translations performed by an
 address translator, then parts of the network structure may be
 revealed. If an IPFIX Exporting Process reports the translations
 performed by an anonymizer, the main function of the anonymizer may
 be compromised.

 Note that there exist vulnerabilities in DTLS over SCTP as specified
 in the IPFIX protocol, such that a third party could cause messages
 to be undetectably lost, or an SCTP association to shut down. These

Boschi, et al. Informational [Page 30]

RFC 5153 IPFIX Implementation Guidelines April 2008

 vulnerabilities are addressed by [TUEXEN]; however, it is unclear
 whether initial OpenSSL-based implementations of DTLS over SCTP will
 contain the required fixes. DTLS over SCTP should be used with
 caution in production environments until these issues are completely
 addressed.

12. Acknowledgments

 We would like to thank the MoMe project for organizing two IPFIX
 Interoperability Events in July 2005 and in March 2006, and
 Fraunhofer Fokus for organizing the third one in November 2006. The
 Interoperability Events provided us precious input for this document.
 Thanks to Brian Trammell for his contributions to the SCTP section
 and the security guidelines and for the multiple thorough reviews.
 We would also like to thank Benoit Claise, Carsten Schmoll, and
 Gerhard Muenz for the technical review and feedback, and Michael
 Tuexen, Randall Stewart, and Peter Lei for reviewing the SCTP
 section.

13. References

13.1. Normative References

 [RFC5101] Claise, B., Ed., "Specification of the IP Flow
 Information Export (IPFIX) Protocol for the
 Exchange of IP Traffic Flow Information", RFC 5101,
 January 2008.

 [RFC5102] Quittek, J., Bryant, S., Claise, B., Aitken, P.,
 and J. Meyer, "Information Model for IP Flow
 Information Export", RFC 5102, January 2008.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

13.2. Informative References

 [IPFIX-AS] Zseby, T., Boschi, E., Brownlee, N., and B. Claise,
 "IPFIX Applicability", Work in Progress, July 2007.

 [IPFIX-ARCH] Sadasivan, G., Brownlee, N., Claise, B., and J.
 Quittek, "Architecture for IP Flow Information
 Export", Work in Progress, September 2006.

 [IPFIX-REDUCING] Boschi, E., Mark, L., and B. Claise, "Reducing
 Redundancy in IP Flow Information Export (IPFIX)
 and Packet Sampling (PSAMP) Reports", Work
 in Progress, May 2007.

Boschi, et al. Informational [Page 31]

RFC 5153 IPFIX Implementation Guidelines April 2008

 [PSAMP-PROTO] Claise, B., Quittek, J., and A. Johnson, "Packet
 Sampling (PSAMP) Protocol Specifications", Work
 in Progress, December 2007.

 [TUEXEN] Tuexen, M. and E. Rescorla, "Datagram Transport
 Layer Security for Stream Control Transmission
 Protocol", Work in Progress, November 2007.

 [TSVWG-UDP] Eggert, L. and G. Fairhurst, "UDP Usage Guidelines
 for Application Designers", Work in Progress,
 February 2008.

 [RFC1305] Mills, D., "Network Time Protocol (Version 3)
 Specification, Implementation and Analysis",
 RFC 1305, March 1992.

 [RFC1924] Elz, R., "A Compact Representation of IPv6
 Addresses", RFC 1924, April 1996.

 [RFC2474] Nichols, K., Blake, S., Baker, F., and D. Black,
 "Definition of the Differentiated Services Field
 (DS Field) in the IPv4 and IPv6 Headers", RFC 2474,
 December 1998.

 [RFC3234] Carpenter, B. and S. Brim, "Middleboxes: Taxonomy
 and Issues", RFC 3234, February 2002.

 [RFC3280] Housley, R., Polk, W., Ford, W., and D. Solo,
 "Internet X.509 Public Key Infrastructure
 Certificate and Certificate Revocation List (CRL)
 Profile", RFC 3280, April 2002.

 [RFC3758] Stewart, R., Ramalho, M., Xie, Q., Tuexen, M., and
 P. Conrad, "Stream Control Transmission Protocol
 (SCTP) Partial Reliability Extension", RFC 3758,
 May 2004.

 [RFC3917] Quittek, J., Zseby, T., Claise, B., and S. Zander,
 "Requirements for IP Flow Information Export
 (IPFIX)", RFC 3917, October 2004.

 [RFC3954] Claise, B., Ed., "Cisco Systems NetFlow Services
 Export Version 9", RFC 3954, October 2004.

 [RFC4346] Dierks, T. and E. Rescorla, "The Transport Layer
 Security (TLS) Protocol Version 1.1", RFC 4346,
 April 2006.

Boschi, et al. Informational [Page 32]

RFC 5153 IPFIX Implementation Guidelines April 2008

 [RFC4347] Rescorla, E. and N. Modadugu, "Datagram Transport
 Layer Security", RFC 4347, April 2006.

 [RFC4960] Stewart, R., Ed., "Stream Control Transmission
 Protocol", RFC 4960, September 2007.

 [OPENSSL] OpenSSL, "OpenSSL: The Open Source toolkit for SSL/
 TLS", <http://www.openssl.org/>.

 [PEN] IANA, "PRIVATE ENTERPRISE NUMBERS", <http://
 www.iana.org/assignments/enterprise-numbers>.

Authors’ Addresses

 Elisa Boschi
 Hitachi Europe
 c/o ETH Zurich
 Gloriastr. 35
 8092 Zurich
 Switzerland

 Phone: +41 44 6327057
 EMail: elisa.boschi@hitachi-eu.com

 Lutz Mark
 Fraunhofer FOKUS
 Kaiserin Augusta Allee 31
 10589 Berlin
 Germany

 Phone: +49 421 2246-206
 EMail: lutz.mark@ifam.fraunhofer.de

 Juergen Quittek
 NEC Europe Ltd.
 Kurfuersten-Anlage 36
 69115 Heidelberg
 Germany

 Phone: +49 6221 4342-115
 EMail: quittek@nw.neclab.eu

Boschi, et al. Informational [Page 33]

RFC 5153 IPFIX Implementation Guidelines April 2008

 Martin Stiemerling
 NEC Europe Ltd.
 Kurfuersten-Anlage 36
 69115 Heidelberg
 Germany

 Phone: +49 6221 4342-113
 EMail: stiemerling@nw.neclab.eu

 Paul Aitken
 Cisco Systems, Inc.
 96 Commercial Quay
 Edinburgh EH6 6LX
 Scotland

 Phone: +44 131 561 3616
 EMail: paitken@cisco.com

Boschi, et al. Informational [Page 34]

RFC 5153 IPFIX Implementation Guidelines April 2008

Full Copyright Statement

 Copyright (C) The IETF Trust (2008).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Boschi, et al. Informational [Page 35]

