
Network Working Group R. Housley
Request for Comments: 5008 Vigil Security
Category: Informational J. Solinas
 NSA
 September 2007

 Suite B in Secure/Multipurpose Internet Mail Extensions (S/MIME)

Status of This Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard of any kind. Distribution of this
 memo is unlimited.

Abstract

 This document specifies the conventions for using the United States
 National Security Agency’s Suite B algorithms in Secure/Multipurpose
 Internet Mail Extensions (S/MIME) as specified in RFC 3851.

1. Introduction

 This document specifies the conventions for using the United States
 National Security Agency’s Suite B algorithms [SuiteB] in
 Secure/Multipurpose Internet Mail Extensions (S/MIME) [MSG]. S/MIME
 makes use of the Cryptographic Message Syntax (CMS) [CMS]. In
 particular, the signed-data and the enveloped-data content types are
 used.

 Since many of the Suite B algorithms enjoy uses in other environments
 as well, the majority of the conventions needed for the Suite B
 algorithms are already specified in other documents. This document
 references the source of these conventions, and the relevant details
 are repeated to aid developers that choose to support Suite B. In a
 few cases, additional algorithm identifiers are needed, and they are
 provided in this document.

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [STDWORDS].

Housley & Solinas Informational [Page 1]

RFC 5008 Suite B in S/MIME September 2007

1.2. ASN.1

 CMS values are generated using ASN.1 [X.208-88], the Basic Encoding
 Rules (BER) [X.209-88], and the Distinguished Encoding Rules (DER)
 [X.509-88].

1.3. Suite B Security Levels

 Suite B offers two security levels: Level 1 and Level 2. Security
 Level 2 offers greater cryptographic strength by using longer keys.

 For S/MIME signed messages, Suite B follows the direction set by RFC
 3278 [CMSECC], but some additional algorithm identifiers are
 assigned. Suite B uses these algorithms:

 Security Level 1 Security Level 2
 ---------------- ----------------
 Message Digest: SHA-256 SHA-384
 Signature: ECDSA with P-256 ECDSA with P-384

 For S/MIME-encrypted messages, Suite B follows the direction set by
 RFC 3278 [CMSECC] and follows the conventions set by RFC 3565
 [CMSAES]. Again, additional algorithm identifiers are assigned.
 Suite B uses these algorithms:

 Security Level 1 Security Level 2
 ---------------- ----------------
 Key Agreement: ECDH with P-256 ECDH with P-384
 Key Derivation: SHA-256 SHA-384
 Key Wrap: AES-128 Key Wrap AES-256 Key Wrap
 Content Encryption: AES-128 CBC AES-256 CBC

2. SHA-256 and SHA-256 Message Digest Algorithms

 This section specifies the conventions employed by implementations
 that support SHA-256 or SHA-384 [SHA2]. In Suite B, Security Level
 1, the SHA-256 message digest algorithm MUST be used. In Suite B,
 Security Level 2, SHA-384 MUST be used.

 Within the CMS signed-data content type, message digest algorithm
 identifiers are located in the SignedData digestAlgorithms field and
 the SignerInfo digestAlgorithm field. Also, message digest values
 are located in the Message Digest authenticated attribute. In
 addition, message digest values are input into signature algorithms.

 The SHA-256 and SHA-384 message digest algorithms are defined in FIPS
 Pub 180-2 [SHA2, EH]. The algorithm identifier for SHA-256 is:

Housley & Solinas Informational [Page 2]

RFC 5008 Suite B in S/MIME September 2007

 id-sha256 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2)
 country(16) us(840) organization(1) gov(101) csor(3)
 nistalgorithm(4) hashalgs(2) 1 }

 The algorithm identifier for SHA-384 is:

 id-sha384 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2)
 country(16) us(840) organization(1) gov(101) csor(3)
 nistalgorithm(4) hashalgs(2) 2 }

 There are two possible encodings for the AlgorithmIdentifier
 parameters field. The two alternatives arise from the fact that when
 the 1988 syntax for AlgorithmIdentifier was translated into the 1997
 syntax, the OPTIONAL associated with the AlgorithmIdentifier
 parameters got lost. Later, the OPTIONAL was recovered via a defect
 report, but by then many people thought that algorithm parameters
 were mandatory. Because of this history some implementations encode
 parameters as a NULL element and others omit them entirely. The
 correct encoding for the SHA-256 and SHA-384 message digest
 algorithms is to omit the parameters field; however, to ensure
 compatibility, implementations ought to also handle a SHA-256 and
 SHA-384 AlgorithmIdentifier parameters field, which contains a NULL.

 For both SHA-256 and SHA-384, the AlgorithmIdentifier parameters
 field is OPTIONAL, and if present, the parameters field MUST contain
 a NULL. Implementations MUST accept SHA-256 and SHA-384
 AlgorithmIdentifiers with absent parameters. Implementations MUST
 accept SHA-256 and SHA-384 AlgorithmIdentifiers with NULL parameters.
 Implementations SHOULD generate SHA-256 and SHA-384
 AlgorithmIdentifiers with absent parameters.

3. ECDSA Signature Algorithm

 This section specifies the conventions employed by implementations
 that support Elliptic Curve Digital Signature Algorithm (ECDSA). The
 direction set by RFC 3278 [CMSECC] is followed, but additional
 message digest algorithms and additional elliptic curves are
 employed. In Suite B, Security Level 1, ECDSA MUST be used with the
 SHA-256 message digest algorithm and the P-256 elliptic curve. In
 Suite B, Security Level 2, ECDSA MUST be used with the SHA-384
 message digest algorithm and the P-384 elliptic curve. The P-256 and
 P-384 elliptic curves are specified in [DSS].

 Within the CMS signed-data content type, signature algorithm
 identifiers are located in the SignerInfo signatureAlgorithm field of
 SignedData. In addition, signature algorithm identifiers are located
 in the SignerInfo signatureAlgorithm field of countersignature
 attributes.

Housley & Solinas Informational [Page 3]

RFC 5008 Suite B in S/MIME September 2007

 Within the CMS signed-data content type, signature values are located
 in the SignerInfo signature field of SignedData. In addition,
 signature values are located in the SignerInfo signature field of
 countersignature attributes.

 As specified in RFC 3279 [PKIX1ALG], ECDSA and Elliptic Curve
 Diffie-Hellman (ECDH) use the same algorithm identifier for subject
 public keys in certificates, and it is repeated here:

 id-ecPublicKey OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) ansi-x9-62(10045) keyType(2) 1 }

 This object identifier is used in public key certificates for both
 ECDSA signature keys and ECDH encryption keys. The intended
 application for the key may be indicated in the key usage field (see
 RFC 3280 [PKIX1]). The use of separate keys for signature and
 encryption purposes is RECOMMENDED; however, the use of a single key
 for both signature and encryption purposes is not forbidden.

 As specified in RFC 3279 [PKIX1ALG], ECDSA and ECDH use the same
 encoding for subject public keys in certificates, and it is repeated
 here:

 ECPoint ::= OCTET STRING

 The elliptic curve public key (an OCTET STRING) is mapped to a
 subject public key (a BIT STRING) as follows: the most significant
 bit of the OCTET STRING becomes the most significant bit of the BIT
 STRING, and the least significant bit of the OCTET STRING becomes the
 least significant bit of the BIT STRING. Note that this octet string
 may represent an elliptic curve point in compressed or uncompressed
 form. Implementations that support elliptic curves according to this
 specification MUST support the uncompressed form and MAY support the
 compressed form.

 ECDSA and ECDH require use of certain parameters with the public key.
 The parameters may be inherited from the certificate issuer,
 implicitly included through reference to a named curve, or explicitly
 included in the certificate. As specified in RFC 3279 [PKIX1ALG],
 the parameter structure is:

 EcpkParameters ::= CHOICE {
 ecParameters ECParameters,
 namedCurve OBJECT IDENTIFIER,
 implicitlyCA NULL }

Housley & Solinas Informational [Page 4]

RFC 5008 Suite B in S/MIME September 2007

 In Suite B, the namedCurve CHOICE MUST be used. The object
 identifier for P-256 is:

 ansip256r1 OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) ansi-x9-62(10045) curves(3) prime(1) 7 }

 The object identifier for P-384 is:

 secp384r1 OBJECT IDENTIFIER ::= { iso(1)
 identified-organization(3) certicom(132) curve(0) 34 }

 The algorithm identifier used in CMS for ECDSA with SHA-256 signature
 values is:

 ecdsa-with-SHA256 OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) ansi-X9-62(10045) signatures(4) ecdsa-with-sha2(3) 2 }

 The algorithm identifier used in CMS for ECDSA with SHA-384 signature
 values is:

 ecdsa-with-SHA384 OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) ansi-X9-62(10045) signatures(4) ecdsa-with-sha2(3) 3 }

 When either the ecdsa-with-SHA256 or the ecdsa-with-SHA384 algorithm
 identifier is used, the AlgorithmIdentifier parameters field MUST be
 absent.

 When signing, the ECDSA algorithm generates two values, commonly
 called r and s. To transfer these two values as one signature, they
 MUST be encoded using the Ecdsa-Sig-Value type specified in RFC 3279
 [PKIX1ALG]:

 Ecdsa-Sig-Value ::= SEQUENCE {
 r INTEGER,
 s INTEGER }

4. Key Management

 CMS accommodates the following general key management techniques: key
 agreement, key transport, previously distributed symmetric key-
 encryption keys, and passwords. In Suite B, ephemeral-static key
 agreement MUST be used as described in Section 4.1.

 When a key agreement algorithm is used, a key-encryption algorithm is
 also needed. In Suite B, the Advanced Encryption Standard (AES) Key
 Wrap, as specified in RFC 3394 [AESWRAP, SH], MUST be used as the
 key-encryption algorithm. AES Key Wrap is discussed further in
 Section 4.2. The key-encryption key used with the AES Key Wrap

Housley & Solinas Informational [Page 5]

RFC 5008 Suite B in S/MIME September 2007

 algorithm is obtained from a key derivation function (KDF). In Suite
 B, there are two KDFs, one based on SHA-256 and one based on SHA-384.
 These KDFs are discussed further in Section 4.3.

4.1. ECDH Key Agreement Algorithm

 This section specifies the conventions employed by implementations
 that support ECDH. The direction set by RFC 3278 [CMSECC] is
 followed, but additional key derivation functions and key wrap
 algorithms are employed. S/MIME is used in store-and-forward
 communications, which means that ephemeral-static ECDH is always
 employed. This means that the message originator uses an ephemeral
 ECDH key and that the message recipient uses a static ECDH key, which
 is obtained from an X.509 certificate. In Suite B, Security Level 1,
 ephemeral-static ECDH MUST be used with the SHA-256 KDF, AES-128 Key
 Wrap, and the P-256 elliptic curve. In Suite B, Security Level 2,
 ephemeral-static ECDH MUST be used with the SHA-384 KDF, AES-256 Key
 Wrap, and the P-384 elliptic curve.

 Within the CMS enveloped-data content type, key agreement algorithm
 identifiers are located in the EnvelopedData RecipientInfos
 KeyAgreeRecipientInfo keyEncryptionAlgorithm field.

 As specified in RFC 3279 [PKIX1ALG], ECDSA and ECDH use the same
 conventions for carrying a subject public key in a certificate.
 These conventions are discussed in Section 3.

 Ephemeral-static ECDH key agreement is defined in [SEC1] and
 [IEEE1363]. When using ephemeral-static ECDH, the EnvelopedData
 RecipientInfos keyAgreeRecipientInfo field is used as follows:

 version MUST be 3.

 originator MUST be the originatorKey alternative. The
 originatorKey algorithm field MUST contain the id-ecPublicKey
 object identifier (see Section 3) with NULL parameters. The
 originatorKey publicKey field MUST contain the message
 originator’s ephemeral public key, which is a DER-encoded ECPoint
 (see Section 3). The ECPoint SHOULD be represented in
 uncompressed form.

 ukm can be present or absent. However, message originators SHOULD
 include the ukm. As specified in RFC 3852 [CMS], implementations
 MUST support ukm message recipient processing, so interoperability
 is not a concern if the ukm is present or absent. When present,
 the ukm is used to ensure that a different key-encryption key is
 generated, even when the ephemeral private key is improperly used

Housley & Solinas Informational [Page 6]

RFC 5008 Suite B in S/MIME September 2007

 more than once. See [RANDOM] for guidance on generation of random
 values.

 keyEncryptionAlgorithm MUST be one of the two algorithm
 identifiers listed below, and the algorithm identifier parameter
 field MUST be present and identify the key wrap algorithm. The
 key wrap algorithm denotes the symmetric encryption algorithm used
 to encrypt the content-encryption key with the pairwise key-
 encryption key generated using the ephemeral-static ECDH key
 agreement algorithm (see Section 4.3). In Suite B, Security Level
 1, the keyEncryptionAlgorithm MUST be dhSinglePass-stdDH-
 sha256kdf-scheme, and the keyEncryptionAlgorithm parameter MUST be
 a KeyWrapAlgorithm containing id-aes128-wrap (see Section 4.2).
 In Suite B, Security Level 2, the keyEncryptionAlgorithm MUST be
 dhSinglePass-stdDH-sha384kdf-scheme, and the
 keyEncryptionAlgorithm parameter MUST be a KeyWrapAlgorithm
 containing id-aes256-wrap (see Section 4.2). The algorithm
 identifier for dhSinglePass-stdDH-sha256kdf-scheme and
 dhSinglePass-stdDH-sha384kdf-scheme are:

 dhSinglePass-stdDH-sha256kdf-scheme OBJECT IDENTIFIER ::=
 { iso(1) identified-organization(3) certicom(132)
 schemes(1) 11 1 }

 dhSinglePass-stdDH-sha384kdf-scheme OBJECT IDENTIFIER ::=
 { iso(1) identified-organization(3) certicom(132)
 schemes(1) 11 2 }

 Both of these algorithm identifiers use KeyWrapAlgorithm as the
 type for their parameter:

 KeyWrapAlgorithm ::= AlgorithmIdentifier

 recipientEncryptedKeys contains an identifier and an encrypted key
 for each recipient. The RecipientEncryptedKey
 KeyAgreeRecipientIdentifier MUST contain either the
 issuerAndSerialNumber identifying the recipient’s certificate or
 the RecipientKeyIdentifier containing the subject key identifier
 from the recipient’s certificate. In both cases, the recipient’s
 certificate contains the recipient’s static ECDH public key.
 RecipientEncryptedKey EncryptedKey MUST contain the content-
 encryption key encrypted with the ephemeral-static, ECDH-generated
 pairwise key-encryption key using the algorithm specified by the
 KeyWrapAlgorithm (see Section 4.3).

Housley & Solinas Informational [Page 7]

RFC 5008 Suite B in S/MIME September 2007

4.2. AES Key Wrap

 CMS offers support for symmetric key-encryption key management;
 however, it is not used in Suite B. Rather, the AES Key Wrap key-
 encryption algorithm, as specified in RFC 3394 [AESWRAP, SH], is used
 to encrypt the content-encryption key with a pairwise key-encryption
 key that is generated using ephemeral-static ECDH. In Suite B,
 Security Level 1, AES-128 Key Wrap MUST be used as the key-encryption
 algorithm. In Suite B, Security Level 2, AES-256 Key Wrap MUST be
 used as the key-encryption algorithm.

 Within the CMS enveloped-data content type, wrapped content-
 encryption keys are located in the EnvelopedData RecipientInfos
 KeyAgreeRecipientInfo RecipientEncryptedKeys encryptedKey field, and
 key wrap algorithm identifiers are located in the KeyWrapAlgorithm
 parameters within the EnvelopedData RecipientInfos
 KeyAgreeRecipientInfo keyEncryptionAlgorithm field.

 The algorithm identifiers for AES Key Wrap are specified in RFC 3394
 [SH], and the ones needed for Suite B are repeated here:

 id-aes128-wrap OBJECT IDENTIFIER ::= { joint-iso-itu-t(2)
 country(16) us(840) organization(1) gov(101) csor(3)
 nistAlgorithm(4) aes(1) 5 }

 id-aes256-wrap OBJECT IDENTIFIER ::= { joint-iso-itu-t(2)
 country(16) us(840) organization(1) gov(101) csor(3)
 nistAlgorithm(4) aes(1) 45 }

4.3. Key Derivation Functions

 CMS offers support for deriving symmetric key-encryption keys from
 passwords; however, password-based key management is not used in
 Suite B. Rather, KDFs based on SHA-256 and SHA-384 are used to
 derive a pairwise key-encryption key from the shared secret produced
 by ephemeral-static ECDH. In Suite B, Security Level 1, the KDF
 based on SHA-256 MUST be used. In Suite B, Security Level 2, KDF
 based on SHA-384 MUST be used.

 As specified in Section 8.2 of RFC 3278 [CMSECC], using ECDH with the
 CMS enveloped-data content type, the derivation of key-encryption
 keys makes use of the ECC-CMS-SharedInfo type, which is repeated
 here:

 ECC-CMS-SharedInfo ::= SEQUENCE {
 keyInfo AlgorithmIdentifier,
 entityUInfo [0] EXPLICIT OCTET STRING OPTIONAL,
 suppPubInfo [2] EXPLICIT OCTET STRING }

Housley & Solinas Informational [Page 8]

RFC 5008 Suite B in S/MIME September 2007

 In Suite B, the fields of ECC-CMS-SharedInfo are used as follows:

 keyInfo contains the object identifier of the key-encryption
 algorithm that will be used to wrap the content-encryption key and
 NULL parameters. In Suite B, Security Level 1, AES-128 Key Wrap
 MUST be used, resulting in {id-aes128-wrap, NULL}. In Suite B,
 Security Level 2, AES-256 Key Wrap MUST be used, resulting in
 {id-aes256-wrap, NULL}.

 entityUInfo optionally contains a random value provided by the
 message originator. If the ukm is present, then the entityUInfo
 MUST be present, and it MUST contain the ukm value. If the ukm is
 not present, then the entityUInfo MUST be absent.

 suppPubInfo contains the length of the generated key-encryption
 key, in bits, represented as a 32-bit unsigned number, as
 described in RFC 2631 [CMSDH]. In Suite B, Security Level 1, a
 128-bit AES key MUST be used, resulting in 0x00000080. In Suite
 B, Security Level 2, a 256-bit AES key MUST be used, resulting in
 0x00000100.

 ECC-CMS-SharedInfo is DER-encoded and used as input to the key
 derivation function, as specified in Section 3.6.1 of [SEC1]. Note
 that ECC-CMS-SharedInfo differs from the OtherInfo specified in
 [CMSDH]. Here, a counter value is not included in the keyInfo field
 because the KDF specified in [SEC1] ensures that sufficient keying
 data is provided.

 The KDF specified in [SEC1] provides an algorithm for generating an
 essentially arbitrary amount of keying material from the shared
 secret produced by ephemeral-static ECDH, which is called Z for the
 remainder of this discussion. The KDF can be summarized as:

 KM = Hash (Z || Counter || ECC-CMS-SharedInfo)

 To generate a key-encryption key, one or more KM blocks are
 generated, incrementing Counter appropriately, until enough material
 has been generated. The KM blocks are concatenated left to right:

 KEK = KM (counter=1) || KM (counter=2) ...

 The elements of the KDF are used as follows:

 Hash is the one-way hash function, and it is either SHA-256 or
 SHA-384 [SHA2]. In Suite B, Security Level 1, the SHA-256 MUST be
 used. In Suite B, Security Level 2, SHA-384 MUST be used.

Housley & Solinas Informational [Page 9]

RFC 5008 Suite B in S/MIME September 2007

 Z is the shared secret value generated by ephemeral-static ECDH.
 Leading zero bits MUST be preserved. In Suite B, Security Level
 1, Z MUST be exactly 256 bits. In Suite B, Security Level 2, Z
 MUST be exactly 384 bits.

 Counter is a 32-bit unsigned number, represented in network byte
 order. Its initial value MUST be 0x00000001 for any key
 derivation operation. In Suite B, Security Level 1 and Security
 Level 2, exactly one iteration is needed; the Counter is not
 incremented.

 ECC-CMS-SharedInfo is composed as described above. It MUST be DER
 encoded.

 To generate a key-encryption key, one KM block is generated, with a
 Counter value of 0x00000001:

 KEK = KM (1) = Hash (Z || Counter=1 || ECC-CMS-SharedInfo)

 In Suite B, Security Level 1, the key-encryption key MUST be the most
 significant 128 bits of the SHA-256 output value. In Suite B,
 Security Level 2, the key-encryption key MUST be the most significant
 256 bits of the SHA-384 output value.

 Note that the only source of secret entropy in this computation is Z.
 The effective key space of the key-encryption key is limited by the
 size of Z, in addition to any security level considerations imposed
 by the elliptic curve that is used. However, if entityUInfo is
 different for each message, a different key-encryption key will be
 generated for each message.

5. AES CBC Content Encryption

 This section specifies the conventions employed by implementations
 that support content encryption using AES [AES] in Cipher Block
 Chaining (CBC) mode [MODES]. The conventions in RFC 3565 [CMSAES]
 are followed. In Suite B, Security Level 1, the AES-128 in CBC mode
 MUST be used for content encryption. In Suite B, Security Level 2,
 AES-256 in CBC mode MUST be used.

 Within the CMS enveloped-data content type, content encryption
 algorithm identifiers are located in the EnvelopedData
 EncryptedContentInfo contentEncryptionAlgorithm field. The content
 encryption algorithm is used to encipher the content located in the
 EnvelopedData EncryptedContentInfo encryptedContent field.

 The AES CBC content-encryption algorithm is described in [AES] and
 [MODES]. The algorithm identifier for AES-128 in CBC mode is:

Housley & Solinas Informational [Page 10]

RFC 5008 Suite B in S/MIME September 2007

 id-aes128-CBC OBJECT IDENTIFIER ::= { joint-iso-itu-t(2)
 country(16) us(840) organization(1) gov(101) csor(3)
 nistAlgorithm(4) aes(1) 2 }

 The algorithm identifier for AES-256 in CBC mode is:

 id-aes256-CBC OBJECT IDENTIFIER ::= { joint-iso-itu-t(2)
 country(16) us(840) organization(1) gov(101) csor(3)
 nistAlgorithm(4) aes(1) 42 }

 The AlgorithmIdentifier parameters field MUST be present, and the
 parameters field must contain AES-IV:

 AES-IV ::= OCTET STRING (SIZE(16))

 The 16-octet initialization vector is generated at random by the
 originator. See [RANDOM] for guidance on generation of random
 values.

6. Security Considerations

 This document specifies the conventions for using the NSA’s Suite B
 algorithms in S/MIME. All of the algorithms have been specified in
 previous documents, although a few new algorithm identifiers have
 been assigned.

 Two levels of security may be achieved using this specification.
 Users must consider their risk environment to determine which level
 is appropriate for their own use.

 For signed and encrypted messages, Suite B provides a consistent
 level of security for confidentiality and integrity of the message
 content.

 The security considerations in RFC 3852 [CMS] discuss the CMS as a
 method for digitally signing data and encrypting data.

 The security considerations in RFC 3370 [CMSALG] discuss
 cryptographic algorithm implementation concerns in the context of the
 CMS.

 The security considerations in RFC 3278 [CMSECC] discuss the use of
 elliptic curve cryptography (ECC) in the CMS.

 The security considerations in RFC 3565 [CMSAES] discuss the use of
 AES in the CMS.

Housley & Solinas Informational [Page 11]

RFC 5008 Suite B in S/MIME September 2007

7. References

7.1. Normative References

 [AES] National Institute of Standards and Technology, "Advanced
 Encryption Standard (AES)", FIPS PUB 197, November 2001.

 [AESWRAP] National Institute of Standards and Technology, "AES Key
 Wrap Specification", 17 November 2001. [See
 http://csrc.nist.gov/encryption/kms/key-wrap.pdf]

 [DSS] National Institute of Standards and Technology, "Digital
 Signature Standard (DSS)", FIPS PUB 186-2, January 2000.

 [ECDSA] American National Standards Institute, "Public Key
 Cryptography For The Financial Services Industry: The
 Elliptic Curve Digital Signature Algorithm (ECDSA)", ANSI
 X9.62-1998, 1999.

 [CMS] Housley, R., "Cryptographic Message Syntax (CMS)", RFC
 3852, July 2004.

 [CMSAES] Schaad, J., "Use of the Advanced Encryption Standard
 (AES) Encryption Algorithm in Cryptographic Message
 Syntax (CMS)", RFC 3565, July 2003.

 [CMSALG] Housley, R., "Cryptographic Message Syntax (CMS)
 Algorithms", RFC 3370, August 2002.

 [CMSDH] Rescorla, E., "Diffie-Hellman Key Agreement Method", RFC
 2631, June 1999.

 [CMSECC] Blake-Wilson, S., Brown, D., and P. Lambert, "Use of
 Elliptic Curve Cryptography (ECC) Algorithms in
 Cryptographic Message Syntax (CMS)", RFC 3278, April
 2002.

 [IEEE1363] Institute of Electrical and Electronics Engineers,
 "Standard Specifications for Public Key Cryptography",
 IEEE Std 1363, 2000.

 [MODES] National Institute of Standards and Technology, "DES
 Modes of Operation", FIPS Pub 81, 2 December 1980.

 [MSG] Ramsdell, B., "Secure/Multipurpose Internet Mail
 Extensions (S/MIME) Version 3.1 Message Specification",
 RFC 3851, July 2004.

Housley & Solinas Informational [Page 12]

RFC 5008 Suite B in S/MIME September 2007

 [PKIX1] Housley, R., Polk, W., Ford, W., and D. Solo, "Internet
 X.509 Public Key Infrastructure Certificate and
 Certificate Revocation List (CRL) Profile", RFC 3280,
 April 2002.

 [PKIX1ALG] Bassham, L., Polk, W., and R. Housley, "Algorithms and
 Identifiers for the Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation
 List (CRL) Profile", RFC 3279, April 2002.

 [SEC1] Standards for Efficient Cryptography Group, "Elliptic
 Curve Cryptography", 2000. [See http://www.secg.org/
 collateral/sec1.pdf.]

 [SH] Schaad, J., and R. Housley, "Advanced Encryption Standard
 (AES) Key Wrap Algorithm", RFC 3394, September 2002.

 [SHA2] National Institute of Standards and Technology, "Secure
 Hash Standard", FIPS 180-2, 1 August 2002.

 [STDWORDS] S. Bradner, "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [X.208-88] CCITT. Recommendation X.208: Specification of Abstract
 Syntax Notation One (ASN.1). 1988.

 [X.209-88] CCITT. Recommendation X.209: Specification of Basic
 Encoding Rules for Abstract Syntax Notation One (ASN.1).
 1988.

 [X.509-88] CCITT. Recommendation X.509: The Directory -
 Authentication Framework. 1988.

7.2. Informative References

 [EH] Eastlake 3rd, D. and T. Hansen, "US Secure Hash
 Algorithms (SHA and HMAC-SHA)", RFC 4634, July 2006.

 [RANDOM] Eastlake, D., 3rd, Schiller, J., and S. Crocker,
 "Randomness Requirements for Security", BCP 106, RFC
 4086, June 2005.

 [SuiteB] National Security Agency, "Fact Sheet NSA Suite B
 Cryptography", July 2005. [See http://www.nsa.gov/ia/
 industry/crypto_Suite_b.cfm?MenuID=10.2.7)

Housley & Solinas Informational [Page 13]

RFC 5008 Suite B in S/MIME September 2007

Authors’ Addresses

 Russell Housley
 Vigil Security, LLC
 918 Spring Knoll Drive
 Herndon, VA 20170
 USA

 EMail: housley@vigilsec.com

 Jerome A. Solinas
 National Information Assurance Laboratory
 National Security Agency
 9800 Savage Road
 Fort George G. Meade, MD 20755
 USA

 EMail: jasolin@orion.ncsc.mil

Housley & Solinas Informational [Page 14]

RFC 5008 Suite B in S/MIME September 2007

Full Copyright Statement

 Copyright (C) The IETF Trust (2007).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Housley & Solinas Informational [Page 15]

