
Network Working Group G. Pelletier
Request for Comments: 4996 K. Sandlund
Category: Standards Track Ericsson
 L-E. Jonsson

 M. West
 Siemens/Roke Manor
 July 2007

 RObust Header Compression (ROHC): A Profile for TCP/IP (ROHC-TCP)

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The IETF Trust (2007).

Abstract

 This document specifies a ROHC (Robust Header Compression) profile
 for compression of TCP/IP packets. The profile, called ROHC-TCP,
 provides efficient and robust compression of TCP headers, including
 frequently used TCP options such as SACK (Selective Acknowledgments)
 and Timestamps.

 ROHC-TCP works well when used over links with significant error rates
 and long round-trip times. For many bandwidth-limited links where
 header compression is essential, such characteristics are common.

Pelletier, et al. Standards Track [Page 1]

RFC 4996 ROHC-TCP July 2007

Table of Contents

 1. Introduction . 3
 2. Terminology . 4
 3. Background . 5
 3.1. Existing TCP/IP Header Compression Schemes 5
 3.2. Classification of TCP/IP Header Fields 6
 4. Overview of the TCP/IP Profile (Informative) 8
 4.1. General Concepts . 8
 4.2. Compressor and Decompressor Interactions 8
 4.2.1. Compressor Operation 8
 4.2.2. Decompressor Feedback 9
 4.3. Packet Formats and Encoding Methods 9
 4.3.1. Compressing TCP Options 10
 4.3.2. Compressing Extension Headers 10
 4.4. Expected Compression Ratios with ROHC-TCP 10
 5. Compressor and Decompressor Logic (Normative) 11
 5.1. Context Initialization 11
 5.2. Compressor Operation 11
 5.2.1. Compression Logic 11
 5.2.2. Feedback Logic . 13
 5.2.3. Context Replication 14
 5.3. Decompressor Operation 14
 5.3.1. Decompressor States and Logic 14
 5.3.2. Feedback Logic . 18
 5.3.3. Context Replication 18
 6. Encodings in ROHC-TCP (Normative) 18
 6.1. Control Fields in ROHC-TCP 18
 6.1.1. Master Sequence Number (MSN) 19
 6.1.2. IP-ID Behavior . 19
 6.1.3. Explicit Congestion Notification (ECN) 20
 6.2. Compressed Header Chains 21
 6.3. Compressing TCP Options with List Compression 23
 6.3.1. List Compression 23
 6.3.2. Table-Based Item Compression 24
 6.3.3. Encoding of Compressed Lists 25
 6.3.4. Item Table Mappings 26
 6.3.5. Compressed Lists in Dynamic Chain 28
 6.3.6. Irregular Chain Items for TCP Options 28
 6.3.7. Replication of TCP Options 28
 6.4. Profile-Specific Encoding Methods 29
 6.4.1. inferred_ip_v4_header_checksum 29
 6.4.2. inferred_mine_header_checksum 30
 6.4.3. inferred_ip_v4_length 30
 6.4.4. inferred_ip_v6_length 31
 6.4.5. inferred_offset 31
 6.4.6. baseheader_extension_headers 31
 6.4.7. baseheader_outer_headers 32

Pelletier, et al. Standards Track [Page 2]

RFC 4996 ROHC-TCP July 2007

 6.4.8. Scaled Encoding of Fields 32
 6.5. Encoding Methods With External Parameters 34
 7. Packet Types (Normative) 36
 7.1. Initialization and Refresh (IR) Packets 36
 7.2. Context Replication (IR-CR) Packets 38
 7.3. Compressed (CO) Packets 41
 8. Header Formats (Normative) 42
 8.1. Design Rationale for Compressed Base Headers 42
 8.2. Formal Definition of Header Formats 45
 8.3. Feedback Formats and Options 86
 8.3.1. Feedback Formats 86
 8.3.2. Feedback Options 87
 9. Security Considerations 89
 10. IANA Considerations . 89
 11. Acknowledgments . 90
 12. References . 90
 12.1. Normative References 90
 12.2. Informative References 91

1. Introduction

 There are several reasons to perform header compression on low- or
 medium-speed links for TCP/IP traffic, and these have already been
 discussed in [RFC2507]. Additional considerations that make
 robustness an important objective for a TCP [RFC0793] compression
 scheme are introduced in [RFC4163]. Finally, existing TCP/IP header
 compression schemes ([RFC1144], [RFC2507]) are limited in their
 handling of the TCP options field and cannot compress the headers of
 handshaking packets (SYNs and FINs).

 It is thus desirable for a header compression scheme to be able to
 handle loss on the link between the compression and decompression
 points as well as loss before the compression point. The header
 compression scheme also needs to consider how to efficiently compress
 short-lived TCP transfers and TCP options, such as SACK ([RFC2018],
 [RFC2883]) and Timestamps ([RFC1323]).

 The ROHC WG has developed a header compression framework on top of
 which various profiles can be defined for different protocol sets, or
 for different compression strategies. This document defines a TCP/IP
 compression profile for the ROHC framework [RFC4995], compliant with
 the requirements listed in [RFC4163].

 Specifically, it describes a header compression scheme for TCP/IP
 header compression (ROHC-TCP) that is robust against packet loss and
 that offers enhanced capabilities, in particular for the compression
 of header fields including TCP options. The profile identifier for
 TCP/IP compression is 0x0006.

Pelletier, et al. Standards Track [Page 3]

RFC 4996 ROHC-TCP July 2007

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 This document reuses some of the terminology found in [RFC4995]. In
 addition, this document uses or defines the following terms:

 Base context

 The base context is a context that has been validated by both the
 compressor and the decompressor. A base context can be used as
 the reference when building a new context using replication.

 Base Context Identifier (Base CID)

 The Base CID is the CID that identifies the base context, from
 which information needed for context replication can be extracted.

 Base header

 A compressed representation of the innermost IP and TCP headers of
 the uncompressed packet.

 Chaining of items

 A chain groups fields based on similar characteristics. ROHC-TCP
 defines chain items for static, dynamic, replicable, or irregular
 fields. Chaining is done by appending an item for each header
 e.g., to the chain in their order of appearance in the
 uncompressed packet. Chaining is useful to construct compressed
 headers from an arbitrary number of any of the protocol headers
 for which ROHC-TCP defines a compressed format.

 Context Replication (CR)

 Context replication is the mechanism that establishes and
 initializes a new context based on another existing valid context
 (a base context). This mechanism is introduced to reduce the
 overhead of the context establishment procedure, and is especially
 useful for compression of multiple short-lived TCP connections
 that may be occurring simultaneously or near-simultaneously.

Pelletier, et al. Standards Track [Page 4]

RFC 4996 ROHC-TCP July 2007

 ROHC-TCP packet types

 ROHC-TCP uses three different packet types: the Initialization and
 Refresh (IR) packet type, the Context Replication (IR-CR) packet
 type, and the Compressed packet (CO) type.

 Short-lived TCP transfer

 Short-lived TCP transfers refer to TCP connections transmitting
 only small amounts of packets for each single connection.

3. Background

 This section provides some background information on TCP/IP header
 compression. The fundamentals of general header compression can be
 found in [RFC4995]. In the following subsections, two existing
 TCP/IP header compression schemes are first described along with a
 discussion of their limitations, followed by the classification of
 TCP/IP header fields. Finally, some of the characteristics of
 short-lived TCP transfers are summarized.

 A behavior analysis of TCP/IP header fields is found in [RFC4413].

3.1. Existing TCP/IP Header Compression Schemes

 Compressed TCP (CTCP) and IP Header Compression (IPHC) are two
 different schemes that may be used to compress TCP/IP headers. Both
 schemes transmit only the differences from the previous header in
 order to reduce the size of the TCP/IP header.

 The CTCP [RFC1144] compressor detects transport-level retransmissions
 and sends a header that updates the context completely when they
 occur. While CTCP works well over reliable links, it is vulnerable
 when used over less reliable links as even a single packet loss
 results in loss of synchronization between the compressor and the
 decompressor. This in turn leads to the TCP receiver discarding all
 remaining packets in the current window because of a checksum error.
 This effectively prevents the TCP fast retransmit algorithm [RFC2581]
 from being triggered. In such a case, the compressor must wait until
 TCP times out and retransmits a packet to resynchronize.

 To reduce the errors due to the inconsistent contexts between
 compressor and decompressor when compressing TCP, IPHC [RFC2507]
 improves somewhat on CTCP by augmenting the repair mechanism of CTCP
 with a local repair mechanism called TWICE and with a link-layer
 mechanism based on negative acknowledgments to request a header that
 updates the context.

Pelletier, et al. Standards Track [Page 5]

RFC 4996 ROHC-TCP July 2007

 The TWICE algorithm assumes that only the Sequence Number field of
 TCP segments is changing with the deltas between consecutive packets
 being constant in most cases. This assumption is however not always
 true, especially when TCP Timestamps and SACK options are used.

 The full header request mechanism requires a feedback channel that
 may be unavailable in some circumstances. This channel is used to
 explicitly request that the next packet be sent with an uncompressed
 header to allow resynchronization without waiting for a TCP timeout.
 In addition, this mechanism does not perform well on links with long
 round-trip times.

 Both CTCP and IPHC are also limited in their handling of the TCP
 options field. For IPHC, any change in the options field (caused by
 Timestamps or SACK, for example) renders the entire field
 uncompressible, while for CTCP, such a change in the options field
 effectively disables TCP/IP header compression altogether.

 Finally, existing TCP/IP compression schemes do not compress the
 headers of handshaking packets (SYNs and FINs). Compressing these
 packets may greatly improve the overall header compression ratio for
 the cases where many short-lived TCP connections share the same
 channel.

3.2. Classification of TCP/IP Header Fields

 Header compression is possible due to the fact that there is much
 redundancy between header field values within packets, especially
 between consecutive packets. To utilize these properties for TCP/IP
 header compression, it is important to understand the change patterns
 of the various header fields.

 All fields of the TCP/IP packet header have been classified in detail
 in [RFC4413]. The main conclusion is that most of the header fields
 can easily be compressed away since they seldom or never change. The
 following fields do however require more sophisticated mechanisms:

 - IPv4 Identification (16 bits) - IP-ID
 - TCP Sequence Number (32 bits) - SN
 - TCP Acknowledgment Number (32 bits)
 - TCP Reserved (4 bits)
 - TCP ECN flags (2 bits) - ECN
 - TCP Window (16 bits)

Pelletier, et al. Standards Track [Page 6]

RFC 4996 ROHC-TCP July 2007

 - TCP Options
 o Maximum Segment Size (32 bits) - MSS
 o Window Scale (24 bits) - WSCALE
 o SACK Permitted (16 bits)
 o TCP SACK (80, 144, 208, or 272 bits) - SACK
 o TCP Timestamp (80 bits) - TS

 The assignment of IP-ID values can be done in various ways, usually
 one of sequential, sequential jump, or random, as described in
 Section 4.1.3 of [RFC4413]. Some IPv4 stacks do use a sequential
 assignment when generating IP-ID values but do not transmit the
 contents of this field in network byte order; instead, it is sent
 with the two octets reversed. In this case, the compressor can
 compress the IP-ID field after swapping the bytes. Consequently, the
 decompressor also swaps the bytes of the IP-ID after decompression to
 regenerate the original IP-ID. With respect to TCP compression, the
 analysis in [RFC4413] reveals that there is no obvious candidate
 among the TCP fields suitable to infer the IP-ID.

 The change pattern of several TCP fields (Sequence Number,
 Acknowledgment Number, Window, etc.) is very hard to predict. Of
 particular importance to a TCP/IP header compression scheme is the
 understanding of the sequence and acknowledgment numbers [RFC4413].

 Specifically, the TCP Sequence Number can be anywhere within a range
 defined by the TCP Window at any point on the path (i.e., wherever a
 compressor might be deployed). Missing packets or retransmissions
 can cause the TCP Sequence Number to fluctuate within the limits of
 this window. The TCP Window also bounds the jumps in acknowledgment
 number.

 Another important behavior of the TCP/IP header is the dependency
 between the sequence number and the acknowledgment number. TCP
 connections can be either near-symmetrical or show a strong
 asymmetrical bias with respect to the data traffic. In the latter
 case, the TCP connections mainly have one-way traffic (Web browsing
 and file downloading, for example). This means that on the forward
 path (from server to client), only the sequence number is changing
 while the acknowledgment number remains constant for most packets; on
 the backward path (from client to server), only the acknowledgment
 number is changing and the sequence number remains constant for most
 packets. A compression scheme for TCP should thus have packet
 formats suitable for either cases, i.e., packet formats that can
 carry either only sequence number bits, only acknowledgment number
 bits, or both.

 In addition, TCP flows can be short-lived transfers. Short-lived TCP
 transfers will degrade the performance of header compression schemes

Pelletier, et al. Standards Track [Page 7]

RFC 4996 ROHC-TCP July 2007

 that establish a new context by initially sending full headers.
 Multiple simultaneous or near simultaneous TCP connections may
 exhibit much similarity in header field values and context values
 among each other, which would make it possible to reuse information
 between flows when initializing a new context. A mechanism to this
 end, context replication [RFC4164], makes the context establishment
 step faster and more efficient, by replicating part of an existing
 context to a new flow. The conclusion from [RFC4413] is that part of
 the IP sub-context, some TCP fields, and some context values can be
 replicated since they seldom change or change with only a small jump.

 ROHC-TCP also compresses the following headers: IPv6 Destination
 Options header [RFC2460], IPv6 Routing header [RFC2460], IPv6 Hop-by-
 Hop Options header [RFC2460], Authentication Header (AH) [RFC4302],
 NULL-encrypted Encapsulating Security Payload (ESP) header [RFC4303],
 Generic Routing Encapsulation (GRE) [RFC2784][RFC2890] and the
 Minimal Encapsulation header (MINE) [RFC2004].

 Headers specific to Mobile IP (for IPv4 or IPv6) do not receive any
 special treatment in this document, for reasons similar to those
 described in [RFC3095].

4. Overview of the TCP/IP Profile (Informative)

4.1. General Concepts

 ROHC-TCP uses the ROHC protocol as described in [RFC4995]. ROHC-TCP
 supports context replication as defined in [RFC4164]. Context
 replication can be particularly useful for short-lived TCP flows
 [RFC4413].

4.2. Compressor and Decompressor Interactions

4.2.1. Compressor Operation

 Header compression with ROHC can be conceptually characterized as the
 interaction of a compressor with a decompressor state machine. The
 compressor’s task is to minimally send the information needed to
 successfully decompress a packet, based on a certain confidence
 regarding the state of the decompressor context.

 For ROHC-TCP compression, the compressor normally starts compression
 with the initial assumption that the decompressor has no useful
 information to process the new flow, and sends Initialization and
 Refresh (IR) packets. Alternatively, the compressor may also support
 Context Replication (CR) and use IR-CR packets [RFC4164], which
 attempts to reuse context information related to another flow.

Pelletier, et al. Standards Track [Page 8]

RFC 4996 ROHC-TCP July 2007

 The compressor can then adjust the compression level based on its
 confidence that the decompressor has the necessary information to
 successfully process the Compressed (CO) packets that it selects. In
 other words, the task of the compressor is to ensure that the
 decompressor operates in the state that allows decompression of the
 most efficient CO packet(s), and to allow the decompressor to move to
 that state as soon as possible otherwise.

4.2.2. Decompressor Feedback

 The ROHC-TCP profile can be used in environments with or without
 feedback capabilities from decompressor to compressor. ROHC-TCP
 however assumes that if a ROHC feedback channel is available and if
 this channel is used at least once by the decompressor for a specific
 ROHC-TCP context, this channel will be used during the entire
 compression operation for that context. If the feedback channel
 disappears, compression should be restarted.

 The reception of either positive acknowledgment (ACKs) or negative
 acknowledgment (NACKs) establishes the feedback channel from the
 decompressor for the context for which the feedback was received.
 Once there is an established feedback channel for a specific context,
 the compressor should make use of this feedback to estimate the
 current state of the decompressor. This helps in increasing the
 compression efficiency by providing the information needed for the
 compressor to achieve the necessary confidence level.

 The ROHC-TCP feedback mechanism is limited in its applicability by
 the number of (least significant bit (LSB) encoded) master sequence
 number (MSN) (see Section 6.1.1) bits used in the FEEDBACK-2 format
 (see Section 8.3). It is not suitable for a decompressor to use
 feedback altogether where the MSN bits in the feedback could wrap
 around within one round-trip time. Instead, unidirectional operation
 -- where the compressor periodically sends larger context-updating
 packets -- is more appropriate.

4.3. Packet Formats and Encoding Methods

 The packet formats and encoding methods used for ROHC-TCP are defined
 using the formal notation [RFC4997]. The formal notation is used to
 provide an unambiguous representation of the packet formats and a
 clear definition of the encoding methods.

Pelletier, et al. Standards Track [Page 9]

RFC 4996 ROHC-TCP July 2007

4.3.1. Compressing TCP Options

 The TCP options in ROHC-TCP are compressed using a list compression
 encoding that allows option content to be established so that TCP
 options can be added to the context without having to send all TCP
 options uncompressed.

4.3.2. Compressing Extension Headers

 ROHC-TCP compresses the extension headers as listed in Section 3.2.
 These headers are treated exactly as other headers and thus have a
 static chain, a dynamic chain, an irregular chain, and a chain for
 context replication (Section 6.2).

 This means that headers appearing in or disappearing from the flow
 being compressed will lead to changes to the static chain. However,
 the change pattern of extension headers is not deemed to impair
 compression efficiency with respect to this design strategy.

4.4. Expected Compression Ratios with ROHC-TCP

 The following table illustrates typical compression ratios that can
 be expected when using ROHC-TCP and IPHC [RFC2507].

 The figures in the table assume that the compression context has
 already been properly initialized. For the TS option, the Timestamp
 is assumed to change with small values. All TCP options include a
 suitable number of No Operation (NOP) options [RFC0793] for padding
 and/or alignment. Finally, in the examples for IPv4, a sequential
 IP-ID behavior is assumed.

 Total Header Size (octets)
 ROHC-TCP IPHC
 Unc. DATA ACK DATA ACK
 IPv4+TCP+TS 52 8 8 18 18
 IPv4+TCP+TS 52 7 6 16 16 (1)
 IPv6+TCP+TS 72 8 7 18 18
 IPv6+TCP+no opt 60 6 5 6 6
 IPv6+TCP+SACK 80 - 15 - 80 (2)
 IPv6+TCP+SACK 80 - 9 - 26 (3)

 (1) The payload size of the data stream is constant.
 (2) The SACK option appears in the header, but was not present
 in the previous packet. Two SACK blocks are assumed.
 (3) The SACK option appears in the header, and was also present
 in the previous packet (with different SACK blocks).
 Two SACK blocks are assumed.

Pelletier, et al. Standards Track [Page 10]

RFC 4996 ROHC-TCP July 2007

 The table below illustrates the typical initial compression ratios
 for ROHC-TCP and IPHC. The data stream in the example is assumed to
 be IPv4+TCP, with a sequential behavior for the IP-ID. The following
 options are assumed present in the SYN packet: TS, MSS, and WSCALE,
 with an appropriate number of NOP options.

 Total Header Size (octets)
 Unc. ROHC-TCP IPHC
 1st packet (SYN) 60 49 60
 2nd packet 52 12 52

 The figures in the table assume that the compressor has received an
 acknowledgment from the decompressor before compressing the second
 packet, which can be expected when feedback is used in ROHC-TCP.
 This is because in the most common case, the TCP ACKs are expected to
 take the same return path, and because TCP does not send more packets
 until the TCP SYN packet has been acknowledged.

5. Compressor and Decompressor Logic (Normative)

5.1. Context Initialization

 The static context of ROHC-TCP flows can be initialized in either of
 two ways:

 1. By using an IR packet as in Section 7.1, where the profile number
 is 0x06 and the static chain ends with the static part of a TCP
 header.

 2. By replicating an existing context using the mechanism defined by
 [RFC4164]. This is done with the IR-CR packet defined in
 Section 7.2, where the profile number is 0x06.

5.2. Compressor Operation

5.2.1. Compression Logic

 The task of the compressor is to determine what data must be sent
 when compressing a TCP/IP packet, so that the decompressor can
 successfully reconstruct the original packet based on its current
 state. The selection of the type of compressed header to send thus
 depends on a number of factors, including:

 o The change behavior of header fields in the flow, e.g., conveying
 the necessary information within the restrictions of the set of
 available packet formats.

Pelletier, et al. Standards Track [Page 11]

RFC 4996 ROHC-TCP July 2007

 o The compressor’s level of confidence regarding decompressor state,
 e.g., by selecting header formats updating the same type of
 information for a number of consecutive packets or from the
 reception of decompressor feedback (ACKs and/or NACKs).

 o Additional robustness required for the flow, e.g., periodic
 refreshes of static and dynamic information using IR and IR-DYN
 packets when decompressor feedback is not expected.

 The impact of these factors on the compressor’s packet type selection
 is described in more detail in the following subsections.

 In this section, a "higher compression state" means that less data
 will be sent in compressed packets, i.e., smaller compressed headers
 are used, while a lower compression state means that a larger amount
 of data will be sent using larger compressed headers.

5.2.1.1. Optimistic Approach

 The optimistic approach is the principle by which a compressor sends
 the same type of information for a number of packets (consecutively
 or not) until it is fairly confident that the decompressor has
 received the information. The optimistic approach is useful to
 ensure robustness when ROHC-TCP is used to compress packet over lossy
 links.

 Therefore, if field X in the uncompressed packet changes value, the
 compressor MUST use a packet type that contains an encoding for field
 X until it has gained confidence that the decompressor has received
 at least one packet containing the new value for X. The compressor
 SHOULD choose a compressed format with the smallest header that can
 convey the changes needed to fulfill the optimistic approach
 condition used.

5.2.1.2. Periodic Context Refreshes

 When the optimistic approach is used, there will always be a
 possibility of decompression failures since the decompressor may not
 have received sufficient information for correct decompression.

 Therefore, until the decompressor has established a feedback channel,
 the compressor SHOULD periodically move to a lower compression state
 and send IR and/or IR-DYN packets. These refreshes can be based on
 timeouts, on the number of compressed packets sent for the flow, or
 any other strategy specific to the implementation. Once the feedback
 channel is established, the decompressor MAY stop performing periodic
 refreshes.

Pelletier, et al. Standards Track [Page 12]

RFC 4996 ROHC-TCP July 2007

5.2.2. Feedback Logic

 The semantics of feedback messages, acknowledgments (ACKs) and
 negative acknowledgments (NACKs or STATIC-NACKs), are defined in
 Section 5.2.4.1 of [RFC4995].

5.2.2.1. Optional Acknowledgments (ACKs)

 The compressor MAY use acknowledgment feedback (ACKs) to move to a
 higher compression state.

 Upon reception of an ACK for a context-updating packet, the
 compressor obtains confidence that the decompressor has received the
 acknowledged packet and that it has observed changes in the packet
 flow up to the acknowledged packet.

 This functionality is optional, so a compressor MUST NOT expect to
 get such ACKs, even if a feedback channel is available and has been
 established for that flow.

5.2.2.2. Negative Acknowledgments (NACKs)

 The compressor uses feedback from the decompressor to move to a lower
 compression state (NACKs).

 On reception of a NACK feedback, the compressor SHOULD:

 o assume that only the static part of the decompressor is valid, and

 o re-send all dynamic information (via an IR or IR-DYN packet) the
 next time it compresses a packet for the indicated flow

 unless it has confidence that information sent after the packet being
 acknowledged already provides a suitable response to the NACK
 feedback. In addition, the compressor MAY use a CO packet carrying a
 7-bit Cyclic Redundancy Check (CRC) if it can determine with enough
 confidence what information provides a suitable response to the NACK
 feedback.

 On reception of a STATIC-NACK feedback, the compressor SHOULD:

 o assume that the decompressor has no valid context, and

 o re-send all static and all dynamic information (via an IR packet)
 the next time it compresses a packet for the indicated flow

Pelletier, et al. Standards Track [Page 13]

RFC 4996 ROHC-TCP July 2007

 unless it has confidence that information sent after the packet that
 is being acknowledged already provides a suitable response to the
 STATIC-NACK feedback.

5.2.3. Context Replication

 A compressor MAY support context replication by implementing the
 additional compression and feedback logic defined in [RFC4164].

5.3. Decompressor Operation

5.3.1. Decompressor States and Logic

 The three states of the decompressor are No Context (NC), Static
 Context (SC), and Full Context (FC). The decompressor starts in its
 lowest compression state, the NC state. Successful decompression
 will always move the decompressor to the FC state. The decompressor
 state machine normally never leaves the FC state once it has entered
 this state; only repeated decompression failures will force the
 decompressor to transit downwards to a lower state.

 Below is the state machine for the decompressor. Details of the
 transitions between states and decompression logic are given in the
 subsections following the figure.

 Success
 +-->------>------>------>------>------>--+
 | |
 No Static | No Dynamic Success | Success
 +-->--+ | +-->--+ +--->----->---+ +-->--+
 | | | | | | | | |
 | v | | v | v | v
 +-----------------+ +---------------------+ +-------------------+
 | No Context (NC) | | Static Context (SC) | | Full Context (FC) |
 +-----------------+ +---------------------+ +-------------------+
 ^ | ^ |
 | Static Context | | Context Damage Assumed |
 | Damage Assumed | | |
 +-----<------<------<-----+ +-----<------<------<-----+

5.3.1.1. Reconstruction and Verification

 When decompressing an IR or an IR-DYN packet, the decompressor MUST
 validate the integrity of the received header using CRC-8 validation
 [RFC4995]. If validation fails, the packet MUST NOT be delivered to
 upper layers.

Pelletier, et al. Standards Track [Page 14]

RFC 4996 ROHC-TCP July 2007

 Upon receiving an IR-CR packet, the decompressor MUST perform the
 actions as specified in [RFC4164].

 When decompressing other packet types (e.g., CO packets), the
 decompressor MUST validate the outcome of the decompression attempt
 using CRC verification [RFC4995]. If verification fails, a
 decompressor implementation MAY attempt corrective or repair measures
 on the packet, and the result of any attempt MUST be validated using
 the CRC verification; otherwise, the packet MUST NOT be delivered to
 upper layers.

 When the CRC-8 validation or the CRC verification of the received
 header is successful, the decompressor SHOULD update its context with
 the information received in the current header; the decompressor then
 passes the reconstructed packet to the system’s network layer.
 Otherwise, the decompressor context MUST NOT be updated.

 If the received packet is older than the current reference packet,
 e.g., based on the master sequence number (MSN) in the compressed
 packet, the decompressor MAY refrain from updating the context using
 the information received in the current packet, even if the
 correctness of its header was successfully verified.

5.3.1.2. Detecting Context Damage

 All header formats carry a CRC and are context updating. A packet
 for which the CRC succeeds updates the reference values of all header
 fields, either explicitly (from the information about a field carried
 within the compressed header) or implicitly (fields that are inferred
 from other fields).

 The decompressor may assume that some or the entire context is
 invalid, following one or more failures to validate or verify a
 header using the CRC. Because the decompressor cannot know the exact
 reason(s) for a CRC failure or what field caused it, the validity of
 the context hence does not refer to what exact context entry is
 deemed valid or not.

 Validity of the context rather relates to the detection of a problem
 with the context. The decompressor first assumes that the type of
 information that most likely caused the failure(s) is the state that
 normally changes for each packet, i.e., context damage of the dynamic
 part of the context. Upon repeated failures and unsuccessful
 repairs, the decompressor then assumes that the entire context,
 including the static part, needs to be repaired, i.e., static context
 damage.

Pelletier, et al. Standards Track [Page 15]

RFC 4996 ROHC-TCP July 2007

 Context Damage Detection

 The assumption of context damage means that the decompressor will
 not attempt decompression of a CO header that carries a 3-bit CRC,
 and only attempt decompression of IR, IR-DYN, or IR-CR headers or
 CO headers protected by a CRC-7.

 Static Context Damage Detection

 The assumption of static context damage means that the
 decompressor refrains from attempting decompression of any type of
 header other than the IR header.

 How these assumptions are made, i.e., how context damage is detected,
 is open to implementations. It can be based on the residual error
 rate, where a low error rate makes the decompressor assume damage
 more often than on a high-rate link.

 The decompressor implements these assumptions by selecting the type
 of compressed header for which it may attempt decompression. In
 other words, validity of the context refers to the ability of a
 decompressor to attempt or not attempt decompression of specific
 packet types.

5.3.1.3. No Context (NC) State

 Initially, while working in the No Context (NC) state, the
 decompressor has not yet successfully decompressed a packet.

 Allowing decompression:

 In the NC state, only packets carrying sufficient information on
 the static fields (IR and IR-CR packets) can be decompressed;
 otherwise, the packet MUST NOT be decompressed and MUST NOT be
 delivered to upper layers.

 Feedback logic:

 In the NC state, the decompressor should send a STATIC-NACK if a
 packet of a type other than IR is received, or if decompression of
 an IR packet has failed, subject to the feedback rate limitation
 as described in Section 5.3.2

 Once a packet has been validated and decompressed correctly, the
 decompressor MUST transit to the FC state.

Pelletier, et al. Standards Track [Page 16]

RFC 4996 ROHC-TCP July 2007

5.3.1.4. Static Context (SC) State

 When the decompressor is in the Static Context (SC) state, only the
 static part of the decompressor context is valid.

 From the SC state, the decompressor moves back to the NC state if
 static context damage is detected.

 Allowing decompression:

 In the SC state, packets carrying sufficient information on the
 dynamic fields covered by an 8-bit CRC (e.g., IR and IR-DYN) or CO
 packets covered by a 7-bit CRC can be decompressed; otherwise, the
 packet MUST NOT be decompressed and MUST NOT be delivered to upper
 layers.

 Feedback logic:

 In the SC state, the decompressor should send a STATIC-NACK if CRC
 validation of an IR/IR-DYN/IR-CR fails and static context damage
 is assumed. If any other packet type is received, the
 decompressor should send a NACK. Both of the above cases are
 subject to the feedback rate limitation as described in
 Section 5.3.2.

 Once a packet has been validated and decompressed correctly, the
 decompressor MUST transit to the FC state.

5.3.1.5. Full Context (FC) State

 In the Full Context (FC) state, both the static and the dynamic parts
 of the decompressor context are valid. From the FC state, the
 decompressor moves back to the SC state if context damage is
 detected.

 Allowing decompression:

 In the FC state, decompression can be attempted regardless of the
 type of packet received.

 Feedback logic:

 In the FC state, the decompressor should send a NACK if the
 decompression of any packet type fails and context damage is
 assumed, subject to the feedback rate limitation as described in
 Section 5.3.2.

Pelletier, et al. Standards Track [Page 17]

RFC 4996 ROHC-TCP July 2007

5.3.2. Feedback Logic

 The decompressor MAY send positive feedback (ACKs) to initially
 establish the feedback channel for a particular flow. Either
 positive feedback (ACKs) or negative feedback (NACKs) establishes
 this channel.

 Once the feedback channel is established, the decompressor is
 REQUIRED to continue sending NACKs or STATIC-NACKs for as long as the
 context is associated with the same profile, in this case with
 profile 0x0006, as per the logic defined for each state in
 Section 5.3.1.

 The decompressor MAY send ACKs upon successful decompression of any
 packet type. In particular, when a packet carrying a significant
 context update is correctly decompressed, the decompressor MAY send
 an ACK.

 The decompressor should limit the rate at which it sends feedback,
 for both ACKs and STATIC-NACK/NACKs, and should avoid sending
 unnecessary duplicates of the same type of feedback message that may
 be associated to the same event.

5.3.3. Context Replication

 ROHC-TCP supports context replication; therefore, the decompressor
 MUST implement the additional decompressor and feedback logic defined
 in [RFC4164].

6. Encodings in ROHC-TCP (Normative)

6.1. Control Fields in ROHC-TCP

 In ROHC-TCP, a number of control fields are used by the decompressor
 in its interpretation of the format of the packets received from the
 compressor.

 A control field is a field that is transmitted from the compressor to
 the decompressor, but is not part of the uncompressed header. Values
 for control fields can be set up in the context of both the
 compressor and the decompressor. Once established at the
 decompressor, the values of these fields should be kept until updated
 by another packet.

Pelletier, et al. Standards Track [Page 18]

RFC 4996 ROHC-TCP July 2007

6.1.1. Master Sequence Number (MSN)

 There is no field in the TCP header that can act as the master
 sequence number for TCP compression, as explained in [RFC4413],
 Section 5.6.

 To overcome this problem, ROHC-TCP introduces a control field called
 the Master Sequence Number (MSN) field. The MSN field is created at
 the compressor, rather than using one of the fields already present
 in the uncompressed header. The compressor increments the value of
 the MSN by one for each packet that it sends.

 The MSN field has the following two functions:

 1. Differentiating between packets when sending feedback data.

 2. Inferring the value of incrementing fields such as the IP-ID.

 The MSN field is present in every packet sent by the compressor. The
 MSN is LSB encoded within the CO packets, and the 16-bit MSN is sent
 in full in IR/IR-DYN packets. The decompressor always sends the MSN
 as part of the feedback information. The compressor can later use
 the MSN to infer which packet the decompressor is acknowledging.

 When the MSN is initialized, it SHOULD be initialized to a random
 value. The compressor should only initialize a new MSN for the
 initial IR or IR-CR packet sent for a CID that corresponds to a
 context that is not already associated with this profile. In other
 words, if the compressor reuses the same CID to compress many TCP
 flows one after the other, the MSN is not reinitialized but rather
 continues to increment monotonically.

 For context replication, the compressor does not use the MSN of the
 base context when sending the IR-CR packet, unless the replication
 process overwrites the base context (i.e., Base CID == CID).
 Instead, the compressor uses the value of the MSN if it already
 exists in the ROHC-TCP context being associated with the new flow
 (CID); otherwise, the MSN is initialized to a new value.

6.1.2. IP-ID Behavior

 The IP-ID field of the IPv4 header can have different change
 patterns. Conceptually, a compressor monitors changes in the value
 of the IP-ID field and selects encoding methods and packet formats
 that are the closest match to the observed change pattern.

 ROHC-TCP defines different types of compression techniques for the
 IP-ID, to provide the flexibility to compress any of the behaviors it

Pelletier, et al. Standards Track [Page 19]

RFC 4996 ROHC-TCP July 2007

 may observe for this field: sequential in network byte order (NBO),
 sequential byte-swapped, random (RND), or constant to a value of
 zero.

 The compressor monitors changes in the value of the IP-ID field for a
 number of packets, to identify which one of the above listed
 compression alternatives is the closest match to the observed change
 pattern. The compressor can then select packet formats and encoding
 methods based on the identified field behavior.

 If more than one level of IP headers is present, ROHC-TCP can assign
 a sequential behavior (NBO or byte-swapped) only to the IP-ID of the
 innermost IP header. This is because only this IP-ID can possibly
 have a sufficiently close correlation with the MSN (see also
 Section 6.1.1) to compress it as a sequentially changing field.
 Therefore, a compressor MUST NOT assign either the sequential (NBO)
 or the sequential byte-swapped behavior to tunneling headers.

 The control field for the IP-ID behavior determines which set of
 packet formats will be used. These control fields are also used to
 determine the contents of the irregular chain item (see Section 6.2)
 for each IP header.

6.1.3. Explicit Congestion Notification (ECN)

 When ECN [RFC3168] is used once on a flow, the ECN bits could change
 quite often. ROHC-TCP maintains a control field in the context to
 indicate whether or not ECN is used. This control field is
 transmitted in the dynamic chain of the TCP header, and its value can
 be updated using specific compressed headers carrying a 7-bit CRC.

 When this control field indicates that ECN is being used, items of
 all IP and TCP headers in the irregular chain include bits used for
 ECN. To preserve octet-alignment, all of the TCP reserved bits are
 transmitted and, for outer IP headers, the entire Type of Service/
 Traffic Class (TOS/TC) field is included in the irregular chain.
 When there is only one IP header present in the packet (i.e., no IP
 tunneling is used), this compression behavior allows the compressor
 to handle changes in the ECN bits by adding a single octet to the
 compressed header.

 The reason for including the ECN bits of all IP headers in the
 compressed packet when the control field is set is that the profile
 needs to efficiently compress flows containing IP tunnels using the
 "full-functionality option" of Section 9.1 of [RFC3168]. For these
 flows, a change in the ECN bits of an inner IP header is propagated
 to the outer IP headers. When the "limited-functionality" option is
 used, the compressor will therefore sometimes send one octet more

Pelletier, et al. Standards Track [Page 20]

RFC 4996 ROHC-TCP July 2007

 than necessary per tunnel header, but this has been considered a
 reasonable tradeoff when designing this profile.

6.2. Compressed Header Chains

 Some packet types use one or more chains containing sub-header
 information. The function of a chain is to group fields based on
 similar characteristics, such as static, dynamic, or irregular
 fields. Chaining is done by appending an item for each header to the
 chain in their order of appearance in the uncompressed packet,
 starting from the fields in the outermost header.

 Chains are defined for all headers compressed by ROHC-TCP, as listed
 below. Also listed are the names of the encoding methods used to
 encode each of these protocol headers.

 o TCP [RFC0793], encoding method: "tcp"

 o IPv4 [RFC0791], encoding method: "ipv4"

 o IPv6 [RFC2460], encoding method: "ipv6"

 o AH [RFC4302], encoding method: "ah"

 o GRE [RFC2784][RFC2890], encoding method: "gre"

 o MINE [RFC2004], encoding method: "mine"

 o NULL-encrypted ESP [RFC4303], encoding method: "esp_null"

 o IPv6 Destination Options header [RFC2460], encoding method:
 "ip_dest_opt"

 o IPv6 Hop-by-Hop Options header [RFC2460], encoding method:
 "ip_hop_opt"

 o IPv6 Routing header [RFC2460], encoding method: "ip_rout_opt"

 Static chain:

 The static chain consists of one item for each header of the chain
 of protocol headers to be compressed, starting from the outermost
 IP header and ending with a TCP header. In the formal description
 of the packet formats, this static chain item for each header is a
 format whose name is suffixed by "_static". The static chain is
 only used in IR packets.

Pelletier, et al. Standards Track [Page 21]

RFC 4996 ROHC-TCP July 2007

 Dynamic chain:

 The dynamic chain consists of one item for each header of the
 chain of protocol headers to be compressed, starting from the
 outermost IP header and ending with a TCP header. The dynamic
 chain item for the TCP header also contains a compressed list of
 TCP options (see Section 6.3). In the formal description of the
 packet formats, the dynamic chain item for each header type is a
 format whose name is suffixed by "_dynamic". The dynamic chain is
 used in both IR and IR-DYN packets.

 Replicate chain:

 The replicate chain consists of one item for each header in the
 chain of protocol headers to be compressed, starting from the
 outermost IP header and ending with a TCP header. The replicate
 chain item for the TCP header also contains a compressed list of
 TCP options (see Section 6.3). In the formal description of the
 packet formats, the replicate chain item for each header type is a
 format whose name is suffixed by "_replicate". Header fields that
 are not present in the replicate chain are replicated from the
 base context. The replicate chain is only used in the IR-CR
 packet.

 Irregular chain:

 The structure of the irregular chain is analogous to the structure
 of the static chain. For each compressed packet, the irregular
 chain is appended at the specified location in the general format
 of the compressed packets as defined in Section 7.3. This chain
 also includes the irregular chain items for TCP options as defined
 in Section 6.3.6, which are placed directly after the irregular
 chain item of the TCP header, and in the same order as the options
 appear in the uncompressed packet. In the formal description of
 the packet formats, the irregular chain item for each header type
 is a format whose name is suffixed by "_irregular". The irregular
 chain is used only in CO packets.

 The format of the irregular chain for the innermost IP header
 differs from the format of outer IP headers, since this header is
 part of the compressed base header.

Pelletier, et al. Standards Track [Page 22]

RFC 4996 ROHC-TCP July 2007

6.3. Compressing TCP Options with List Compression

 This section describes in detail how list compression is applied to
 the TCP options. In the definition of the packet formats for ROHC-
 TCP, the most frequent TCP options have one encoding method each, as
 listed in the table below.

 +-----------------+------------------------+
 | Option name | Encoding method name |
 +-----------------+------------------------+
 | NOP | tcp_opt_nop |
 | EOL | tcp_opt_eol |
 | MSS | tcp_opt_mss |
 | WINDOW SCALE | tcp_opt_wscale |
 | TIMESTAMP | tcp_opt_ts |
 | SACK-PERMITTED | tcp_opt_sack_permitted |
 | SACK | tcp_opt_sack |
 | Generic options | tcp_opt_generic |
 +-----------------+------------------------+

 Each of these encoding methods has an uncompressed format, a format
 suffixed by "_list_item" and a format suffixed by "_irregular". In
 some cases, a single encoding method may have multiple "_list_item"
 or "_irregular" formats, in which case bindings inside these formats
 determine what format is used. This is further described in the
 following sections.

6.3.1. List Compression

 The TCP options in the uncompressed packet can be represented as an
 ordered list, whose order and presence are usually constant between
 packets. The generic structure of such a list is as follows:

 +--------+--------+--...--+--------+
 list: | item 1 | item 2 | | item n |
 +--------+--------+--...--+--------+

 To compress this list, ROHC-TCP uses a list compression scheme, which
 compresses each of these items individually and combines them into a
 compressed list.

 The basic principles of list-based compression are the following:

 1) When a context is being initialized, a complete representation
 of the compressed list of options is transmitted. All options
 that have any content are present in the compressed list of items
 sent by the compressor.

Pelletier, et al. Standards Track [Page 23]

RFC 4996 ROHC-TCP July 2007

 Then, once the context has been initialized:

 2) When the structure AND the content of the list are unchanged,
 no information about the list is sent in compressed headers.

 3) When the structure of the list is constant, and when only the
 content defined within the irregular format for one or more
 options is changed, no information about the list needs to be sent
 in compressed base headers; the irregular content is sent as part
 of the irregular chain, as described in Section 6.3.6.

 4) When the structure of the list changes, a compressed list is
 sent in the compressed base header, including a representation of
 its structure and order. Content defined within the irregular
 format of an option can still be sent as part of the irregular
 chain (as described in Section 6.3.6), provided that the item
 content is not part of the compressed list.

6.3.2. Table-Based Item Compression

 The Table-based item compression compresses individual items sent in
 compressed lists. The compressor assigns a unique identifier,
 "Index", to each item, "Item", of a list.

 Compressor Logic

 The compressor conceptually maintains an item table containing all
 items, indexed using "Index". The (Index, Item) pair is sent
 together in compressed lists until the compressor gains enough
 confidence that the decompressor has observed the mapping between
 items and their respective index. Confidence is obtained from the
 reception of an acknowledgment from the decompressor, or by
 sending (Index, Item) pairs using the optimistic approach. Once
 confidence is obtained, the index alone is sent in compressed
 lists to indicate the presence of the item corresponding to this
 index.

 The compressor may reassign an existing index to a new item, by
 re-establishing the mapping using the procedure described above.

 Decompressor Logic

 The decompressor conceptually maintains an item table that
 contains all (Index, Item) pairs received. The item table is
 updated whenever an (Index, Item) pair is received and
 decompression is successfully verified using the CRC. The
 decompressor retrieves the item from the table whenever an index
 without an accompanying item is received.

Pelletier, et al. Standards Track [Page 24]

RFC 4996 ROHC-TCP July 2007

 If an index without an accompanying item is received and the
 decompressor does not have any context for this index, the header
 MUST be discarded and a NACK SHOULD be sent.

6.3.3. Encoding of Compressed Lists

 Each item present in a compressed list is represented by:

 o an index into the table of items

 o a presence bit indicating if a compressed representation of the
 item is present in the list

 o an item (if the presence bit is set)

 Decompression of an item will fail if the presence bit is not set and
 the decompressor has no entry in the context for that item.

 A compressed list of TCP options uses the following encoding:

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | Reserved |PS | m |
 +---+---+---+---+---+---+---+---+
 | XI_1, ..., XI_m | m octets, or m * 4 bits
 / --- --- --- ---/
 | : Padding : if PS = 0 and m is odd
 +---+---+---+---+---+---+---+---+
 | |
 / item_1, ..., item_n / variable
 | |
 +---+---+---+---+---+---+---+---+

 Reserved: MUST be set to zero; otherwise, the decompressor MUST
 discard the packet.

 PS: Indicates size of XI fields:

 PS = 0 indicates 4-bit XI fields;

 PS = 1 indicates 8-bit XI fields.

 m: Number of XI item(s) in the compressed list.

 XI_1, ..., XI_m: m XI items. Each XI represents one TCP option in
 the uncompressed packet, in the same order as they appear in the
 uncompressed packet.

Pelletier, et al. Standards Track [Page 25]

RFC 4996 ROHC-TCP July 2007

 The format of an XI item is as follows:

 +---+---+---+---+
 PS = 0: | X | Index |
 +---+---+---+---+

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 PS = 1: | X | Reserved | Index |
 +---+---+---+---+---+---+---+---+

 X: Indicates whether the item is present in the list:

 X = 1 indicates that the item corresponding to the Index is
 sent in the item_1, ..., item_n list;

 X = 0 indicates that the item corresponding to the Index is
 not sent and is instead included in the irregular chain.

 Reserved: MUST be set to zero; otherwise, the decompressor MUST
 discard the packet.

 Index: An index into the item table. See Section 6.3.4.

 When 4-bit XI items are used, the XI items are placed in octets
 in the following manner:

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | XI_k | XI_k + 1 |
 +---+---+---+---+---+---+---+---+

 Padding: A 4-bit padding field is present when PS = 0 and the
 number of XIs is odd. The Padding field MUST be set to zero;
 otherwise, the decompressor MUST discard the packet.

 Item 1, ..., item n: Each item corresponds to an XI with X = 1 in
 XI 1, ..., XI m. The format of the entries in the item list is
 described in Section 6.2.

6.3.4. Item Table Mappings

 The item table for TCP options list compression is limited to 16
 different items, since it is unlikely that any packet flow will
 contain a larger number of unique options.

Pelletier, et al. Standards Track [Page 26]

RFC 4996 ROHC-TCP July 2007

 The mapping between the TCP option type and table indexes are listed
 in the table below:

 +-----------------+---------------+
 | Option name | Table index |
 +-----------------+---------------+
 | NOP | 0 |
 | EOL | 1 |
 | MSS | 2 |
 | WINDOW SCALE | 3 |
 | TIMESTAMP | 4 |
 | SACK-PERMITTED | 5 |
 | SACK | 6 |
 | Generic options | 7-15 |
 +-----------------+---------------+

 Some TCP options are used more frequently than others. To simplify
 their compression, a part of the item table is reserved for these
 option types, as shown on the table above. Both the compressor and
 the decompressor MUST use these mappings between item and indexes to
 (de)compress TCP options when using list compression.

 It is expected that the option types for which an index is reserved
 in the item table will only appear once in a list. However, if an
 option type is detected twice in the same options list and if both
 options have a different content, the compressor should compress the
 second occurrence of the option type by mapping it to a generic
 compressed option. Otherwise, if the options have the exact same
 content, the compressor can still use the same table index for both.

 The NOP option

 The NOP option can appear more than once in the list. However,
 since its value is always the same, no context information needs
 to be transmitted. Multiple NOP options can thus be mapped to the
 same index. Since the NOP option does not have any content when
 compressed as a "_list_item", it will never be present in the item
 list. For consistency, the compressor should still establish an
 entry in the list by setting the presence bit, as done for the
 other type of options.

 List compression always preserves the original order of each item
 in the decompressed list, whether or not the item is present in
 the compressed "_list_item" or if multiple items of the same type
 can be mapped to the same index, as for the NOP option.

Pelletier, et al. Standards Track [Page 27]

RFC 4996 ROHC-TCP July 2007

 The EOL option

 The size of the compressed format for the EOL option can be larger
 than one octet, and it is defined so that it includes the option
 padding. This is because the EOL should terminate the parsing of
 the options, but it can also be followed by padding octets that
 all have the value zero.

 The Generic option

 The Generic option can be used to compress any type of TCP option
 that does not have a reserved index in the item table.

6.3.5. Compressed Lists in Dynamic Chain

 A compressed list for TCP options that is part of the dynamic chain
 (e.g., in IR or IR-DYN packets) must have all its list items present,
 i.e., all X-bits in the XI list MUST be set.

6.3.6. Irregular Chain Items for TCP Options

 The "_list_item" represents the option inside the compressed item
 list, and the "_irregular" format is used for the option fields that
 are expected to change with each packet. When an item of the
 specified type is present in the current context, these irregular
 fields are present in each compressed packet, as part of the
 irregular chain. Since many of the TCP option types are not expected
 to change for the duration of a flow, many of the "_irregular"
 formats are empty.

 The irregular chain for TCP options is structured analogously to the
 structure of the TCP options in the uncompressed packet. If a
 compressed list is present in the compressed packet, then the
 irregular chain for TCP options must not contain irregular items for
 the list items that are transmitted inside the compressed list (i.e.,
 items in the list that have the X-bit set in its XI). The items that
 are not present in the compressed list, but are present in the
 uncompressed list, must have their respective irregular items present
 in the irregular chain.

6.3.7. Replication of TCP Options

 The entire table of TCP options items is always replicated when using
 the IR-CR packet. In the IR-CR packet, the list of options for the
 new flow is also transmitted as a compressed list in the IR-CR
 packet.

Pelletier, et al. Standards Track [Page 28]

RFC 4996 ROHC-TCP July 2007

6.4. Profile-Specific Encoding Methods

 This section defines encoding methods that are specific to this
 profile. These methods are used in the formal definition of the
 packet formats in Section 8.

6.4.1. inferred_ip_v4_header_checksum

 This encoding method compresses the Header Checksum field of the IPv4
 header. This checksum is defined in [RFC0791] as follows:

 Header Checksum: 16 bits

 A checksum on the header only. Since some header fields change
 (e.g., time to live), this is recomputed and verified at each
 point that the internet header is processed.

 The checksum algorithm is:

 The checksum field is the 16 bit one’s complement of the one’s
 complement sum of all 16 bit words in the header. For purposes
 of computing the checksum, the value of the checksum field is
 zero.

 As described above, the header checksum protects individual hops from
 processing a corrupted header. When almost all IP header information
 is compressed away, and when decompression is verified by a CRC
 computed over the original header for every compressed packet, there
 is no point in having this additional checksum; instead, it can be
 recomputed at the decompressor side.

 The "inferred_ip_v4_header_checksum" encoding method thus compresses
 the IPv4 header checksum down to a size of zero bits. Using this
 encoding method, the decompressor infers the value of this field
 using the computation above.

 This encoding method implicitly assumes that the compressor will not
 process a corrupted header; otherwise, it cannot guarantee that the
 checksum as recomputed by the decompressor will be bitwise identical
 to its original value before compression.

Pelletier, et al. Standards Track [Page 29]

RFC 4996 ROHC-TCP July 2007

6.4.2. inferred_mine_header_checksum

 This encoding method compresses the minimal encapsulation header
 checksum. This checksum is defined in [RFC2004] as follows:

 Header Checksum

 The 16-bit one’s complement of the one’s complement sum of all
 16-bit words in the minimal forwarding header. For purposes of
 computing the checksum, the value of the checksum field is 0.
 The IP header and IP payload (after the minimal forwarding
 header) are not included in this checksum computation.

 The "inferred_mine_header_checksum" encoding method compresses the
 minimal encapsulation header checksum down to a size of zero bits,
 i.e., no bits are transmitted in compressed headers for this field.
 Using this encoding method, the decompressor infers the value of this
 field using the above computation.

 The motivations and the assumptions for inferring this checksum are
 similar to the ones explained above in Section 6.4.1.

6.4.3. inferred_ip_v4_length

 This encoding method compresses the Total Length field of the IPv4
 header. The Total Length field of the IPv4 header is defined in
 [RFC0791] as follows:

 Total Length: 16 bits

 Total Length is the length of the datagram, measured in octets,
 including internet header and data. This field allows the
 length of a datagram to be up to 65,535 octets.

 The "inferred_ip_v4_length" encoding method compresses the IPv4
 header checksum down to a size of zero bits. Using this encoding
 method, the decompressor infers the value of this field by counting
 in octets the length of the entire packet after decompression.

Pelletier, et al. Standards Track [Page 30]

RFC 4996 ROHC-TCP July 2007

6.4.4. inferred_ip_v6_length

 This encoding method compresses the Payload Length field of the IPv6
 header. This length field is defined in [RFC2460] as follows:

 Payload Length: 16-bit unsigned integer

 Length of the IPv6 payload, i.e., the rest of the packet
 following this IPv6 header, in octets. (Note that any
 extension headers present are considered part of the payload,
 i.e., included in the length count.)

 The "inferred_ip_v6_length" encoding method compresses the Payload
 Length field of the IPv6 header down to a size of zero bits. Using
 this encoding method, the decompressor infers the value of this field
 by counting in octets the length of the entire packet after
 decompression.

6.4.5. inferred_offset

 This encoding method compresses the data offset field of the TCP
 header.

 The "inferred_offset" encoding method is used on the Data Offset
 field of the TCP header. This field is defined in [RFC0793] as:

 Data Offset: 4 bits

 The number of 32 bit words in the TCP Header. This indicates
 where the data begins. The TCP header (even one including
 options) is an integral number of 32 bits long.

 The "inferred_offset" encoding method compresses the Data Offset
 field of the TCP header down to a size of zero bits. Using this
 encoding method, the decompressor infers the value of this field by
 first decompressing the TCP options list, and by then setting:

 data offset = (options length / 4) + 5

 The equation above uses integer arithmetic.

6.4.6. baseheader_extension_headers

 In CO packets (see Section 7.3), the innermost IP header and the TCP
 header are combined to create a compressed base header. In some
 cases, the IP header will have a number of extension headers between
 itself and the TCP header.

Pelletier, et al. Standards Track [Page 31]

RFC 4996 ROHC-TCP July 2007

 To remain formally correct, the base header must define some
 representation of these extension headers, which is what this
 encoding method is used for. This encoding method skips over all the
 extension headers and does not encode any of the fields. Changed
 fields in these headers are encoded in the irregular chain.

6.4.7. baseheader_outer_headers

 This encoding method, as well as the baseheader_extension_headers
 encoding method described above, is needed for the specification to
 remain formally correct. It is used in CO packets (see Section 7.3)
 to describe tunneling IP headers and their respective extension
 headers (i.e., all headers located before the innermost IP header).

 This encoding method skips over all the fields in these headers and
 does not perform any encoding. Changed fields in outer headers are
 instead handled by the irregular chain.

6.4.8. Scaled Encoding of Fields

 Some header fields will exhibit a change pattern where the field
 increases by a constant value or by multiples of the same value.

 Examples of fields that may have this behavior are the TCP Sequence
 Number and the TCP Acknowledgment Number. For such fields, ROHC-TCP
 provides the means to downscale the field value before applying LSB
 encoding, which allows the compressor to transmit fewer bits.

 To be able to use scaled encoding, the field is required to fulfill
 the following equation:

 unscaled_value = scaling_factor * scaled_value + residue

 To use the scaled encoding, the compressor must be confident that the
 decompressor has established values for the "residue" and the
 "scaling_factor", so that it can correctly decompress the field when
 only an LSB-encoded "scaled_value" is present in the compressed
 packet.

 Once the compressor is confident that the value of the scaling_factor
 and the value of the residue have been established in the
 decompressor, the compressor may send compressed packets using the
 scaled representation of the field. The compressor MUST NOT use
 scaled encoding with the value of the scaling_factor set to zero.

 If the compressor detects that the value of the residue has changed,
 or if the compressor uses a different value for the scaling factor,

Pelletier, et al. Standards Track [Page 32]

RFC 4996 ROHC-TCP July 2007

 it MUST NOT use scaled encoding until it is confident that the
 decompressor has received the new value(s) of these fields.

 When the unscaled value of the field wraps around, the value of the
 residue is likely to change, even if the scaling_factor remains
 constant. In such a case, the compressor must act in the same way as
 for any other change in the residue.

 The following subsections describe how the scaled encoding is applied
 to specific fields in ROHC-TCP, in particular, how the scaling_factor
 and residue values are established for the different fields.

6.4.8.1. Scaled TCP Sequence Number Encoding

 For some TCP flows, such as data transfers, the payload size will be
 constant over periods of time. For such flows, the TCP Sequence
 Number is bound to increase by multiples of the payload size between
 packets, which means that this field can be a suitable target for
 scaled encoding. When using this encoding, the payload size will be
 used as the scaling factor (i.e., as the value for scaling_factor) of
 this encoding. This means that the scaling factor does not need to
 be explicitly transmitted, but is instead inferred from the length of
 the payload in the compressed packet.

 Establishing scaling_factor:

 The scaling factor is established by sending unscaled TCP Sequence
 Number bits, so that the decompressor can infer the scaling_factor
 from the payload size.

 Establishing residue:

 The residue is established identically as the scaling_factor,
 i.e., by sending unscaled TCP Sequence Number bits.

 A detailed specification of how the TCP Sequence Number uses the
 scaled encoding can be found in the definitions of the packet
 formats, in Section 8.2.

6.4.8.2. Scaled Acknowledgment Number Encoding

 Similar to the pattern exhibited by the TCP Sequence Number, the
 expected increase in the TCP Acknowledgment Number is often constant
 and is therefore suitable for scaled encoding.

 For the TCP Acknowledgment Number, the scaling factor depends on the
 size of packets flowing in the opposite direction; this information
 might not be available to the compressor/decompressor pair. For this

Pelletier, et al. Standards Track [Page 33]

RFC 4996 ROHC-TCP July 2007

 reason, ROHC-TCP uses an explicitly transmitted scaling factor to
 compress the TCP Acknowledgment Number.

 Establishing scaling_factor:

 The scaling factor is established by explicitly transmitting the
 value of the scaling factor (called ack_stride in the formal
 notation in Section 8.2) to the decompressor, using one of the
 packet types that can carry this information.

 Establishing residue:

 The scaling factor is established by sending unscaled TCP
 Acknowledgment Number bits, so that the decompressor can infer its
 value from the unscaled value and the scaling factor (ack_stride).

 A detailed specification of how the TCP Acknowledgment Number uses
 the scaled encoding can be found in the definitions of the packet
 formats, in Section 8.2.

 The compressor MAY use the scaled acknowledgment number encoding;
 what value it will use as the scaling factor is up to the compressor
 implementation. In the case where there is a co-located decompressor
 processing packets of the same TCP flow in the opposite direction,
 the scaling factor for the sequence number used for that flow can be
 used by the compressor to determine a suitable scaling factor for the
 TCP Acknowledgment number for this flow.

6.5. Encoding Methods With External Parameters

 A number of encoding methods in Section 8.2 have one or more
 arguments for which the derivation of the parameter’s value is
 outside the scope of the ROHC-FN specification of the header formats.
 This section lists the encoding methods together with a definition of
 each of their parameters.

 o esp_null(next_header_value):

 next_header_value: Set to the value of the Next Header field
 located in the ESP trailer, usually 12 octets from the end of
 the packet. Compression of null-encrypted ESP headers should
 only be performed when the compressor has prior knowledge of
 the exact location of the Next Header field.

Pelletier, et al. Standards Track [Page 34]

RFC 4996 ROHC-TCP July 2007

 o ipv6(is_innermost, ttl_irregular_chain_flag, ip_inner_ecn):

 is_innermost: This Boolean flag is set to true when processing
 the innermost IP header; otherwise, it is set to false.

 ttl_irregular_chain_flag: This parameter must be set to the
 value that was used for the corresponding
 "ttl_irregular_chain_flag" parameter of the "co_baseheader"
 encoding method (as defined below) when extracting the
 irregular chain for a compressed header; otherwise, it is set
 to zero and ignored for other types of chains.

 ip_inner_ecn: This parameter is bound by the encoding method,
 and therefore it should be undefined when calling this encoding
 method. This value is then used to bind the corresponding
 parameter in the "tcp" encoding method, as its value is needed
 when processing the irregular chain for TCP. See the
 definition of the "ip_inner_ecn" parameter for the "tcp"
 encoding method below.

 o ipv4(is_innermost, ttl_irregular_chain_flag, ip_inner_ecn):

 See definition of arguments for "ipv6" above.

 o tcp_opt_eol(nbits):

 nbits: This parameter is set to the length of the padding data
 located after the EOL option type octet to the end of the TCP
 options in the uncompressed header.

 o tcp_opt_sack(ack_value):

 ack_value: Set to the value of the Acknowledgment Number field
 of the TCP header.

 o tcp(payload_size, ack_stride_value, ip_inner_ecn):

 payload_size: Set to the length (in octets) of the payload
 following the TCP header.

 ack_stride_value: This parameter is the scaling factor used
 when scaling the TCP Acknowledgment Number. Its value is set
 by the compressor implementation. See Section 6.4.8.2 for
 recommendations on how to set this value.

 ip_inner_ecn: This parameter binds with the value given to the
 corresponding "ip_inner_ecn" parameter by the "ipv4" or the
 "ipv6" encoding method when processing the innermost IP header

Pelletier, et al. Standards Track [Page 35]

RFC 4996 ROHC-TCP July 2007

 of this packet. See also the definition of the "ip_inner_ecn"
 parameter to the "ipv6" and "ipv4" encoding method above.

 o co_baseheader(payload_size, ack_stride_value,
 ttl_irregular_chain_flag):

 payload_size: Set to the length (in octets) of the payload
 following the TCP header.

 ack_stride_value: This parameter is the scaling factor used
 when scaling the TCP Acknowledgment Number. Its value is set
 by the compressor implementation. See Section 6.4.8.2 for
 recommendations on how to set this value.

 ttl_irregular_chain_flag: This parameter is set to one if the
 TTL/Hop Limit of an outer header has changed compared to its
 reference in the context; otherwise, it is set to zero. The
 value used for this parameter is also used for the
 "ttl_irregular_chain_flag" argument for the "ipv4" and "ipv6"
 encoding methods when processing the irregular chain, as
 defined above for the "ipv6" and "ipv4" encoding methods.

7. Packet Types (Normative)

 ROHC-TCP uses three different packet types: the Initialization and
 Refresh (IR) packet type, the Context Replication (IR-CR) packet
 type, and the Compressed (CO) packet type.

 Each packet type defines a number of packet formats: two packet
 formats are defined for the IR type, one packet format is defined for
 the IR-CR type, and two sets of eight base header formats are defined
 for the CO type with one additional format that is common to both
 sets.

 The profile identifier for ROHC-TCP is 0x0006.

7.1. Initialization and Refresh (IR) Packets

 ROHC-TCP uses the basic structure of the ROHC IR and IR-DYN packets
 as defined in [RFC4995] (Sections 5.2.2.1 and 5.2.2.2, respectively).

 Packet type: IR

 This packet type communicates the static part and the dynamic part
 of the context.

 For the ROHC-TCP IR packet, the value of the x bit MUST be set to
 one. It has the following format, which corresponds to the

Pelletier, et al. Standards Track [Page 36]

RFC 4996 ROHC-TCP July 2007

 "Header" and "Payload" fields described in Section 5.2.1 of
 [RFC4995]:

 0 1 2 3 4 5 6 7
 --- --- --- --- --- --- --- ---
 : Add-CID octet : if for small CIDs and (CID != 0)
 +---+---+---+---+---+---+---+---+
 | 1 1 1 1 1 1 0 1 | IR type octet
 +---+---+---+---+---+---+---+---+
 : :
 / 0-2 octets of CID / 1-2 octets if for large CIDs
 : :
 +---+---+---+---+---+---+---+---+
 | Profile = 0x06 | 1 octet
 +---+---+---+---+---+---+---+---+
 | CRC | 1 octet
 +---+---+---+---+---+---+---+---+
 | |
 / Static chain / variable length
 | |
 - - - - - - - - - - - - - - - -
 | |
 / Dynamic chain / variable length
 | |
 - - - - - - - - - - - - - - - -
 | |
 / Payload / variable length
 | |
 - - - - - - - - - - - - - - - -

 CRC: 8-bit CRC, computed according to Section 5.3.1.1. of
 [RFC4995]. The CRC covers the entire IR header, thus excluding
 payload, padding, and feedback, if any.

 Static chain: See Section 6.2.

 Dynamic chain: See Section 6.2.

 Payload: The payload of the corresponding original packet, if any.
 The payload consists of all data after the last octet of the TCP
 header to end of the uncompressed packet. The presence of a
 payload is inferred from the packet length.

 Packet type: IR-DYN

 This packet type communicates the dynamic part of the context.

Pelletier, et al. Standards Track [Page 37]

RFC 4996 ROHC-TCP July 2007

 The ROHC-TCP IR-DYN packet has the following format, which
 corresponds to the "Header" and "Payload" fields described in
 Section 5.2.1 of [RFC4995]:

 0 1 2 3 4 5 6 7
 --- --- --- --- --- --- --- ---
 : Add-CID octet : if for small CIDs and (CID != 0)
 +---+---+---+---+---+---+---+---+
 | 1 1 1 1 1 0 0 0 | IR-DYN type octet
 +---+---+---+---+---+---+---+---+
 : :
 / 0-2 octets of CID / 1-2 octets if for large CIDs
 : :
 +---+---+---+---+---+---+---+---+
 | Profile = 0x06 | 1 octet
 +---+---+---+---+---+---+---+---+
 | CRC | 1 octet
 +---+---+---+---+---+---+---+---+
 | |
 / Dynamic chain / variable length
 | |
 - - - - - - - - - - - - - - - -
 | |
 / Payload / variable length
 | |
 - - - - - - - - - - - - - - - -

 CRC: 8-bit CRC, computed according to Section 5.3.1.1 of
 [RFC4995]. The CRC covers the entire IR-DYN header, thus
 excluding payload, padding, and feedback, if any.

 Dynamic chain: See Section 6.2.

 Payload: The payload of the corresponding original packet, if any.
 The payload consists of all data after the last octet of the TCP
 header to end of the uncompressed packet. The presence of a
 payload is inferred from the packet length.

7.2. Context Replication (IR-CR) Packets

 Context replication requires a dedicated IR packet format that
 uniquely identifies the IR-CR packet for the ROHC-TCP profile. This
 section defines the profile-specific part of the IR-CR packet
 [RFC4164].

Pelletier, et al. Standards Track [Page 38]

RFC 4996 ROHC-TCP July 2007

 Packet type: IR-CR

 This packet type communicates a reference to a base context along
 with the static and dynamic parts of the replicated context that
 differs from the base context.

 The ROHC-TCP IR-CR packet follows the general format of the ROHC CR
 packet, as defined in [RFC4164], Section 3.5.2. With consideration
 to the extensibility of the IR packet type defined in [RFC4995], the
 ROHC-TCP profile supports context replication through the profile-
 specific part of the IR packet. This is achieved using the bit (x)
 left in the IR header for "Profile specific information". For ROHC-
 TCP, this bit is defined as a flag indicating whether this packet is
 an IR packet or an IR-CR packet. For the ROHC-TCP IR-CR packet, the
 value of the x bit MUST be set to zero.

Pelletier, et al. Standards Track [Page 39]

RFC 4996 ROHC-TCP July 2007

 The ROHC-TCP IR-CR has the following format, which corresponds to the
 "Header" and "Payload" fields described in Section 5.2.1 of
 [RFC4995]:

 0 1 2 3 4 5 6 7
 --- --- --- --- --- --- --- ---
 : Add-CID octet : if for small CIDs and (CID != 0)
 +---+---+---+---+---+---+---+---+
 | 1 1 1 1 1 1 0 0 | IR-CR type octet
 +---+---+---+---+---+---+---+---+
 : :
 / 0-2 octets of CID / 1-2 octets if for large CIDs
 : :
 +---+---+---+---+---+---+---+---+
 | Profile = 0x06 | 1 octet
 +---+---+---+---+---+---+---+---+
 | CRC | 1 octet
 +---+---+---+---+---+---+---+---+
 | B | CRC7 | 1 octet
 +---+---+---+---+---+---+---+---+
 : Reserved | Base CID : 1 octet, for small CID, if B=1
 +---+---+---+---+---+---+---+---+
 : :
 / Base CID / 1-2 octets, for large CIDs,
 : : if B=1
 +---+---+---+---+---+---+---+---+
 | |
 / Replicate chain / variable length
 | |
 - - - - - - - - - - - - - - - -
 | |
 / Payload / variable length
 | |
 - - - - - - - - - - - - - - - -

 B: B = 1 indicates that the Base CID field is present.

 CRC: This CRC covers the entire IR-CR header, thus excluding
 payload, padding, and feedback, if any. This 8-bit CRC is
 calculated according to Section 5.3.1.1 of [RFC4995].

 CRC7: The CRC over the original, uncompressed, header. Calculated
 according to Section 3.5.1.1 of [RFC4164].

 Reserved: MUST be set to zero; otherwise, the decompressor MUST
 discard the packet.

Pelletier, et al. Standards Track [Page 40]

RFC 4996 ROHC-TCP July 2007

 Base CID: CID of base context. Encoded according to [RFC4164],
 Section 3.5.3.

 Replicate chain: See Section 6.2.

 Payload: The payload of the corresponding original packet, if any.
 The presence of a payload is inferred from the packet length.

7.3. Compressed (CO) Packets

 The ROHC-TCP CO packets communicate irregularities in the packet
 header. All CO packets carry a CRC and can update the context.

 The general format for a compressed TCP header is as follows, which
 corresponds to the "Header" and "Payload" fields described in Section
 5.2.1 of [RFC4995]:

 0 1 2 3 4 5 6 7
 --- --- --- --- --- --- --- ---
 : Add-CID octet : if for small CIDs and CID 1-15
 +---+---+---+---+---+---+---+---+
 | First octet of base header | (with type indication)
 +---+---+---+---+---+---+---+---+
 : :
 / 0, 1, or 2 octets of CID / 1-2 octets if large CIDs
 : :
 +---+---+---+---+---+---+---+---+
 / Remainder of base header / variable number of octets
 +---+---+---+---+---+---+---+---+
 : Irregular chain :
 / (including irregular chain / variable
 : items for TCP options) :
 --- --- --- --- --- --- --- ---
 | |
 / Payload / variable length
 | |
 - - - - - - - - - - - - - - - -

 Base header: The complete set of base headers is defined in
 Section 8.

 Irregular chain: See Section 6.2 and Section 6.3.6.

 Payload: The payload of the corresponding original packet, if any.
 The presence of a payload is inferred from the packet length.

Pelletier, et al. Standards Track [Page 41]

RFC 4996 ROHC-TCP July 2007

8. Header Formats (Normative)

 This section describes the set of compressed TCP/IP packet formats.
 The normative description of the packet formats is given using the
 formal notation for ROHC profiles defined in [RFC4997]. The formal
 description of the packet formats specifies all of the information
 needed to compress and decompress a header relative to the context.

 In particular, the notation provides a list of all the fields present
 in the uncompressed and compressed TCP/IP headers, and defines how to
 map from each uncompressed packet to its compressed equivalent and
 vice versa.

8.1. Design Rationale for Compressed Base Headers

 The compressed header formats are defined as two separate sets: one
 set for the packets where the innermost IP header contains a
 sequential IP-ID (either network byte order or byte swapped), and one
 set for the packets without sequential IP-ID (either random, zero, or
 no IP-ID).

 These two sets of header formats are referred to as the "sequential"
 and the "random" set of header formats, respectively.

 In addition, there is one compressed format that is common to both
 sets of header formats and that can thus be used regardless of the
 type of IP-ID behavior. This format can transmit rarely changing
 fields and also send the frequently changing fields coded in variable
 lengths. It can also change the value of control fields such as
 IP-ID behavior and ECN behavior.

 All compressed base headers contain a 3-bit CRC, unless they update
 control fields such as "ip_id_behavior" or "ecn_used" that affect the
 interpretation of subsequent headers. Headers that can modify these
 control fields carry a 7-bit CRC instead.

 When discussing LSB-encoded fields below, "p" equals the
 "offset_param" and "k" equals the "num_lsbs_param" in [RFC4997]. The
 encoding methods used in the compressed base headers are based on the
 following design criteria:

 o MSN

 Since the MSN is a number generated by the compressor, it only
 needs to be large enough to ensure robust operation and to
 accommodate a small amount of reordering [RFC4163]. Therefore,
 each compressed base header has an MSN field that is LSB-
 encoded with k=4 and p=4 to handle a reordering depth of up to

Pelletier, et al. Standards Track [Page 42]

RFC 4996 ROHC-TCP July 2007

 4 packets. Additional guidance to improve robustness when
 reordering is possible can be found in [RFC4224].

 o TCP Sequence Number

 ROHC-TCP has the capability to handle bulk data transfers
 efficiently, for which the sequence number is expected to
 increase by about 1460 octets (which can be represented by 11
 bits). For the compressed base headers to handle
 retransmissions (i.e., negative delta to the sequence number),
 the LSB interpretation interval has to handle negative offsets
 about as large as positive offsets, which means that one more
 bit is needed.

 Also, for ROHC-TCP to be robust to losses, two additional bits
 are added to the LSB encoding of the sequence number. This
 means that the base headers should contain at least 14 bits of
 LSB-encoded sequence number when present. According to the
 logic above, the LSB offset value is set to be as large as the
 positive offset, i.e., p = 2^(k-1)-1.

 o TCP Acknowledgment Number

 The design criterion for the acknowledgment number is similar
 to that of the TCP Sequence Number. However, often only every
 other data packet is acknowledged, which means that the
 expected delta value is twice as large as for sequence numbers.

 Therefore, at least 15 bits of acknowledgment number should be
 used in compressed base headers. Since the acknowledgment
 number is expected to constantly increase, and the only
 exception to this is packet reordering (either on the ROHC
 channel [RFC3759] or prior to the compression point), the
 negative offset for LSB encoding is set to be 1/4 of the total
 interval, i.e., p = 2^(k-2)-1.

 o TCP Window

 The TCP Window field is expected to increase in increments of
 similar size as the TCP Sequence Number, and therefore the
 design criterion for the TCP window is to send at least 14 bits
 when used.

 o IP-ID

 For the "sequential" set of packet formats, all the compressed
 base headers contain LSB-encoded IP-ID offset bits, where the
 offset is the difference between the value of the MSN field and

Pelletier, et al. Standards Track [Page 43]

RFC 4996 ROHC-TCP July 2007

 the value of the IP-ID field. The requirement is that at least
 3 bits of IP-ID should always be present, but it is preferable
 to use 4 to 7 bits. When k=3 then p=1, and if k>3 then p=3
 since the offset is expected to increase most of the time.

 Each set of header formats contains eight different compressed base
 headers. The reason for having this large number of header formats
 is that the TCP Sequence Number, TCP Acknowledgment Number, and TCP
 Window are frequently changing in a non-linear pattern.

 The design of the header formats is derived from the field behavior
 analysis found in [RFC4413].

 All of the compressed base headers transmit LSB-encoded MSN bits, the
 TCP Push flag, and a CRC, and in addition to this, all the base
 headers in the sequential packet format set contain LSB-encoded IP-ID
 bits.

 The following header formats exist in both the sequential and random
 packet format sets:

 o Format 1: This header format carries changes to the TCP Sequence
 Number and is expected to be used on the downstream of a data
 transfer.

 o Format 2: This header format carries the TCP Sequence Number in
 scaled form and is expected to be useful for the downstream of a
 data transfer where the payload size is constant for multiple
 packets.

 o Format 3: This header format carries changes in the TCP
 Acknowledgment Number and is expected to be useful for the
 acknowledgment direction of a data transfer.

 o Format 4: This header format is similar to format 3, but carries a
 scaled TCP Acknowledgment Number.

 o Format 5: This header format carries both the TCP Sequence Number
 and the TCP Acknowledgment Number and is expected to be useful for
 flows that send data in both directions.

 o Format 6: This header format is similar to format 5, but carries
 the TCP Sequence Number in scaled form, when the payload size is
 static for certain intervals in a data flow.

 o Format 7: This header format carries changes to both the TCP
 Acknowledgment Number and the TCP Window and is expected to be
 useful for the acknowledgment flows of data connections.

Pelletier, et al. Standards Track [Page 44]

RFC 4996 ROHC-TCP July 2007

 o Format 8: This header format is used to convey changes to some of
 the more seldom changing fields in the TCP flow, such as ECN
 behavior, RST/SYN/FIN flags, the TTL/Hop Limit, and the TCP
 options list. This format carries a 7-bit CRC, since it can
 change the structure of the contents of the irregular chain for
 subsequent packets. Note that this can be seen as a reduced form
 of the common packet format.

 o Common header format: The common header format can be used for all
 kinds of IP-ID behavior and should be useful when some of the more
 rarely changing fields in the IP or TCP header change. Since this
 header format can update control fields that decide how the
 decompressor interprets packets, it carries a 7-bit CRC to reduce
 the probability of context corruption. This header can basically
 convey changes to any of the dynamic fields in the IP and TCP
 headers, and it uses a large set of flags to provide information
 about which fields are present in the header format.

8.2. Formal Definition of Header Formats

 //
 // Constants
 //

 IP_ID_BEHAVIOR_SEQUENTIAL = 0;
 IP_ID_BEHAVIOR_SEQUENTIAL_SWAPPED = 1;
 IP_ID_BEHAVIOR_RANDOM = 2;
 IP_ID_BEHAVIOR_ZERO = 3;

 //
 // Global control fields
 //

 CONTROL {
 ecn_used [1];
 msn [16];
 }

 ///
 // Encoding methods not specified in FN syntax
 ///

 list_tcp_options "defined in Section 6.3.3";
 inferred_ip_v4_header_checksum "defined in Section 6.4.1";
 inferred_mine_header_checksum "defined in Section 6.4.2";
 inferred_ip_v4_length "defined in Section 6.4.3";
 inferred_ip_v6_length "defined in Section 6.4.4";
 inferred_offset "defined in Section 6.4.5";

Pelletier, et al. Standards Track [Page 45]

RFC 4996 ROHC-TCP July 2007

 baseheader_extension_headers "defined in Section 6.4.6";
 baseheader_outer_headers "defined in Section 6.4.7";

 //
 // General encoding methods
 //

 static_or_irreg(flag, width)
 {
 UNCOMPRESSED {
 field [width];
 }

 COMPRESSED irreg_enc {
 field =:= irregular(width) [width];
 ENFORCE(flag == 1);
 }

 COMPRESSED static_enc {
 field =:= static [0];
 ENFORCE(flag == 0);
 }
 }

 zero_or_irreg(flag, width)
 {
 UNCOMPRESSED {
 field [width];
 }

 COMPRESSED non_zero {
 field =:= irregular(width) [width];
 ENFORCE(flag == 0);
 }

 COMPRESSED zero {
 field =:= uncompressed_value(width, 0) [0];
 ENFORCE(flag == 1);
 }
 }

 variable_length_32_enc(flag)
 {
 UNCOMPRESSED {
 field [32];
 }

 COMPRESSED not_present {

Pelletier, et al. Standards Track [Page 46]

RFC 4996 ROHC-TCP July 2007

 field =:= static [0];
 ENFORCE(flag == 0);
 }

 COMPRESSED lsb_8_bit {
 field =:= lsb(8, 63) [8];
 ENFORCE(flag == 1);
 }

 COMPRESSED lsb_16_bit {
 field =:= lsb(16, 16383) [16];
 ENFORCE(flag == 2);
 }

 COMPRESSED irreg_32_bit {
 field =:= irregular(32) [32];
 ENFORCE(flag == 3);
 }
 }

 optional32(flag)
 {
 UNCOMPRESSED {
 item [0, 32];
 }

 COMPRESSED present {
 item =:= irregular(32) [32];
 ENFORCE(flag == 1);
 }

 COMPRESSED not_present {
 item =:= compressed_value(0, 0) [0];
 ENFORCE(flag == 0);
 }
 }
 lsb_7_or_31
 {
 UNCOMPRESSED {
 item [32];
 }

 COMPRESSED lsb_7 {
 discriminator =:= ’0’ [1];
 item =:= lsb(7, 8) [7];
 }

 COMPRESSED lsb_31 {

Pelletier, et al. Standards Track [Page 47]

RFC 4996 ROHC-TCP July 2007

 discriminator =:= ’1’ [1];
 item =:= lsb(31, 256) [31];
 }
 }

 opt_lsb_7_or_31(flag)
 {
 UNCOMPRESSED {
 item [0, 32];
 }

 COMPRESSED present {
 item =:= lsb_7_or_31 [8, 32];
 ENFORCE(flag == 1);
 }

 COMPRESSED not_present {
 item =:= compressed_value(0, 0) [0];
 ENFORCE(flag == 0);
 }
 }

 crc3(data_value, data_length)
 {
 UNCOMPRESSED {
 }

 COMPRESSED {
 crc_value =:=
 crc(3, 0x06, 0x07, data_value, data_length) [3];
 }
 }

 crc7(data_value, data_length)
 {
 UNCOMPRESSED {
 }

 COMPRESSED {
 crc_value =:=
 crc(7, 0x79, 0x7f, data_value, data_length) [7];
 }
 }

 one_bit_choice
 {
 UNCOMPRESSED {
 field [1];

Pelletier, et al. Standards Track [Page 48]

RFC 4996 ROHC-TCP July 2007

 }

 COMPRESSED zero {
 field [1];
 ENFORCE(field.UVALUE == 0);
 }

 COMPRESSED nonzero {
 field [1];
 ENFORCE(field.UVALUE == 1);
 }
 }

 // Encoding method for updating a scaled field and its associated
 // control fields. Should be used both when the value is scaled
 // or unscaled in a compressed format.
 field_scaling(stride_value, scaled_value, unscaled_value)
 {
 UNCOMPRESSED {
 residue_field [32];
 }

 COMPRESSED no_scaling {
 ENFORCE(stride_value == 0);
 ENFORCE(residue_field.UVALUE == unscaled_value);
 ENFORCE(scaled_value == 0);
 }

 COMPRESSED scaling_used {
 ENFORCE(stride_value != 0);
 ENFORCE(residue_field.UVALUE == (unscaled_value % stride_value));
 ENFORCE(unscaled_value ==
 scaled_value * stride_value + residue_field.UVALUE);
 }
 }
 //
 // IPv6 Destination options header
 //

 ip_dest_opt
 {
 UNCOMPRESSED {
 next_header [8];
 length [8];
 value [length.UVALUE * 64 + 48];
 }

Pelletier, et al. Standards Track [Page 49]

RFC 4996 ROHC-TCP July 2007

 DEFAULT {
 length =:= static;
 next_header =:= static;
 value =:= static;
 }

 COMPRESSED dest_opt_static {
 next_header =:= irregular(8) [8];
 length =:= irregular(8) [8];
 }

 COMPRESSED dest_opt_dynamic {
 value =:=
 irregular(length.UVALUE * 64 + 48) [length.UVALUE * 64 + 48];
 }

 COMPRESSED dest_opt_0_replicate {
 discriminator =:= ’00000000’ [8];
 }

 COMPRESSED dest_opt_1_replicate {
 discriminator =:= ’10000000’ [8];
 length =:= irregular(8) [8];
 value =:=
 irregular(length.UVALUE*64+48) [length.UVALUE * 64 + 48];
 }

 COMPRESSED dest_opt_irregular {
 }
 }

 //
 // IPv6 Hop-by-Hop options header
 //

 ip_hop_opt
 {
 UNCOMPRESSED {
 next_header [8];
 length [8];
 value [length.UVALUE * 64 + 48];
 }

 DEFAULT {
 length =:= static;
 next_header =:= static;
 value =:= static;
 }

Pelletier, et al. Standards Track [Page 50]

RFC 4996 ROHC-TCP July 2007

 COMPRESSED hop_opt_static {
 next_header =:= irregular(8) [8];
 length =:= irregular(8) [8];
 }

 COMPRESSED hop_opt_dynamic {
 value =:=
 irregular(length.UVALUE*64+48) [length.UVALUE * 64 + 48];
 }

 COMPRESSED hop_opt_0_replicate {
 discriminator =:= ’00000000’ [8];
 }

 COMPRESSED hop_opt_1_replicate {
 discriminator =:= ’10000000’ [8];
 length =:= irregular(8) [8];
 value =:=
 irregular(length.UVALUE*64+48) [length.UVALUE * 64 + 48];
 }

 COMPRESSED hop_opt_irregular {
 }
 }

 //
 // IPv6 Routing header
 //

 ip_rout_opt
 {
 UNCOMPRESSED {
 next_header [8];
 length [8];
 value [length.UVALUE * 64 + 48];
 }

 DEFAULT {
 length =:= static;
 next_header =:= static;
 value =:= static;
 }

 COMPRESSED rout_opt_static {
 next_header =:= irregular(8) [8];
 length =:= irregular(8) [8];
 value =:=
 irregular(length.UVALUE*64+48) [length.UVALUE * 64 + 48];

Pelletier, et al. Standards Track [Page 51]

RFC 4996 ROHC-TCP July 2007

 }

 COMPRESSED rout_opt_dynamic {
 }

 COMPRESSED rout_opt_0_replicate {
 discriminator =:= ’00000000’ [8];
 }

 COMPRESSED rout_opt_0_replicate {
 discriminator =:= ’10000000’ [8];
 length =:= irregular(8) [8];
 value =:=
 irregular(length.UVALUE*64+48) [length.UVALUE * 64 + 48];
 }

 COMPRESSED rout_opt_irregular {
 }
 }

 //
 // GRE Header
 //

 optional_checksum(flag_value)
 {
 UNCOMPRESSED {
 value [0, 16];
 reserved1 [0, 16];
 }

 COMPRESSED cs_present {
 value =:= irregular(16) [16];
 reserved1 =:= uncompressed_value(16, 0) [0];
 ENFORCE(flag_value == 1);
 }

 COMPRESSED not_present {
 value =:= compressed_value(0, 0) [0];
 reserved1 =:= compressed_value(0, 0) [0];
 ENFORCE(flag_value == 0);
 }
 }

 gre_proto
 {
 UNCOMPRESSED {
 protocol [16];

Pelletier, et al. Standards Track [Page 52]

RFC 4996 ROHC-TCP July 2007

 }

 COMPRESSED ether_v4 {
 discriminator =:= compressed_value(1, 0) [1];
 protocol =:= uncompressed_value(16, 0x0800) [0];
 }

 COMPRESSED ether_v6 {
 discriminator =:= compressed_value(1, 1) [1];
 protocol =:= uncompressed_value(16, 0x86DD) [0];
 }
 }

 gre
 {
 UNCOMPRESSED {
 c_flag [1];
 r_flag =:= uncompressed_value(1, 0) [1];
 k_flag [1];
 s_flag [1];
 reserved0 =:= uncompressed_value(9, 0) [9];
 version =:= uncompressed_value(3, 0) [3];
 protocol [16];
 checksum_and_res [0, 32];
 key [0, 32];
 sequence_number [0, 32];
 }

 DEFAULT {
 c_flag =:= static;
 k_flag =:= static;
 s_flag =:= static;
 protocol =:= static;
 key =:= static;
 sequence_number =:= static;
 }

 COMPRESSED gre_static {
 protocol =:= gre_proto [1];
 c_flag =:= irregular(1) [1];
 k_flag =:= irregular(1) [1];
 s_flag =:= irregular(1) [1];
 padding =:= compressed_value(4, 0) [4];
 key =:= optional32(k_flag.UVALUE) [0, 32];
 }

 COMPRESSED gre_dynamic {
 checksum_and_res =:=

Pelletier, et al. Standards Track [Page 53]

RFC 4996 ROHC-TCP July 2007

 optional_checksum(c_flag.UVALUE) [0, 16];
 sequence_number =:= optional32(s_flag.UVALUE) [0, 32];
 }

 COMPRESSED gre_0_replicate {
 discriminator =:= ’00000000’ [8];
 checksum_and_res =:=
 optional_checksum(c_flag.UVALUE) [0, 16];
 sequence_number =:=
 optional32(s_flag.UVALUE) [0, 8, 32];
 }

 COMPRESSED gre_1_replicate {
 discriminator =:= ’10000’ [5];
 c_flag =:= irregular(1) [1];
 k_flag =:= irregular(1) [1];
 s_flag =:= irregular(1) [1];
 checksum_and_res =:=
 optional_checksum(c_flag.UVALUE) [0, 16];
 key =:= optional32(k_flag.UVALUE) [0, 32];
 sequence_number =:= optional32(s_flag.UVALUE) [0, 32];
 }

 COMPRESSED gre_irregular {
 checksum_and_res =:=
 optional_checksum(c_flag.UVALUE) [0, 16];
 sequence_number =:=
 opt_lsb_7_or_31(s_flag.UVALUE) [0, 8, 32];
 }
 }

 ///
 // MINE header
 ///

 mine
 {
 UNCOMPRESSED {
 next_header [8];
 s_bit [1];
 res_bits [7];
 checksum [16];
 orig_dest [32];
 orig_src [0, 32];
 }

 DEFAULT {
 next_header =:= static;

Pelletier, et al. Standards Track [Page 54]

RFC 4996 ROHC-TCP July 2007

 s_bit =:= static;
 res_bits =:= static;
 checksum =:= inferred_mine_header_checksum;
 orig_dest =:= static;
 orig_src =:= static;
 }

 COMPRESSED mine_static {
 next_header =:= irregular(8) [8];
 s_bit =:= irregular(1) [1];
 // Reserved bits are included to achieve byte-alignment
 res_bits =:= irregular(7) [7];
 orig_dest =:= irregular(32) [32];
 orig_src =:= optional32(s_bit.UVALUE) [0, 32];
 }

 COMPRESSED mine_dynamic {
 }

 COMPRESSED mine_0_replicate {
 discriminator =:= ’00000000’ [8];
 }

 COMPRESSED mine_1_replicate {
 discriminator =:= ’10000000’ [8];
 s_bit =:= irregular(1) [1];
 res_bits =:= irregular(7) [7];
 orig_dest =:= irregular(32) [32];
 orig_src =:= optional32(s_bit.UVALUE) [0, 32];
 }

 COMPRESSED mine_irregular {
 }
 }

 ///
 // Authentication Header (AH)
 ///

 ah
 {
 UNCOMPRESSED {
 next_header [8];
 length [8];
 res_bits [16];
 spi [32];
 sequence_number [32];
 auth_data [length.UVALUE*32-32];

Pelletier, et al. Standards Track [Page 55]

RFC 4996 ROHC-TCP July 2007

 }

 DEFAULT {
 next_header =:= static;
 length =:= static;
 res_bits =:= static;
 spi =:= static;
 sequence_number =:= static;
 }

 COMPRESSED ah_static {
 next_header =:= irregular(8) [8];
 length =:= irregular(8) [8];
 spi =:= irregular(32) [32];
 }

 COMPRESSED ah_dynamic {
 res_bits =:= irregular(16) [16];
 sequence_number =:= irregular(32) [32];
 auth_data =:=
 irregular(length.UVALUE*32-32) [length.UVALUE*32-32];
 }

 COMPRESSED ah_0_replicate {
 discriminator =:= ’00000000’ [8];
 sequence_number =:= irregular(32) [32];
 auth_data =:=
 irregular(length.UVALUE*32-32) [length.UVALUE*32-32];
 }

 COMPRESSED ah_1_replicate {
 discriminator =:= ’10000000’ [8];
 length =:= irregular(8) [8];
 res_bits =:= irregular(16) [16];
 spi =:= irregular(32) [32];
 sequence_number =:= irregular(32) [32];
 auth_data =:=
 irregular(length.UVALUE*32-32) [length.UVALUE*32-32];
 }

 COMPRESSED ah_irregular {
 sequence_number =:= lsb_7_or_31 [8, 32];
 auth_data =:=
 irregular(length.UVALUE*32-32) [length.UVALUE*32-32];
 }
 }

 ///

Pelletier, et al. Standards Track [Page 56]

RFC 4996 ROHC-TCP July 2007

 // ESP header (NULL encrypted)
 ///

 // The value of the Next Header field from the trailer
 // part of the packet is passed as a parameter.
 esp_null(next_header_value)
 {
 UNCOMPRESSED {
 spi [32];
 sequence_number [32];
 }

 CONTROL {
 nh_field [8];
 }

 DEFAULT {
 spi =:= static;
 sequence_number =:= static;
 nh_field =:= static;
 }

 COMPRESSED esp_static {
 nh_field =:= compressed_value(8, next_header_value) [8];
 spi =:= irregular(32) [32];
 }

 COMPRESSED esp_dynamic {
 sequence_number =:= irregular(32) [32];
 }

 COMPRESSED esp_0_replicate {
 discriminator =:= ’00000000’ [8];
 sequence_number =:= irregular(32) [32];
 }
 COMPRESSED esp_1_replicate {
 discriminator =:= ’10000000’ [8];
 spi =:= irregular(32) [32];
 sequence_number =:= irregular(32) [32];
 }

 COMPRESSED esp_irregular {
 sequence_number =:= lsb_7_or_31 [8, 32];
 }
 }

 ///
 // IPv6 Header

Pelletier, et al. Standards Track [Page 57]

RFC 4996 ROHC-TCP July 2007

 ///

 fl_enc
 {
 UNCOMPRESSED {
 flow_label [20];
 }

 COMPRESSED fl_zero {
 discriminator =:= ’0’ [1];
 flow_label =:= uncompressed_value(20, 0) [0];
 reserved =:= ’0000’ [4];
 }

 COMPRESSED fl_non_zero {
 discriminator =:= ’1’ [1];
 flow_label =:= irregular(20) [20];
 }
 }

 // The is_innermost flag is true if this is the innermost IP header
 // If extracting the irregular chain for a compressed packet:
 // - ttl_irregular_chain_flag must have the same value as it had when
 // processing co_baseheader.
 // - ip_inner_ecn is bound in this encoding method and the value that
 // it gets bound to should be passed to the tcp encoding method
 // For other formats than the irregular chain, these two are ignored
 ipv6(is_innermost, ttl_irregular_chain_flag, ip_inner_ecn)
 {
 UNCOMPRESSED {
 version =:= uncompressed_value(4, 6) [4];
 dscp [6];
 ip_ecn_flags [2];
 flow_label [20];
 payload_length [16];
 next_header [8];
 ttl_hopl [8];
 src_addr [128];
 dst_addr [128];
 }

 DEFAULT {
 dscp =:= static;
 ip_ecn_flags =:= static;
 flow_label =:= static;
 payload_length =:= inferred_ip_v6_length;
 next_header =:= static;
 ttl_hopl =:= static;

Pelletier, et al. Standards Track [Page 58]

RFC 4996 ROHC-TCP July 2007

 src_addr =:= static;
 dst_addr =:= static;
 }

 COMPRESSED ipv6_static {
 version_flag =:= ’1’ [1];
 reserved =:= ’00’ [2];
 flow_label =:= fl_enc [5, 21];
 next_header =:= irregular(8) [8];
 src_addr =:= irregular(128) [128];
 dst_addr =:= irregular(128) [128];
 }

 COMPRESSED ipv6_dynamic {
 dscp =:= irregular(6) [6];
 ip_ecn_flags =:= irregular(2) [2];
 ttl_hopl =:= irregular(8) [8];
 }

 COMPRESSED ipv6_replicate {
 dscp =:= irregular(6) [6];
 ip_ecn_flags =:= irregular(2) [2];
 reserved =:= ’000’ [3];
 flow_label =:= fl_enc [5, 21];
 }

 COMPRESSED ipv6_outer_without_ttl_irregular {
 dscp =:= static_or_irreg(ecn_used.UVALUE, 6) [0, 6];
 ip_ecn_flags =:= static_or_irreg(ecn_used.UVALUE, 2) [0, 2];
 ENFORCE(ttl_irregular_chain_flag == 0);
 ENFORCE(is_innermost == false);
 }

 COMPRESSED ipv6_outer_with_ttl_irregular {
 dscp =:= static_or_irreg(ecn_used.UVALUE, 6) [0, 6];
 ip_ecn_flags =:= static_or_irreg(ecn_used.UVALUE, 2) [0, 2];
 ttl_hopl =:= irregular(8) [8];
 ENFORCE(ttl_irregular_chain_flag == 1);
 ENFORCE(is_innermost == false);
 }

 COMPRESSED ipv6_innermost_irregular {
 ENFORCE(ip_inner_ecn == ip_ecn_flags.UVALUE);
 ENFORCE(is_innermost == true);
 }
 }

 ///

Pelletier, et al. Standards Track [Page 59]

RFC 4996 ROHC-TCP July 2007

 // IPv4 Header
 ///

 ip_id_enc_dyn(behavior)
 {
 UNCOMPRESSED {
 ip_id [16];
 }

 COMPRESSED ip_id_seq {
 ip_id =:= irregular(16) [16];
 ENFORCE((behavior == IP_ID_BEHAVIOR_SEQUENTIAL) ||
 (behavior == IP_ID_BEHAVIOR_SEQUENTIAL_SWAPPED) ||
 (behavior == IP_ID_BEHAVIOR_RANDOM));
 }

 COMPRESSED ip_id_zero {
 ip_id =:= uncompressed_value(16, 0) [0];
 ENFORCE(behavior == IP_ID_BEHAVIOR_ZERO);
 }
 }

 ip_id_enc_irreg(behavior)
 {
 UNCOMPRESSED {
 ip_id [16];
 }

 COMPRESSED ip_id_seq {
 ENFORCE(behavior == IP_ID_BEHAVIOR_SEQUENTIAL);
 }

 COMPRESSED ip_id_seq_swapped {
 ENFORCE(behavior == IP_ID_BEHAVIOR_SEQUENTIAL_SWAPPED);
 }
 COMPRESSED ip_id_rand {
 ip_id =:= irregular(16) [16];
 ENFORCE(behavior == IP_ID_BEHAVIOR_RANDOM);
 }

 COMPRESSED ip_id_zero {
 ip_id =:= uncompressed_value(16, 0) [0];
 ENFORCE(behavior == IP_ID_BEHAVIOR_ZERO);
 }
 }

 ip_id_behavior_choice(is_inner)
 {

Pelletier, et al. Standards Track [Page 60]

RFC 4996 ROHC-TCP July 2007

 UNCOMPRESSED {
 behavior [2];
 }

 DEFAULT {
 behavior =:= irregular(2);
 }

 COMPRESSED sequential {
 behavior [2];
 ENFORCE(is_inner == true);
 ENFORCE(behavior.UVALUE == IP_ID_BEHAVIOR_SEQUENTIAL);
 }

 COMPRESSED sequential_swapped {
 behavior [2];
 ENFORCE(is_inner == true);
 ENFORCE(behavior.UVALUE ==
 IP_ID_BEHAVIOR_SEQUENTIAL_SWAPPED);
 }

 COMPRESSED random {
 behavior [2];
 ENFORCE(behavior.UVALUE == IP_ID_BEHAVIOR_RANDOM);
 }

 COMPRESSED zero {
 behavior [2];
 ENFORCE(behavior.UVALUE == IP_ID_BEHAVIOR_ZERO);
 }
 }

 // The is_innermost flag is true if this is the innermost IP header
 // If extracting the irregular chain for a compressed packet:
 // - ttl_irregular_chain_flag must have the same value as it had when
 // processing co_baseheader.
 // - ip_inner_ecn is bound in this encoding method and the value that
 // it gets bound to should be passed to the tcp encoding method
 // For other formats than the irregular chain, these two are ignored
 ipv4(is_innermost, ttl_irregular_chain_flag, ip_inner_ecn)
 {
 UNCOMPRESSED {
 version =:= uncompressed_value(4, 4) [4];
 hdr_length =:= uncompressed_value(4, 5) [4];
 dscp [6];
 ip_ecn_flags [2];
 length [16];
 ip_id [16];

Pelletier, et al. Standards Track [Page 61]

RFC 4996 ROHC-TCP July 2007

 rf =:= uncompressed_value(1, 0) [1];
 df [1];
 mf =:= uncompressed_value(1, 0) [1];
 frag_offset =:= uncompressed_value(13, 0) [13];
 ttl_hopl [8];
 protocol [8];
 checksum [16];
 src_addr [32];
 dst_addr [32];
 }

 CONTROL {
 ip_id_behavior [2];
 }

 DEFAULT {
 dscp =:= static;
 ip_ecn_flags =:= static;
 length =:= inferred_ip_v4_length;
 df =:= static;
 ttl_hopl =:= static;
 protocol =:= static;
 checksum =:= inferred_ip_v4_header_checksum;
 src_addr =:= static;
 dst_addr =:= static;
 ip_id_behavior =:= static;
 }

 COMPRESSED ipv4_static {
 version_flag =:= ’0’ [1];
 reserved =:= ’0000000’ [7];
 protocol =:= irregular(8) [8];
 src_addr =:= irregular(32) [32];
 dst_addr =:= irregular(32) [32];
 }

 COMPRESSED ipv4_dynamic {
 reserved =:= ’00000’ [5];
 df =:= irregular(1) [1];
 ip_id_behavior =:= ip_id_behavior_choice(is_innermost) [2];
 dscp =:= irregular(6) [6];
 ip_ecn_flags =:= irregular(2) [2];
 ttl_hopl =:= irregular(8) [8];
 ip_id =:=
 ip_id_enc_dyn(ip_id_behavior.UVALUE) [0, 16];
 }

 COMPRESSED ipv4_replicate {

Pelletier, et al. Standards Track [Page 62]

RFC 4996 ROHC-TCP July 2007

 reserved =:= ’0000’ [4];
 ip_id_behavior =:= ip_id_behavior_choice(is_innermost) [2];
 ttl_flag =:= irregular(1) [1];
 df =:= irregular(1) [1];
 dscp =:= irregular(6) [6];
 ip_ecn_flags =:= irregular(2) [2];
 ip_id =:=
 ip_id_enc_dyn(ip_id_behavior.UVALUE) [0, 16];
 ttl_hopl =:=
 static_or_irreg(ttl_flag.UVALUE, 8) [0, 8];
 }

 COMPRESSED ipv4_outer_without_ttl_irregular {
 ip_id =:=
 ip_id_enc_irreg(ip_id_behavior.UVALUE) [0, 16];
 dscp =:= static_or_irreg(ecn_used.UVALUE, 6) [0, 6];
 ip_ecn_flags =:= static_or_irreg(ecn_used.UVALUE, 2) [0, 2];
 ENFORCE(ttl_irregular_chain_flag == 0);
 ENFORCE(is_innermost == false);
 }

 COMPRESSED ipv4_outer_with_ttl_irregular {
 ip_id =:=
 ip_id_enc_irreg(ip_id_behavior.UVALUE) [0, 16];
 dscp =:= static_or_irreg(ecn_used.UVALUE, 6) [0, 6];
 ip_ecn_flags =:= static_or_irreg(ecn_used.UVALUE, 2) [0, 2];
 ttl_hopl =:= irregular(8) [8];
 ENFORCE(is_innermost == false);
 ENFORCE(ttl_irregular_chain_flag == 1);
 }

 COMPRESSED ipv4_innermost_irregular {
 ip_id =:=
 ip_id_enc_irreg(ip_id_behavior.UVALUE) [0, 16];
 ENFORCE(ip_inner_ecn == ip_ecn_flags.UVALUE);
 ENFORCE(is_innermost == true);
 }
 }

 ///
 // TCP Options
 ///

 // nbits is bound to the remaining length (in bits) of TCP
 // options, including the EOL type byte.
 tcp_opt_eol(nbits)
 {
 UNCOMPRESSED {

Pelletier, et al. Standards Track [Page 63]

RFC 4996 ROHC-TCP July 2007

 type =:= uncompressed_value(8, 0) [8];
 padding =:=
 uncompressed_value(nbits-8, 0) [nbits-8];
 }

 CONTROL {
 pad_len [8];
 }

 COMPRESSED eol_list_item {
 pad_len =:= compressed_value(8, nbits-8) [8];
 }

 COMPRESSED eol_irregular {
 pad_len =:= static;
 ENFORCE(nbits-8 == pad_len.UVALUE);
 }
 }

 tcp_opt_nop
 {
 UNCOMPRESSED {
 type =:= uncompressed_value(8, 1) [8];
 }

 COMPRESSED nop_list_item {
 }

 COMPRESSED nop_irregular {
 }
 }

 tcp_opt_mss
 {
 UNCOMPRESSED {
 type =:= uncompressed_value(8, 2) [8];
 length =:= uncompressed_value(8, 4) [8];
 mss [16];
 }

 COMPRESSED mss_list_item {
 mss =:= irregular(16) [16];
 }

 COMPRESSED mss_irregular {
 mss =:= static;
 }
 }

Pelletier, et al. Standards Track [Page 64]

RFC 4996 ROHC-TCP July 2007

 tcp_opt_wscale
 {
 UNCOMPRESSED {
 type =:= uncompressed_value(8, 3) [8];
 length =:= uncompressed_value(8, 3) [8];
 wscale [8];
 }

 COMPRESSED wscale_list_item {
 wscale =:= irregular(8) [8];
 }

 COMPRESSED wscale_irregular {
 wscale =:= static;
 }
 }

 ts_lsb
 {
 UNCOMPRESSED {
 tsval [32];
 }

 COMPRESSED tsval_7 {
 discriminator =:= ’0’ [1];
 tsval =:= lsb(7, -1) [7];
 }

 COMPRESSED tsval_14 {
 discriminator =:= ’10’ [2];
 tsval =:= lsb(14, -1) [14];
 }

 COMPRESSED tsval_21 {
 discriminator =:= ’110’ [3];
 tsval =:= lsb(21, 0x00040000) [21];
 }

 COMPRESSED tsval_29 {
 discriminator =:= ’111’ [3];
 tsval =:= lsb(29, 0x04000000) [29];
 }
 }

 tcp_opt_ts
 {
 UNCOMPRESSED {
 type =:= uncompressed_value(8, 8) [8];

Pelletier, et al. Standards Track [Page 65]

RFC 4996 ROHC-TCP July 2007

 length =:= uncompressed_value(8, 10) [8];
 tsval [32];
 tsecho [32];
 }

 COMPRESSED tsopt_list_item {
 tsval =:= irregular(32) [32];
 tsecho =:= irregular(32) [32];
 }

 COMPRESSED tsopt_irregular {
 tsval =:= ts_lsb [8, 16, 24, 32];
 tsecho =:= ts_lsb [8, 16, 24, 32];
 }
 }

 sack_var_length_enc(base)
 {
 UNCOMPRESSED {
 sack_field [32];
 }

 CONTROL {
 sack_offset [32];
 ENFORCE(sack_offset.UVALUE == (sack_field.UVALUE - base));
 }

 COMPRESSED lsb_15 {
 discriminator =:= ’0’ [1];
 sack_offset =:= lsb(15, -1) [15];
 }

 COMPRESSED lsb_22 {
 discriminator =:= ’10’ [2];
 sack_offset =:= lsb(22, -1) [22];
 }

 COMPRESSED lsb_30 {
 discriminator =:= ’11’ [2];
 sack_offset =:= lsb(30, -1) [30];
 }
 }

 sack_block(prev_block_end)
 {
 UNCOMPRESSED {
 block_start [32];

Pelletier, et al. Standards Track [Page 66]

RFC 4996 ROHC-TCP July 2007

 block_end [32];
 }

 COMPRESSED {
 block_start =:=
 sack_var_length_enc(prev_block_end) [16, 24, 32];
 block_end =:=
 sack_var_length_enc(block_start) [16, 24, 32];
 }
 }

 // The value of the parameter is set to the ack_number value
 // of the TCP header
 tcp_opt_sack(ack_value)
 {

 UNCOMPRESSED {
 type =:= uncompressed_value(8, 5) [8];
 length [8];
 block_1 [64];
 block_2 [0, 64];
 block_3 [0, 64];
 block_4 [0, 64];
 }

 DEFAULT {
 length =:= static;
 block_2 =:= uncompressed_value(0, 0);
 block_3 =:= uncompressed_value(0, 0);
 block_4 =:= uncompressed_value(0, 0);
 }

 COMPRESSED sack1_list_item {
 discriminator =:= ’00000001’;
 block_1 =:= sack_block(ack_value);
 ENFORCE(length.UVALUE == 10);
 }

 COMPRESSED sack2_list_item {
 discriminator =:= ’00000010’;
 block_1 =:= sack_block(ack_value);
 block_2 =:= sack_block(block_1_end.UVALUE);
 ENFORCE(length.UVALUE == 18);
 }

 COMPRESSED sack3_list_item {
 discriminator =:= ’00000011’;
 block_1 =:= sack_block(ack_value);

Pelletier, et al. Standards Track [Page 67]

RFC 4996 ROHC-TCP July 2007

 block_2 =:= sack_block(block_1_end.UVALUE);
 block_3 =:= sack_block(block_2_end.UVALUE);
 ENFORCE(length.UVALUE == 26);
 }

 COMPRESSED sack4_list_item {
 discriminator =:= ’00000100’;
 block_1 =:= sack_block(ack_value);
 block_2 =:= sack_block(block_1_end.UVALUE);
 block_3 =:= sack_block(block_2_end.UVALUE);
 block_4 =:= sack_block(block_3_end.UVALUE);
 ENFORCE(length.UVALUE == 34);
 }

 COMPRESSED sack_unchanged_irregular {
 discriminator =:= ’00000000’;
 block_1 =:= static;
 block_2 =:= static;
 block_3 =:= static;
 block_4 =:= static;
 }

 COMPRESSED sack1_irregular {
 discriminator =:= ’00000001’;
 block_1 =:= sack_block(ack_value);
 ENFORCE(length.UVALUE == 10);
 }

 COMPRESSED sack2_irregular {
 discriminator =:= ’00000010’;
 block_1 =:= sack_block(ack_value);
 block_2 =:= sack_block(block_1_end.UVALUE);
 ENFORCE(length.UVALUE == 18);
 }

 COMPRESSED sack3_irregular {
 discriminator =:= ’00000011’;
 block_1 =:= sack_block(ack_value);
 block_2 =:= sack_block(block_1_end.UVALUE);
 block_3 =:= sack_block(block_2_end.UVALUE);
 ENFORCE(length.UVALUE == 26);
 }

 COMPRESSED sack4_irregular {
 discriminator =:= ’00000100’;
 block_1 =:= sack_block(ack_value);
 block_2 =:= sack_block(block_1_end.UVALUE);
 block_3 =:= sack_block(block_2_end.UVALUE);

Pelletier, et al. Standards Track [Page 68]

RFC 4996 ROHC-TCP July 2007

 block_4 =:= sack_block(block_3_end.UVALUE);
 ENFORCE(length.UVALUE == 34);
 }
 }

 tcp_opt_sack_permitted
 {
 UNCOMPRESSED {
 type =:= uncompressed_value(8, 4) [8];
 length =:= uncompressed_value(8, 2) [8];
 }

 COMPRESSED sack_permitted_list_item {
 }

 COMPRESSED sack_permitted_irregular {
 }
 }

 tcp_opt_generic
 {
 UNCOMPRESSED {
 type [8];
 length_msb =:= uncompressed_value(1, 0) [1];
 length_lsb [7];
 contents [length_len.UVALUE*8-16];
 }

 CONTROL {
 option_static [1];
 }

 DEFAULT {
 type =:= static;
 length_lsb =:= static;
 contents =:= static;
 }

 COMPRESSED generic_list_item {
 type =:= irregular(8) [8];
 option_static =:= one_bit_choice [1];
 length_lsb =:= irregular(7) [7];
 contents =:=
 irregular(length_lsb.UVALUE*8-16) [length_len.UVALUE*8-16];
 }

 // Used when context of option has option_static set to one
 COMPRESSED generic_static_irregular {

Pelletier, et al. Standards Track [Page 69]

RFC 4996 ROHC-TCP July 2007

 ENFORCE(option_static.UVALUE == 1);
 }

 // An item that can change, but currently is unchanged
 COMPRESSED generic_stable_irregular {
 discriminator =:= ’11111111’ [8];
 ENFORCE(option_static.UVALUE == 0);
 }

 // An item that is assumed to change constantly.
 // Length is not allowed to change here, since a length change is
 // most likely to cause new NOPs or an EOL length change.
 COMPRESSED generic_full_irregular {
 discriminator =:= ’00000000’ [8];
 contents =:=
 irregular(length_lsb.UVALUE*8-16) [length_lsb.UVALUE*8-16];
 ENFORCE(option_static.UVALUE == 0);
 }
 }

 tcp_list_presence_enc(presence)
 {
 UNCOMPRESSED {
 tcp_options;
 }

 COMPRESSED list_not_present {
 tcp_options =:= static [0];
 ENFORCE(presence == 0);
 }

 COMPRESSED list_present {
 tcp_options =:= list_tcp_options [VARIABLE];
 ENFORCE(presence == 1);
 }
 }

 ///
 // TCP Header
 ///

 port_replicate(flags)
 {
 UNCOMPRESSED {
 port [16];
 }

 COMPRESSED port_static_enc {

Pelletier, et al. Standards Track [Page 70]

RFC 4996 ROHC-TCP July 2007

 port =:= static [0];
 ENFORCE(flags == 0b00);
 }

 COMPRESSED port_lsb8 {
 port =:= lsb(8, 64) [8];
 ENFORCE(flags == 0b01);
 }

 COMPRESSED port_irr_enc {
 port =:= irregular(16) [16];
 ENFORCE(flags == 0b10);
 }
 }

 tcp_irreg_ip_ecn(ip_inner_ecn)
 {
 UNCOMPRESSED {
 ip_ecn_flags [2];
 }

 COMPRESSED ecn_present {
 // This field does not exist in the uncompressed header
 // and therefore cannot use uncompressed_value.
 ip_ecn_flags =:=
 compressed_value(2, ip_inner_ecn) [2];
 ENFORCE(ecn_used.UVALUE == 1);
 }

 COMPRESSED ecn_not_present {
 ip_ecn_flags =:= static [0];
 ENFORCE(ecn_used.UVALUE == 0);
 }
 }

 rsf_index_enc
 {
 UNCOMPRESSED {
 rsf_flag [3];
 }

 COMPRESSED none {
 rsf_idx =:= ’00’ [2];
 rsf_flag =:= uncompressed_value(3, 0x00);
 }

 COMPRESSED rst_only {
 rsf_idx =:= ’01’ [2];

Pelletier, et al. Standards Track [Page 71]

RFC 4996 ROHC-TCP July 2007

 rsf_flag =:= uncompressed_value(3, 0x04);
 }

 COMPRESSED syn_only {
 rsf_idx =:= ’10’ [2];
 rsf_flag =:= uncompressed_value(3, 0x02);
 }

 COMPRESSED fin_only {
 rsf_idx =:= ’11’ [2];
 rsf_flag =:= uncompressed_value(3, 0x01);
 }
 }

 optional_2bit_padding(used_flag)
 {
 UNCOMPRESSED {
 }

 COMPRESSED used {
 padding =:= compressed_value(2, 0x0) [2];
 ENFORCE(used_flag == 1);
 }

 COMPRESSED unused {
 padding =:= compressed_value(0, 0x0);
 ENFORCE(used_flag == 0);
 }
 }

 // ack_stride_value is the user-selected stride for scaling the
 // TCP ack_number
 // ip_inner_ecn is the value bound when processing the innermost
 // IP header (ipv4 or ipv6 encoding method)
 tcp(payload_size, ack_stride_value, ip_inner_ecn)
 {
 UNCOMPRESSED {
 src_port [16];
 dst_port [16];
 seq_number [32];
 ack_number [32];
 data_offset [4];
 tcp_res_flags [4];
 tcp_ecn_flags [2];
 urg_flag [1];
 ack_flag [1];
 psh_flag [1];
 rsf_flags [3];

Pelletier, et al. Standards Track [Page 72]

RFC 4996 ROHC-TCP July 2007

 window [16];
 checksum [16];
 urg_ptr [16];
 options [(data_offset.UVALUE-5)*32];
 }

 CONTROL {
 seq_number_scaled [32];
 seq_number_residue =:=
 field_scaling(payload_size, seq_number_scaled.UVALUE,
 seq_number.UVALUE) [32];
 ack_stride [16];
 ack_number_scaled [32];
 ack_number_residue =:=
 field_scaling(ack_stride.UVALUE, ack_number_scaled.UVALUE,
 ack_number.UVALUE) [32];
 ENFORCE(ack_stride.UVALUE == ack_stride_value);
 }

 INITIAL {
 ack_stride =:= uncompressed_value(16, 0);
 }

 DEFAULT {
 src_port =:= static;
 dst_port =:= static;
 seq_number =:= static;
 ack_number =:= static;
 data_offset =:= inferred_offset;
 tcp_res_flags =:= static;
 tcp_ecn_flags =:= static;
 urg_flag =:= static;
 ack_flag =:= uncompressed_value(1, 1);
 rsf_flags =:= uncompressed_value(3, 0);
 window =:= static;
 urg_ptr =:= static;
 }

 COMPRESSED tcp_static {
 src_port =:= irregular(16) [16];
 dst_port =:= irregular(16) [16];
 }

 COMPRESSED tcp_dynamic {
 ecn_used =:= one_bit_choice [1];
 ack_stride_flag =:= irregular(1) [1];
 ack_zero =:= irregular(1) [1];
 urp_zero =:= irregular(1) [1];

Pelletier, et al. Standards Track [Page 73]

RFC 4996 ROHC-TCP July 2007

 tcp_res_flags =:= irregular(4) [4];
 tcp_ecn_flags =:= irregular(2) [2];
 urg_flag =:= irregular(1) [1];
 ack_flag =:= irregular(1) [1];
 psh_flag =:= irregular(1) [1];
 rsf_flags =:= irregular(3) [3];
 msn =:= irregular(16) [16];
 seq_number =:= irregular(32) [32];
 ack_number =:=
 zero_or_irreg(ack_zero.CVALUE, 32) [0, 32];
 window =:= irregular(16) [16];
 checksum =:= irregular(16) [16];
 urg_ptr =:=
 zero_or_irreg(urp_zero.CVALUE, 16) [0, 16];
 ack_stride =:=
 static_or_irreg(ack_stride_flag.CVALUE, 16) [0, 16];
 options =:= list_tcp_options [VARIABLE];
 }

 COMPRESSED tcp_replicate {
 reserved =:= ’0’ [1];
 window_presence =:= irregular(1) [1];
 list_present =:= irregular(1) [1];
 src_port_presence =:= irregular(2) [2];
 dst_port_presence =:= irregular(2) [2];
 ack_stride_flag =:= irregular(1) [1];
 ack_presence =:= irregular(1) [1];
 urp_presence =:= irregular(1) [1];
 urg_flag =:= irregular(1) [1];
 ack_flag =:= irregular(1) [1];
 psh_flag =:= irregular(1) [1];
 rsf_flags =:= rsf_index_enc [2];
 ecn_used =:= one_bit_choice [1];
 msn =:= irregular(16) [16];
 seq_number =:= irregular(32) [32];
 src_port =:=
 port_replicate(src_port_presence) [0, 8, 16];
 dst_port =:=
 port_replicate(dst_port_presence) [0, 8, 16];
 window =:=
 static_or_irreg(window_presence, 16) [0, 16];
 urg_point =:=
 static_or_irreg(urp_presence, 16) [0, 16];
 ack_number =:=
 static_or_irreg(ack_presence, 32) [0, 32];
 ecn_padding =:=
 optional_2bit_padding(ecn_used.CVALUE) [0, 2];
 tcp_res_flags =:=

Pelletier, et al. Standards Track [Page 74]

RFC 4996 ROHC-TCP July 2007

 static_or_irreg(ecn_used.CVALUE, 4) [0, 4];
 tcp_ecn_flags =:=
 static_or_irreg(ecn_used.CVALUE, 2) [0, 2];
 checksum =:= irregular(16) [16];
 ack_stride =:=
 static_or_irreg(ack_stride_flag.CVALUE, 16) [0, 16];
 options =:=
 tcp_list_presence_enc(list_present.CVALUE) [VARIABLE];
 }

 COMPRESSED tcp_irregular {
 ip_ecn_flags =:= tcp_irreg_ip_ecn(ip_inner_ecn) [0, 2];
 tcp_res_flags =:=
 static_or_irreg(ecn_used.CVALUE, 4) [0, 4];
 tcp_ecn_flags =:=
 static_or_irreg(ecn_used.CVALUE, 2) [0, 2];
 checksum =:= irregular(16) [16];
 }
 }

 ///
 // Encoding methods used in compressed base headers
 ///

 dscp_enc(flag)
 {
 UNCOMPRESSED {
 dscp [6];
 }

 COMPRESSED static_enc {
 dscp =:= static [0];
 ENFORCE(flag == 0);
 }

 COMPRESSED irreg {
 dscp =:= irregular(6) [6];
 padding =:= compressed_value(2, 0) [2];
 ENFORCE(flag == 1);
 }
 }

 ip_id_lsb(behavior, k, p)
 {
 UNCOMPRESSED {
 ip_id [16];
 }

Pelletier, et al. Standards Track [Page 75]

RFC 4996 ROHC-TCP July 2007

 CONTROL {
 ip_id_offset [16];
 ip_id_nbo [16];
 }

 COMPRESSED nbo {
 ip_id_offset =:= lsb(k, p) [k];
 ENFORCE(behavior == IP_ID_BEHAVIOR_SEQUENTIAL);
 ENFORCE(ip_id_offset.UVALUE == ip_id.UVALUE - msn.UVALUE);
 }

 COMPRESSED non_nbo {
 ip_id_offset =:= lsb(k, p) [k];
 ENFORCE(behavior == IP_ID_BEHAVIOR_SEQUENTIAL_SWAPPED);
 ENFORCE(ip_id_nbo.UVALUE ==
 (ip_id.UVALUE / 256) + (ip_id.UVALUE % 256) * 256);
 ENFORCE(ip_id_nbo.ULENGTH == 16);
 ENFORCE(ip_id_offset.UVALUE == ip_id_nbo.UVALUE - msn.UVALUE);
 }
 }

 optional_ip_id_lsb(behavior, indicator)
 {
 UNCOMPRESSED {
 ip_id [16];
 }

 COMPRESSED short {
 ip_id =:= ip_id_lsb(behavior, 8, 3) [8];
 ENFORCE((behavior == IP_ID_BEHAVIOR_SEQUENTIAL) ||
 (behavior == IP_ID_BEHAVIOR_SEQUENTIAL_SWAPPED));
 ENFORCE(indicator == 0);
 }

 COMPRESSED long {
 ip_id =:= irregular(16) [16];
 ENFORCE((behavior == IP_ID_BEHAVIOR_SEQUENTIAL) ||
 (behavior == IP_ID_BEHAVIOR_SEQUENTIAL_SWAPPED));
 ENFORCE(indicator == 1);
 }

 COMPRESSED not_present {
 ENFORCE((behavior == IP_ID_BEHAVIOR_RANDOM) ||
 (behavior == IP_ID_BEHAVIOR_ZERO));
 }
 }

 dont_fragment(version)

Pelletier, et al. Standards Track [Page 76]

RFC 4996 ROHC-TCP July 2007

 {
 UNCOMPRESSED {
 df [1];
 }

 COMPRESSED v4 {
 df =:= irregular(1) [1];
 ENFORCE(version == 4);
 }

 COMPRESSED v6 {
 df =:= compressed_value(1, 0) [1];
 ENFORCE(version == 6);
 }
 }

 //////////////////////////////////
 // Actual start of compressed packet formats
 // Important note:
 // The base header is the compressed representation
 // of the innermost IP header AND the TCP header.
 //////////////////////////////////

 // ttl_irregular_chain_flag is set by the user if the TTL/Hop Limit
 // of an outer header has changed. The same value must be passed as
 // an argument to the ipv4/ipv6 encoding methods when extracting
 // the irregular chain items.
 co_baseheader(payload_size, ack_stride_value,
 ttl_irregular_chain_flag)
 {
 UNCOMPRESSED v4 {
 outer_headers =:= baseheader_outer_headers [VARIABLE];
 version =:= uncompressed_value(4, 4) [4];
 header_length =:= uncompressed_value(4, 5) [4];
 dscp [6];
 ip_ecn_flags [2];
 length [16];
 ip_id [16];
 rf =:= uncompressed_value(1, 0) [1];
 df [1];
 mf =:= uncompressed_value(1, 0) [1];
 frag_offset =:= uncompressed_value(13, 0) [13];
 ttl_hopl [8];
 next_header [8];
 checksum [16];
 src_addr [32];
 dest_addr [32];
 extension_headers =:= baseheader_extension_headers [VARIABLE];

Pelletier, et al. Standards Track [Page 77]

RFC 4996 ROHC-TCP July 2007

 src_port [16];
 dest_port [16];
 seq_number [32];
 ack_number [32];
 data_offset [4];
 tcp_res_flags [4];
 tcp_ecn_flags [2];
 urg_flag [1];
 ack_flag [1];
 psh_flag [1];
 rsf_flags [3];
 window [16];
 tcp_checksum [16];
 urg_ptr [16];
 options [(data_offset.UVALUE-5)*32];
 }

 UNCOMPRESSED v6 {
 outer_headers =:= baseheader_outer_headers [VARIABLE];
 version =:= uncompressed_value(4, 6) [4];
 dscp [6];
 ip_ecn_flags [2];
 flow_label [20];
 payload_length [16];
 next_header [8];
 ttl_hopl [8];
 src_addr [128];
 dest_addr [128];
 extension_headers =:= baseheader_extension_headers [VARIABLE];
 src_port [16];
 dest_port [16];
 seq_number [32];
 ack_number [32];
 data_offset [4];
 tcp_res_flags [4];
 tcp_ecn_flags [2];
 urg_flag [1];
 ack_flag [1];
 psh_flag [1];
 rsf_flags [3];
 window [16];
 tcp_checksum [16];
 urg_ptr [16];
 options [(data_offset.UVALUE-5)*32];
 ENFORCE(ip_id_behavior.UVALUE == IP_ID_BEHAVIOR_RANDOM);
 }

 CONTROL {

Pelletier, et al. Standards Track [Page 78]

RFC 4996 ROHC-TCP July 2007

 ip_id_behavior [2];
 seq_number_scaled [32];
 seq_number_residue =:=
 field_scaling(payload_size, seq_number_scaled.UVALUE,
 seq_number.UVALUE) [32];
 ack_stride [16];
 ack_number_scaled [32];
 ack_number_residue =:=
 field_scaling(ack_stride.UVALUE, ack_number_scaled.UVALUE,
 ack_number.UVALUE) [32];
 ENFORCE(ack_stride_value == ack_stride.UVALUE);
 }

 INITIAL {
 ack_stride =:= uncompressed_value(16, 0);
 }

 DEFAULT {
 tcp_ecn_flags =:= static;
 data_offset =:= inferred_offset;
 tcp_res_flags =:= static;
 rsf_flags =:= uncompressed_value(3, 0);
 dest_port =:= static;
 dscp =:= static;
 src_port =:= static;
 urg_flag =:= uncompressed_value(1, 0);
 window =:= static;
 dest_addr =:= static;
 version =:= static;
 ttl_hopl =:= static;
 src_addr =:= static;
 df =:= static;
 ack_number =:= static;
 urg_ptr =:= static;
 seq_number =:= static;
 ack_flag =:= uncompressed_value(1, 1);
 // The default for "options" is case 2) and 3) from
 // the list in section 6.3.1 (i.e. nothing present in the
 // baseheader itself).
 payload_length =:= inferred_ip_v6_length;
 checksum =:= inferred_ip_v4_header_checksum;
 length =:= inferred_ip_v4_length;
 flow_label =:= static;
 next_header =:= static;
 ip_ecn_flags =:= static;
 // The tcp_checksum has no default,
 // it is considered a part of tcp_irregular
 ip_id_behavior =:= static;

Pelletier, et al. Standards Track [Page 79]

RFC 4996 ROHC-TCP July 2007

 ecn_used =:= static;

 // Default is to have no TTL in irregular chain
 // Can only be nonzero if co_common is used
 ENFORCE(ttl_irregular_chain_flag == 0);
 }

 //
 // Common compressed packet format
 //

 COMPRESSED co_common {
 discriminator =:= ’1111101’ [7];
 ttl_hopl_outer_flag =:=
 compressed_value(1, ttl_irregular_chain_flag) [1];
 ack_flag =:= irregular(1) [1];
 psh_flag =:= irregular(1) [1];
 rsf_flags =:= rsf_index_enc [2];
 msn =:= lsb(4, 4) [4];
 seq_indicator =:= irregular(2) [2];
 ack_indicator =:= irregular(2) [2];
 ack_stride_indicator =:= irregular(1) [1];
 window_indicator =:= irregular(1) [1];
 ip_id_indicator =:= irregular(1) [1];
 urg_ptr_present =:= irregular(1) [1];
 reserved =:= compressed_value(1, 0) [1];
 ecn_used =:= one_bit_choice [1];
 dscp_present =:= irregular(1) [1];
 ttl_hopl_present =:= irregular(1) [1];
 list_present =:= irregular(1) [1];
 ip_id_behavior =:= ip_id_behavior_choice(true) [2];
 urg_flag =:= irregular(1) [1];
 df =:= dont_fragment(version.UVALUE) [1];
 header_crc =:= crc7(THIS.UVALUE, THIS.ULENGTH) [7];
 seq_number =:=
 variable_length_32_enc(seq_indicator.CVALUE) [0, 8, 16, 32];
 ack_number =:=
 variable_length_32_enc(ack_indicator.CVALUE) [0, 8, 16, 32];
 ack_stride =:=
 static_or_irreg(ack_stride_indicator.CVALUE, 16) [0, 16];
 window =:=
 static_or_irreg(window_indicator.CVALUE, 16) [0, 16];
 ip_id =:=
 optional_ip_id_lsb(ip_id_behavior.UVALUE,
 ip_id_indicator.CVALUE) [0, 8, 16];
 urg_ptr =:=
 static_or_irreg(urg_ptr_present.CVALUE, 16) [0, 16];
 dscp =:=

Pelletier, et al. Standards Track [Page 80]

RFC 4996 ROHC-TCP July 2007

 dscp_enc(dscp_present.CVALUE) [0, 8];
 ttl_hopl =:=
 static_or_irreg(ttl_hopl_present.CVALUE, 8) [0, 8];
 options =:=
 tcp_list_presence_enc(list_present.CVALUE) [VARIABLE];
 }

 // Send LSBs of sequence number
 COMPRESSED rnd_1 {
 discriminator =:= ’101110’ [6];
 seq_number =:= lsb(18, 65535) [18];
 msn =:= lsb(4, 4) [4];
 psh_flag =:= irregular(1) [1];
 header_crc =:= crc3(THIS.UVALUE, THIS.ULENGTH) [3];
 ENFORCE((ip_id_behavior.UVALUE == IP_ID_BEHAVIOR_RANDOM) ||
 (ip_id_behavior.UVALUE == IP_ID_BEHAVIOR_ZERO));
 }

 // Send scaled sequence number LSBs
 COMPRESSED rnd_2 {
 discriminator =:= ’1100’ [4];
 seq_number_scaled =:= lsb(4, 7) [4];
 msn =:= lsb(4, 4) [4];
 psh_flag =:= irregular(1) [1];
 header_crc =:= crc3(THIS.UVALUE, THIS.ULENGTH) [3];
 ENFORCE(payload_size != 0);
 ENFORCE((ip_id_behavior.UVALUE == IP_ID_BEHAVIOR_RANDOM) ||
 (ip_id_behavior.UVALUE == IP_ID_BEHAVIOR_ZERO));
 }

 // Send acknowledgment number LSBs
 COMPRESSED rnd_3 {
 discriminator =:= ’0’ [1];
 ack_number =:= lsb(15, 8191) [15];
 msn =:= lsb(4, 4) [4];
 psh_flag =:= irregular(1) [1];
 header_crc =:= crc3(THIS.UVALUE, THIS.ULENGTH) [3];
 ENFORCE((ip_id_behavior.UVALUE == IP_ID_BEHAVIOR_RANDOM) ||
 (ip_id_behavior.UVALUE == IP_ID_BEHAVIOR_ZERO));
 }

 // Send acknowledgment number scaled
 COMPRESSED rnd_4 {
 discriminator =:= ’1101’ [4];
 ack_number_scaled =:= lsb(4, 3) [4];
 msn =:= lsb(4, 4) [4];
 psh_flag =:= irregular(1) [1];
 header_crc =:= crc3(THIS.UVALUE, THIS.ULENGTH) [3];

Pelletier, et al. Standards Track [Page 81]

RFC 4996 ROHC-TCP July 2007

 ENFORCE(ack_stride.UVALUE != 0);
 ENFORCE((ip_id_behavior.UVALUE == IP_ID_BEHAVIOR_RANDOM) ||
 (ip_id_behavior.UVALUE == IP_ID_BEHAVIOR_ZERO));
 }

 // Send ACK and sequence number
 COMPRESSED rnd_5 {
 discriminator =:= ’100’ [3];
 psh_flag =:= irregular(1) [1];
 msn =:= lsb(4, 4) [4];
 header_crc =:= crc3(THIS.UVALUE, THIS.ULENGTH) [3];
 seq_number =:= lsb(14, 8191) [14];
 ack_number =:= lsb(15, 8191) [15];
 ENFORCE((ip_id_behavior.UVALUE == IP_ID_BEHAVIOR_RANDOM) ||
 (ip_id_behavior.UVALUE == IP_ID_BEHAVIOR_ZERO));
 }

 // Send both ACK and scaled sequence number LSBs
 COMPRESSED rnd_6 {
 discriminator =:= ’1010’ [4];
 header_crc =:= crc3(THIS.UVALUE, THIS.ULENGTH) [3];
 psh_flag =:= irregular(1) [1];
 ack_number =:= lsb(16, 16383) [16];
 msn =:= lsb(4, 4) [4];
 seq_number_scaled =:= lsb(4, 7) [4];
 ENFORCE(payload_size != 0);
 ENFORCE((ip_id_behavior.UVALUE == IP_ID_BEHAVIOR_RANDOM) ||
 (ip_id_behavior.UVALUE == IP_ID_BEHAVIOR_ZERO));
 }

 // Send ACK and window
 COMPRESSED rnd_7 {
 discriminator =:= ’101111’ [6];
 ack_number =:= lsb(18, 65535) [18];
 window =:= irregular(16) [16];
 msn =:= lsb(4, 4) [4];
 psh_flag =:= irregular(1) [1];
 header_crc =:= crc3(THIS.UVALUE, THIS.ULENGTH) [3];
 ENFORCE((ip_id_behavior.UVALUE == IP_ID_BEHAVIOR_RANDOM) ||
 (ip_id_behavior.UVALUE == IP_ID_BEHAVIOR_ZERO));
 }

 // An extended packet type for seldom-changing fields
 // Can send LSBs of TTL, RSF flags, change ECN behavior, and
 // options list
 COMPRESSED rnd_8 {
 discriminator =:= ’10110’ [5];
 rsf_flags =:= rsf_index_enc [2];

Pelletier, et al. Standards Track [Page 82]

RFC 4996 ROHC-TCP July 2007

 list_present =:= irregular(1) [1];
 header_crc =:= crc7(THIS.UVALUE, THIS.ULENGTH) [7];
 msn =:= lsb(4, 4) [4];
 psh_flag =:= irregular(1) [1];
 ttl_hopl =:= lsb(3, 3) [3];
 ecn_used =:= one_bit_choice [1];
 seq_number =:= lsb(16, 65535) [16];
 ack_number =:= lsb(16, 16383) [16];
 options =:=
 tcp_list_presence_enc(list_present.CVALUE) [VARIABLE];
 ENFORCE((ip_id_behavior.UVALUE == IP_ID_BEHAVIOR_RANDOM) ||
 (ip_id_behavior.UVALUE == IP_ID_BEHAVIOR_ZERO));
 }

 // Send LSBs of sequence number
 COMPRESSED seq_1 {
 discriminator =:= ’1010’ [4];
 ip_id =:= ip_id_lsb(ip_id_behavior.UVALUE, 4, 3) [4];
 seq_number =:= lsb(16, 32767) [16];
 msn =:= lsb(4, 4) [4];
 psh_flag =:= irregular(1) [1];
 header_crc =:= crc3(THIS.UVALUE, THIS.ULENGTH) [3];
 ENFORCE((ip_id_behavior.UVALUE == IP_ID_BEHAVIOR_SEQUENTIAL) ||
 (ip_id_behavior.UVALUE ==
 IP_ID_BEHAVIOR_SEQUENTIAL_SWAPPED));
 }

 // Send scaled sequence number LSBs
 COMPRESSED seq_2 {
 discriminator =:= ’11010’ [5];
 ip_id =:=
 ip_id_lsb(ip_id_behavior.UVALUE, 7, 3) [7];
 seq_number_scaled =:= lsb(4, 7) [4];
 msn =:= lsb(4, 4) [4];
 psh_flag =:= irregular(1) [1];
 header_crc =:= crc3(THIS.UVALUE, THIS.ULENGTH) [3];
 ENFORCE(payload_size != 0);
 ENFORCE((ip_id_behavior.UVALUE == IP_ID_BEHAVIOR_SEQUENTIAL) ||
 (ip_id_behavior.UVALUE ==
 IP_ID_BEHAVIOR_SEQUENTIAL_SWAPPED));
 }

 // Send acknowledgment number LSBs
 COMPRESSED seq_3 {
 discriminator =:= ’1001’ [4];
 ip_id =:= ip_id_lsb(ip_id_behavior.UVALUE, 4, 3) [4];
 ack_number =:= lsb(16, 16383) [16];
 msn =:= lsb(4, 4) [4];

Pelletier, et al. Standards Track [Page 83]

RFC 4996 ROHC-TCP July 2007

 psh_flag =:= irregular(1) [1];
 header_crc =:= crc3(THIS.UVALUE, THIS.ULENGTH) [3];
 ENFORCE((ip_id_behavior.UVALUE == IP_ID_BEHAVIOR_SEQUENTIAL) ||
 (ip_id_behavior.UVALUE ==
 IP_ID_BEHAVIOR_SEQUENTIAL_SWAPPED));
 }

 // Send scaled acknowledgment number scaled
 COMPRESSED seq_4 {
 discriminator =:= ’0’ [1];
 ack_number_scaled =:= lsb(4, 3) [4];
 // Due to having very few ip_id bits, no negative offset
 ip_id =:= ip_id_lsb(ip_id_behavior.UVALUE, 3, 1) [3];
 msn =:= lsb(4, 4) [4];
 psh_flag =:= irregular(1) [1];
 header_crc =:= crc3(THIS.UVALUE, THIS.ULENGTH) [3];
 ENFORCE(ack_stride.UVALUE != 0);
 ENFORCE((ip_id_behavior.UVALUE == IP_ID_BEHAVIOR_SEQUENTIAL) ||
 (ip_id_behavior.UVALUE ==
 IP_ID_BEHAVIOR_SEQUENTIAL_SWAPPED));
 }

 // Send ACK and sequence number
 COMPRESSED seq_5 {
 discriminator =:= ’1000’ [4];
 ip_id =:= ip_id_lsb(ip_id_behavior.UVALUE, 4, 3) [4];
 ack_number =:= lsb(16, 16383) [16];
 seq_number =:= lsb(16, 32767) [16];
 msn =:= lsb(4, 4) [4];
 psh_flag =:= irregular(1) [1];
 header_crc =:= crc3(THIS.UVALUE, THIS.ULENGTH) [3];
 ENFORCE((ip_id_behavior.UVALUE == IP_ID_BEHAVIOR_SEQUENTIAL) ||
 (ip_id_behavior.UVALUE ==
 IP_ID_BEHAVIOR_SEQUENTIAL_SWAPPED));
 }

 // Send both ACK and scaled sequence number LSBs
 COMPRESSED seq_6 {
 discriminator =:= ’11011’ [5];
 seq_number_scaled =:= lsb(4, 7) [4];
 ip_id =:= ip_id_lsb(ip_id_behavior.UVALUE, 7, 3) [7];
 ack_number =:= lsb(16, 16383) [16];
 msn =:= lsb(4, 4) [4];
 psh_flag =:= irregular(1) [1];
 header_crc =:= crc3(THIS.UVALUE, THIS.ULENGTH) [3];
 ENFORCE(payload_size != 0);
 ENFORCE((ip_id_behavior.UVALUE == IP_ID_BEHAVIOR_SEQUENTIAL) ||
 (ip_id_behavior.UVALUE ==

Pelletier, et al. Standards Track [Page 84]

RFC 4996 ROHC-TCP July 2007

 IP_ID_BEHAVIOR_SEQUENTIAL_SWAPPED));
 }

 // Send ACK and window
 COMPRESSED seq_7 {
 discriminator =:= ’1100’ [4];
 window =:= lsb(15, 16383) [15];
 ip_id =:= ip_id_lsb(ip_id_behavior.UVALUE, 5, 3) [5];
 ack_number =:= lsb(16, 32767) [16];
 msn =:= lsb(4, 4) [4];
 psh_flag =:= irregular(1) [1];
 header_crc =:= crc3(THIS.UVALUE, THIS.ULENGTH) [3];
 ENFORCE((ip_id_behavior.UVALUE == IP_ID_BEHAVIOR_SEQUENTIAL) ||
 (ip_id_behavior.UVALUE ==
 IP_ID_BEHAVIOR_SEQUENTIAL_SWAPPED));
 }

 // An extended packet type for seldom-changing fields
 // Can send LSBs of TTL, RSF flags, change ECN behavior, and
 // options list
 COMPRESSED seq_8 {
 discriminator =:= ’1011’ [4];
 ip_id =:= ip_id_lsb(ip_id_behavior.UVALUE, 4, 3) [4];
 list_present =:= irregular(1) [1];
 header_crc =:= crc7(THIS.UVALUE, THIS.ULENGTH) [7];
 msn =:= lsb(4, 4) [4];
 psh_flag =:= irregular(1) [1];
 ttl_hopl =:= lsb(3, 3) [3];
 ecn_used =:= one_bit_choice [1];
 ack_number =:= lsb(15, 8191) [15];
 rsf_flags =:= rsf_index_enc [2];
 seq_number =:= lsb(14, 8191) [14];
 options =:=
 tcp_list_presence_enc(list_present.CVALUE) [VARIABLE];
 ENFORCE((ip_id_behavior.UVALUE == IP_ID_BEHAVIOR_SEQUENTIAL) ||
 (ip_id_behavior.UVALUE ==
 IP_ID_BEHAVIOR_SEQUENTIAL_SWAPPED));
 }
 }

Pelletier, et al. Standards Track [Page 85]

RFC 4996 ROHC-TCP July 2007

8.3. Feedback Formats and Options

8.3.1. Feedback Formats

 This section describes the feedback formats for the ROHC-TCP profile,
 following the general ROHC feedback format described in Section 5.2.3
 of [RFC4995].

 All feedback formats carry a field labeled MSN. The MSN field
 contains LSBs of the MSN control field described in Section 6.1.1.
 The sequence number to use is the MSN corresponding to the last
 header that was successfully CRC-8 validated or CRC verified.

 FEEDBACK-1

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | MSN |
 +---+---+---+---+---+---+---+---+

 MSN: The LSB-encoded master sequence number.

 A FEEDBACK-1 is an ACK. In order to send a NACK or a STATIC-NACK,
 FEEDBACK-2 must be used.

 FEEDBACK-2

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 |Acktype| MSN |
 +---+---+---+---+---+---+---+---+
 | MSN |
 +---+---+---+---+---+---+---+---+
 | CRC |
 +---+---+---+---+---+---+---+---+
 / Feedback options /
 +---+---+---+---+---+---+---+---+

 Acktype:

 0 = ACK

 1 = NACK

 2 = STATIC-NACK

 3 is reserved (MUST NOT be used for parsability)

Pelletier, et al. Standards Track [Page 86]

RFC 4996 ROHC-TCP July 2007

 MSN: The LSB-encoded master sequence number.

 CRC: 8-bit CRC computed over the entire feedback element (as
 defined in Section 5.3.1.1 of [RFC4995]). For the purpose of
 computing the CRC, the CRC field is zero. The CRC is calculated
 using the polynomial defined in [RFC4995].

 Feedback options: A variable number of feedback options, see
 Section 8.3.2. Options may appear in any order.

 A FEEDBACK-2 of type NACK or STATIC-NACK is always implicitly an
 acknowledgment for a successfully decompressed packet, which packet
 corresponds to the MSN of the feedback element, unless the MSN-NOT-
 VALID option (Section 8.3.2.2) appears in the feedback element.

 The FEEDBACK-2 format always carries a CRC and is thus more robust
 than the FEEDBACK-1 format. When receiving FEEDBACK-2, the
 compressor MUST verify the information by computing the CRC and by
 comparing the result with the CRC carried in the feedback format. If
 the two are not identical, the feedback element MUST be discarded.

8.3.2. Feedback Options

 A ROHC-TCP feedback option has variable length and the following
 general format:

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | Opt Type | Opt Len |
 +---+---+---+---+---+---+---+---+
 / option data / Opt Length (octets)
 +---+---+---+---+---+---+---+---+

 Each ROHC-TCP feedback option can appear at most once within a
 FEEDBACK-2.

8.3.2.1. The REJECT Option

 The REJECT option informs the compressor that the decompressor does
 not have sufficient resources to handle the flow.

 +---+---+---+---+---+---+---+---+
 | Opt Type = 2 | Opt Len = 0 |
 +---+---+---+---+---+---+---+---+

 When receiving a REJECT option, the compressor MUST stop compressing
 the packet flow, and SHOULD refrain from attempting to increase the
 number of compressed packet flows for some time. The REJECT option

Pelletier, et al. Standards Track [Page 87]

RFC 4996 ROHC-TCP July 2007

 MUST NOT appear more than once in the FEEDBACK-2 format; otherwise,
 the compressor MUST discard the entire feedback element.

8.3.2.2. The MSN-NOT-VALID Option

 The MSN-NOT-VALID option indicates that the MSN of the feedback is
 not valid.

 +---+---+---+---+---+---+---+---+
 | Opt Type = 3 | Opt Len = 0 |
 +---+---+---+---+---+---+---+---+

 A compressor MUST ignore the MSN of the feedback element when this
 option is present. Consequently, a NACK or a STATIC-NACK feedback
 type sent with the MSN-NOT-VALID option is equivalent to a STATIC-
 NACK with respect to the semantics of the feedback message.

 The MSN-NOT-VALID option MUST NOT appear more than once in the
 FEEDBACK-2 format and MUST NOT appear in the same feedback element as
 the MSN option; otherwise, the compressor MUST discard the entire
 feedback element.

8.3.2.3. The MSN Option

 The MSN option provides 2 additional bits of MSN.

 +---+---+---+---+---+---+---+---+
 | Opt Type = 4 | Opt Len = 1 |
 +---+---+---+---+---+---+---+---+
 | MSN | Reserved |
 +---+---+---+---+---+---+---+---+

 These 2 bits are the least significant bits of the MSN and are thus
 concatenated with the 14 bits already present in the FEEDBACK-2
 format.

 The MSN option MUST NOT appear more than once in the FEEDBACK-2
 format and MUST NOT appear in the same feedback element as the MSN-
 NOT-VALID option; otherwise, the compressor MUST discard the entire
 feedback element.

8.3.2.4. The CONTEXT_MEMORY Feedback Option

 The CONTEXT_MEMORY option means that the decompressor does not have
 sufficient memory resources to handle the context of the packet flow,
 as the flow is currently compressed.

Pelletier, et al. Standards Track [Page 88]

RFC 4996 ROHC-TCP July 2007

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | Opt Type = 9 | Opt Len = 0 |
 +---+---+---+---+---+---+---+---+

 When receiving a CONTEXT_MEMORY option, the compressor SHOULD take
 actions to compress the packet flow in a way that requires less
 decompressor memory resources, or stop compressing the packet flow.

 The CONTEXT_MEMORY option MUST NOT appear more than once in the
 FEEDBACK-2 format; otherwise, the compressor MUST discard the entire
 feedback element.

8.3.2.5. Unknown Option Types

 If an option type unknown to the compressor is encountered, the
 compressor MUST continue parsing the rest of the FEEDBACK element,
 which is possible since the length of the option is explicit, but
 MUST otherwise ignore the unknown option.

9. Security Considerations

 A malfunctioning or malicious header compressor could cause the
 header decompressor to reconstitute packets that do not match the
 original packets but still have valid IP and TCP headers, and
 possibly also valid TCP checksums. Such corruption may be detected
 with end-to-end authentication and integrity mechanisms that will not
 be affected by the compression. Moreover, this header compression
 scheme uses an internal checksum for verification of reconstructed
 headers. This reduces the probability of producing decompressed
 headers not matching the original ones without this being noticed.

 Denial-of-service attacks are possible if an intruder can introduce
 (for example) bogus IR, CO, or FEEDBACK packets onto the link and
 thereby cause compression efficiency to be reduced. However, an
 intruder having the ability to inject arbitrary packets at the link
 layer in this manner raises additional security issues that dwarf
 those related to the use of header compression.

10. IANA Considerations

 The ROHC profile identifier 0x0006 has been reserved by the IANA for
 the profile defined in this document.

 A ROHC profile identifier has been reserved by the IANA for the
 profile defined in this document. Profiles 0x0000-0x0005 have
 previously been reserved; this profile is 0x0006. As for previous

Pelletier, et al. Standards Track [Page 89]

RFC 4996 ROHC-TCP July 2007

 ROHC profiles, profile numbers 0xnn06 have been reserved for future
 updates of this profile.

 Profile Usage Document
 identifier

 0x0006 ROHC TCP [RFC4996]
 0xnn06 Reserved

11. Acknowledgments

 The authors would like to thank Qian Zhang, Hong Bin Liao, Richard
 Price, and Fredrik Lindstroem for their work with early versions of
 this specification. Thanks also to Robert Finking and Carsten
 Bormann for valuable input.

 Additional thanks: this document was reviewed during working group
 last-call by committed reviewers Joe Touch and Ted Faber, as well as
 by Sally Floyd, who provided a review at the request of the Transport
 Area Directors.

12. References

12.1. Normative References

 [RFC0791] Postel, J., "Internet Protocol", STD 5, RFC 791,
 September 1981.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
 RFC 793, September 1981.

 [RFC2004] Perkins, C., "Minimal Encapsulation within IP", RFC 2004,
 October 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", RFC 2460, December 1998.

 [RFC2784] Farinacci, D., Li, T., Hanks, S., Meyer, D., and P.
 Traina, "Generic Routing Encapsulation (GRE)", RFC 2784,
 March 2000.

 [RFC2890] Dommety, G., "Key and Sequence Number Extensions to GRE",
 RFC 2890, September 2000.

Pelletier, et al. Standards Track [Page 90]

RFC 4996 ROHC-TCP July 2007

 [RFC4164] Pelletier, G., "RObust Header Compression (ROHC): Context
 Replication for ROHC Profiles", RFC 4164, August 2005.

 [RFC4302] Kent, S., "IP Authentication Header", RFC 4302,
 December 2005.

 [RFC4303] Kent, S., "IP Encapsulating Security Payload (ESP)",
 RFC 4303, December 2005.

 [RFC4995] Jonsson, L-E., Pelletier, G., and K. Sandlund, "The RObust
 Header Compression (ROHC) Framework", RFC 4995, July 2007.

 [RFC4997] Finking, R. and G. Pelletier, "Formal Notation for Robust
 Header Compression (ROHC-FN)", RFC 4997, July 2007.

12.2. Informative References

 [RFC1144] Jacobson, V., "Compressing TCP/IP headers for low-speed
 serial links", RFC 1144, February 1990.

 [RFC1323] Jacobson, V., Braden, B., and D. Borman, "TCP Extensions
 for High Performance", RFC 1323, May 1992.

 [RFC2018] Mathis, M., Mahdavi, J., Floyd, S., and A. Romanow, "TCP
 Selective Acknowledgment Options", RFC 2018, October 1996.

 [RFC2507] Degermark, M., Nordgren, B., and S. Pink, "IP Header
 Compression", RFC 2507, February 1999.

 [RFC2581] Allman, M., Paxson, V., and W. Stevens, "TCP Congestion
 Control", RFC 2581, April 1999.

 [RFC2883] Floyd, S., Mahdavi, J., Mathis, M., and M. Podolsky, "An
 Extension to the Selective Acknowledgement (SACK) Option
 for TCP", RFC 2883, July 2000.

 [RFC3095] Bormann, C., Burmeister, C., Degermark, M., Fukushima, H.,
 Hannu, H., Jonsson, L-E., Hakenberg, R., Koren, T., Le,
 K., Liu, Z., Martensson, A., Miyazaki, A., Svanbro, K.,
 Wiebke, T., Yoshimura, T., and H. Zheng, "RObust Header
 Compression (ROHC): Framework and four profiles: RTP, UDP,
 ESP, and uncompressed", RFC 3095, July 2001.

 [RFC3168] Ramakrishnan, K., Floyd, S., and D. Black, "The Addition
 of Explicit Congestion Notification (ECN) to IP",
 RFC 3168, September 2001.

Pelletier, et al. Standards Track [Page 91]

RFC 4996 ROHC-TCP July 2007

 [RFC3759] Jonsson, L-E., "RObust Header Compression (ROHC):
 Terminology and Channel Mapping Examples", RFC 3759,
 April 2004.

 [RFC4163] Jonsson, L-E., "RObust Header Compression (ROHC):
 Requirements on TCP/IP Header Compression", RFC 4163,
 August 2005.

 [RFC4224] Pelletier, G., Jonsson, L-E., and K. Sandlund, "RObust
 Header Compression (ROHC): ROHC over Channels That Can
 Reorder Packets", RFC 4224, January 2006.

 [RFC4413] West, M. and S. McCann, "TCP/IP Field Behavior", RFC 4413,
 March 2006.

Pelletier, et al. Standards Track [Page 92]

RFC 4996 ROHC-TCP July 2007

Authors’ Addresses

 Ghyslain Pelletier
 Ericsson
 Box 920
 Lulea SE-971 28
 Sweden

 Phone: +46 (0) 8 404 29 43
 EMail: ghyslain.pelletier@ericsson.com

 Kristofer Sandlund
 Ericsson
 Box 920
 Lulea SE-971 28
 Sweden

 Phone: +46 (0) 8 404 41 58
 EMail: kristofer.sandlund@ericsson.com

 Lars-Erik Jonsson
 Optand 737
 Ostersund SE-831 92
 Sweden

 Phone: +46 70 365 20 58
 EMail: lars-erik@lejonsson.com

 Mark A West
 Siemens/Roke Manor
 Roke Manor Research Ltd.
 Romsey, Hampshire SO51 0ZN
 UK

 Phone: +44 1794 833311
 EMail: mark.a.west@roke.co.uk
 URI: http://www.roke.co.uk

Pelletier, et al. Standards Track [Page 93]

RFC 4996 ROHC-TCP July 2007

Full Copyright Statement

 Copyright (C) The IETF Trust (2007).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Pelletier, et al. Standards Track [Page 94]

