
Network Working Group C. Newman
Request for Comments: 4790 Sun Microsystems
Category: Standards Track M. Duerst
 Aoyama Gakuin University
 A. Gulbrandsen
 Oryx
 March 2007

 Internet Application Protocol Collation Registry

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The IETF Trust (2007).

Abstract

 Many Internet application protocols include string-based lookup,
 searching, or sorting operations. However, the problem space for
 searching and sorting international strings is large, not fully
 explored, and is outside the area of expertise for the Internet
 Engineering Task Force (IETF). Rather than attempt to solve such a
 large problem, this specification creates an abstraction framework so
 that application protocols can precisely identify a comparison
 function, and the repertoire of comparison functions can be extended
 in the future.

Newman, et al. Standards Track [Page 1]

RFC 4790 Collation Registry March 2007

Table of Contents

 1. Introduction . 4
 1.1. Conventions Used in This Document 4
 2. Collation Definition and Purpose 4
 2.1. Definition . 4
 2.2. Purpose . 4
 2.3. Some Other Terms Used in this Document 5
 2.4. Sort Keys . 5
 3. Collation Identifier Syntax 6
 3.1. Basic Syntax . 6
 3.2. Wildcards . 6
 3.3. Ordering Direction . 7
 3.4. URIs . 7
 3.5. Naming Guidelines . 7
 4. Collation Specification Requirements 8
 4.1. Collation/Server Interface 8
 4.2. Operations Supported 8
 4.2.1. Validity . 9
 4.2.2. Equality . 9
 4.2.3. Substring . 9
 4.2.4. Ordering . 10
 4.3. Sort Keys . 10
 4.4. Use of Lookup Tables 11
 5. Application Protocol Requirements 11
 5.1. Character Encoding . 11
 5.2. Operations . 11
 5.3. Wildcards . 12
 5.4. String Comparison . 12
 5.5. Disconnected Clients 12
 5.6. Error Codes . 13
 5.7. Octet Collation . 13
 6. Use by Existing Protocols 13
 7. Collation Registration . 14
 7.1. Collation Registration Procedure 14
 7.2. Collation Registration Format 15
 7.2.1. Registration Template 15
 7.2.2. The Collation Element 15
 7.2.3. The Identifier Element 16
 7.2.4. The Title Element 16
 7.2.5. The Operations Element 16
 7.2.6. The Specification Element 16
 7.2.7. The Submitter Element 16
 7.2.8. The Owner Element 16
 7.2.9. The Version Element 17
 7.2.10. The Variable Element 17
 7.3. Structure of Collation Registry 17
 7.4. Example Initial Registry Summary 18

Newman, et al. Standards Track [Page 2]

RFC 4790 Collation Registry March 2007

 8. Guidelines for Expert Reviewer 18
 9. Initial Collations . 19
 9.1. ASCII Numeric Collation 20
 9.1.1. ASCII Numeric Collation Description 20
 9.1.2. ASCII Numeric Collation Registration 20
 9.2. ASCII Casemap Collation 21
 9.2.1. ASCII Casemap Collation Description 21
 9.2.2. ASCII Casemap Collation Registration 22
 9.3. Octet Collation . 22
 9.3.1. Octet Collation Description 22
 9.3.2. Octet Collation Registration 23
 10. IANA Considerations . 23
 11. Security Considerations 23
 12. Acknowledgements . 23
 13. References . 24
 13.1. Normative References 24
 13.2. Informative References 24

Newman, et al. Standards Track [Page 3]

RFC 4790 Collation Registry March 2007

1. Introduction

 The Application Configuration Access Protocol ACAP [11] specification
 introduced the concept of a comparator (which we call collation in
 this document), but failed to create an IANA registry. With the
 introduction of stringprep [6] and the Unicode Collation Algorithm
 [7], it is now time to create that registry and populate it with some
 initial values appropriate for an international community. This
 specification replaces and generalizes the definition of a comparator
 in ACAP, and creates a collation registry.

1.1. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "SHOULD", "SHOULD NOT", and "MAY"
 in this document are to be interpreted as defined in "Key words for
 use in RFCs to Indicate Requirement Levels" [1].

 The attribute syntax specifications use the Augmented Backus-Naur
 Form (ABNF) [2] notation, including the core rules defined in
 Appendix A. The ABNF production "Language-tag" is imported from
 Language Tags [5] and "reg-name" from URI: Generic Syntax [4].

2. Collation Definition and Purpose

2.1. Definition

 A collation is a named function which takes two arbitrary length
 strings as input and can be used to perform one or more of three
 basic comparison operations: equality test, substring match, and
 ordering test.

2.2. Purpose

 Collations are an abstraction for comparison functions so that these
 comparison functions can be used in multiple protocols. The details
 of a particular comparison operation can be specified by someone with
 appropriate expertise, independent of the application protocols that
 use that collation. This is similar to the way a charset [13]
 separates the details of octet to character mapping from a protocol
 specification, such as MIME [9], or the way SASL [10] separates the
 details of an authentication mechanism from a protocol specification,
 such as ACAP [11].

Newman, et al. Standards Track [Page 4]

RFC 4790 Collation Registry March 2007

 Here is a small diagram to help illustrate the value of this
 abstraction:

 +-------------------+ +-----------------+
 | IMAP i18n SEARCH |--+ | Basic |
 +-------------------+ | +--| Collation Spec |
 | | +-----------------+
 +-------------------+ | +-------------+ | +-----------------+
 | ACAP i18n SEARCH |--+--| Collation |--+--| A stringprep |
 +-------------------+ | | Registry | | | Collation Spec |
 | +-------------+ | +-----------------+
 +-------------------+ | | +-----------------+
 | ...other protocol |--+ | | locale-specific |
 +-------------------+ +--| Collation Spec |
 +-----------------+

 Thus IMAP, ACAP, and future application protocols with international
 search capability simply specify how to interface to the collation
 registry instead of each protocol specification having to specify all
 the collations it supports.

2.3. Some Other Terms Used in this Document

 The terms client, server, and protocol are used in somewhat unusual
 senses.

 Client means a user, or a program acting directly on behalf of a
 user. This may be a mail reader acting as an IMAP client, or it may
 be an interactive shell, where the user can type protocol commands/
 requests directly, or it may be a script or program written by the
 user.

 Server means a program that performs services requested by the
 client. This may be a traditional server such as an HTTP server, or
 it may be a Sieve [14] interpreter running a Sieve script written by
 a user. A server needs to use the operations provided by collations
 in order to fulfill the client’s requests.

 The protocol describes how the client tells the server what it wants
 done, and (if applicable) how the server tells the client about the
 results. IMAP is a protocol by this definition, and so is the Sieve
 language.

2.4. Sort Keys

 One component of a collation is a transformation, which turns a
 string into a sort key, which is then used while sorting.

Newman, et al. Standards Track [Page 5]

RFC 4790 Collation Registry March 2007

 The transformation can range from an identity mapping (e.g., the
 i;octet collation Section 9.3) to a mapping that makes the string
 unreadable to a human.

 This is an implementation detail of collations or servers. A
 protocol SHOULD NOT expose it to clients, since some collations leave
 the sort key’s format up to the implementation, and current
 conformant implementations are known to use different formats.

3. Collation Identifier Syntax

3.1. Basic Syntax

 The collation identifier itself is a single US-ASCII string. The
 identifier MUST NOT be longer than 254 characters, and obeys the
 following grammar:

 collation-char = ALPHA / DIGIT / "-" / ";" / "=" / "."

 collation-id = collation-prefix ";" collation-core-name
 *collation-arg

 collation-scope = Language-tag / "vnd-" reg-name

 collation-core-name = ALPHA *(ALPHA / DIGIT / "-")

 collation-arg = ";" ALPHA *(ALPHA / DIGIT) "="
 1*(ALPHA / DIGIT / ".")

 Note: the ABNF production "Language-tag" is imported from Language
 Tags [5] and "reg-name" from URI: Generic Syntax xref
 target="RFC3986" />

 There is a special identifier called "default". For protocols that
 have a default collation, "default" refers to that collation. For
 other protocols, the identifier "default" MUST match no collations,
 and servers SHOULD treat it in the same way as they treat nonexistent
 collations.

3.2. Wildcards

 The string a client uses to select a collation MAY contain one or
 more wildcard ("*") characters that match zero or more collation-
 chars. Wildcard characters MUST NOT be adjacent. If the wildcard
 string matches multiple collations, the server SHOULD attempt to
 select a widely useful collation in preference to a narrowly useful
 one.

Newman, et al. Standards Track [Page 6]

RFC 4790 Collation Registry March 2007

 collation-wild = ("*" / (ALPHA ["*"])) *(collation-char ["*"])
 ; MUST NOT exceed 254 characters total

3.3. Ordering Direction

 When used as a protocol element for ordering, the collation
 identifier MAY be prefixed by either "+" or "-" to explicitly specify
 an ordering direction. "+" has no effect on the ordering operation,
 while "-" inverts the result of the ordering operation. In general,
 collation-order is used when a client requests a collation, and
 collation-selected is used when the server informs the client of the
 selected collation.

 collation-selected = ["+" / "-"] collation-id

 collation-order = ["+" / "-"] collation-wild

3.4. URIs

 Some protocols are designed to use URIs [4] to refer to collations
 rather than simple tokens. A special section of the IANA URL space
 is reserved for such usage. The "collation-uri" form is used to
 refer to a specific named collation (the collation registration may
 not actually be present). The "collation-auri" form is an abstract
 name for an ordering, a collation pattern or a vendor private
 collator.

 collation-uri = "http://www.iana.org/assignments/collation/"
 collation-id ".xml"

 collation-auri = ("http://www.iana.org/assignments/collation/"
 collation-order ".xml") / other-uri

 other-uri = <absoluteURI>
 ; excluding the IANA collation namespace.

3.5. Naming Guidelines

 While this specification makes no absolute requirements on the
 structure of collation identifiers, naming consistency is important,
 so the following initial guidelines are provided.

 Collation identifiers with an international audience typically begin
 with "i;". Collation identifiers intended for a particular language
 or locale typically begin with a language tag [5] followed by a ";".
 After the first ";" is normally the name of the general collation
 algorithm, followed by a series of algorithm modifications separated
 by the ";" delimiter. Parameterized modifications will use "=" to

Newman, et al. Standards Track [Page 7]

RFC 4790 Collation Registry March 2007

 delimit the parameter from the value. The version numbers of any
 lookup tables used by the algorithm SHOULD be present as
 parameterized modifications.

 Collation identifiers of the form *;vnd-hostname;* are reserved for
 vendor-specific collations created by the owner of the hostname
 following the "vnd-" prefix (e.g., vnd-example.com for the vendor
 example.com). Registration of such collations (or the name space as
 a whole), with intended use of the "Vendor", is encouraged when a
 public specification or open-source implementation is available, but
 is not required.

4. Collation Specification Requirements

4.1. Collation/Server Interface

 The collation itself defines what it operates on. Most collations
 are expected to operate on character strings. The i;octet
 (Section 9.3) collation operates on octet strings. The i;ascii-
 numeric (Section 9.1) operation operates on numbers.

 This specification defines the collation interface in terms of octet
 strings. However, implementations may choose to use character
 strings instead. Such implementations may not be able to implement
 e.g., i;octet. Since i;octet is not currently mandatory to implement
 for any protocol, this should not be a problem.

4.2. Operations Supported

 A collation specification MUST state which of the three basic
 operations are supported (equality, substring, ordering) and how to
 perform each of the supported operations on any two input character
 strings, including empty strings. Collations must be deterministic,
 i.e., given a collation with a specific identifier, and any two fixed
 input strings, the result MUST be the same for the same operation.

 In general, collation operations should behave as their names
 suggest. While a collation may be new, the operations are not, so
 the new collation’s operations should be similar to those of older
 collations. For example, a date/time collation should not provide a
 "substring" operation that would morph IMAP substring SEARCH into
 e.g., a date-range search.

 A non-obvious consequence of the rules for each collation operation
 is that, for any single collation, either none or all of the
 operations can return "undefined". For example, it is not possible
 to have an equality operation that never returns "undefined", and a
 substring operation that occasionally does.

Newman, et al. Standards Track [Page 8]

RFC 4790 Collation Registry March 2007

4.2.1. Validity

 The validity test takes one string as argument. It returns valid if
 its input string is a valid input to the collation’s other
 operations, and invalid if not. (In other words, a string is valid
 if it is equal to itself according to the collation’s equality
 operation.)

 The validity test is provided by all collations. It MUST NOT be
 listed separately in the collation registration.

4.2.2. Equality

 The equality test always returns "match" or "no-match" when it is
 supplied valid input, and MAY return "undefined" if one or both input
 strings are not valid.

 The equality test MUST be reflexive and symmetric. For valid input,
 it MUST be transitive.

 If a collation provides either a substring or an ordering test, it
 MUST also provide an equality test. The substring and/or ordering
 tests MUST be consistent with the equality test.

 The return values of the equality test are called "match", "no-match"
 and "undefined" in this document.

4.2.3. Substring

 The substring matching operation determines if the first string is a
 substring of the second string, i.e., if one or more substrings of
 the second string is equal to the first, as defined by the
 collation’s equality operation.

 A collation that supports substring matching will automatically
 support two special cases of substring matching: prefix and suffix
 matching, if those special cases are supported by the application
 protocol. It returns "match" or "no-match" when it is supplied valid
 input and returns "undefined" when supplied invalid input.

 Application protocols MAY return position information for substring
 matches. If this is done, the position information SHOULD include
 both the starting offset and the ending offset for each match. This
 is important because more sophisticated collations can match strings
 of unequal length (for example, a pre-composed accented character can
 match a decomposed accented character). In general, overlapping
 matches SHOULD be reported (as when "ana" occurs twice within
 "banana"), although there are cases where a collation may decide not

Newman, et al. Standards Track [Page 9]

RFC 4790 Collation Registry March 2007

 to. For example, in a collation which treats all whitespace
 sequences as identical, the substring operation could be defined such
 that " 1 " (SP "1" SP) is reported just once within " 1 " (SP SP
 "1" SP SP), not four times (SP SP "1" SP, SP "1" SP, SP "1" SP SP and
 SP SP "1" SP SP), since the four matches are, in a sense, the same
 match.

 A string is a substring of itself. The empty string is a substring
 of all strings.

 Note that the substring operation of some collations can match
 strings of unequal length. For example, a pre-composed accented
 character can match a decomposed accented character. The Unicode
 Collation Algorithm [7] discusses this in more detail.

 The return values of the substring operation are called "match", "no-
 match", and "undefined" in this document.

4.2.4. Ordering

 The ordering operation determines how two strings are ordered. It
 MUST be reflexive. For valid input, it MUST be transitive and
 trichotomous.

 Ordering returns "less" if the first string is listed before the
 second string, according to the collation; "greater", if the second
 string is listed before the first string; and "equal", if the two
 strings are equal, as defined by the collation’s equality operation.
 If one or both strings are invalid, the result of ordering is
 "undefined".

 When the collation is used with a "+" prefix, the behavior is the
 same as when used with no prefix. When the collation is used with a
 "-" prefix, the result of the ordering operation of the collation
 MUST be reversed.

 The return values of the ordering operation are called "less",
 "equal", "greater", and "undefined" in this document.

4.3. Sort Keys

 A collation specification SHOULD describe the internal transformation
 algorithm to generate sort keys. This algorithm can be applied to
 individual strings, and the result can be stored to potentially
 optimize future comparison operations. A collation MAY specify that
 the sort key is generated by the identity function. The sort key may
 have no meaning to a human. The sort key may not be valid input to
 the collation.

Newman, et al. Standards Track [Page 10]

RFC 4790 Collation Registry March 2007

4.4. Use of Lookup Tables

 Some collations use customizable lookup tables, e.g., because the
 tables depend on locale, and may be modified after shipping the
 software. Collations that use more than one customizable lookup
 table in a documented format MUST assign numbers to the tables they
 use. This permits an application protocol command to access the
 tables used by a server collation, so that clients and servers use
 the same tables.

5. Application Protocol Requirements

 This section describes the requirements and issues that an
 application protocol needs to consider if it offers searching,
 substring matching and/or sorting, and permits the use of characters
 outside the US-ASCII charset.

5.1. Character Encoding

 The protocol specification has to make sure that it is clear on which
 characters (rather than just octets) the collations are used. This
 can be done by specifying the protocol itself in terms of characters
 (e.g., in the case of a query language), by specifying a single
 character encoding for the protocol (e.g., UTF-8 [3]), or by
 carefully describing the relevant issues of character encoding
 labeling and conversion. In the later case, details to consider
 include how to handle unknown charsets, any charsets that are
 mandatory-to-implement, any issues with byte-order that might apply,
 and any transfer encodings that need to be supported.

5.2. Operations

 The protocol must specify which of the operations defined in this
 specification (equality matching, substring matching, and ordering)
 can be invoked in the protocol, and how they are invoked. There may
 be more than one way to invoke an operation.

 The protocol MUST provide a mechanism for the client to select the
 collation to use with equality matching, substring matching, and
 ordering.

 If a protocol needs a total ordering and the collation chosen does
 not provide it because the ordering operation returns "undefined" at
 least once, the recommended fallback is to sort all invalid strings
 after the valid ones, and use i;octet to order the invalid strings.

 Although the collation’s substring function provides a list of
 matches, a protocol need not provide all that to the client. It may

Newman, et al. Standards Track [Page 11]

RFC 4790 Collation Registry March 2007

 provide only the first matching substring, or even just the
 information that the substring search matched. In this way,
 collations can be used with protocols that are defined such that "x
 is a substring of y" returns true-false.

 If the protocol provides positional information for the results of a
 substring match, that positional information SHOULD fully specify the
 substring(s) in the result that matches, independent of the length of
 the search string. For example, returning both the starting and
 ending offset of the match would suffice, as would the starting
 offset and a length. Returning just the starting offset is not
 acceptable. This rule is necessary because advanced collations can
 treat strings of different lengths as equal (for example, pre-
 composed and decomposed accented characters).

5.3. Wildcards

 The protocol MUST specify whether it allows the use of wildcards in
 collation identifiers. If the protocol allows wildcards, then:
 The protocol MUST specify how comparisons behave in the absence of
 explicit collation negotiation, or when a collation of "default"
 is requested. The protocol MAY specify that the default collation
 used in such circumstances is sensitive to server configuration.

 The protocol SHOULD provide a way to list available collations
 matching a given wildcard pattern, or patterns.

5.4. String Comparison

 If a protocol compares strings in any nontrivial way, using a
 collation may be appropriate. As an example, many protocols use
 case-independent strings. In many cases, a simple ASCII mapping to
 upper/lower case works well. In other cases, it may be better to use
 a specifiable collation; for example, so that a server can treat "i"
 and "I" as equivalent in Italy, and different in Turkey (Turkish also
 has a dotted upper-case" I" and a dotless lower-case "i").

 Protocol designers should consider, in each case, whether to use a
 specifiable collation. Keywords often have other needs than user
 variables, and search arguments may be different again.

5.5. Disconnected Clients

 If the protocol supports disconnected clients, and a collation is
 used that can use configurable tables (e.g., to support
 locale-specific extensions), then the client may not be able to
 reproduce the server’s collation operations while offline.

Newman, et al. Standards Track [Page 12]

RFC 4790 Collation Registry March 2007

 A mechanism to download such tables has been discussed. Such a
 mechanism is not included in the present specification, since the
 problem is not yet well understood.

5.6. Error Codes

 The protocol specification should consider assigning protocol error
 codes for the following circumstances:

 o The client requests the use of a collation by identifier or
 pattern, but no implemented collation matches that pattern.

 o The client attempts to use a collation for an operation that is
 not supported by that collation -- for example, attempting to use
 the "i;ascii-numeric" collation for substring matching.

 o The client uses an equality or substring matching collation, and
 the result is an error. It may be appropriate to distinguish
 between the two input strings, particularly when one is supplied
 by the client and the other is stored by the server. It might
 also be appropriate to distinguish the specific case of an invalid
 UTF-8 string.

5.7. Octet Collation

 The i;octet (Section 9.3) collation is only usable with protocols
 based on octet-strings. Clients and servers MUST NOT use i;octet
 with other protocols.

 If the protocol permits the use of collations with data structures
 other than strings, the protocol MUST describe the default behavior
 for a collation with those data structures.

6. Use by Existing Protocols

 This section is informative.

 Both ACAP [11] and Sieve [14] are standards track specifications that
 used collations prior to the creation of this specification and
 registry. Those standards do not meet all the application protocol
 requirements described in Section 5.

 These protocols allow the use of the i;octet (Section 9.3) collation
 working directly on UTF-8 data, as used in these protocols.

Newman, et al. Standards Track [Page 13]

RFC 4790 Collation Registry March 2007

 In Sieve, all matches are either true or false. Accordingly, Sieve
 servers must treat "undefined" and "no-match" results of the equality
 and substring operations as false, and only "match" as true.

 In ACAP and Sieve, there are no invalid strings. In this document’s
 terms, invalid strings sort after valid strings.

 IMAP [15] also collates, although that is explicit only when the
 COMPARATOR [17] extension is used. The built-in IMAP substring
 operation and the ordering provided by the SORT [16] extension may
 not meet the requirements made in this document.

 Other protocols may be in a similar position.

 In IMAP, the default collation is i;ascii-casemap, because its
 operations are understood to match IMAP’s built-in operations.

7. Collation Registration

7.1. Collation Registration Procedure

 The IETF will create a mailing list, collation@ietf.org, which can be
 used for public discussion of collation proposals prior to
 registration. Use of the mailing list is strongly encouraged. The
 IESG will appoint a designated expert who will monitor the
 collation@ietf.org mailing list and review registrations.

 The registration procedure begins when a completed registration
 template is sent to iana@iana.org and collation@ietf.org. The
 designated expert is expected to tell IANA and the submitter of the
 registration within two weeks whether the registration is approved,
 approved with minor changes, or rejected with cause. When a
 registration is rejected with cause, it can be re-submitted if the
 concerns listed in the cause are addressed. Decisions made by the
 designated expert can be appealed to the IESG Applications Area
 Director, then to the IESG. They follow the normal appeals procedure
 for IESG decisions.

 Collation registrations in a standards track, BCP, or IESG-approved
 experimental RFC are owned by the IETF, and changes to the
 registration follow normal procedures for updating such documents.
 Collation registrations in other RFCs are owned by the RFC author(s).
 Other collation registrations are owned by the individual(s) listed
 in the contact field of the registration, and IANA will preserve this
 information.

 If the registration is a change of an existing collation, it MUST be
 approved by the owner. In the event the owner cannot be contacted

Newman, et al. Standards Track [Page 14]

RFC 4790 Collation Registry March 2007

 for a period of one month, and the designated expert deems the change
 necessary, the IESG MAY re-assign ownership to an appropriate party.

7.2. Collation Registration Format

 Registration of a collation is done by sending a well-formed XML
 document to collation@ietf.org and iana@iana.org.

7.2.1. Registration Template

 Here is a template for the registration:

 <?xml version=’1.0’?>
 <!DOCTYPE collation SYSTEM ’collationreg.dtd’>
 <collation rfc="YYYY" scope="global" intendedUse="common">
 <identifier>collation identifier</identifier>
 <title>technical title for collation</title>
 <operations>equality order substring</operations>
 <specification>specification reference</specification>
 <owner>email address of owner or IETF</owner>
 <submitter>email address of submitter</submitter>
 <version>1</version>
 </collation>

7.2.2. The Collation Element

 The root of the registration document MUST be a <collation> element.
 The collation element contains the other elements in the
 registration, which are described in the following sub-subsections,
 in the order given here.

 The <collation> element MAY include an "rfc=" attribute if the
 specification is in an RFC. The "rfc=" attribute gives only the
 number of the RFC, without any prefix, such as "RFC", or suffix, such
 as ".txt".

 The <collation> element MUST include a "scope=" attribute, which MUST
 have one of the values "global", "local", or "other".

 The <collation> element MUST include an "intendedUse=" attribute,
 which must have one of the values "common", "limited", "vendor", or
 "deprecated". Collation specifications intended for "common" use are
 expected to reference standards from standards bodies with
 significant experience dealing with the details of international
 character sets.

 Be aware that future revisions of this specification may add
 additional function types, as well as additional XML attributes,

Newman, et al. Standards Track [Page 15]

RFC 4790 Collation Registry March 2007

 values, and elements. Any system that automatically parses these XML
 documents MUST take this into account to preserve future
 compatibility.

7.2.3. The Identifier Element

 The <identifier> element gives the precise identifier of the
 collation, e.g., i;ascii-casemap. The <identifier> element is
 mandatory.

7.2.4. The Title Element

 The <title> element gives the title of the collation. The <title>
 element is mandatory.

7.2.5. The Operations Element

 The <operations> element lists which of the three operations
 ("equality", "order" or "substring") the collation provides,
 separated by single spaces. The <operations> element is mandatory.

7.2.6. The Specification Element

 The <specification> element describes where to find the
 specification. The <specification> element is mandatory. It MAY
 have a URI attribute. There may be more than one <specification>
 element, in which case, they together form the specification.

 If it is discovered that parts of a collation specification conflict,
 a new revision of the collation is necessary, and the
 collation@ietf.org mailing list should be notified.

7.2.7. The Submitter Element

 The <submitter> element provides an RFC 2822 [12] email address for
 the person who submitted the registration. It is optional if the
 <owner> element contains an email address.

 There may be more than one <submitter> element.

7.2.8. The Owner Element

 The <owner> element contains either the four letters "IETF" or an
 email address of the owner of the registration. The <owner> element
 is mandatory. There may be more than one <owner> element. If so,
 all owners are equal. Each owner can speak for all.

Newman, et al. Standards Track [Page 16]

RFC 4790 Collation Registry March 2007

7.2.9. The Version Element

 The <version> element MUST be included when the registration is
 likely to be revised, or has been revised in such a way that the
 results change for one or more input strings. The <version> element
 is optional.

7.2.10. The Variable Element

 The <variable> element specifies an optional variable to control the
 collation’s behaviour, for example whether it is case sensitive. The
 <variable> element is optional. When <variable> is used, it must
 contain <name> and <default> elements, and it may contain one or more
 <value> elements.

7.2.10.1. The Name Element

 The <name> element specifies the name value of a variable. The
 <name> element is mandatory.

7.2.10.2. The Default Element

 The <default> element specifies the default value of a variable. The
 <default> element is mandatory.

7.2.10.3. The Value Element

 The <value> element specifies a legal value of a variable. The
 <value> element is optional. If one or more <value> elements are
 present, only those values are legal. If none are, then the
 variable’s legal values do not form an enumerated set, and the rules
 MUST be specified in an RFC accompanying the registration.

7.3. Structure of Collation Registry

 Once the registration is approved, IANA will store each XML
 registration document in a URL of the form
 http://www.iana.org/assignments/collation/collation-id.xml, where
 collation-id is the content of the identifier element in the
 registration. Both the submitter and the designated expert are
 responsible for verifying that the XML is well-formed. The
 registration document should avoid using new elements. If any are
 necessary, it is important to be consistent with other registrations.

 IANA will also maintain a text summary of the registry under the name
 http://www.iana.org/assignments/collation/collation-index.html. This
 summary is divided into four sections. The first section is for
 collations intended for common use. This section is intended for

Newman, et al. Standards Track [Page 17]

RFC 4790 Collation Registry March 2007

 collation registrations published in IESG-approved RFCs, or for
 locally scoped collations from the primary standards body for that
 locale. The designated expert is encouraged to reject collation
 registrations with an intended use of "common" if the expert believes
 it should be "limited", as it is desirable to keep the number of
 "common" registrations small and of high quality. The second section
 is reserved for limited-use collations. The third section is
 reserved for registered vendor-specific collations. The final
 section is reserved for deprecated collations.

7.4. Example Initial Registry Summary

 The following is an example of how IANA might structure the initial
 registry summary.html file:

 Collation Functions Scope Reference
 --------- --------- ----- ---------
 Common Use Collations:
 i;ascii-casemap e, o, s Local [RFC 4790]

 Limited Use Collations:
 i;octet e, o, s Other [RFC 4790]
 i;ascii-numeric e, o Other [RFC 4790]

 Vendor Collations:

 Deprecated Collations:

 References

 [RFC 4790] Newman, C., Duerst, M., Gulbrandsen, A., "Internet
 Application Protocol Collation Registry", RFC 4790,
 Sun Microsystems, March 2007.

8. Guidelines for Expert Reviewer

 The expert reviewer appointed by the IESG has fairly broad latitude
 for this registry. While a number of collations are expected
 (particularly customizations of the UCA for localized use), an
 explosion of collations (particularly common-use collations) is not
 desirable for widespread interoperability. However, it is important
 for the expert reviewer to provide cause when rejecting a
 registration, and, when possible, to describe corrective action to

Newman, et al. Standards Track [Page 18]

RFC 4790 Collation Registry March 2007

 permit the registration to proceed. The following table includes
 some example reasons to reject a registration with cause:

 o The registration is not a well-formed XML document.

 o The registration has an intended use of "common", but there is no
 evidence the collation will be widely deployed, so it should be
 listed as "limited".

 o The registration has an intended use of "common", but it is
 redundant with the functionality of a previously registered
 "common" collation.

 o The registration has an intended use of "common", but the
 specification is not detailed enough to allow interoperable
 implementations by others.

 o The collation identifier fails to precisely identify the version
 numbers of relevant tables to use.

 o The registration fails to meet one of the "MUST" requirements in
 Section 4.

 o The collation identifier fails to meet the syntax in Section 3.

 o The collation specification referenced in the registration is
 vague or has optional features without a clear behavior specified.

 o The referenced specification does not adequately address security
 considerations specific to that collation.

 o The registration’s operations are needlessly different from those
 of traditional operations.

 o The registration’s XML is needlessly different from that of
 already registered collations.

9. Initial Collations

 This section registers the three collations that were originally
 defined in [11], and are implemented in most [14] engines. Some of
 the behavior of these collations is perhaps not ideal, such as
 i;ascii-casemap accepting non-ASCII input. Compatibility with widely
 deployed code was judged more important than fixing the collations.
 Some of the aspects of these collations are necessary to maintain
 compatibility with widely deployed code.

Newman, et al. Standards Track [Page 19]

RFC 4790 Collation Registry March 2007

9.1. ASCII Numeric Collation

9.1.1. ASCII Numeric Collation Description

 The "i;ascii-numeric" collation is a simple collation intended for
 use with arbitrarily-sized, unsigned decimal integer numbers stored
 as octet strings. US-ASCII digits (0x30 to 0x39) represent digits of
 the numbers. Before converting from string to integer, the input
 string is truncated at the first non-digit character. All input is
 valid; strings that do not start with a digit represent positive
 infinity.

 The collation supports equality and ordering, but does not support
 the substring operation.

 The equality operation returns "match" if the two strings represent
 the same number (i.e., leading zeroes and trailing non-digits are
 disregarded), and "no-match" if the two strings represent different
 numbers.

 The ordering operation returns "less" if the first string represents
 a smaller number than the second, "equal" if they represent the same
 number, and "greater" if the first string represents a larger number
 than the second.

 Some examples: "0" is less than "1", and "1" is less than
 "4294967298". "4294967298", "04294967298", and "4294967298b" are all
 equal. "04294967298" is less than "". "", "x", and "y" are equal.

9.1.2. ASCII Numeric Collation Registration

 <?xml version=’1.0’?>
 <!DOCTYPE collation SYSTEM ’collationreg.dtd’>
 <collation rfc="4790" scope="other" intendedUse="limited">
 <identifier>i;ascii-numeric</identifier>
 <title>ASCII Numeric</title>
 <operations>equality order</operations>
 <specification>RFC 4790</specification>
 <owner>IETF</owner>
 <submitter>chris.newman@sun.com</submitter>
 </collation>

Newman, et al. Standards Track [Page 20]

RFC 4790 Collation Registry March 2007

9.2. ASCII Casemap Collation

9.2.1. ASCII Casemap Collation Description

 The "i;ascii-casemap" collation is a simple collation that operates
 on octet strings and treats US-ASCII letters case-insensitively. It
 provides equality, substring, and ordering operations. All input is
 valid. Note that letters outside ASCII are not treated case-
 insensitively.

 Its equality, ordering, and substring operations are as for i;octet,
 except that at first, the lower-case letters (octet values 97-122) in
 each input string are changed to upper case (octet values 65-90).

 Care should be taken when using OS-supplied functions to implement
 this collation, as it is not locale sensitive. Functions, such as
 strcasecmp and toupper, are sometimes locale sensitive, and may
 inappropriately map lower-case letters other than a-z to upper case.

 The i;ascii-casemap collation is well-suited for use with many
 Internet protocols and computer languages. Use with natural language
 is often inappropriate; even though the collation apparently supports
 languages such as Swahili and English, in real-world use, it tends to
 mis-sort a number of types of string:

 o people and place names containing non-ASCII,

 o words such as "naive" (if spelled with an accent, the accented
 character could push the word to the wrong spot in a sorted list),

 o names such as "Lloyd" (which, in Welsh, sorts after "Lyon", unlike
 in English),

 o strings containing euro and pound sterling symbols, quotation
 marks other than ’"’, dashes/hyphens, etc.

Newman, et al. Standards Track [Page 21]

RFC 4790 Collation Registry March 2007

9.2.2. ASCII Casemap Collation Registration

 <?xml version=’1.0’?>
 <!DOCTYPE collation SYSTEM ’collationreg.dtd’>
 <collation rfc="4790" scope="local" intendedUse="common">
 <identifier>i;ascii-casemap</identifier>
 <title>ASCII Casemap</title>
 <operations>equality order substring</operations>
 <specification>RFC 4790</specification>
 <owner>IETF</owner>
 <submitter>chris.newman@sun.com</submitter>
 </collation>

9.3. Octet Collation

9.3.1. Octet Collation Description

 The "i;octet" collation is a simple and fast collation intended for
 use on binary octet strings rather than on character data. Protocols
 that want to make this collation available have to do so by
 explicitly allowing it. If not explicitly allowed, it MUST NOT be
 used. It never returns an "undefined" result. It provides equality,
 substring, and ordering operations.

 The ordering algorithm is as follows:

 1. If both strings are the empty string, return the result "equal".

 2. If the first string is empty and the second is not, return the
 result "less".

 3. If the second string is empty and the first is not, return the
 result "greater".

 4. If both strings begin with the same octet value, remove the first
 octet from both strings and repeat this algorithm from step 1.

 5. If the unsigned value (0 to 255) of the first octet of the first
 string is less than the unsigned value of the first octet of the
 second string, then return "less".

 6. If this step is reached, return "greater".

 This algorithm is roughly equivalent to the C library function
 memcmp, with appropriate length checks added.

Newman, et al. Standards Track [Page 22]

RFC 4790 Collation Registry March 2007

 The matching operation returns "match" if the sorting algorithm would
 return "equal". Otherwise, the matching operation returns "no-
 match".

 The substring operation returns "match" if the first string is the
 empty string, or if there exists a substring of the second string of
 length equal to the length of the first string, which would result in
 a "match" result from the equality function. Otherwise, the
 substring operation returns "no-match".

9.3.2. Octet Collation Registration

 This collation is defined with intendedUse="limited" because it can
 only be used by protocols that explicitly allow it.

 <?xml version=’1.0’?>
 <!DOCTYPE collation SYSTEM ’collationreg.dtd’>
 <collation rfc="4790" scope="global" intendedUse="limited">
 <identifier>i;octet</identifier>
 <title>Octet</title>
 <operations>equality order substring</operations>
 <specification>RFC 4790</specification>
 <owner>IETF</owner>
 <submitter>chris.newman@sun.com</submitter>
 </collation>

10. IANA Considerations

 Section 7 defines how to register collations with IANA. Section 9
 defines a list of predefined collations that have been registered
 with IANA.

11. Security Considerations

 Collations will normally be used with UTF-8 strings. Thus, the
 security considerations for UTF-8 [3], stringprep [6], and Unicode
 TR-36 [8] also apply, and are normative to this specification.

12. Acknowledgements

 The authors want to thank all who have contributed to this document,
 including Brian Carpenter, John Cowan, Dave Cridland, Mark Davis,
 Spencer Dawkins, Lisa Dusseault, Lars Eggert, Frank Ellermann, Philip
 Guenther, Tony Hansen, Ted Hardie, Sam Hartman, Kjetil Torgrim Homme,
 Michael Kay, John Klensin, Alexey Melnikov, Jim Melton, and Abhijit
 Menon-Sen.

Newman, et al. Standards Track [Page 23]

RFC 4790 Collation Registry March 2007

13. References

13.1. Normative References

 [1] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [2] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", RFC 4234, October 2005.

 [3] Yergeau, F., "UTF-8, a transformation format of ISO 10646",
 STD 63, RFC 3629, November 2003.

 [4] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", RFC 3986,
 January 2005.

 [5] Phillips, A. and M. Davis, "Tags for Identifying Languages",
 BCP 47, RFC 4646, September 2006.

 [6] Hoffman, P. and M. Blanchet, "Preparation of Internationalized
 Strings ("stringprep")", RFC 3454, December 2002.

 [7] Davis, M. and K. Whistler, "Unicode Collation Algorithm version
 14", May 2005,
 <http://www.unicode.org/reports/tr10/tr10-14.html>.

 [8] Davis, M. and M. Suignard, "Unicode Security Considerations",
 February 2006, <http://www.unicode.org/reports/tr36/>.

13.2. Informative References

 [9] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part One: Format of Internet Message Bodies",
 RFC 2045, November 1996.

 [10] Melnikov, A., "Simple Authentication and Security Layer
 (SASL)", RFC 4422, June 2006.

 [11] Newman, C. and J. Myers, "ACAP -- Application Configuration
 Access Protocol", RFC 2244, November 1997.

 [12] Resnick, P., "Internet Message Format", RFC 2822, April 2001.

 [13] Freed, N. and J. Postel, "IANA Charset Registration
 Procedures", BCP 19, RFC 2978, October 2000.

Newman, et al. Standards Track [Page 24]

RFC 4790 Collation Registry March 2007

 [14] Showalter, T., "Sieve: A Mail Filtering Language", RFC 3028,
 January 2001.

 [15] Crispin, M., "Internet Message Access Protocol - Version
 4rev1", RFC 3501, March 2003.

 [16] Crispin, M. and K. Murchison, "Internet Message Access Protocol
 - Sort and Thread Extensions", Work in Progress, May 2004.

 [17] Newman, C. and A. Gulbrandsen, "Internet Message Access
 Protocol Internationalization", Work in Progress, January 2006.

Authors’ Addresses

 Chris Newman
 Sun Microsystems
 1050 Lakes Drive
 West Covina, CA 91790
 USA

 EMail: chris.newman@sun.com

 Martin Duerst
 Aoyama Gakuin University
 5-10-1 Fuchinobe
 Sagamihara, Kanagawa 229-8558
 Japan

 Phone: +81 42 759 6329
 Fax: +81 42 759 6495
 EMail: duerst@it.aoyama.ac.jp
 URI: http://www.sw.it.aoyama.ac.jp/D%C3%BCrst/

 Note: Please write "Duerst" with u-umlaut wherever possible, for
 example as "Dürst" in XML and HTML.

 Arnt Gulbrandsen
 Oryx Mail Systems GmbH
 Schweppermannstr. 8
 81671 Munich
 Germany

 Fax: +49 89 4502 9758
 EMail: arnt@oryx.com
 URI: http://www.oryx.com/arnt/

Newman, et al. Standards Track [Page 25]

RFC 4790 Collation Registry March 2007

Full Copyright Statement

 Copyright (C) The IETF Trust (2007).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Newman, et al. Standards Track [Page 26]

