
Network Working Group M. Vanderveen
Request for Comments: 4763 H. Soliman
Category: Informational Qualcomm Flarion Technologies
 November 2006

 Extensible Authentication Protocol Method for
 Shared-secret Authentication and Key Establishment (EAP-SAKE)

Status of This Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard of any kind. Distribution of this
 memo is unlimited.

Copyright Notice

 Copyright (C) The IETF Trust (2006).

IESG Note

 This RFC is not a candidate for any level of Internet Standard. The
 IETF disclaims any knowledge of the fitness of this RFC for any
 purpose and in particular notes that the decision to publish is not
 based on IETF review for such things as security, congestion control,
 or inappropriate interaction with deployed protocols. The RFC Editor
 has chosen to publish this document at its discretion. Readers of
 this document should exercise caution in evaluating its value for
 implementation and deployment. See RFC 3932 for more information.

Abstract

 This document specifies an Extensible Authentication Protocol (EAP)
 mechanism for Shared-secret Authentication and Key Establishment
 (SAKE). This RFC is published as documentation for the IANA
 assignment of an EAP Type for a vendor’s EAP method per RFC 3748.
 The specification has passed Designated Expert review for this IANA
 assignment.

Vanderveen & Soliman Informational [Page 1]

RFC 4763 EAP-SAKE November 2006

Table of Contents

 1. Introduction ..3
 2. Terminology ...3
 3. Protocol Description ..4
 3.1. Overview and Motivation of EAP-SAKE4
 3.2. Protocol Operation ...5
 3.2.1. Successful Exchange5
 3.2.2. Authentication Failure7
 3.2.3. Identity Management11
 3.2.4. Obtaining Peer Identity11
 3.2.5. Key Hierarchy13
 3.2.6. Key Derivation15
 3.2.7. Ciphersuite Negotiation17
 3.2.8. Message Integrity and Encryption17
 3.2.9. Fragmentation21
 3.2.10. Error Cases21
 3.3. Message Formats ...22
 3.3.1. Message Format Summary22
 3.3.2. Attribute Format23
 3.3.3. Use of AT_ENCR_DATA Attribute25
 3.3.4. EAP.Request/SAKE/Challenge Format26
 3.3.5. EAP.Response/SAKE/Challenge Format28
 3.3.6. EAP.Request/SAKE/Confirm Format30
 3.3.7. EAP.Response/SAKE/Confirm Format32
 3.3.8. EAP.Response/SAKE/Auth-Reject Format33
 3.3.9. EAP.Request/SAKE/Identity Format34
 3.3.10. EAP.Response/SAKE/Identity Format36
 3.3.11. Other EAP Messages Formats37
 4. IANA Considerations ..37
 5. Security Considerations ..38
 5.1. Denial-of-Service Attacks38
 5.2. Root Secret Considerations38
 5.3. Mutual Authentication39
 5.4. Integrity Protection39
 5.5. Replay Protection ...39
 5.6. Confidentiality ...40
 5.7. Key Derivation, Strength40
 5.8. Dictionary Attacks ..41
 5.9. Man-in-the-Middle Attacks41
 5.10. Result Indication Protection41
 5.11. Cryptographic Separation of Keys41
 5.12. Session Independence41
 5.13. Identity Protection42
 5.14. Channel Binding ..42
 5.15. Ciphersuite Negotiation42
 5.16. Random Number Generation43
 6. Security Claims ..43

Vanderveen & Soliman Informational [Page 2]

RFC 4763 EAP-SAKE November 2006

 7. Acknowledgements ...44
 8. References ...44
 8.1. Normative References44
 8.2. Informative References45

1. Introduction

 The Extensible Authentication Protocol (EAP), described in [EAP],
 provides a standard mechanism for support of multiple authentication
 methods. EAP is also used within IEEE 802 networks through the IEEE
 802.11i [IEEE802.11i] framework.

 EAP supports several authentication schemes, including smart cards,
 Kerberos, Public Key, One Time Passwords, TLS, and others. This
 document defines an authentication scheme, called the EAP-SAKE.
 EAP-SAKE supports mutual authentication and session key derivation,
 based on a static pre-shared secret data. This RFC is published as
 documentation for the IANA assignment of an EAP Type for a vendor’s
 EAP method per RFC 3748. The specification has passed Designated
 Expert review for this IANA assignment.

2. Terminology

 In this document, several words are used to signify the requirements
 of the specification. These words are often capitalized. The key
 words "MUST", "MUST NOT", "REQUIRED", "MUST", "MUST NOT", "SHOULD",
 "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document
 are to be interpreted as described in BCP 14 [KEYWORDS].

 In addition to the terms used in [EAP], this document frequently uses
 the following terms and abbreviations:

 MIC Message Integrity Check

 SMS SAKE Master Secret

 NAI Network Access Identifier

Vanderveen & Soliman Informational [Page 3]

RFC 4763 EAP-SAKE November 2006

3. Protocol Description

3.1. Overview and Motivation of EAP-SAKE

 The EAP-SAKE authentication protocol is a native EAP authentication
 method. That is, a stand-alone version of EAP-SAKE outside of EAP is
 not defined. EAP-SAKE is designed to enable mutual authentication,
 based on pre-shared keys and well-known public cryptographic
 algorithms. This method is ideal for subscription-based public
 access networks, e.g., cellular networks.

 EAP-SAKE assumes a long-term or pre-shared secret known only to the
 Peer and the Server. This pre-shared secret is called the Root
 Secret. The Root Secret consists of a 16-byte part Root-Secret-A,
 and 16-byte part Root-Secret-B. The Root-Secret-A secret is reserved
 for use local to the EAP-SAKE method, i.e., to mutually authenticate
 the EAP Peer and EAP Server. The Root-Secret-B secret is used to
 derive other quantities such as the Master Session Key (MSK) and
 Extended Master Session Key (EMSK). Root-Secret-B and Root-Secret-A
 MUST be cryptographically separate.

 When a Backend Authentication Server is used, the Server typically
 communicates with the Authenticator using an AAA protocol. The AAA
 communications are outside the scope of this document.

 Some of the advantages of EAP-SAKE are as follows:

 o It is based on well-established Bellare-Rogaway mutual
 authentication protocol.

 o It supports key derivation for local EAP method use and for export
 to other third parties to use them independently of EAP.

 o It employs only two request/response exchanges.

 o It relies on the (corrected) IEEE 802.11i function for key
 derivation and message integrity. This way a device implementing a
 lower-layer secure association protocol compliant with IEEE 802.11i
 standard will not need additional cryptographic code.

 o Its encryption algorithm is securely negotiated (with no extra
 messages), yet encryption use is optional.

 o Keys used for authentication and those used for encryption are
 cryptographically separate.

 o User identity anonymity can be optionally supported.

Vanderveen & Soliman Informational [Page 4]

RFC 4763 EAP-SAKE November 2006

 o No synchronization (e.g., of counters) needed between server and
 peer.

 o There is no one-time key pre-processing step.

3.2. Protocol Operation

 EAP-SAKE uses four messages consisting of two EAP request/response
 exchanges. The EAP.Success and EAP.Failure messages shown in the
 figures are not part of the EAP-SAKE method. As a convention, method
 attributes are named AT_XX, where XX is the name of the parameter the
 attribute value is set to.

3.2.1. Successful Exchange

 A successful EAP-SAKE authentication exchange is depicted in Figure
 1. The following steps take place:

 Peer Server
 | |
 | EAP.Request/SAKE/Challenge |
 | (AT_RAND_S, AT_SERVERID) |
 1 |<---|
 | |
 | EAP.Response/SAKE/Challenge |
 | (AT_RAND_P, AT_PEERID, AT_SPI_P, AT_MIC_P) |
 2 |--->|
 | |
 | EAP.Request/SAKE/Confirm |
 | (AT_SPI_S, AT_ENCR_DATA, AT_MIC_S)|
 3 |<---|
 | |
 | EAP.Response/SAKE/Confirm |
 | (AT_MIC_P) |
 4 |--->|
 | |
 | |
 | EAP-Success |
 5 |<---|
 | |

 Figure 1. EAP-SAKE Authentication Procedure (with ciphersuite
 negotiation)

 1. The EAP server sends the first message of the EAP-SAKE exchange.
 This message is an EAP.Request message of type SAKE and subtype
 Challenge. The EAP.Request/SAKE/Challenge message contains the
 attributes: AT_RAND_S, whose value is a nonce freshly generated

Vanderveen & Soliman Informational [Page 5]

RFC 4763 EAP-SAKE November 2006

 by the Server; and AT_SERVERID, which carries an identifier of
 the Server (a fully qualified domain name, such as the realm of
 the user NAI [NAI]). The AT_SERVERID attribute is OPTIONAL but
 SHOULD be included in this message. The purpose of the
 AT_SERVERID is to aid the Peer in selecting the correct security
 association (i.e., Root-Secret, PEERID, and SERVERID) to use
 during this EAP phase.

 2. The Peer responds by sending an EAP.Response message of type SAKE
 and subtype Challenge. The EAP.Response/SAKE/Challenge message
 contains the attributes: AT_RAND_P, which carries a nonce freshly
 generated by the Peer; AT_PEERID, which carries a Peer
 identifier; AT_SPI_P, which carries a list of one or more
 ciphersuites supported by the Peer; and AT_MIC_P, containing a
 message integrity check. The AT_SPI_P and AT_PEERID attributes
 are OPTIONAL. The AT_PEERID attribute SHOULD be included, in
 order to cover the case of multi-homed hosts. A supported
 ciphersuite is represented by a value local to the EAP-SAKE
 method, or "Security Parameter Index", see section 3.2.8.3. The
 Peer uses both nonces, along with the Root-Secret-A key, to
 derive a SAKE Master Secret (SMS) and Temporary EAP Keys (TEKs),
 which also include the TEK-Auth and TEK-Cipher keys. The MIC_P
 value is computed based on both nonces RAND_S and RAND_P, and the
 entire EAP packet, using the key TEK-Auth, see Section 3.2.6.

 3. Upon receipt of the EAP.Response/SAKE/Challenge message, the
 Server uses both nonces RAND_S and RAND_P, along with the Root-
 Secret-A key, to compute the SMS and TEK in exactly the same way
 the Peer did. Following that, the Server computes the Peer’s
 MIC_P in exactly the same way the Peer did. The Server then
 compares the computed MIC_P with the MIC_P it received from the
 Peer. If they match, the Server considers the Peer
 authenticated. If encryption is needed, the Server selects the
 strongest ciphersuite from the Peer’s ciphersuite list SPI_P, or
 a suitable ciphersuite if the Peer did not include the AT_SPI_P
 attribute. The Server sends an EAP.Request message of type SAKE
 and subtype Confirm, containing the attributes: AT_SPI_S,
 carrying the ciphersuite chosen by the Server; AT_ENCR_DATA,
 containing encrypted data; and AT_MIC_S, carrying a message
 integrity check. The AT_SPI_S and AT_ENCR_DATA are OPTIONAL
 attributes, included if confidentiality and/or user identity
 anonymity is desired. Other OPTIONAL attributes that MAY be
 included are AT_NEXT_TMPID, and AT_MSK_LIFE. As before, the
 MIC_S value is computed using both nonces RAND_S and RAND_P, and
 the entire EAP packet, using the key TEK-Auth.

Vanderveen & Soliman Informational [Page 6]

RFC 4763 EAP-SAKE November 2006

 4. If the Peer receives the EAP.Request/SAKE/Confirm message
 indicating successful authentication by the Server, the Peer
 computes the MIC_S in the same manner as the Server did. The
 Peer then compares the received MIC_S with the MIC_S it computed.
 If they match, the Peer considers the Server authenticated, and
 it sends an EAP.Response message of type SAKE and subtype
 Confirm, with the attribute AT_MIC_P containing a message
 integrity check, computed in the same manner as before.

 5. After a successful EAP-SAKE exchange, the Server concludes the
 EAP conversation by sending an EAP.Success message to the Peer.

 All EAP-SAKE messages contain a Session ID, which is chosen by the
 Server, sent in the first message, and replicated in subsequent
 messages until an EAP.Success or EAP.Failure is sent. Upon receipt
 of an EAP-SAKE message, both Peer and Server MUST check the format of
 the message to ensure that it is well-formed and contains a valid
 Session ID.

 Note that the Session ID is introduced mainly for replay protection
 purposes, as it helps uniquely identify a session between a Peer and
 a Server. In most cases, there is a one-to-one relationship between
 the Session ID and the Peer/Server pair.

 The parameters used by the EAP-SAKE method are summarized in the
 table below:

 Name Length (bytes) Description
 ---------+---------------+-------------
 RAND_P 16 Peer nonce
 RAND_S 16 Server nonce
 MIC_P 16 Peer MIC
 MIC_S 16 Server MIC
 SPI_P variable Peer ciphersuite preference(s)
 SPI_S variable Server chosen ciphersuite
 PEERID variable Peer identifier
 SERVERID variable Server identifier (FQDN)

3.2.2. Authentication Failure

 If the Authenticator receives an EAP.Failure message from the Server,
 the Authenticator MUST terminate the connection with the Peer
 immediately.

 The Server considers the Peer to have failed authentication if either
 of the two received MIC_P values does not match the computed MIC_P.

Vanderveen & Soliman Informational [Page 7]

RFC 4763 EAP-SAKE November 2006

 The Server SHOULD deny authorization for a Peer that does not
 advertise any of the ciphersuites that are considered acceptable
 (e.g., by local system policy) and send an EAP.Failure message.

 In case of authentication failure, the Server MUST send an
 EAP.Failure message to the Peer as in Figure 2. The following steps
 take place:

 Peer Server
 | |
 | EAP.Request/SAKE/Challenge |
 | (AT_RAND_S, AT_SERVERID) |
 1 |<---|
 | |
 | EAP.Response/SAKE/Challenge |
 | (AT_RAND_P, AT_PEERID, AT_SPI_P, AT_MIC_P) |
 2 |--->|
 | |
 | +---+
 | | Server finds MIC_P invalid. |
 | +---+
 | |
 | EAP-Failure |
 3 |<---|

 Figure 2. EAP-SAKE Authentication Procedure, Peer Fails
 Authentication

 1. As in step 1 of Figure 1.

 2. As in step 2 of Figure 1.

 3. Upon receipt of the EAP.Response/SAKE/Challenge message, the
 Server uses both nonces RAND_S and RAND_P, along with the Root-
 Secret-A key, to compute the SMS and TEK in exactly the same way
 the Peer did. Following that, the Server computes the Peer’s MIC
 in exactly the same way the Peer did. The Server then compares
 the computed MIC_P with the MIC_P it received from the Peer.
 Since they do not match, the Server considers the Peer to have
 failed authentication and sends an EAP.Failure message back to
 the Peer.

Vanderveen & Soliman Informational [Page 8]

RFC 4763 EAP-SAKE November 2006

 If the AT_SPI_S attribute does not contain one of the SPI values that
 the Peer listed in the previous message, or if the Peer did not
 include an AT_SPI_P attribute yet does not accept the ciphersuite the
 Server has chosen, then the Peer SHOULD silently discard this
 message. Alternatively, the Peer MAY send a SAKE/Auth-Reject message
 back to the Server; in response to this message, the Server MUST send
 an EAP.Failure message to the Peer.

 The AT_SPI_S attribute MUST be included if encryption is to be used.
 The Server knows whether or not encryption is to be used, as it is
 usually the Server that needs to protect some data intended for the
 Peer (e.g., temporary ID, group keys, etc). If the Peer receives an
 AT_SPI_S attribute yet there is no AT_ENCR_DATA attribute, the Peer
 SHOULD process the message and skip the AT_SPI_S attribute.

 The Peer considers the Server to have failed authentication if the
 received and the computed MIC_S values do not match. In this case,
 the Peer MUST send to the Server an EAP.Response message of type SAKE
 and subtype Auth-Reject, indicating an authentication failure. In
 this case, the Server MUST send an EAP.Failure message to the Peer as
 in Figure 3. The following steps take place:

Vanderveen & Soliman Informational [Page 9]

RFC 4763 EAP-SAKE November 2006

 Peer Server
 | |
 | EAP.Request/SAKE/Challenge |
 | (AT_RAND_S, AT_SERVERID) |
 1 |<---|
 | |
 | EAP.Response/SAKE/Challenge |
 | (AT_RAND_P, AT_PEERID, AT_SPI_P, AT_MIC_P) |
 2 |--->|
 | |
 | EAP.Request/SAKE/Confirm |
 | (AT_SPI_S, AT_ENCR_DATA, AT_MIC_S)|
 3 |<---|
 | |
 +---+ |
 | Peer finds MIC_S invalid. | |
 +---+ |
 | |
 | EAP.Response/SAKE/Auth-Reject |
 4 |--->|
 | |
 | EAP-Failure |
 5 |<---|
 | |

 Figure 3. EAP-SAKE Authentication Procedure, Server Fails
 Authentication

 1. As in step 1 of Figure 1.

 2. As in step 2 of Figure 1.

 3. As in step 3 of Figure 1.

 4. The Peer receives a EAP.Request/SAKE/Confirm message indicating
 successful authentication by the Server. The Peer computes the
 MIC_S in the same manner as the Server did. The Peer then
 compares the received MIC_S with the MIC_S it computed. Since
 they do not match, the Peer considers the Server to have failed
 authentication. In this case, the Peer responds with an
 EAP.Response message of type SAKE and subtype Auth-Reject,
 indicating authentication failure.

 5. Upon receipt of a EAP.Response/SAKE/Auth-Reject message, the
 Server sends an EAP.Failure message back to the Peer.

Vanderveen & Soliman Informational [Page 10]

RFC 4763 EAP-SAKE November 2006

3.2.3. Identity Management

 It may be advisable to assign a temporary identifier (TempID) to a
 Peer when user anonymity is desired. The TempID is delivered to the
 Peer in the EAP.Request/SAKE/Confirm message. The TempID follows the
 format of any NAI [NAI] and is generated by the EAP Server that
 engages in the EAP-SAKE authentication task with the Peer. EAP
 servers SHOULD be configurable with TempID spaces that can be
 distinguished from the permanent identity space. For instance, a
 specific realm could be assigned for TempIDs (e.g., tmp.example.biz).

 A TempID is not assigned an explicit lifetime. The TempID is valid
 until the Server requests the permanent identifier, or the Peer
 triggers the start of a new EAP session by sending in its permanent
 identifier. A Peer MUST be able to trigger an EAP session at any
 time using its permanent identifier. A new TempID assigned during a
 successful EAP session MUST replace the existing TempID for future
 transactions between the Peer and the Server.

 Note that the delivery of a TempID does not imply that the Server
 considers the Peer authenticated; the Server still has to check the
 MIC in the EAP.Response/SAKE/Confirm message. In case the EAP phase
 ends with an EAP.Failure message, then the Server and the Peer MUST
 consider the TempID that was just delivered as invalid. Hence, the
 Peer MUST NOT use this TempID the next time it tries to authenticate
 with the Server.

3.2.4. Obtaining Peer Identity

 The types of identities that a Peer may possess are permanent and
 temporary identities, referred to as PermID and TempID, respectively.
 A PermID can be an NAI associated with the Root Secret, and is long-
 lived. A TempID is an identifier generated through the EAP method
 and that the Peer can use to identify itself during subsequent EAP
 sessions with the Server. The purpose of the TempID is to allow for
 user anonymity support. The use of TempIDs is optional in the EAP-
 SAKE method.

 The Server MAY request the Peer ID via the EAP.Request/SAKE/Identity
 message, as shown in Figure 4. This case may happen if, for example,
 the Server wishes to initiate an EAP-SAKE session for a Peer it does
 not have a subscriber identifier for. The following steps take
 place:

Vanderveen & Soliman Informational [Page 11]

RFC 4763 EAP-SAKE November 2006

 Peer Server
 | |
 | +---------------------------------+
 | | Server wishes to initiate |
 | | an EAP-SAKE session |
 | | |
 | +---------------------------------+
 | |
 | EAP.Request/SAKE/Identity |
 | (AT_ANY_ID_REQ, AT_SERVERID) |
 1 |<---|
 | |
 | EAP.Response/SAKE/Identity |
 | (AT_PEERID) |
 2 |--->|
 | |
 +--+
 | If identity found, normal EAP-SAKE authentication follows. |
 +--+

 Figure 4. Server Requests Peer Identity

 1. The Server sends an EAP.Request message of type SAKE and subtype
 Identity, with the attribute AT_ANY_ID_REQ, indicating a request
 for any Peer identifier.

 2. The Peer constructs an EAP.Response message of type SAKE and
 subtype Identity, with the attribute AT_PEER_ID containing any
 Peer identifier (PermID or TempID).

 If the Server cannot find the Peer identity reported in the
 EAP.Response/SAKE/Identity message, or if it does not recognize the
 format of the Peer identifier, the Server MAY send an EAP.Failure
 message to the Peer.

 If the Server is unable to look up a Peer by its TempID, or if policy
 dictates that the Peer should now use its permanent id, then the
 Server may specifically ask for the permanent identifier, as in
 Figure 5. The following steps occur:

Vanderveen & Soliman Informational [Page 12]

RFC 4763 EAP-SAKE November 2006

 Peer Server
 | |
 | +---------------------------------+
 1 | | Server obtains TempID but |
 | | requires PermID |
 | +---------------------------------+
 | |
 | EAP.Request/SAKE/Identity |
 | (AT_PERM_ID_REQ, AT_SERVERID) |
 2 |<---|
 | |
 | EAP.Response/SAKE/Identity |
 | (AT_PEERID) |
 3 |--->|
 | |
 | +---------------------------------+
 | | Server finds and uses |
 | | Peer PermID to start a |
 | | EAP-SAKE authentication phase |
 | +---------------------------------+
 |
 +---+
 | Normal EAP-SAKE authentication follows. |
 +---+

 Figure 5. Server Is Given a TempID as Peer Identity; Server
 Requires a PermID

 1. The Peer (or the Authenticator on behalf of the Peer) sends an
 EAP.Request message of type Identity and includes the TempID.

 2. The Server requires a PermID instead, so it sends an EAP.Request
 message of type SAKE and subtype Identity with attributes
 AT_PERM_ID_REQ and AT_SERVERID.

 3. The Peer sends an EAP.Response message of type SAKE and subtype
 Identity containing the attribute AT_PEERID carrying the Peer
 PermID.

3.2.5. Key Hierarchy

 EAP-SAKE uses a three-level key hierarchy.

 Level 1 contains the pre-shared secret called Root Secret. This is a
 32-byte high-entropy string partitioned into the Root-Secret-A part
 (16 bytes) and the Root-Secret-B part (16 bytes).

Vanderveen & Soliman Informational [Page 13]

RFC 4763 EAP-SAKE November 2006

 Level 2 contains the key derivation key called the SAKE Master Secret
 (SMS). SMS-A is derived from the Root-Secret-A key and the Peer and
 Server nonces using the EAP-SAKE Key-Derivation Function (KDF), and
 similarly for SMS-B. The SMS is known only to the Peer and Server
 and is not made known to other parties.

 Level 3 contains session keys, such as Transient EAP Keys (TEK),
 Master Session Key (MSK), and Extended MSK (EMSK). TEKs are keys for
 use local to the EAP method only. They are derived from the SMS-A
 and the nonces using the EAP-SAKE KDF. They are partitioned into a
 16-byte TEK-Auth, used to compute the MICs, and a 16-byte TEK-Cipher,
 used to encrypt selected attributes. Since the SMS is fresh, so are
 the derived TEKs.

 +--------------------+ +--------------------+
 | Root-Secret-A | | Root-Secret-B |
 | (pre-shared secret)| | (pre-shared secret)|
 +--------------------+ +--------------------+
 | |
 V V
 +-------------------+ +--------------------+
SAKE Master Secret	<---RAND_S------------->	SAKE Master Secret	
(SMS-A)			(SMS-B)
	<-------]---RAND_P----->		
 +-------------------+ | | +--------------------+
 | | | |
 V | | V
 +--------------------+ | | +--------------------+
 | Transient EAP Keys |<------+-----+-------->| Session Keys: |
 | TEK-Auth,TEK-Cipher|<------------+-------->| MSK, EMSK |
 +--------------------+ +--------------------+

 Figure 6. Key Hierarchy for the EAP-SAKE Method

 On another branch of level 3 of the key hierarchy are the MSK and
 EMSK, each mandated to be 64 bytes long. They are derived from the
 SMS-B and the nonces using the EAP-SAKE KDF. Again, since the SMS is
 fresh, so are the derived MSK/EMSK. The MSK is meant to be exported
 and relayed to other parties. The EMSK is reserved for future use,
 such as derivation of application-specific keys, and is not shared
 with other parties.

Vanderveen & Soliman Informational [Page 14]

RFC 4763 EAP-SAKE November 2006

 The EAP-SAKE key material is summarized in the table below.

 ===
 Key Size Scope Lifetime Use
 (bytes)
 ===
 Root-Secret-A 16 Peer, Server Device Derive TEK
 --
 Root-Secret-B 16 Peer, Server Device Derive MSK, EMSK
 --
 TEK-Auth 16 Peer, Server MSK Life Compute MICs
 --
 TEK-Cipher 16 Peer, Server MSK Life Encrypt attribute
 --
 MSK 64 Peer, Server, MSK Life Derive keys for
 Authenticator lower-layer use
 --
 EMSK 64 Peer, Server MSK Life Reserved
 --

 A key name format is not provided in this version.

 Since this version of EAP-SAKE does not support fast re-
 authentication, the lifetime of the TEKs is to extend only until the
 next EAP mutual authentication. The MSK lifetime dictates when the
 next mutual authentication is to take place. The Server MAY convey
 the MSK lifetime to the Peer in the AT_MSK_LIFE attribute. Note that
 EAP-SAKE does not support key lifetime negotiation.

 The EAP-SAKE Method-Id is the contents of the RAND_S field from the
 AT_RAND_S attribute, followed by the contents of the RAND_P field in
 the AT_RAND_P attribute.

3.2.6. Key Derivation

3.2.6.1. Key-Derivation Function

 For the rest of this document, KDF-X denotes the EAP-SAKE Key-
 Derivation Function whose output is X bytes. This function is the
 pseudo-random function of [IEEE802.11i].

 The function takes three strings of bytes of arbitrary lengths: a
 Key, a Label, and a Msg, and outputs a string Out of length X bytes
 as follows:

 Out = KDF-X (Key, Label, Msg)

Vanderveen & Soliman Informational [Page 15]

RFC 4763 EAP-SAKE November 2006

 The KDF is a keyed hash function with key "Key" and operating on
 input "Label | Msg". The convention followed herein is that
 concatenation is denoted by |, FLOOR denotes the floor function, and
 [x...y] denotes bytes x through y.

 The label is an ASCII character string. It is included in the exact
 form it is given without a length byte or trailing null character.

 Below, "Length" denotes a single unsigned octet with values between 0
 and 255 (bytes). The following functions are defined (see [HMAC],
 [SHA1]):

 H-SHA1(Key, Label, Msg, Length) := HMAC-SHA1(Key, Label|Y|Msg|Length)
 where Y := 0x00
 KDF-16(Key, Label, Msg) := KDF(Key, Label, Msg, 16)
 KDF-32(Key, Label, Msg) := KDF(Key, Label, Msg, 32)
 KDF-128(Key, Label, Msg) := KDF(Key, Label, Msg, 128)

 KDF(Key, Label, Msg, Length)
 R := [] ;; null string
 for i := 0 to FLOOR(Length/20)-1 do
 R := R | H-SHA1(Key, Label, Msg, i)
 return R[0...(Length-1)]

3.2.6.2. Transient EAP Keys Derivation

 The Peer and Server derive the SMS and then the TEK as follows:

 SMS-A = KDF-16 (Root-Secret-A, "SAKE Master Secret A", RAND_P|RAND_S)
 TEK = KDF-32 (SMS-A, "Transient EAP Key", RAND_S | RAND_P)
 TEK-Auth = TEK[0...15]
 TEK-Cipher = TEK[16...31]

3.2.6.3. Extended/Master Session Key Derivation

 The Peer and the Server derive the MSK/EMSK, as follows:

 SMS-B = KDF-16 (Root-Secret-B, "SAKE Master Secret B", RAND_P|RAND_S)
 Session-Key-Block=KDF-128(SMS-B, "Master Session Key", RAND_S|RAND_P)
 MSK = Session-Key-Block[0...63]
 EMSK = Session-Key-Block[64...127]

 The derivation above affords the required cryptographic separation
 between the MSK and EMSK. That is, knowledge of the EMSK does not
 immediately lead to knowledge of the MSK, nor does knowledge of the
 MSK immediately lead to knowledge of the EMSK.

Vanderveen & Soliman Informational [Page 16]

RFC 4763 EAP-SAKE November 2006

3.2.7. Ciphersuite Negotiation

 A ciphersuite is identified by a numeric value called the Security
 Parameter Index (SPI). The SPI is used here in the EAP-SAKE method
 in order to negotiate a ciphersuite between the Peer and the Server
 for EAP data protection only. Obviously, this ciphersuite can only
 be used late in the EAP conversation, after it has been agreed upon
 by both the Peer and the Server.

 The EAP method may or may not need to use this ciphersuite, since
 attribute encryption is optional. For example, if the temporary
 identifier needs to be delivered to the Peer and needs to be
 encrypted, then the negotiated ciphersuite will be used for this
 task. If there are no attributes that need encryption as they are
 passed to the Peer, then this ciphersuite is never used.

 As with most other methods employing ciphersuite negotiation, the
 following exchange is employed: the Peer sends an ordered list of one
 or more supported ciphersuites, starting with the most preferred one,
 in a field SPI_P. The Server then sends back the one ciphersuite
 chosen in a field SPI_S. The Server SHOULD choose the strongest
 ciphersuite supported by both of them.

 Ciphersuite negotiation for data protection is achieved via SAKE
 Signaling as follows. In the EAP.Response/SAKE/Challenge, the Peer
 sends a list of supported ciphersuites, SPI_P, and protects that with
 a MIC. In the EAP.Request/SAKE/Confirm, the Server sends one
 selected ciphersuite, SPI_S, and signs that with a MIC. Finally, the
 Peer confirms the selected ciphersuite and readiness to use it in a
 signed EAP.Response/SAKE/Confirm message. The negotiation is secure
 because of the Message Integrity Checks that cover the entire EAP
 message.

3.2.8. Message Integrity and Encryption

 This section specifies the EAP/SAKE attributes used for message
 integrity and attribute encryption: AT_MIC_S, AT_MIC_P, AT_IV,
 AT_ENCR_DATA, and AT_PADDING. Only the AT_MIC_S and AT_MIC_P are
 mandatory to use during the EAP-SAKE exchange.

 Because the TEKs necessary for protection of the attributes and for
 message authentication are derived using the nonces RAND_S and
 RAND_P, the AT_MIC_S and AT_MIC_P attributes can only be used in the
 EAP.Response/SAKE/Challenge message and any messages sent thereafter.

Vanderveen & Soliman Informational [Page 17]

RFC 4763 EAP-SAKE November 2006

3.2.8.1. The AT_MIC_S and AT_MIC_P Attributes

 The AT_MIC_S and AT_MIC_P attributes are used for EAP-SAKE message
 integrity. The AT_MIC_S attribute MUST be included in all EAP-SAKE
 packets that the Server sends whenever key material (TEK) has been
 derived. That is, the AT_MIC_S attribute MUST be included in the
 EAP.Request/SAKE/Confirm message. The AT_MIC_S MUST NOT be included
 in EAP.Request/SAKE/Challenge messages, or EAP.Request/SAKE/Identity
 messages.

 The AT_MIC_P attribute MUST be included in all EAP-SAKE packets the
 Peer sends whenever key material (TEK) has been derived. That is,
 the AT_MIC_P attribute MUST be included in the
 EAP.Response/SAKE/Challenge and EAP.Response/SAKE/Confirm messages.

 The AT_MIC_P attribute MUST NOT be included in the
 EAP.Response/SAKE/Auth-Reject message since the Peer has not
 confirmed that it has the same TEK as the Server.

 Messages that do not meet the conditions specified above MUST be
 silently discarded upon reception.

 The value field of the AT_MIC_S and AT_MIC_P attributes contain a
 message integrity check (MIC). The MIC is calculated over the entire
 EAP packet, prepended with the Server nonce and identifier and the
 Peer nonce and identifier. The value field of the MIC attribute is
 set to zero when calculating the MIC. Including the Server and Peer
 nonces and identifiers aids in detecting replay and man-in-the-middle
 attacks.

 The Peer computes its MIC as follows:

 MIC_P = KDF-16 (TEK-Auth, "Peer MIC", RAND_S | RAND_P |
 PEERID | 0x00 | SERVERID | 0x00 | <EAP-packet>),

 while the Server computes its MIC as

 MIC_S = KDF-16 (TEK-Auth, "Server MIC", RAND_P |RAND_S |
 SERVERID | 0x00 | PEERID | 0x00 | <EAP-packet>).

 Here, <EAP-packet> denotes the entire EAP packet, used as a string of
 bytes, the MIC value field set to zero. 0x00 denotes a single octet
 value used to delimit SERVERID and PEERID. The PEERID and SERVERID,
 respectively, are the ones carried in the corresponding attributes in
 the SAKE/Challenge messages.

Vanderveen & Soliman Informational [Page 18]

RFC 4763 EAP-SAKE November 2006

 In case the SAKE/Challenge exchange was preceded by an
 EAP.Request/SAKE/Identity message containing the AT_SERVERID
 Attribute, then the SERVERID value in the MIC_P and MIC_S computation
 MUST be set to the value of this attribute.

 If the AT_SERVERID was not included in either the SAKE/Challenge
 message or the SAKE/Identity message, then the value of the SERVERID
 used in the computation of MIC_P and MIC_S MUST be empty. If the
 AT_PEERID was not included in the SAKE/Challenge message, and there
 was no EAP.Response/SAKE/Identity message preceding the
 SAKE/Challenge messages, then the value of the PEERID used in the
 computation of MIC_P and MIC_S MUST be empty.

 The Server and Peer identity are included in the computation of the
 signed responses so that the Peer and Server can verify each other’s
 identities, and the possession of a common secret, the TEK-Auth.
 However, since the AT_SERVERID is not explicitly signed with a MIC by
 the Server, EAP-SAKE does not claim channel binding.

3.2.8.2. The AT_IV, AT_ENCR_DATA, and AT_PADDING Attributes

 The AT_IV and AT_ENCR_DATA attributes can be used to transmit
 encrypted information between the Server and the Peer. The value
 field of AT_IV contains an initialization vector (IV) if one is
 required by the encryption algorithm used. It is not mandatory that
 the AT_IV attribute be included whenever the AT_ENCR_DATA attribute
 is.

 However, the AT_IV attribute MUST NOT be included unless the
 AT_ENCR_DATA is included. Messages that do not meet this condition
 MUST be silently discarded.

 Attributes can be encrypted only after a ciphersuite has been agreed
 on, i.e., in any message starting with the Server’s
 EAP.Request/SAKE/Confirm message. The attributes MUST be encrypted
 using algorithms corresponding to the SPI value specified by the
 AT_SPI_S attribute. The attributes MUST be encrypted using the TEK-
 Cipher key, whose derivation is specified in Section 3.2.6.2.

 If an IV is required by the encryption algorithm, then the sender of
 the AT_IV attribute MUST NOT reuse the IV value from previous EAP-
 SAKE packets. The sender MUST choose a new value for each AT_IV
 attribute. The sender SHOULD use a good random number generator to
 generate the initialization vector (see [RFC4086] for guidelines).

Vanderveen & Soliman Informational [Page 19]

RFC 4763 EAP-SAKE November 2006

 The value field of the AT_ENCR_DATA attribute consists of bytes
 encrypted using the ciphersuite specified in the AT_SPI_S attribute.
 The encryption key is the TEK-Cipher, and the plaintext consists of
 one or more concatenated EAP-SAKE attributes.

 The default encryption algorithm, as described in Section 3.2.8.3,
 requires the length of the plaintext to be a multiple of 16 bytes.
 The sender MAY need to include the AT_PADDING attribute as the last
 attribute within the value field of the AT_ENCR_DATA attribute. The
 length of the padding is chosen so that the length of the value field
 of the AT_ENCR_DATA attribute becomes a multiple of 16 bytes. The
 AT_PADDING attribute SHOULD NOT be included if the total length of
 other attributes present within the AT_ENCR_DATA attribute is a
 multiple of 16 bytes. The length of the AT_PADDING attribute
 includes the Attribute Type and Attribute Length fields. The actual
 pad bytes in the value field are set to zero (0x00) on sending. The
 recipient of the message MUST verify that the pad bytes are zero
 after decryption and MUST silently discard the message otherwise.

 The MIC computed on the entire EAP message can be used to obviate the
 need for special integrity protection or message authentication of
 the encrypted attributes.

 An example of the AT_ENCR_DATA attribute is shown in Section 3.3.3.

3.2.8.3. Security Parameter Index (SPI) Considerations

 An SPI value is a variable-length string identifying at least an
 encryption algorithm and possibly a "security association". EAP-SAKE
 does not mandate the format of the SPI; it only mandates that the
 default encryption algorithm be supported if encryption is supported.
 That is, if an implementation compliant with this document supports
 encryption, then it MUST support the AES-CBC cipher.

 The default encryption algorithm AES-CBC involves the AES block
 cipher [AES] in the Cipher-Block-Chaining (CBC) mode of operation
 [CBC].

 The Peer in the EAP-SAKE method can send up to four SPI values in its
 SPI_P field. Because the length of the AT_SPI_P and AT_SPI_S
 attributes must each be a multiple of 2 bytes, the sender pads the
 value field with zero bytes when necessary (the AT_PADDING attribute
 is not used here). For example, the value field of the AT_SPI_S
 contains one byte with the chosen SPI, followed by one byte of zeros.

Vanderveen & Soliman Informational [Page 20]

RFC 4763 EAP-SAKE November 2006

3.2.9. Fragmentation

 The EAP-SAKE method does not require fragmentation, as the messages
 do not get excessively long. That is, EAP packets are well within
 the limit of the maximum transmission unit of other layers (link,
 network). The only variable fields are those carrying NAIs, which
 are limited by their length field to 256 bytes.

3.2.10. Error Cases

 Malformed messages: As a general rule, if a Peer or Server receives
 an EAP-SAKE packet that contains an error, the implementation SHOULD
 silently discard this packet, not change state, and not send any EAP
 messages to the other party. Examples of such errors include a
 missing mandatory attribute, an attribute that is not allowed in this
 type of message, and unrecognized subtypes or attributes.

 Non-matching Session Id: If a Peer or Server receives an EAP-SAKE
 packet with a Session Id field not matching the Session Id from the
 previous packet in this session, that entity SHOULD silently discard
 this packet (not applicable for the first message of an EAP-SAKE
 session).

 Peer Authorization Failure: It may be possible that a Peer is not
 authorized for services, such as when the terminal device is reported
 stolen. In that case, the Server SHOULD send an EAP.Failure message.

 Unexpected EAP.Success: A Server MUST NOT send an EAP-Success message
 before the SAKE/Challenge and SAKE/Confirm rounds. The Peer MUST
 silently discard any EAP.Success packets before the Peer has
 successfully authenticated the Server via the
 EAP.Response/SAKE/Confirm packet.

 The Peer and Server SHOULD log all error cases.

Vanderveen & Soliman Informational [Page 21]

RFC 4763 EAP-SAKE November 2006

3.3. Message Formats

3.3.1. Message Format Summary

 A summary of the EAP packet format [EAP] is shown below for
 convenience. The fields are transmitted from left to right.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Code | Identifier | Length |
 +-+
 |Type=EAP-SAKE | Version=2 | Session ID | Subtype |
 +-+

 Code

 1 - Request

 2 - Response

 Identifier

 The identifier field is one octet and aids in matching responses
 with requests.

 Length

 The Length field is two octets and indicates the number of octets
 in an EAP message including the Code, Identifier, Length, Type,
 and Data fields.

 Type

 To be assigned.

 Version

 The EAP-SAKE method as described herein is version 2.

 Session ID

 The Session ID is a 1-byte random number that MUST be freshly
 generated by the Server that must match all EAP messages in a
 particular EAP conversation.

Vanderveen & Soliman Informational [Page 22]

RFC 4763 EAP-SAKE November 2006

 Subtype

 EAP-SAKE subtype: SAKE/Challenge, SAKE/Confirm, SAKE/Auth-Reject,
 and SAKE/Identity. All messages of type "EAP-SAKE" that are not
 of these subtypes MUST silently discarded.

 Message Name Subtype Value (decimal)
 ===
 SAKE/Challenge 1
 SAKE/Confirm 2
 SAKE/Auth-Reject 3
 SAKE/Identity 4

3.3.2. Attribute Format

 The EAP-SAKE attributes that are part of the EAP-SAKE packet follow
 the Type-Length-Value format with 1-byte Type, 1-byte Length, and
 variable-length Value (up to 255 bytes). The Length field is in
 octets and includes the length of the Type and Length fields. The
 EAP-SAKE attribute format is as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length | Value... |
 +-+

 Type

 1-byte unsigned integer; see Table below.

 Length

 The total number of octets in the attribute, including Type and
 Length.

 Value

 Attribute-specific.

Vanderveen & Soliman Informational [Page 23]

RFC 4763 EAP-SAKE November 2006

 The following attribute types are allocated.

 Attr. Name Length
 (bytes) Skippable Description

 AT_RAND_S 18 No Server Nonce RAND_S
 AT_RAND_P 18 No Peer Nonce RAND_P
 AT_MIC_S 10 No Server MIC
 AT_MIC_P 10 No Peer MIC
 AT_SERVERID variable No Server FQDN
 AT_PEERID variable No Peer NAI (tmp, perm)
 AT_SPI_S variable No Server chosen SPI SPI_S
 AT_SPI_P variable No Peer SPI list SPI_P
 AT_ANY_ID_REQ 4 No Requires any Peer Id (tmp, perm)
 AT_PERM_ID_REQ 4 No Requires Peer’s permanent Id/NAI
 AT_ENCR_DATA Variable Yes Contains encrypted attributes
 AT_IV Variable Yes IV for encrypted attributes
 AT_PADDING 2 to 18 Yes Padding for encrypted attributes
 AT_NEXT_TMPID variable Yes TempID for next EAP-SAKE phase

 AT_MSK_LIFE 6 Yes MSK Lifetime in seconds

Vanderveen & Soliman Informational [Page 24]

RFC 4763 EAP-SAKE November 2006

3.3.3. Use of AT_ENCR_DATA Attribute

 An example of the AT_ENCR_DATA attribute, as used in the
 EAP.Request/SAKE/Confirm message, is shown below:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | AT_IV | Length = 18 | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
 | |
 | Initialization Vector |
 | |
 | |-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |AT_ENCR_DATA | Length |
 +-+}e
 | AT_NEXT_TMPID | Length | |}n
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |}c
 | |}r
 . Peer TempID |}y
 . |}p
 . |}t
 | |}e
 +-+}d
 | AT_MIC_S | Length = 10 | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
 | MIC_S |
 + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-|
 | |AT_PADDING | Length=2 |
 +-+

Vanderveen & Soliman Informational [Page 25]

RFC 4763 EAP-SAKE November 2006

3.3.4. EAP.Request/SAKE/Challenge Format

 The format of the EAP.Request/SAKE/Challenge packet is shown below.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Code | Identifier | Length |
 +-+
 |Type=EAP-SAKE | Version=2 | Session ID | Subtype=1 |
 +-+
 | AT_RAND_S | Length = 18 | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
 | |
 | RAND_S |
 | |
 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-|
 | | AT_SERVERID | Length |
 +-+
 | |
 : :
 | Server ID |
 | |
 +-+

 The semantics of the fields is described below:

 Code

 1 for Request

 Identifier

 A random number. See [EAP].

 Length

 The length of the entire EAP packet in octets.

 Type

 EAP-SAKE

 Version

 2

Vanderveen & Soliman Informational [Page 26]

RFC 4763 EAP-SAKE November 2006

 Session ID

 A random number chosen by the server to identify this EAP-Session.

 Subtype

 1 for SAKE/Challenge

 AT_RAND_S

 The value field of this attribute contains the Server nonce RAND_S
 parameter. The RAND_S attribute MUST be present in
 EAP.Request/SAKE/Challenge.

 AT_SERVERID

 The value field of this attribute contains the Server identifier
 (e.g., a non-null terminated string). The AT_SERVERID attribute
 SHOULD be present in EAP.Request/SAKE Challenge.

Vanderveen & Soliman Informational [Page 27]

RFC 4763 EAP-SAKE November 2006

3.3.5. EAP.Response/SAKE/Challenge Format

 The format of the EAP.Response/SAKE/Challenge packet is shown below.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Code | Identifier | Length |
 +-+
 |Type=EAP-SAKE | Version=2 | Session ID | Subtype=1 |
 +-+
 | AT_RAND_P | Length = 18 | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
 | |
 | RAND_P |
 | |
 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-|
 | | AT_PEERID | Length |
 +-+
 | |
 : Peer NAI :
 | |
 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-|
 | | AT_SPI_P | Length |
 +-+
 | SPIP | AT_MIC_P | Length = 18 |
 +-+
 | |
 | MIC_P |
 | |
 | |
 +-+

 The semantics of the fields is described below:

 Code

 2 for Response

 Identifier

 A number that MUST match the Identifier field from the
 corresponding Request.

 Length

 The length of the entire EAP packet in octets.

Vanderveen & Soliman Informational [Page 28]

RFC 4763 EAP-SAKE November 2006

 Type

 EAP-SAKE

 Version

 2

 Session ID

 A number matching all other EAP messages in this EAP session.

 Subtype

 1 for SAKE/Challenge

 AT_RAND_P

 The value field of this attribute contains the Peer nonce RAND_P
 parameter. The AT_RAND_P attribute MUST be present in the
 EAP.Response/SAKE/Challenge.

 AT_PEERID

 The value field of this attribute contains the NAI of the Peer.
 The Peer identity follows the same Network Access Identifier
 format that is used in EAP.Response/Identity, i.e., including the
 NAI realm portion. The identity is the permanent identity, or a
 temporary identity. The identity does not include any terminating
 null characters. The AT_PEERID attribute is optional in the
 EAP.Response/SAKE/Challenge.

 AT_SPI_P

 The value field of this attribute contains the Peer’s ciphersuite
 list SPI_P parameter. The AT_SPI_P attribute is optional in the
 EAP.Response/SAKE/Challenge.

 AT_MIC_P

 The value field of this attribute contains the Peer MIC_P
 parameter. The AT_MIC_P attribute MUST be present in the
 EAP.Response/SAKE/Challenge.

Vanderveen & Soliman Informational [Page 29]

RFC 4763 EAP-SAKE November 2006

3.3.6. EAP.Request/SAKE/Confirm Format

 The format of the EAP.Request/SAKE/Confirm packet is shown below.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Code | Identifier | Length |
 +-+
 |Type=EAP-SAKE | Version=2 | Session ID | Subtype=2 |
 +-+
 +-+
 | AT_SPI_S | Length | SPI_S |
 +-+
 | AT_IV | Length | Initialization Vector ... |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ :
 | |
 + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | | AT_ENCR_DATA | Length |
 +-+
 | Encrypted Data... |
 | |
 | |
 +-+
 | AT_MSK_LIFE | Length=6 | MSK Lifetime... |
 +-+
 | | AT_MIC_S | Length=18 |
 +-+
 | |
 | MIC_S |
 | |
 | |
 +-+

 The semantics of the fields is described below:

 Code

 1 for Request

 Identifier

 A random number. See [EAP].

 Length

 The length of the entire EAP packet in octets.

Vanderveen & Soliman Informational [Page 30]

RFC 4763 EAP-SAKE November 2006

 Type

 EAP-SAKE

 Version

 2

 Session ID

 A number matching all other EAP messages in this EAP session.

 Subtype

 2 for SAKE Confirm

 AT_SPI_S

 The value field of this attribute contains the Server chosen
 ciphersuite SPI_S parameter. The AT_SPI_S attribute is optional
 in the EAP.Request/SAKE/Confirm.

 AT_IV

 This attribute is optional to use in this message. The value
 field of this attribute contains the Initialization Vector that is
 used with the encrypted data following.

 AT_ENCR_DATA

 This attribute is optional to use in this message. The encrypted
 data, if present, may contain an attribute AT_NEXT_TMPID,
 containing the NAI the Peer should use in the next EAP
 authentication.

 AT_MSK_LIFE

 This attribute is optional to use in this message. The value
 field of this attribute contains the MSK Lifetime in seconds.

 AT_MIC_S

 The value field of this attribute contains the Server MIC_S
 parameter. The AT_MIC_S attribute MUST be present in the
 EAP.Request/SAKE/Confirm.

Vanderveen & Soliman Informational [Page 31]

RFC 4763 EAP-SAKE November 2006

3.3.7. EAP.Response/SAKE/Confirm Format

 The format of the EAP.Response/SAKE/Confirm packet is shown below.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Code | Identifier | Length |
 +-+
 |Type=EAP-SAKE | Version=2 | Session ID | Subtype=2 |
 +-+
 | AT_MIC_P | Length = 18 | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
 | MIC_P |
 | |
 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | | AT_PADDING | Length = 2 |
 +-+

 The semantics of the fields is described below:

 Code

 2 for Response

 Identifier

 A number that MUST match the Identifier field from the
 corresponding Request.

 Length

 The length of the entire EAP packet in octets.

 Type

 EAP-SAKE

 Version

 2

 Session ID

 A number matching all other EAP messages in this EAP session.

Vanderveen & Soliman Informational [Page 32]

RFC 4763 EAP-SAKE November 2006

 Subtype

 2 for SAKE Confirm

 AT_MIC_P

 The value field of this attribute contains the Peer’s MIC_P
 parameter. The AT_MIC_P attribute MUST be present in the
 EAP.Response/SAKE/Confirm.

 AT_PADDING

 The value field is set to zero. Added to achieve 32-bit alignment
 of the EAP-SAKE packet.

3.3.8. EAP.Response/SAKE/Auth-Reject Format

 The format of the EAP.Response/SAKE/Auth-Reject packet is shown
 below.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Code | Identifier | Length |
 +-+
 |Type=EAP-SAKE | Version=2 | Session ID | Subtype=3 |
 +-+

 The semantics of the fields is described below:

 Code

 2 for Response

 Identifier

 A number that MUST match the Identifier field from the
 corresponding Request.

 Length

 The length of the entire EAP packet in octets.

 Type

 EAP-SAKE

Vanderveen & Soliman Informational [Page 33]

RFC 4763 EAP-SAKE November 2006

 Version

 2

 Session ID

 A number matching all other EAP messages in this EAP session.

 Subtype

 3 for SAKE/Auth-Reject

3.3.9. EAP.Request/SAKE/Identity Format

 The format of the EAP.Request/SAKE/Identity is shown below.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Code | Identifier | Length |
 +-+
 |Type=EAP-SAKE | Version=2 | Session ID | Subtype=4 |
 +-+
 |AT_PERM_ID_REQ | Length = 4 | Reserved |
 +-+
 |AT_ANY_ID_REQ | Length = 4 | Reserved |
 +-+
 |AT_SERVERID | Length | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ :
 | Server ID |
 +-+

 The semantics of the fields is described below:

 Code

 1 for Request

 Identifier

 A random number. See [EAP].

 Length

 The length of the entire EAP packet in octets.

Vanderveen & Soliman Informational [Page 34]

RFC 4763 EAP-SAKE November 2006

 Type

 EAP-SAKE

 Version

 2

 Session ID

 A number matching all other EAP messages in this EAP session.

 Subtype

 4 for SAKE/Identity

 AT_PERM_ID_REQ

 The AT_PERM_ID_REQ attribute is optional, to be included in cases
 where the Server requires the Peer to give its permanent
 identifier (i.e., PermID). The AT_PERM_ID_REQ MUST NOT be
 included if the AT_ANY_ID_REQ attribute is included. The value
 field only contains two reserved bytes, which are set to zero on
 sending and ignored on reception.

 AT_ANY_ID_REQ

 The AT_ANY_ID_REQ attribute is optional, to be included in cases
 where the Server requires the Peer to send any identifier (e.g.,
 PermID, TempID). The AT_ANY_ID_REQ MUST NOT be included if
 AT_PERM_ID_REQ is included. The value field only contains two
 reserved bytes, which are set to zero on sending and ignored on
 reception. One of the AT_PERM_ID_REQ and AT_ANY_ID_REQ MUST be
 included.

 AT_SERVERID

 The value field of this attribute contains the identifier/realm of
 the Server. The AT_SERVERID attribute is optional but RECOMMENDED
 to include in the EAP.Request/SAKE/Identity.

Vanderveen & Soliman Informational [Page 35]

RFC 4763 EAP-SAKE November 2006

3.3.10. EAP.Response/SAKE/Identity Format

 The format of the EAP.Response/SAKE/Identity is shown below:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Code | Identifier | Length |
 +-+
 |Type=EAP-SAKE | Version=2 | Session ID | Subtype=4 |
 +-+
 | AT_PEERID | Length | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ :
 | Peer NAI |
 +-+

 The semantics of the fields is described below:

 Code

 2 for Response

 Identifier

 A number that MUST match the Identifier field from the
 corresponding Request.

 Length

 The length of the entire EAP packet.

 Type

 EAP-SAKE

 Version

 2

 Session ID

 A number matching all other EAP messages in this EAP session.

 Subtype

 4 for SAKE/Identity

Vanderveen & Soliman Informational [Page 36]

RFC 4763 EAP-SAKE November 2006

 AT_PEERID

 The value field of this attribute contains the NAI of the Peer.
 The AT_PEERID attribute MUST be present in
 EAP.Response/SAKE/Identity.

3.3.11. Other EAP Messages Formats

 The format of the EAP.Request/Identity and EAP.Response/Identity
 packets is described in [EAP]. The user ID (e.g., NAI) SHOULD be
 present in this packet.

 The format of the EAP-Success and EAP-Failure packet is also shown in
 [EAP].

4. IANA Considerations

 IANA allocated a new EAP Type for EAP-SAKE.

 EAP-SAKE messages include an 8-bit Subtype field. The Subtype is a
 new numbering space for which IANA administration is required. The
 following subtypes are specified in this memo:

 SAKE/Challenge.................1
 SAKE/Confirm...................2
 SAKE/Auth-Reject...............3
 SAKE/Identity..................4

 The Subtype-specific data is composed of attributes, which have an
 8-bit type number. Attributes numbered within the range 0 through
 127 are called non-skippable attributes, and attributes within the
 range of 128 through 255 are called skippable attributes. The EAP-
 SAKE attribute type number is a new numbering space for which IANA
 administration is required. The following attribute types are
 specified:

 AT_RAND_S.......................................1
 AT_RAND_P.......................................2
 AT_MIC_S..3
 AT_MIC_P..4
 AT_SERVERID.....................................5
 AT_PEERID.......................................6
 AT_SPI_S..7
 AT_SPI_P..8
 AT_ANY_ID_REQ...................................9
 AT_PERM_ID_REQ.................................10

Vanderveen & Soliman Informational [Page 37]

RFC 4763 EAP-SAKE November 2006

 AT_ENCR_DATA..................................128
 AT_IV...129
 AT_PADDING....................................130
 AT_NEXT_TMPID.................................131
 AT_MSK_LIFE...................................132

 All requests for value assignment from the two number spaces
 described in this memo require proper documentation, according to the
 "Specification Required" policy described in [IANA].

 All assignments of values from the two number spaces described in
 this memo require IETF consensus.

5. Security Considerations

 The EAP specification [EAP] describes the security vulnerabilities of
 EAP, which does not include its method-specific security mechanisms.
 This section discusses the claimed security properties of the EAP-
 SAKE method, along with vulnerabilities and security recommendations.

5.1. Denial-of-Service Attacks

 Since EAP-SAKE is not a tunneling method, the
 EAP.Response/SAKE/Auth-Reject, EAP.Success, and EAP.Failure packets
 are not integrity or replay protected. This makes it possible for an
 attacker to spoof such messages. Note that EAP.Response/SAKE/Auth-
 Reject cannot be protected with a MIC since an authentication failure
 indicates that the Server and Peer do not agree on a common key.

 Most importantly, an attacker cannot cause a Peer to accept an
 EAP.Success packet as indication that the Server considers the mutual
 authentication to have been achieved. This is because a Peer does
 not accept EAP.Success packets before it has authenticated the Server
 or after it has considered the Server to have failed authentication.

5.2. Root Secret Considerations

 If the Root Secret is known to any party other than the Server and
 Peer, then the mutual authentication and key establishment using
 EAP-SAKE is compromised.

 EAP-SAKE does not address how the Root Secret is generated or
 distributed to the Server and Peer. It is RECOMMENDED that the
 entropy of the Root Secret be maximized. The Root Secret SHOULD be
 machine-generated.

Vanderveen & Soliman Informational [Page 38]

RFC 4763 EAP-SAKE November 2006

 If the Root Secret is derived from a low-entropy, guessable quantity
 such as a human-selected password, then the EAP-SAKE key derivation
 is subject to on-line and off-line dictionary attacks. To help
 identify whether such a password has been compromised,
 implementations SHOULD keep a log of the number of EAP-SAKE messages
 received with invalid MIC fields. In these cases, a procedure for
 updating the Root Secret securely SHOULD be in place.

5.3. Mutual Authentication

 Mutual authentication is accomplished via the SAKE/Challenge and
 SAKE/Confirm messages. The EAP.Request/SAKE/Challenge contains the
 Server nonce RAND_S; the EAP.Response/SAKE/Challenge contains the
 Peer nonce RAND_P, along with the Peer MIC (MIC_P); and the
 EAP.Request/SAKE/Confirm contains the Server MIC (MIC_S). Both MICs
 (MIC_S and MIC_P) are computed using both nonces RAND_S and RAND_P
 and are keyed by the TEK, a shared secret derived from the Root
 Secret. The Server considers the Peer authenticated if the MIC_P it
 computes matches the one that the Peer sends. Similarly, the Peer
 considers the Server authenticated if the MIC_S it computes matches
 the one that the Server sends. The way the MICs are computed
 involves a keyed one-way hash function, which makes it
 computationally hard for an attacker to produce the correct MIC
 without knowledge of the shared secret.

5.4. Integrity Protection

 Integrity protection of EAP-SAKE messages is accomplished through the
 use of the Message Integrity Checks (MIC), which are present in every
 message as soon as a common shared secret (TEK) is available, i.e.,
 any message after the EAP.Request/SAKE/Challenge. An adversary
 cannot modify any of the MIC-protected messages without causing the
 recipient to encounter a MIC failure. The extent of the integrity
 protection is commensurate with the security of the KDF used to
 derive the MIC, the length and entropy of the shared secret used by
 the KDF, and the length of the MIC.

5.5. Replay Protection

 The first message of most session establishment protocols, such as
 EAP-SAKE, is subject to replay. A replayed
 EAP.Request/SAKE/Challenge message results in the Peer sending an
 EAP.Response/SAKE/Challenge message back, which contains a MIC that
 was computed using the attacker’s chosen nonce. This poses a minimal
 risk to the compromise of the TEK-Auth key, and this EAP Session
 cannot proceed successfully as the Peer will find the Server’s MIC
 invalid.

Vanderveen & Soliman Informational [Page 39]

RFC 4763 EAP-SAKE November 2006

 Replay protection is achieved via the RAND_S and RAND_P values,
 together with the Session ID field, which are included in the
 calculation of the MIC present in each packet subsequent to the EAP-
 SAKE/Challenge request packet. The Session ID MUST be generated anew
 by the Server for each EAP session. Session Ids also aid in
 identification of possible multiple EAP sessions between a Peer and a
 Server. Within the same session, messages can be replayed by an
 attacker, but the state machine SHOULD be able to handle these cases.
 Note that a replay within a session is indistinguishable to a
 recipient from a network malfunction (e.g., message was first lost
 and then re-transmitted, so the recipient thinks it is a duplicate
 message).

 Replay protection between EAP sessions and within an EAP session is
 also accomplished via the MIC, which covers not only the entire EAP
 packet (including the Session ID) but also the nonces RAND_S and
 RAND_P. Thus, the recipient of an EAP message can be assured that
 the message it just received is the one just sent by the other Peer
 and not a replay, since it contains a valid MIC of the recipient’s
 nonce and the other Peer nonce. As before, the extent of replay
 protection is commensurate with the security of the KDF used to
 derive the MIC, the length and entropy of the shared secret used by
 the KDF, and the length of the MIC.

5.6. Confidentiality

 Confidentiality of EAP-SAKE attributes is supported through the use
 of the AT_ENCR_DATA and AT_IV attributes. A ciphersuite is
 negotiated securely (see Section 3.2.7) and can be used to encrypt
 any attributes as needed. The default ciphersuite contains a strong
 cipher based on AES.

5.7. Key Derivation, Strength

 EAP-SAKE derives a Master Key (for EAP use) and Master Session Key,
 as well as other lower-level keys, such as TEKs. Some of the lower-
 level keys may or may not be used. The strength (entropy) of all
 these keys is at most the strength of the Root Secret.

 The entropy of the MSK and of the EMSK, assuming that the Server and
 Peer 128-bit nonces are generated using good random number
 generators, is at most 256-bits.

Vanderveen & Soliman Informational [Page 40]

RFC 4763 EAP-SAKE November 2006

5.8. Dictionary Attacks

 Dictionary attacks are not feasible to mount on the EAP-SAKE method
 because passwords are not used. Instead, the Root Secret is
 machine-generated. This does not necessarily pose provisioning
 problems.

5.9. Man-in-the-Middle Attacks

 Resistance to man-in-the-middle attacks is provided through the
 integrity protection that each EAP message carries (i.e., Message
 Integrity Check field) as soon as a common key for this EAP session
 has been derived through mutual authentication. As before, the
 extent of this resistance is commensurate with the strength of the
 MIC itself. Man-in-the-middle attacks associated with the use of any
 EAP method within a tunneling or sequencing protocol are beyond the
 scope of this document.

5.10. Result Indication Protection

 EAP-SAKE provides result indication protection in that it provides
 result indications, integrity protection, and replay protection. The
 Server indicates that it has successfully authenticated the Peer by
 sending the EAP.Request/SAKE/Confirm message, which is integrity and
 replay protected. The Peer indicates that it has successfully
 authenticated the Server by sending the EAP.Response/SAKE/Confirm
 message, which is also integrity and replay protected.

5.11. Cryptographic Separation of Keys

 The TEKs used to protect EAP-SAKE packets (TEK-Auth, TEK-Cipher), the
 Master Session Key, and the Extended Master Session Key are
 cryptographically separate. Information about any of these keys does
 not lead to information about any other keys. We also note that it
 is infeasible to calculate the Root Secret from any or all of the
 TEKs, the MSK, or the EMSK.

5.12. Session Independence

 Within each EAP-SAKE session, fresh keying material is generated.
 The keying material exported by this method from two independent
 EAP-SAKE sessions is cryptographically separate, as explained below.

 Both the Server and the Peer SHOULD generate fresh random numbers
 (i.e., nonces) for the EAP-SAKE exchange. If either entity re-uses a
 random number from a previous session, then the fact that the other
 does use a freshly generated random number implies that the TEKs,
 MSK, and EMSK derived within this session are cryptographically

Vanderveen & Soliman Informational [Page 41]

RFC 4763 EAP-SAKE November 2006

 separate from the corresponding keys derived in the previous
 exchange.

 Therefore, compromise of MSK or EMSK on one exchange does not
 compromise the MSK and EMSK of previous or subsequent exchanges
 between a Peer and a Server.

5.13. Identity Protection

 As seen from Section 3.2.3., the Server may assign a temporary NAI to
 a Peer in order to achieve user anonymity. This identifier may be
 used by the Peer the next time it engages in an EAP-SAKE
 authentication phase with the Server. The TempID is protected by
 sending it encrypted, within an AT_ENCR_DATA attribute, and signed by
 the Server with a MIC. Thus, an eavesdropper cannot link the
 original PermID that the Peer first sends (e.g., on power-up) to any
 subsequent TempID values sent in the clear to the Server.

 The Server and Peer MAY be configured such that only TempID
 identities are exchanged after one initial EAP-SAKE phase that uses
 the Peer permanent identity. In this case, in order to achieve
 maximum identity protection, the TempID SHOULD be stored in non-
 volatile memory in the Peer and Server. Thus, compliance with this
 document does not preclude or mandate Peer identity protection across
 the lifetime of the Peer.

5.14. Channel Binding

 The Server identifier and Peer identifier MAY be sent in the
 SAKE/Challenge messages. However, since there is no established
 authentication key at the time of the first message, the Server
 identifier is not integrity-protected here.

 All subsequent EAP-SAKE messages exchanged during a successful EAP-
 SAKE phase are integrity-protected, as they contain a Message
 Integrity Check (MIC). The MIC is computed over the EAP message and
 also over the Server and Peer identities. In that, both EAP
 endpoints can verify the identity of the other party.

5.15. Ciphersuite Negotiation

 EAP-SAKE does not support negotiation of the ciphersuite used to
 integrity-protect the EAP conversation. However, negotiation of a
 ciphersuite for data protection is supported. This ciphersuite
 negotiation is protected in order to minimize the risk of down-
 negotiation or man-in-the-middle attacks.

Vanderveen & Soliman Informational [Page 42]

RFC 4763 EAP-SAKE November 2006

 This negotiation is secure because of the Message Integrity Checks
 (MICs) that cover the entire EAP messages used for ciphersuite
 negotiation (see Section 3.2.7.). The extent of the security of the
 negotiation is commensurate with the security of the KDF used to
 derive the MICs, the length and entropy of the shared secret used by
 the KDF, and the length of the MICs.

5.16. Random Number Generation

 EAP-SAKE supports key derivation from a 32-byte Root Secret. The
 entropy of all other keys derived from it is reduced somewhat through
 the use of keyed hash functions (e.g. KDF). Thus, assuming
 optimistically that the effective key strength of the Root Secret is
 32 bytes, the effective key strengths of the derived keys is at most
 the effective key strength of the Root Secret quantities they are
 derived from: EMSK, at most 16 bytes; MSK, at most 16 bytes.

6. Security Claims

 This section provides the security claims as required by [EAP].

 [a] Mechanism: EAP-SAKE is a challenge/response authentication and
 key establishment mechanism based on a symmetric pre-shared
 secret.

 [b] Security claims. EAP-SAKE provides:

 Mutual authentication (Section 5.3)

 Integrity protection (Section 5.4)

 Replay protection (Section 5.5)

 Confidentiality (optional, Section 5.6 and Section 5.13)

 Key derivation (Section 5.7)

 Dictionary attack protection (Section 5.8)

 Protected result indication of successful authentication from
 Server and from Peer (Section 5.10)

 Session independence (Section 5.12)

 [c] Key strength. EAP-SAKE supports key derivation with 256-bit
 effective key strength (Section 5.7)

 [d] Description of key hierarchy: see Section 3.2.5.

Vanderveen & Soliman Informational [Page 43]

RFC 4763 EAP-SAKE November 2006

 [e] Indication of vulnerabilities: EAP-Make does not provide:

 Fast reconnect

 Fragmentation

 Channel binding

 Cryptographic binding

7. Acknowledgements

 Thanks to R. Dynarski for his helpful comments.

8. References

8.1. Normative References

 [AES] National Institute of Standards and Technology,
 "Federal Information Processing Standards (FIPS)
 Publication 197, Advanced Encryption Standard (AES)",
 November 2001. http://csrc.nist.gov/publications/
 fips/fips197/fips-197.pdf

 [CBC] National Institute of Standards and Technology, NIST
 Special Publication 800-38A, "Recommendation for Block
 Cipher Modes of Operation - Methods and Techniques",
 December 2001. http://csrc.nist.gov/publications/
 drafts/Draft-NIST_SP800-38D_Public_Comment.pdf

 [EAP] Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and
 H. Levkowetz, "Extensible Authentication Protocol
 (EAP)", RFC 3748, June 2004.

 [HMAC] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC:
 Keyed-Hashing for Message Authentication", RFC 2104,
 February 1997.

 [IANA] Narten, T. and H. Alvestrand, "Guidelines for Writing
 an IANA Considerations Section in RFCs", BCP 26, RFC
 2434, October 1998.

 [IEEE802.11i] "IEEE Standard for Information Technology-
 Telecommunications and Information Exchange between
 Systems - LAN/MAN Specific Requirements - Part 11:
 Wireless Medium Access Control (MAC) and physical
 layer (PHY) specifications: Amendment 6: Medium Access
 Control (MAC) Security Enhancements", June 2004.

Vanderveen & Soliman Informational [Page 44]

RFC 4763 EAP-SAKE November 2006

 [KEYWORDS] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [SHA1] National Institute of Standards and Technology, U.S.
 Department of Commerce, Federal Information Processing
 Standard (FIPS) Publication 180-1, "Secure Hash
 Standard", April 1995.

8.2. Informative References

 [NAI] Aboba, B., Beadles, M., Arkko, J., and P. Eronen, "The
 Network Access Identifier", RFC 4282, December 2005.

 [RFC4086] Eastlake, D., 3rd, Schiller, J., and S. Crocker,
 "Randomness Requirements for Security", BCP 106, RFC
 4086, June 2005.

Authors’ Addresses

 Michaela Vanderveen
 Qualcomm Flarion Technologies
 135 Rte. 202/206 South
 Bedminster, NJ 07921
 USA

 EMail: mvandervn@yahoo.com

 Hesham Soliman
 Qualcomm Flarion Technologies
 135 Rte. 202/206 South
 Bedminster, NJ 07921
 USA

 EMail: solimanhs@gmail.com

Vanderveen & Soliman Informational [Page 45]

RFC 4763 EAP-SAKE November 2006

Full Copyright Statement

 Copyright (C) The IETF Trust (2006).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78 and at www.rfc-editor.org/copyright.html, and
 except as set forth therein, the authors retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST,
 AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES,
 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT
 THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY
 IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
 PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Vanderveen & Soliman Informational [Page 46]

