
Network Working Group A. McKenzie
Request for Comments: 454 BBN
NIC: 14333 16 February 1973

 FILE TRANSFER PROTOCOL

 Meeting Announcement and a New Proposed Document

 Attached is a new proposal for a File Transfer Protocol. The
 document is an extensive update to RFC 354 and, I believe,
 incorporates solutions to most of the objections to RFC 354.

 It now seems appropriate to make another attempt to reach final
 agreement on FTP. Accordingly, I am calling a meeting of interested
 parties, to be held at BBN on March 16, for discussion of this and
 other proposals.

 This note is directed to the network community at large, rather than
 specifically to the old FTP committee, because I don’t believe that
 the FTP committee membership includes all the individuals who have
 contributed to the current state of FTP design. Nevertheless, it is
 intended that the meeting proceed from the current state, rather than
 bringing new members up-to-speed. Prospective attendees should
 therefore be familiar with at least the following documents:

 RFC 354
 RFC 385
 RFC 414
 RFC 418
 RFC 438

 Anyone wishing to attend this meeting should contact Alex McKenzie
 (NIC Ident aam) at BBN, 50 Moulton Street, Cambridge, Mass. 02138.
 My telephone number is:

 (617) 491-1850 ext.441

 When there is some indication of the number of individuals planning
 to attend, a meeting room will be reserved and more specific
 information will be directed to attendees.

McKenzie [Page 1]

RFC 454 File Transfer Protocol July 1972

 PROPOSED FILE TRANSFER PROTOCOL

 This document is the outcome of a meeting held 25 January 1973 in
 Cambridge, Massachusetts, by the following people:

 Abhay Bhushan (MIT - DMCG)

 Bob Bressler (BBN - NET)

 Bob Clements (BBN - TENEX)

 Alex McKenzie (BBN - NET)

 Nancy Neigus (BBN - NET)

 Ken Pogran (MIT - MULTICS)

 Marc Seriff (MIT - DMCG)

 The basis of the document is RFC 354 with considerations drawn from
 RFC’s 385, 414, 418, and 438 and personal communication with network
 participants.

McKenzie [Page 2]

RFC 454 File Transfer Protocol July 1972

 PROPOSED FILE TRANSFER PROTOCOL

INTRODUCTION

 The File Transfer Protocol (FTP) is a protocol for file transfer
 between HOSTs (including terminal IMPs), on the ARPA Computer Network
 (ARPANET). The primary function of FTP is to transfer files
 efficiently and reliably among HOSTs and to allow the convenient use
 of remote file storage capabilities.

 The objectives of FTP are 1) to promote sharing of files (computer
 programs and/or data), 2) to encourage indirect or implicit (via
 programs) use of remote computers, 3) to shield a user from
 variations in file storage systems among HOSTs, and 4) to transfer
 data reliably and efficiently. FTP, though usable directly by a user
 at a terminal, is designed mainly for use by programs.

 The attempt in this specification is to satisfy the diverse needs of
 users of maxi-HOSTs, mini-HOSTs, TIPs, and the Datacomputer, with a
 simple, elegant, and easily implemented protocol design.

 This paper assumes knowledge of the following protocols:

 1) The HOST-HOST Protocol (NIC #8246)

 2) The Initial Connection Protocol (NIC #7101)

 3) The TELNET Protocol (NWG/RFC #318, NIC #9348)

II. DISCUSSION

 In this section, the terminology and the FTP model are discussed.
 The terms defined in this section are only those that have special
 significance in FTP.

II.A Terminology

 ASCII The USASCII character set as defined in NIC
 #7104. In FTP, ASCII characters are defined to
 be the lower half of an eight bit code set (i.e.,
 the most significant bit is zero).

 access controls Access controls define users’ access privileges
 to the use of a system, and to the files in that
 system. Access controls are necessary to prevent
 unauthorized or accidental use of files. It is
 the prerogative of a server-FTP process to
 provide access controls.

McKenzie [Page 3]

RFC 454 File Transfer Protocol July 1972

 byte size The byte size specified for the transfer od data.
 The data connection is opened with this byte
 size. Data connection byte size is not
 necessarily the byte size in which data is to be
 stored in a system, and may not be related to the
 structure of data.

 data connection A simplex connection over which data is
 transferred, in a specified byte size, mode and
 type. The data transferred may be a part of a
 file, an entire file or a number of files. The
 data connection may be in either direction
 (server-to-user or user-to-server).

 data socket The socket on which a User-FTP process "listens"
 for a data connection.

 EOF The end-of-file condition that defines the end of
 a file being transferred.

 EOR The end-of-record condition that defines the end
 of a record being transferred.

 error recovery A procedure that allows a user to recover from
 certain errors such as failure of either HOST
 system or transfer process. In FTP, error
 recovery may involve restarting a file transfer
 at a given checkpoint.

 FTP commands A set of commands that comprise the control
 information flowing from the user-FTP to the
 server-FTP process.

 file An ordered set of computer data (including
 programs) of arbitrary length uniquely identified
 by a pathname.

 mode The mode in which data is to be transferred via
 the data connection. The mode defines the data
 format including EOR and EOF. The transfer modes
 defined in FTP are described in Section III.C.

 NVT The Network Virtual Terminal as defined in the
 ARPANET TELNET Protocol.

McKenzie [Page 4]

RFC 454 File Transfer Protocol July 1972

 NVFS The Network Virtual File System. A concept which
 defines a standard network file system with
 standard commands and pathname conventions. FTP
 only partially embraces the NVFS concept at this
 time.

 pathname Pathname is defined to be the character string
 which must be input to a file system by a user in
 order to identify a file. Pathname normally
 contains device and/or directory names, and file
 name specification. FTP does not yet specify a
 standard pathname convention. Each user must
 follow the file naming conventions of the file
 systems he wishes to use.

 record A sequential file may be structured as a number
 of contiguous parts called records. Record
 structures are supported by FTP but are not
 mandatory.

 reply A reply is an acknowledgement (positive or
 negative) sent from server to user via the TELNET
 connections in response to FTP commands. The
 general form of a reply is a completion code
 (including error codes) followed by an ASCII text
 string. The codes are for use by programs and
 the text is for human users.

 server-FTP process A process or set of processes which perform the
 function of file transfer in cooperation with a
 user-FTP process. The server-FTP process must
 interpret and respond to user commands and
 initiate the data connection.

 server site A HOST site which has a server-FTP process.

 server-TELNET A TELNET process which listens on a specified
 socket for an ICP initiated by a user-TELNET, and
 performs in accordance with the ARPANET TELNET
 Protocol.

 TELNET connections The full-duplex communication path between a
 user-TELNET and a server-TELNET. The TELNET
 connections are established via the standard
 ARPANET Initial Connection Protocol (ICP).

McKenzie [Page 5]

RFC 454 File Transfer Protocol July 1972

 type The data representation type used for data
 transfer and storage. Type implies certain
 transformations between the time of data storage
 and data transfer. The representation types
 defined in FTP are described in Section III.B.

 user A process on behalf of a human being or a human
 being wishing to obtain file transfer service.

 user site A HOST site satisfying any of the following
 conditions: 1) The site where a user is located,
 2) a site where a user-FTP process is located, 3)
 a site to which a data connection is made by a
 server. In the normal case, the sites defined by
 1, 2, and 3 are the same site, but nothing in FTP
 requires that this be so.

 user-FTP process A process or set of processes which perform the
 function of file transfer in cooperation with a
 server-FTP process. The user-FTP process 1)
 initiates the ICP (via a user-TELNET), 2)
 initiates FTP commands and 3) "listens" on the
 data socket for the data connection. In some
 obvious cases (use from TIPs and other mini-
 HOSTs) a user-FTP process will be subsumed under
 the term "user".

 user-TELNET A TELNET process which initiates an ICP to a
 specified server-TELNET socket, and performs in
 accordance with the ARPANET TELNET protocol.

II.B The FTP Model

 With the above definitions in mind, the following model (shown in
 Figure 1) may be diagramed for an FTP service.

 In the model described in Figure 1, the user-TELNET initiates the
 TELNET connections. Standard FTP commands are then generated by the
 user and transmitted to the server site via the TELNET connections.
 FTP commands are in ASCII, in accordance with NVT conventions and the
 TELNET protocol. Note that commands may be initiated by the user
 directly through the user-TELNET or via a user-FTP process. Standard
 replies are sent from the server to the user in response to the
 commands over the TELNET connections.

McKenzie [Page 6]

RFC 454 File Transfer Protocol July 1972

 The FTP commands specify the parameters for the data connection (data
 socket, byte size, transfer mode, representation type, and format)
 and the nature of file system operation (store, retrieve, append,
 delete, etc.). The user-FTP process or its designate should "listen"
 on the specified data socket, and it is the server’s responsibility
 to initiate the data connection and data transfer in accordance with
 the specified data connection parameters. It should be noted that
 the data socket need not be in the same HOST that initiates the FTP
 commands via the TELNET connections, but the user or his user-FTP
 process must ensure a "listen" on the specified data socket. A
 practical example of such file transfer to third HOSTs is a maxi-HOST
 user (who may actually be a TIP user) wishing to transmit a file to
 or from an I/O device attached to a TIP. It should also be noted
 that two data connections, one for send and the other for receive,
 may exist simultaneously.

 TELNET
 Connections
+-----+ +-------+ +------+ +------+ +-------+ +-----+
File	<->	Server-	<->	Server	<----------	User	<->	User-	<->	File
Sys		FTP		TELNET	FTP Cmds	TELNET		FTP		Sys-
-tem		Process			---------->			Process		tem
+-----+ | | +------+FTP Replies+------+ | | +-----+
 | | | |
 | |<------------------------------->|Data |
 | | Data Connection(s) |Socket |
 +-------+ +-------+
 |
 |
 +------+
 | |
 | USER |
 | |
 +------+

 Notes: 1. The data connection may be in either direction.

 2. The data connection need not exist all of the time.

 3. The distinctions between user-FTP and user-TELNET, and
 between server-FTP and server-TELNET may not be as
 clear-cut as shown above. For example, a user-TELNET may
 be directly driven by the user.

 FIGURE 1 Model for FTP Use

McKenzie [Page 7]

RFC 454 File Transfer Protocol July 1972

 The protocol requires that the TELNET connections be open while data
 transfer is in progress. It is the responsibility of the user to
 close the TELNET connections when finished using the FTP service.
 The server may abort data transfer if the TELNET connections are
 closed.

III. DATA TRANSFER FUNCTIONS

 Data and files are transferred only via the data connection. The
 transfer of data is governed by FTP data transfer commands received
 on the TELNET connections. The data transfer functions include
 establishing the data connection to the specified data socket in the
 specified HOST (using the specified byte size), transmitting and
 receiving data in the specified representation type and transfer
 mode, handling EOR and EOF conditions, and error recovery (where
 applicable).

III.A Establishing Data Connection

 The user site shall "listen" on the specified data socket, prior to
 sending a transfer request command. The FTP request command
 determines the direction of data transfer, and the socket number (odd
 or even) which is to be used in establishing the data connection.
 The server on receiving the appropriate store or retrieve request
 shall initiate the data connection to the specified user data socket
 in the specified byte size (default byte size is 8 bits), and send a
 reply indicating that file transfer may proceed. Prior to this
 reply, the server should send a reply indicating the server socket
 for the data connection. The user may use this server socket
 information to ensure the security of his data transfer. The server
 may send this reply either before or after initiating the data
 connection.

 The byte size for the data connection is specified by the BYTE
 command. It is not required by the protocol that servers accept all
 possible byte sizes. The use of various byte sizes is for efficiency
 in data transfer and servers may implement only those byte sizes for
 which their data transfer is efficient. It is, however, required
 that servers implement at least the byte size of 8 bits.

 After the data transfer is completed, it is the server’s
 responsibility to close the data connection, except when the user is
 sending the data. In stream mode the sender must close the data
 connection to indicate EOF, i.e., completion of the transfer.
 Closing the connection is a server option except under the following
 conditions:

McKenzie [Page 8]

RFC 454 File Transfer Protocol July 1972

 1) The server receives an abort command from the user.

 2) The socket or the byte size specification is changed by the
 user.

 3) The TELNET connections are closed.

 4) An irrecoverable error condition occurs.

 It should be noted that if none of the above conditions occur it is
 possible to maintain two simultaneous data connections, for send and
 receive.

III.B Data Representation and Storage

 Data is transferred from a storage device in sending HOST to a
 storage device in receiving HOST. Often it is necessary to perform
 certain transformations on the data because data storage representa-
 tions in the two systems are different. For example, NVT-ASCII has
 different data storage representations in different systems. PDP-10’
 s generally store NVT-ASCII as five 7-bit ASCII characters, left-
 justified in a 36-bit word. 360’s store NVT-ASCII as 8-bit EBCDIC
 codes. Multics stores NVT-ASCII as four 9-bit characters in a 36-bit
 word. It may be desirable to convert characters into the standard
 NVT-ASCII representation when transmitting text between dissimilar
 systems. The sending and receiving sites would have to perform the
 necessary transformations between the standard representation and
 their internal representations.

 A different problem in representation arises when transmitting binary
 data (not character codes) between HOST systems with different word
 lengths. It is not always clear how the sender should send data, and
 the receiver store it. For example, when transmitting 32-bit bytes
 from a 32-bit word-length system to a 36-bit word-length system, it
 may be desirable (for reasons of efficiency and usefulness) to store
 the 32-bit bytes right-justified in a 36-bit word in the latter sys-
 tem. In any case, the user should have the option of specifying data
 representation and transformation functions. It should be noted that
 FTP provides for very limited data type representations. Transforma-
 tions desired beyond this limited capability should be performed by
 the user directly or via the use of the Data Reconfiguration (DRS,
 RFC #138, NIC #6715). Additional representation types may be defined
 later if there is a demonstrable need.

 Data representations are handled in FTP by a user specifying a
 representation type. The type may also imply a transfer byte size.
 For example, in ASCII representation, the transfer byte size should
 be 8 bits, and any other byte size specification will result in

McKenzie [Page 9]

RFC 454 File Transfer Protocol July 1972

 cancellation of the transfer request. In image and Local Byte
 representations any byte size is possible. The following data
 representation types are currently defined in FTP:

 1. ASCII The sender converts data from its internal character
 representation to the standard NVT ASCII form. The
 receiver converts the data from the standard form to
 its own internal form. The data is transferred in
 the standard form. The transfer byte size must be 8
 bits. This type would be used for transfer of text
 files. This is the default type, and it is recom-
 mended that this type be implemented by all.

 2. EBCDIC The sender transfers data using the EBCDIC character
 code and 8-bit transfer byte size. This type may be
 used for efficient transfer of EBCDIC files between
 systems which use EBCDIC for their internal character
 representation.

 3. Image The sender transforms data from contiguous bits to
 bytes for transfer. The receiver transforms the
 bytes into bits, storing them contiguously indepen-
 dent of the byte size chosen for data transfer. With
 record structure and block mode, the server might
 need to pad each record for convenient storage. This
 padding is allowed at the end of a record, and should
 be remembered by the server so it will be stripped
 off when the file is retrieved by the user. The pad-
 ding transformation should be well publicized by the
 server in case the user processes his file at the
 server site. Typical uses for the Image type are
 transfer of executable programs between like
 machines, and transfer of binary (non-text) data. It
 is recommended that this type be implemented by all
 for some byte size, preferably including the 8 bit
 byte size.

 4. Local Byte This representation allows for efficient storage,
 use, and retrieval of data. The manner in which data
 is to be transformed depends on the byte size for
 data transfer, and the particular HOST being used.
 The transformation scheme for different byte size is
 to be well publicized by all server sites. This
 transformation shall be invertible (i.e., if a file
 is stored using a certain transfer byte size, an
 identical file must be retrievable using the same
 byte size and representation type). It is the user’s
 responsibility to keep track of the representation

McKenzie [Page 10]

RFC 454 File Transfer Protocol July 1972

 type and byte size used for his transfer. Typical
 uses of the Local Byte type are in efficient storage
 and retrieval of files, and transfer of structured
 binary data. This type may be identical to the Image
 type for byte size which are integral multiples of or
 factors of the computer word length.

 Representation type may also be affected by another attribute, the
 format. For example, some printers can use ASA (Fortran) vertical
 format control procedures to transform printed data of type ASCII or
 EBCDIC. Currently format may take one of two values.

 1. Unformatted The representation type as specified is unaffected by
 any format transformations. This is the default
 value.

 2. Printfile The server is to transform data of either ASCII or
 EBCDIC type in accordance with ASA (Fortran) vertical
 format control standards. The data is to be
 transferred in 8-bit bytes.

 A discussion of the ASA vertical format control appears in NWG/RFC
 189, Appendix C, and in Communications of the ACM, Vol. 7, No. 10, p.
 606, October 1964. According to the ASA vertical format control
 standards, the first character of a formatted record is not printed
 but determines vertical spacing as follow:

 Character Vertical Spacing before printing

 Blank One line
 0 Two lines
 1 To first line of the next page
 + No advance

 In addition to the above four, there are more characters (defined in
 Appendix C, RFC 189) which represent an IBM extension to the ASA
 standard.

 It should be noted that a serving host need not accept all represen-
 tation types and/or byte sizes, but it must inform the user request-
 ing an unacceptable type or size of this fact by sending an appropri-
 ate reply.

III.C. File Structure and Transfer Modes

 The only file structures supported directly in FTP at the present
 time are record structures. However, the use of record structures is
 not mandatory. A user with no record structure in his file should be

McKenzie [Page 11]

RFC 454 File Transfer Protocol July 1972

 able to store and retrieve his file at any HOST. A user wishing to
 transmit a record structured file must send the appropriate FTP
 ’STRU’ command (the default assumption is no record structure). A
 serving HOST need not accept record structures, but it must inform
 the user of this fact by sending an appropriate reply. Any record
 structure information in the data stream may subsequently be dis-
 carded by the receiver.

 All data transfers must end with an EOF. The EOF is defined by the
 data transfer mode. For files that have record structures, an EOR is
 also defined by the transfer mode. Only the transfer modes and
 representation type combinations that have EOR defined may be used
 for transfer of files with record structures. Records may be of zero
 length but they must be contained in file boundaries. The relation-
 ship between files and records is hierarchical but an EOF does not
 imply an EOR.

 The following data transfer modes are defined in FTP:

 1. Stream The file is transmitted as a stream of bytes of the
 specified byte size. The EOF is signaled by closing
 the data connection. Any representation type and
 byte size may be used in the stream mode with file
 structure, but use of record structure limits the
 type to ASCII or EBCDIC with or without Printfile
 format. The convention is that the ASCII character
 CR (Carriage Return, Code 15 (octal)) followed by LF
 (Line Feed, Code 12 (octal)) indicates an EOR for
 ASCII representation type, and the EBCDIC character
 NL (New Line, Code 15 (hex)) indicates an EOR for
 EBCDIC type. This is the default mode, and it is
 recommended that this mode be implemented by all.

 2. Text The file is ASCII text transmitted as a sequence of
 8-bit bytes in the ASCII representation type, and
 optional Printfile format. Record structures are
 allowed in this mode. The EOR and EOF are defined by
 the presence of special "TELNET-control" codes (,ost
 significant bit set to one) in the data stream. The
 EOR code is 192 (octal 300, hex CO). The EOF code is
 193 (octal 301, hex C1). The byte size for transfer
 is 8 bits.

 (For ASCII type, text and stream modes are almost identical.)

McKenzie [Page 12]

RFC 454 File Transfer Protocol July 1972

 Comparing the two, the advantages of "stream" mode are:

 1) The receiver need not scan the incoming bytes.

 2) It is usable with all data types.

 and the disadvantages are:
 1) Closing the data connection under error conditions can be
 misconstrued as an EOF in stream mode when in fact the data
 transfer was interrupted. In text mode the EOF is sent expli-
 citly.

 2) If record structure is specified in stream mode then CRLF
 implies EOR, and in order for CRLF to be sent as valid data it
 must be transformed, e.g., into CR NUL LF or LF CR.

 3. Block The file is transmitted as a series of data blocks
 preceded by one or more header bytes. The header
 bytes contain a count field, and descriptor code.
 The count field indicates the total length of the
 data block in bytes, thus marking the beginning of
 the next data block (there are no filler bits). The
 descriptor code defines last file block (EOF), last
 record block (EOR), restart marker (see Section
 III.D), or suspect data (i.e., the data being
 transferred is suspected of errors and is not reli-
 able). Record structures are allowed in this mode,
 and any representation type or byte size may be used.

 The header consists of the smallest integral number
 of bytes whose length is greater than or equal to 24
 bits. Only the _least_ significant 24 bits (right-
 justified) of header shall have information; the
 remaining most significant bits are "don’t care"
 bits. Of the 24 bits of header information, the 16
 low order bits shall represent byte count, and the 8
 high order bits shall represent descriptor codes as
 shown below.

 Integral data bytes >= 24
 +---------------+---------------+--------------+
 | Don’t care | Descriptor | Byte Count |
 | 0 to 231 bits | 8 bits | 16 bits |
 +---------------+---------------+--------------+

McKenzie [Page 13]

RFC 454 File Transfer Protocol July 1972

 The following descriptor codes are assigned:

 Code Meaning
 ---- -------
 0 An ordinary block of data.
 1 End of data block is EOR.
 2 End of data block is EOF.
 3 Suspected errors in data block.
 4 Data block is a restart marker.

 In the use of block mode it is possible for two or
 more conditions requiring different descriptor codes
 (suspected errors and either end of record or end of
 file) to exist simultaneously. Such a possibility
 may be handled by sending a separate EOR or EOF block
 with a zero byte count. (This is allowed by the pro-
 tocol.)

 The restart marker is embedded in the data stream as
 an integral number of 8-bit bytes (representing
 printable ASCII characters) right-justified in an
 integral number of data bytes greater than 8 bits.
 For example if the byte size is 7 bits, the restart
 marker byte would be one byte right-justified per two
 7-bit bytes as shown below:

 Two 7-bit bytes
 +----------+------------+
 | | Marker Char|
 | | 8 bits |
 +----------+------------+

 For byte size of 16 bits or more, two or more marker
 bytes shall be packed right-justified. The end of
 the marker may be delimited by the character SP (code
 32.). If marker characters do not exactly fit an
 integral byte, the unused character slots should con-
 tain the ASCII character SP (code 32.). For example,
 to transmit a six character marker in a 36-bit byte
 size, the following three 36-bit bytes would be sent:

McKenzie [Page 14]

RFC 454 File Transfer Protocol July 1972

 +-------------+-------------+---------------+
 | Don’t care | Descriptor | |
 | 12 bits | code=4 | Byte count=2 |
 +-------------+-------------+---------------+

 +----+---------+---------+--------+---------+
 | | Marker | Marker | Marker | Marker |
 | | 8 bits | 8 bits | 8 bits | 8 bits |
 +----+---------+---------+--------+---------+

 +----+---------+---------+--------+---------+
 | | Marker | Marker | SP | SP |
 | | 8 bits | 8 bits | 8 bits | 8 bits |
 +----+---------+---------+--------+---------+

 4. Hasp

 The file is transmitted as a sequence of 8-bit bytes
 in the standard Hasp-compressed data format (document
 to be issued by Bob Braden, UCLA). This mode
 achieves considerable compression of data for print
 files. Record structures are allowed in the Hasp
 mode.

 The following matrix summarizes the legal combinations of file
 transfer parameters. The decimal integers represent legal byte sizes
 for each particular STRU-MODE-TYPE-FORM grouping absence of a number
 implies illegality. Note that HASP mode is not included since it has
 never been defined.

 STRU F | R
 +-------------------------------+-----+-----+------+
 TYPE |\ MODE | | | |
 | \ | | | |
 | \ S T B | S | T | B |
 | FORM +--------+-----+---------+-----+-----+------+
 A | U | 8 | 8 | 8 | 8 | 8 | 8 |
 | +--------+-----+---------+-----+-----+------+
 | P | 8 | 8 | 8 | 8 | 8 | 8 |
 ----+------+--------+-----+---------+-----+-----+------+
 E | U | 8 | | 8 | 8 | | 8 |
 | +--------+-----+---------+-----+-----+------+
 | P | 8 | | 8 | 8 | | 8 |
 ----+------+--------+-----+---------+-----+-----+------+
 I | U | 1-255 | | 1-255 | | |1-255 |
 ----+------+--------+-----+---------+-----+-----+------+
 L | U | 1-255 | | 1-255 | | |1-255 |
 ----+------+--------+-----+---------+-----+-----+------+

McKenzie [Page 15]

RFC 454 File Transfer Protocol July 1972

III.D Error Recovery and Restart

 There is no provision for detecting bits lost or scrambled in data
 transfer. This issue is perhaps handled best at the NCP level where
 it benefits most users. However, a restart procedure is provided to
 protect user from system failures (such as failure of either HOST,
 FTP-process, or the IMP subnet).

 The restart procedure is defined only for the block mode of data
 transfer. It requires the sender of data to insert a special marker
 code in the data stream with some marker information. The marker
 information has meaning only to the sender, but must consist of
 printable ASCII characters. The printable ASCII characters are
 defined to be octal codes 41 through 176 (i.e., not including codes 0
 through 37 and the characters SP and DEL). The marker could
 represent a bit-count, a record-count, or any other information by
 which a system may identify a data checkpoint. The receiver of data,
 if it implements the restart procedure, would then mark the
 corresponding position of this marker in the receiving system, and
 return this information to the user.

 In the event of a system failure, the user can restart the data
 transfer by identifying the marker point with the FTP restart pro-
 cedure. The following examples illustrate the use of the restart
 procedure.

1. When server is the sender of data, the server-FTP process inserts
 an appropriate marker block in the data stream at a convenient
 data point. The user-FTP process, receiving the data, marks the
 corresponding data point in its file system and conveys the last
 known sender and receiver marker information to the user. In the
 event of system failure, the user or user-FTP process restarts
 the server at the last server marker by sending a restart command
 with the server’s marker code as its argument. The restart com-
 mand is transmitted over the TELNET connection and is immediately
 followed by the command (such as store or retrieve) which was
 being executed when the system failure occurred.

2. When user is the sender of data, the user-FTP process inserts the
 appropriate marker block in the data stream. The server-FTP pro-
 cess, receiving the data, marks the corresponding data point in
 its file system. The server does not store this marker but con-
 veys the last known sender and receiver marker information to the
 user over the TELNET connections by appropriate reply codes. The
 user or the user-FTP process then restarts transfer in a manner
 identical to that described in the first example.

McKenzie [Page 16]

RFC 454 File Transfer Protocol July 1972

IV. FILE TRANSFER FUNCTIONS

 The TELNET connections on which FTP commands and replies are
 transmitted are initiated by the user-FTP process via an ICP to a
 standard server socket. FTP commands are then transmitted from user
 to server, and replies are transmitted from server to user. The user
 file transfer functions involve sending the FTP commands, interpret-
 ing the replies received and transferring data over the data connec-
 tion in the specified manner. The server file transfer functions
 involve accepting and interpreting FTP commands, sending replies,
 setting up the data connection, and transferring data.

McKenzie [Page 17]

RFC 454 File Transfer Protocol July 1972

IV.A FTP Commands

 FTP commands are ASCII strings terminated by the ASCII character
 sequence CRLF (Carriage Return followed by Line Feed). The command
 codes themselves are ASCII alphabetic characters terminated by the
 ASCII character ’space’ (octal code 40). For convenience, the com-
 mand codes are defined to be four (or less) ASCII alphanumeric char-
 acters (including both upper and lower case alphabetic characters).
 The command codes and the semantics of commands are described in this
 section, but the detailed syntax of commands is specified in Section
 V.B, the reply sequences are discussed in Section V.C, and scenarios
 illustrating the use of commands are provided in Section V.D.

 FTP commands may be partitioned as those specifying access-control
 identifiers, data transfer parameters, or FTP service requests. Cer-
 tain commands (such as ABOR, STAT, BYE) may be sent over the TELNET
 connections while a data transfer is in progress. Some servers may
 not be able to monitor the TELNET and data connections simultane-
 ously, in which case these commands should be preceded by a TELNET
 SYNC to awaken the server. (For other servers this may not be neces-
 sary and the SYNC will be ignored.)

IV.A.1 Access Control Commands

 The following commands specify access control identifiers (command
 codes are shown in parentheses).

 User name (USER) - The argument field is an ASCII string identify-
 ing the user. The user identification is that which is required
 by the server for access to its file system. This command will
 normally be the first command transmitted by the user after the
 TELNET connections are made (some servers may require this).
 Additional identification information in the form of a password
 and/or an account command may also be required by some servers.
 Servers may allow a new USER command to be entered at any point in
 order to change the accounting information. All parameters are
 unchanged and any file transfer in progress is completed under the
 old account.

 Password (PASS) - The argument field is an ASCII string identify-
 ing the user’s password. This command must be immediatly preceded
 by the user name command, and, for some sites, completes the user’
 s identification for access control. Since password information
 is quite sensitive, it is desirable in general to "mask" it or
 suppress type out. It appears that the server has no foolproof
 way to achieve this. It is therefore the responsibility of the
 user-FTP process to hide the sensitive password information.

McKenzie [Page 18]

RFC 454 File Transfer Protocol July 1972

 Account (ACCT) - The argument field is an ASCII string identifying
 the user’s account. The command is not necessarily related to the
 USER command, as some sites may require an account for login and
 others only for specific access, such as storing files. In the
 latter case the command may arrive at any time. There are two
 reply codes to differentiate these cases for the automaton: When
 account information is required for login and the server receives
 another command which he buffers, the legal response is reply code
 331 when an account is required for a specific transfer requested,
 the reply code 433 is returned and the request command is flushed.

 Reinitialize (REIN) - This command terminates a USER, flushing all
 I/O and account information, except to allow any transfer in pro-
 gress to be completed. All parameters are reset to the default
 setting and the TELNET connection is left open. A USER command is
 expected to follow.

 Logout (BYE) - This command terminates a USER and if file transfer
 is not in progress, closes the TELNET connection. If file
 transfer is in progress, the connection will remain open for
 result response and will then close. For "hot card-reader" mode
 the REIN command should be used instead.

 An unexpected close on the TELNET connection will cause the server
 to take the effective action of an abort (ABOR) and a logout
 (BYE).

IV.A.2 Transfer Parameter Commands

 All data transfer parameters have default values, and the commands
 specifying data transfer parameters are required only if the default
 parameter values are to be changed. The default value is the last
 specified value, or if no value has been specified, the standard
 default value as stated here. This implies that the server must
 "remember" the applicable default values. The commands may be in any
 order except that they must precede the FTP service request. The
 following commands specify data transfer parameters

 Byte size (BYTE) - The argument is an ASCII-represented decimal
 integer (1 through 255), specifying the byte size for the data
 connection. The default byte size is 8 bits. The byte size is
 always 8 bits in the ASCII and EBCDIC representation types. A
 server may reject specific byte size/type combinations by sending
 an error reply code in response to a transfer request command.

 Data socket (SOCK) - The argument is a HOST-socket specification
 for the data socket to be used in data connection. There may be
 two data sockets, one from server to user and the other for user

McKenzie [Page 19]

RFC 454 File Transfer Protocol July 1972

 to server data transfer. An odd socket number defines a send
 socket and an even socket number defines a receive socket. The
 default HOST is the user HOST to which TELNET connections are
 made. The default data sockets are (U+4) and (U+5) where U is the
 socket number used in the TELNET ICP and the TELNET connections
 are on sockets (U+2) and (U+3).

 Listen (LSTN) - The argument is a single ASCII character code to
 specify the direction of the socket that the server must allocate
 for use as a data connection. The server is to "listen" on the
 allocated socket when an appropriate transfer command is given.
 The following codes are assigned:

 S - send
 R - receive

 Representation Type (TYPE) - The argument is a single ASCII char-
 acter code specifying the representation types described in Sec-
 tion III.B. The following codes are assigned for type:

 A - ASCII
 I - Image
 L - Local Byte
 E - EBCDIC

 The default representation type is ASCII.

 Format (FORM) - The argument is a single ASCII character code
 specifying the formats described in Section III.B. The following
 codes are assigned for format:

 U - Unformatted
 P - Printfile

 The default format is Unformatted.

 File Structure (STRU) - The argument is a single ASCII character
 code specifying file structure described in Section III.C. The
 following codes are assigned for structure:

 F - File (no ecord structure)
 R - Record structure

 The default structure is File (ie. no records).

 Transfer Mode (MODE) - The argument is a single ASCII character
 code specifying the data transfer modes described in Section
 III.C. The following codes are assigned for transfer modes:

McKenzie [Page 20]

RFC 454 File Transfer Protocol July 1972

 S - Stream (bytes, close is EOF)
 B - Block (header with descriptor and count)
 T - Text (TELNET control code for EOR, EOF)
 H - Hasp (specially formatted compressed data)

 The default transfer mode is Stream.

IV.A.3 FTP Service Commands

 The FTP service commands define the file transfer or the file system
 function requested by the user. The argument of an FTP service com-
 mand will normally be a pathname. The syntax of pathnames must con-
 form to server site conventions (with standard defaults applicable),
 except that ASCII characters must be used (in conformance with the
 TELNET Protocol). The suggested default handling is to use the last
 specified device, directory or file name, or the standard default
 defined for local users. The command may be in any order except that
 a "rename from" command, must be followed by a "rename to" command,
 and some servers may require an "allocate" command before a "store"
 command. The data, when transferred in response to FTP service
 commands, shall always be sent over the data connection. The follow-
 ing commands specify FTP service requests:

 Retrieve (RETR) - This command achieves the transfer of a copy of
 the file specified in the pathname, from server to user site. The
 status and contents of the file at the server site shall be unaf-
 fected.

 Store (STOR) - This command achieves the transfer of a copy of a
 file from user to server site. If the file specified in the path-
 name exists at the server site, then its contents shall be
 replaced by the contents of the file being transferred. A new
 file is created at the server site if the file specified in the
 pathname does not already exist.

 Append (with create) (APPE) - This command achieves the transfer
 of data from using to serving site. If the file specified in the
 pathname exists at the server site, then the data transferred
 shall be appended to that file, otherwise the file specified in
 the pathname shall be created at the server site.

 Allocate (ALLO) - This command may required by some servers to
 reserve sufficient storage to accommodate the new file to be
 transferred. The argument field shall be a decimal integer
 representing the number of bytes (of size specified by the byte
 size command) of storage to be reserved for the file. This

McKenzie [Page 21]

RFC 454 File Transfer Protocol July 1972

 command shall be followed by a store or append command. The ALLO
 command should be treated as a NO-OP (no operation) by those
 servers which do not require that the maximum size of the file be
 declared beforehand.

 Restart (REST) - The argument field represents the server marker
 at which file transfer is to be restarted. This command does not
 cause file transfer but "spaces" over the file to the specified
 data checkpoint. This command shall be immediately followed by
 the appropriate FTP service command which shall cause file
 transfer to resume.

 Rename from - (RNFR) - This command specifies the file which is to
 be renamed. This command must be immediately followed by a
 "rename to" command specifying the new file pathname.

 Rename to (RNTO) - This command specifies the new pathname of the
 file specified in the immediately preceding "rename from" command.
 Together the two commands cause a file to be renamed.

 Abort (ABOR) - This command indicates to the server to abort the
 previous FTP service command and any associated transfer of data.
 The abort command should be preceded by the TELNET SYNCH condition
 (indicated by the combination of the DATA MARK and the INS). No
 action is to be taken if the previous command has been completed
 (including data transfer). The TELNET connections are not to be
 closed by the server, but the data connection may be closed. An
 appropriate reply should be sent by the server.

 Delete (DELE) - This command causes the file specified in the
 pathname to be deleted at the server site. If an extra level of
 protection is desired (such as the query, "Do you really wish to
 delete?"), it should be provided by the user-FTP process.

 List (LIST) - This command causes a list to be sent from server to
 user site. If the pathname specifies a directory, the server
 should transfer a list of files in the specified directory. If
 the pathname specifies a file then server should send current
 information on the file. A null argument implies the user’s
 current working or default directory. The data transfer is over
 the data connection in type ASCII or type EBCDIC. (It is the user
 ’s responsibility to ensure the correct parameters.)

 NList (NLST) - This command causes a directory listing to be sent
 from server to user site. The pathname should specify a directory
 and the server will return a stream of names of files and no other
 information. The data will be transferred in ASCII or EBCDIC type
 over the data connection as valid pathname strings separated by

McKenzie [Page 22]

RFC 454 File Transfer Protocol July 1972

 CRLF. This command will allow automatic copying of an entire
 directory when used with the appropriate transfer commands.

 Status (STAT) - This command shall cause a status response to be
 sent over the TELNET connection in form of a reply. The command
 may be sent during a file transfer (preceded by a TELNET SYNC) in
 which case the server will respond with the status of the opera-
 tion in progress, or it may be sent between file transfers. In
 the latter case the command may have an argument field such as a
 pathname. If the argument is a pathname, the command is analogous
 to the "list" command except that data shall be transferred in
 ASCII on the TELNET connection. If a partial pathname is given,
 the server may respond with a list of file names or attributes
 associated with that specification. If no argument is given, the
 server should return general status information about the server
 FTP process. This should include current values of all transfer
 parameters and the status of connections.

 Help (HELP) - This command shall cause the server to send helpful
 information regarding its implementation status over the TELNET
 connection to the user. The command may take an argument (e.g.
 any command name) and return more specific information as a
 response. The reply is type 100, general system status. It is
 suggested that HELP be allowed before entering a USER command.

 Mail File (MLFL) - The intent of this command is to enable a user
 site to mail data (in form of a file) to another user at the
 server site. It should be noted that the files to be mailed are
 transmitted via the data connection in ASCII or EBCDIC type. (It
 is the user’s responsibility to ensure that the type is correct.)
 These files should be appended to the destination user’s mail by
 the server in accordance with serving HOST mail conventions. The
 mail may be marked as sent from the particular using HOST and the
 user specified by the ’USER’ command. The argument field may con-
 tain one or more system or NIC idents (it is recommended that mul-
 tiple ident be allowed so the same mail can easily be sent to
 several users), or it may be empty. If the argument field is
 empty or blank (one or more spaces), then the mail is destined for
 a printer or other designated place for site mail. A NIC ident
 refers to the standard identification described in the NIC Direc-
 tory of Network Participants. A serving host may keep a table
 mapping NIC indents into system idents, although NIC idents are
 not required in the implementation. A system ident is the user’s
 normal identification at the serving host. The use of system
 idents would allow a network user to send mail to other users who
 do not have NIC identification but whose system ident is known.

McKenzie [Page 23]

RFC 454 File Transfer Protocol July 1972

 Mail (MAIL) - This command allows a user to send mail that is not
 in a file over the TELNET connection. The argument field may con-
 tain one or more system or NIC idents, or it may be empty. The
 idents are defined as above for the MLFL command. After the
 ’MAIL’ command is received, the server is to treat the following
 lines as text of the mail sent by the user. The mail text is to
 be terminated by a line containing only a single period, that is,
 the character sequence ".CRLF" in a new line. It is suggested
 that a modest volume of mail service should be free; i.e., it may
 be entered before a USER command.

IV.A.4 Miscellaneous Commands

 NoOP (NOOP) - This command does not affect any parameters or pre-
 viously entered command. The server simply sends a no-op reply.

 Quote (QUOT) - This command allows the user to talk directly to
 the FTP-server. After parsing this command, the user-FTP process
 will pass without examination all succeeding liners until the NQUO
 command is received. Between these two commands the server will
 respond appropriately to his implementation and the user’s
 requests.

 NoQuote (NQUO) - This command returns the user and server
 processes to normal interactive mode. Both QUOT and NQUO have
 reply codes to be sent by th server process to the user process to
 ensure agreement on the current mode.

 The quote commands provide a convenient method of testing server-
 implemented experimental commands. The names of the latter should
 begin with an X, and can be listed in the system HELP reply. It
 should be noted that the official command set is expandable; sugges-
 tions should go first to Alexander A. McKenzie (BBN).

IV.B FTP Replies

 The server sends FTP replies over the TELNET connection in response
 to user FTP commands. The FTP replies constitute the acknowledgment
 or completion code (including errors). The FTP-server replies are
 formatted for human or program interpretation. Single line replies
 consist of a leading three-digit numeric code followed by a space,
 followed by a one-line text explanation of the code. For replies
 that contain several lines of text, the first line will have a lead-
 ing three-digit numeric code followed immediately by the ASCII char-
 acter "-" (Hyphen, Code 55 (octal)) and possibly some text. All
 succeeding continuation lines except the last are constrained not to
 begin with three digits; the last line must repeat the numeric code
 of the first line and be followed immediately by a space.

McKenzie [Page 24]

RFC 454 File Transfer Protocol July 1972

 For example:

 100-First Line
 Continuation Line
 Another Line
 100 Last Line

 The numeric codes are assigned by groups and for ease of interpreta-
 tion by programs in a manner consistent with other protocols such as
 the RJE protocol. The three digits of the code are to be interpreted
 as follows:

 a) The first digit specifies type of response as indicated below:

 000 These replies are purely informative and constitute neither a
 positive nor a negative acknowledgment.

 1xx Informative replies to status inquiries. These constitute a
 positive acknowledgment to the status command.

 2xx Positive acknowledgment of previous command or other success-
 ful action.

 3xx Incomplete information. Activity cannot proceed without
 further specification and input.

 4xx Unsuccessful reply. The request is correctly specified but
 the server is unsuccessful in correctly fulfilling it.

 5xx Incorrect or illegal command. The command or its parameters
 were invalid or incomplete from a syntactic viewpoint, or the
 command is inconsistent with a previous command. The command
 in question has been completely ignored.

 6xx-9xx Reserved for future expansion.

McKenzie [Page 25]

RFC 454 File Transfer Protocol July 1972

 b) The second digit specifies the general category to which the
 response refers:

 x00-x29 General purpose replies, not assignable to other
 categories.

 x30 Primary access. Informative replies to the "log-on" attempt.

 x40 Secondary access. The primary server is commenting on its
 ability to access a secondary service.

 x5x FTP results

 x6x RJE results.

 x7x-x9x Reserved for future expansion.

 c) The final digit specifies a particular message type. Since the
 code is designed for an automation process to interpret, it is
 not necessary for every variation of a reply to have a unique
 number. Only the basic meaning of replies need have unique
 numbers. The text of a reply can explain the specific reason for
 that reply to a human user.

 Each TELNET line delimited by a numeric code and CRLF (or group
 of text lines bounded by coded lines) that is sent by the server
 is intended to be a complete reply message. It should be noted
 that the text of replies is intended for a human user. Only the
 reply codes and in some instances the first line of text are
 intended for programs.

The assigned reply codes relating to FTP are:

000 General information message (site, time of day, etc.).
010 Message from system operator.
030 Server availability information.
050 FTP commentary or user information.
100 System status reply.
110 System busy doing...
150 File status reply
151 Directory listing reply.
200 Last command received correctly.
201 An ABORT has terminated activity, as requested.
202 Abort request ignored, no activity in progress.
230 User is "logged in". May proceed.
231 User is "logged out". Service terminated.
232 Logout command noted, will complete when transfer done.
233 User is "logged out". Parameters reinitialized.

McKenzie [Page 26]

RFC 454 File Transfer Protocol July 1972

250 FTP file transfer started correctly.
251 FTP Restart-marker reply.

 Text is : MARK yyyy = mmmm
 where yyyy is user’s data stream marker (yours)
 and mmmm is server’s equivalent marker (mine)
 (Note the spaces between the markers and ’=’)

252 FTP transfer completed correctly.
253 Rename completed.
254 Delete completed.
255 FTP server data socket reply

 Text is: SOCK nnnn
 where nnnn is a decimal integer representing
 the server socket for data connection

256 Mail completed.
300 Connection greeting message, awaiting input.
301 Current command incompleted (no CRLF for long time).
330 Enter password
331 Enter account (if account required as part of login
 sequence).
350 Enter mail, terminate by a line with only a ’.’
400 This service not implemented.
401 This service not accepting user now, goodbye.
430 Log-on time or tries exceeded, goodbye.
431 Log-on unsuccessful. Usre and/or password invalid.
432 User not valid for this service.
433 Cannot transfer files without valid account. Enter account.
434 Log-out forced by operator action. Phone site.
435 Log-out forced by system problem.
436 Service shutting down, goodbye.
450 FTP: File not found.
451 FTP: File access denied to you.
452 FTP: File transfer incomplete, data connection closed.
453 FTP: File transfer incomplete, insufficient storage space.
454 FTP: Cannot connect to your data socket.
455 FTP: File system error not covered by other reply codes.
456 FTP: Name duplication rename failed.
457 FTP: Transfer parameters in error.
500 Last command line completely unrecognized.
501 Syntax of last command is incorrect.
502 Last command incomplete, parameters missing.
123456789012345678901234567890123456789012345678901234567890123456789012
503 Last command invalid (ignored), illegal parameter combination.
504 Last command invalid, action not possible at this time.
505 Last command conflicts illegally with previous command(s).

McKenzie [Page 27]

RFC 454 File Transfer Protocol July 1972

506 Requested action not implemented by the server.
507 Catchall error reply.
550 Bad pathname specification (e.g., syntax error).

V. DECLARATIVE SPECIFICATIONS

 In order to make FTP workable without needless error messages, the
 following minimum implementation is required for servers:

TYPE -- ASCII (with 8-bit bytes)
 MODE -- Stream
 STRUCTURE -- File
 Record (with ASCII type and CRLF for EOR)
 FORM -- Unformatted
 COMMANDS -- USER, BYE, SOCK
 TYPE, BYTE, MODE, STRU, FORM
 for the default values
 RETR, STOR
 NOOP

 The initial default values for transfer parameters are:

 TYPE -- ASCII
 BYTE -- 8
 MODE -- Stream
 STRU -- File
 FORM -- Unformatted

V.A Connections

 The server-FTP process at the server site shall "listen" on Socket 3,
 via its server-TELNET. The user or user-FTP process at the user site
 shall initiate the full-duplex TELNET connections via its user-TELNET
 performing the ARPANET standard initial connection protocol (ICP) to
 server socket 3. Servers may specify that interaction over the TEL-
 NET connections be line-at-a-time with local echo. The server is not
 obliged to provide remote echo and may ignore TELNET control charac-
 ters; he should not, however, return error response to the latter.
 All editing of command lines similarly must be local. The TELNET
 connections shall be closed by the user site upon completion of use
 and receipt of the last server reply.

 The user site must "listen" on the specified data socket or sockets
 (a send and/or a receive socket). The server site shall initiate the
 data connection using the specified data socket and byte size. The
 direction of data connection and the data socket used shall be

McKenzie [Page 28]

RFC 454 File Transfer Protocol July 1972

 determined by the FTP service command. The server shall send a reply
 to the user indicating the server data socket so that the user may
 ensue the security of data transfer. This can be done at any time
 prior to the first transfer of data over a data connection. It
 should be emphasized that the user-FTP should not wait for a 255
 (server data socket) reply before doing the "listen", since there is
 no guarantee that the reply will arrive before the user site receives
 the initiating RFC. The security check can be done when the reply
 arrives and the data connection closed if it was made to a socket
 other than the one specified.

 The data connection shall be closed by the server site under the con-
 ditions described in Section III.A. If the server wishes to close
 the connection in modes where that is not required, it is recommended
 that the close be sent immediately after the file transfer is com-
 pleted rather than after a new transfer command is received, because
 the user or server may have to test the state of the socket before
 doing a "listen" or "init". The server should in general send a
 reply before closing the data connection to avoid problems at the
 user end, though, for reasons stated above, the user-FTP should not
 wait for the reply before doing his close.

V.B Commands

 The commands are ASCII character strings transmitted over the TELNET
 connections as described in section IV.A. The command functions and
 semantics are described in sections IV.A.1, IV.A.2, IV.A.3, and
 IV.A.4. The command syntax is specified here.

 The commands begin with a command code followed by an argument field.
 The command codes are four or less ASCII alphabetic characters.
 Upper and lower case alphabetic characters are to be treated identi-
 cally. Thus any of the following may represent the retrieve command:

 RETR Retr retr ReTr rETr

 This also applies to any symbols representing parameters values, such
 as A or a for ASCII TYPE. The command codes and the argument fields
 are separated by one or more spaces.

 The argument field consists of a variable length ASCII character
 string ending with the character sequence CRLF (Carriage Return
 immediately followed by Line Feed). In the following section on syn-
 tax it should be stressed that all characters in the argument field
 are ASCII characters. Thus a decimal integer shall mean an ASCII
 represented decimal integer.

McKenzie [Page 29]

RFC 454 File Transfer Protocol July 1972

 The following are all the currently defined FTP commands:

 USER <username> CRLF

 PASS <password> CRLF

 ACCT <acctno> CRLF

 REIN CRLF

 BYE CRLF

 BYTE <byte size> CRLF

 SOCK <HOST-socket> CRLF

 LSTN <direction> CRLF

 TYPE <type code> CRLF

 FORM <form code> CRLF

 STRU <structure code> CRLF

 MODE <mode code> CRLF

 RETR <pathname> CRLF

 STOR <pathname> CRLF

 APPE <pathname> CRLF

 ALLO <decimal integer> CRLF

 REST <marker> CRLF

 RNFR <pathname> CRLF

 RNTO <pathname> CRLF

 ABOR CRLF

 DELE <pathname> CRLF

 LIST <pathname> CRLF

 NLST <pathname> CRLF

McKenzie [Page 30]

RFC 454 File Transfer Protocol July 1972

 STAT <pathname> CRLF

 HELP <string> CRLF

 MLFL <users> CRLF

 MAIL <users> CRLF

 NOOP CRLF

 QUOT CRLF

 NQUO CRLF

 The syntax of the above argument fields (using BNF notation where
 applicable) is:

 <username> ::= <string>

 <password> ::= <string>

 <acctno> ::= <string>

 <string> ::= <empty>/<char>/<char><string>

 <char> ::= any of the 128 ASCII characters except CR and LF.

 <marker> ::= <pr string>

 <pr string> ::= <empty>/<pr char>/<pr char> <pr string>

 <pr char> ::= any ASCII code 33 through 126

 <byte size> ::= any decimal integer 1 through 255.

 <HOST-socket> ::= <socket>/HOST number>,<socket>

 <HOST number> ::= a decimal integer specifying an ARPANET HOST

 <socket> ::= decimal integer between 0 and (2**32)-1

 <direction> ::= S/R

 <form code> ::= U/P

 <type code> ::= A/E/I/L

 <structure code> ::= F/R

McKenzie [Page 31]

RFC 454 File Transfer Protocol July 1972

 <mode code> ::= S/B/T/H

 <pathname> ::= <string>

 <decimal integer> ::= <digit>/<digit><decimal integer>

 <digit> ::= 0|1|2|3|4|5|6|7|8|9

 <empty> ::= the null string (specifies use the default).

 <users> ::= <user>|<user,<users>

 <user> ::= <empty>|<NIC ident>|<sys ident>

 <NIC ident> ::= <string>

 <sys ident> ::= <string>

V.C Sequencing of Commands and Replies

 The communication between the user and server is intended to be an
 alternating dialogue. As such, the user issues an FTP command and
 the server responds with a prompt primary reply. The user should
 wait for this initial primary success or failure response before
 sending further commands.

 A second type of reply is sent asynchronously with respect to user
 commands. These replies may, for example, report on the progress or
 completion of file transfer and as such are secondary replies to file
 transfer commands.

 The third class of replies are informational and spontaneous replies
 which may arrive at any time. These replies are listed below as
 spontaneous.

McKenzie [Page 32]

RFC 454 File Transfer Protocol July 1972

COMMAND-REPLY CORRESPONDENCE TABLE

COMMAND SUCCESS FAIL
------- ------- ----
USER 230,330 430-432,500-505,507
PASS 230,331 430-432,500-507
ACCT 230 430-432,500-507
REIN 232,233 401,436,500-507
 Secondary Reply 300
BYE 231,232 430-432,500-505,507
BYTE 200,331 500-507
SOCK 200,331 500-505,507
LSTN 255,331 500-507
TYPE 200,331 500-507
FORM 200,331 500-507
STRU 200,331 500-507
MODE 200,331 500-507

RETR 250,331 433,450,451,454,455,500-505,507,550
 Secondary Reply 252 452
STOR 250,331 433,451,454,455,457,500-505,507,550
 Secondary Reply 252 452,453
APPE 250,331 433,451,454,455,457,500-507,550
 Secondary Reply 252 452,453
ALLO 200,331 500-507
REST 200,331 500-507
RNFR 200,331 433,450,451,455,500-507,550
RNTO 253,331 433,450,451,455,456,500-505,507,550
ABOR 201,202,331 500-507
DELE 254,331 433,450,451,455,500-507,550
LIST 250,331 433,450,451,454,455,457,500-507,550
 Secondary Reply 252 452
NLST 250,331 433,450,451,454,455,457,500-507
 Secondary Reply 252 452
STAT 100,110,150, 450,451,454,455,500-507,550
 151,331
HELP 000,030,050, 500-507
 331
MLFL 250,331 433,450,451,454,455,457,500-507
 Secondary Reply 252 452,453
MAIL 331,350 433,450,451,455,500-507
 Secondary Reply 256
NOOP 200 500-505,507
QUOT 200,331 500-507
NQUO 200 500-505,507

Spontaneous 0xx,300,301 400,401,434-436
Replies 251,255

McKenzie [Page 33]

RFC 454 File Transfer Protocol July 1972

V.D Typical FTP Scenarios

 1. TIP User wanting to transfer file from HOST X to local printer:

 a) TIP user opens TELNET connections by ICP to HOST X, socket 3.

 b) The following commands and replies are exchanged:

 TIP HOST X
 --- ------

 USER username CRLF ---------->
 <----------330 Enter Password CRLF

 PASS password CRLF ---------->
 <----------230 User logged in CRLF

 SOCK 65538 CRLF ---------->
 <----------200 Command received OK CRLF

 RETR this.file CRLF ---------->
 <----------255 SOCK 5533 CRLF

 (HOST X initiates data connection to
 TIP socket 65538, i.e., PORT 1 receive)

 <----------250 File transfer started

 BYE CRLF ----------------->
 <----------252 File transfer completed

 c) HOST X closes the TELNET and data connections.

 Note: The TIP user should be in line mode.

 2. User at HOST U wanting to transfer files to/from HOST S:

 In general the user would communicate to the server via a mediat-
 ing user-FTP process. The following may be a typical scenario.
 The user-FTP prompts are shown in parentheses, ’---->’ represents
 commands from HOST U to HOST S, and ’<----’ represents replies
 from HOST S to HOST U.

McKenzie [Page 34]

RFC 454 File Transfer Protocol July 1972

Local Commands by User Action Involved
---------------------- ---------------

ftp (host) multics CR ICP to HOST S, socket 3,
 establishing TELNET connections.
username Doe CR USER Doe CRLF ---->
 <---- 330 password CRLF
password mumble CR PASS mumble CRLF ---->
 <---- 230 Doe logged in. CRLF
retrieve (local type) ASCII CR
(local pathname) test 1 CR User-FTP opens local file in ASCII.
(for.pathname) test.p11 CR RETR test.p11 CRLF
 <---- 255 SOCK 1233 CRLF
 Server makes data connection to (U+4).
 <---- 250 File transfer starts CRLF
 <---- 252 File transfer complete CRLF
type ImageCR TYPE I CRLF ---->
 <---- 200 Command OK CRLF
byte 36CR BYTE 36 CRLF ---->
 <---- 200 Command OK CRLF
store (local type) image CR
(local pathname) file dump CR User-FTP opens local file in Image.
(for.pathname) >udd>cn>fd CR STOR >udd>cn>fd CRLF ---->
 <---- 451 Access denied CRLF
terminate <---- 231 Doe logged out CRLF
 Server closes all connections.

 [This RFC was put into machine readable form for entry]
 [into the online RFC archives by Via Genie 03/00]

McKenzie [Page 35]

