
Network Working Group JH. Song
Request for Comments: 4493 R. Poovendran
Category: Informational University of Washington
 J. Lee
 Samsung Electronics
 T. Iwata
 Nagoya University
 June 2006

 The AES-CMAC Algorithm

Status of This Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard of any kind. Distribution of this
 memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2006).

Abstract

 The National Institute of Standards and Technology (NIST) has
 recently specified the Cipher-based Message Authentication Code
 (CMAC), which is equivalent to the One-Key CBC MAC1 (OMAC1) submitted
 by Iwata and Kurosawa. This memo specifies an authentication
 algorithm based on CMAC with the 128-bit Advanced Encryption Standard
 (AES). This new authentication algorithm is named AES-CMAC. The
 purpose of this document is to make the AES-CMAC algorithm
 conveniently available to the Internet Community.

Song, et al. Informational [Page 1]

RFC 4493 The AES-CMAC Algorithm June 2006

Table of Contents

 1. Introduction ..2
 2. Specification of AES-CMAC3
 2.1. Basic Definitions ..3
 2.2. Overview ...4
 2.3. Subkey Generation Algorithm5
 2.4. MAC Generation Algorithm7
 2.5. MAC Verification Algorithm9
 3. Security Considerations ..10
 4. Test Vectors ...11
 5. Acknowledgement ..12
 6. References ...12
 6.1. Normative References12
 6.2. Informative References12
 Appendix A. Test Code ...14

1. Introduction

 The National Institute of Standards and Technology (NIST) has
 recently specified the Cipher-based Message Authentication Code
 (CMAC). CMAC [NIST-CMAC] is a keyed hash function that is based on a
 symmetric key block cipher, such as the Advanced Encryption Standard
 [NIST-AES]. CMAC is equivalent to the One-Key CBC MAC1 (OMAC1)
 submitted by Iwata and Kurosawa [OMAC1a, OMAC1b]. OMAC1 is an
 improvement of the eXtended Cipher Block Chaining mode (XCBC)
 submitted by Black and Rogaway [XCBCa, XCBCb], which itself is an
 improvement of the basic Cipher Block Chaining-Message Authentication
 Code (CBC-MAC). XCBC efficiently addresses the security deficiencies
 of CBC-MAC, and OMAC1 efficiently reduces the key size of XCBC.

 AES-CMAC provides stronger assurance of data integrity than a
 checksum or an error-detecting code. The verification of a checksum
 or an error-detecting code detects only accidental modifications of
 the data, while CMAC is designed to detect intentional, unauthorized
 modifications of the data, as well as accidental modifications.

 AES-CMAC achieves a security goal similar to that of HMAC [RFC-HMAC].
 Since AES-CMAC is based on a symmetric key block cipher, AES, and
 HMAC is based on a hash function, such as SHA-1, AES-CMAC is
 appropriate for information systems in which AES is more readily
 available than a hash function.

 This memo specifies the authentication algorithm based on CMAC with
 AES-128. This new authentication algorithm is named AES-CMAC.

Song, et al. Informational [Page 2]

RFC 4493 The AES-CMAC Algorithm June 2006

2. Specification of AES-CMAC

2.1. Basic Definitions

 The following table describes the basic definitions necessary to
 explain the specification of AES-CMAC.

 x || y Concatenation.
 x || y is the string x concatenated with the string
 y.
 0000 || 1111 is 00001111.

 x XOR y Exclusive-OR operation.
 For two equal length strings, x and y,
 x XOR y is their bit-wise exclusive-OR.

 ceil(x) Ceiling function.
 The smallest integer no smaller than x.
 ceil(3.5) is 4. ceil(5) is 5.

 x << 1 Left-shift of the string x by 1 bit.
 The most significant bit disappears, and a zero
 comes into the least significant bit.
 10010001 << 1 is 00100010.

 0^n The string that consists of n zero-bits.
 0^3 means 000 in binary format.
 10^4 means 10000 in binary format.
 10^i means 1 followed by i-times repeated
 zeros.

 MSB(x) The most-significant bit of the string x.
 MSB(10010000) means 1.

 padding(x) 10^i padded output of input x.
 It is described in detail in section 2.4.

 Key 128-bit (16-octet) long key for AES-128.
 Denoted by K.

 First subkey 128-bit (16-octet) long first subkey,
 derived through the subkey
 generation algorithm from the key K.
 Denoted by K1.

Song, et al. Informational [Page 3]

RFC 4493 The AES-CMAC Algorithm June 2006

 Second subkey 128-bit (16-octet) long second subkey,
 derived through the subkey
 generation algorithm from the key K.
 Denoted by K2.

 Message A message to be authenticated.
 Denoted by M.
 The message can be null, which means that the length
 of M is 0.

 Message length The length of the message M in octets.
 Denoted by len.
 The minimum value of the length can be 0. The
 maximum value of the length is not specified in
 this document.

 AES-128(K,M) AES-128(K,M) is the 128-bit ciphertext of AES-128
 for a 128-bit key, K, and a 128-bit message, M.

 MAC A 128-bit string that is the output of AES-CMAC.
 Denoted by T.
 Validating the MAC provides assurance of the
 integrity and authenticity of the message from
 the source.

 MAC length By default, the length of the output of AES-CMAC is
 128 bits. It is possible to truncate the MAC.
 The result of the truncation should be taken in most
 significant bits first order. The MAC length must be
 specified before the communication starts, and
 it must not be changed during the lifetime of the
 key.

2.2. Overview

 AES-CMAC uses the Advanced Encryption Standard [NIST-AES] as a
 building block. To generate a MAC, AES-CMAC takes a secret key, a
 message of variable length, and the length of the message in octets
 as inputs and returns a fixed-bit string called a MAC.

 The core of AES-CMAC is the basic CBC-MAC. For a message, M, to be
 authenticated, the CBC-MAC is applied to M. There are two cases of
 operation in CMAC. Figure 2.1 illustrates the operation of CBC-MAC
 in both cases. If the size of the input message block is equal to a
 positive multiple of the block size (namely, 128 bits), the last
 block shall be exclusive-OR’ed with K1 before processing. Otherwise,
 the last block shall be padded with 10^i (notation is described in
 section 2.1) and exclusive-OR’ed with K2. The result of the previous

Song, et al. Informational [Page 4]

RFC 4493 The AES-CMAC Algorithm June 2006

 process will be the input of the last encryption. The output of
 AES-CMAC provides data integrity of the whole input message.

 +-----+ +-----+ +-----+ +-----+ +-----+ +---+----+
 | M_1 | | M_2 | | M_n | | M_1 | | M_2 | |M_n|10^i|
 +-----+ +-----+ +-----+ +-----+ +-----+ +---+----+
 | | | +--+ | | | +--+
 | +--->(+) +--->(+)<-|K1| | +--->(+) +--->(+)<-|K2|
 | | | | | +--+ | | | | | +--+
 +-----+ | +-----+ | +-----+ +-----+ | +-----+ | +-----+
 |AES_K| | |AES_K| | |AES_K| |AES_K| | |AES_K| | |AES_K|
 +-----+ | +-----+ | +-----+ +-----+ | +-----+ | +-----+
 | | | | | | | | | |
 +-----+ +-----+ | +-----+ +-----+ |
 | |
 +-----+ +-----+
 | T | | T |
 +-----+ +-----+

 (a) positive multiple block length (b) otherwise

 Figure 2.1. Illustration of the two cases of AES-CMAC

 AES_K is AES-128 with key K.
 The message M is divided into blocks M_1,...,M_n,
 where M_i is the i-th message block.
 The length of M_i is 128 bits for i = 1,...,n-1, and
 the length of the last block, M_n, is less than or equal to 128 bits.
 K1 is the subkey for the case (a), and
 K2 is the subkey for the case (b).
 K1 and K2 are generated by the subkey generation algorithm
 described in section 2.3.

2.3. Subkey Generation Algorithm

 The subkey generation algorithm, Generate_Subkey(), takes a secret
 key, K, which is just the key for AES-128.

 The outputs of the subkey generation algorithm are two subkeys, K1
 and K2. We write (K1,K2) := Generate_Subkey(K).

 Subkeys K1 and K2 are used in both MAC generation and MAC
 verification algorithms. K1 is used for the case where the length of
 the last block is equal to the block length. K2 is used for the case
 where the length of the last block is less than the block length.

Song, et al. Informational [Page 5]

RFC 4493 The AES-CMAC Algorithm June 2006

 Figure 2.2 specifies the subkey generation algorithm.

 +++
 + Algorithm Generate_Subkey +
 +++
 + +
 + Input : K (128-bit key) +
 + Output : K1 (128-bit first subkey) +
 + K2 (128-bit second subkey) +
 +---+
 + +
 + Constants: const_Zero is 0x00000000000000000000000000000000 +
 + const_Rb is 0x00000000000000000000000000000087 +
 + Variables: L for output of AES-128 applied to 0^128 +
 + +
 + Step 1. L := AES-128(K, const_Zero); +
 + Step 2. if MSB(L) is equal to 0 +
 + then K1 := L << 1; +
 + else K1 := (L << 1) XOR const_Rb; +
 + Step 3. if MSB(K1) is equal to 0 +
 + then K2 := K1 << 1; +
 + else K2 := (K1 << 1) XOR const_Rb; +
 + Step 4. return K1, K2; +
 + +
 +++

 Figure 2.2. Algorithm Generate_Subkey

 In step 1, AES-128 with key K is applied to an all-zero input block.

 In step 2, K1 is derived through the following operation:

 If the most significant bit of L is equal to 0, K1 is the left-shift
 of L by 1 bit.

 Otherwise, K1 is the exclusive-OR of const_Rb and the left-shift of L
 by 1 bit.

 In step 3, K2 is derived through the following operation:

 If the most significant bit of K1 is equal to 0, K2 is the left-shift
 of K1 by 1 bit.

 Otherwise, K2 is the exclusive-OR of const_Rb and the left-shift of
 K1 by 1 bit.

 In step 4, (K1,K2) := Generate_Subkey(K) is returned.

Song, et al. Informational [Page 6]

RFC 4493 The AES-CMAC Algorithm June 2006

 The mathematical meaning of the procedures in steps 2 and 3,
 including const_Rb, can be found in [OMAC1a].

2.4. MAC Generation Algorithm

 The MAC generation algorithm, AES-CMAC(), takes three inputs, a
 secret key, a message, and the length of the message in octets. The
 secret key, denoted by K, is just the key for AES-128. The message
 and its length in octets are denoted by M and len, respectively. The
 message M is denoted by the sequence of M_i, where M_i is the i-th
 message block. That is, if M consists of n blocks, then M is written
 as

 - M = M_1 || M_2 || ... || M_{n-1} || M_n

 The length of M_i is 128 bits for i = 1,...,n-1, and the length of
 the last block M_n is less than or equal to 128 bits.

 The output of the MAC generation algorithm is a 128-bit string,
 called a MAC, which is used to validate the input message. The MAC
 is denoted by T, and we write T := AES-CMAC(K,M,len). Validating the
 MAC provides assurance of the integrity and authenticity of the
 message from the source.

 It is possible to truncate the MAC. According to [NIST-CMAC], at
 least a 64-bit MAC should be used as protection against guessing
 attacks. The result of truncation should be taken in most
 significant bits first order.

 The block length of AES-128 is 128 bits (16 octets). There is a
 special treatment if the length of the message is not a positive
 multiple of the block length. The special treatment is to pad M with
 the bit-string 10^i to adjust the length of the last block up to the
 block length.

 For an input string x of r-octets, where 0 <= r < 16, the padding
 function, padding(x), is defined as follows:

 - padding(x) = x || 10^i where i is 128-8*r-1

 That is, padding(x) is the concatenation of x and a single ’1’,
 followed by the minimum number of ’0’s, so that the total length is
 equal to 128 bits.

 Figure 2.3 describes the MAC generation algorithm.

Song, et al. Informational [Page 7]

RFC 4493 The AES-CMAC Algorithm June 2006

 +++
 + Algorithm AES-CMAC +
 +++
 + +
 + Input : K (128-bit key) +
 + : M (message to be authenticated) +
 + : len (length of the message in octets) +
 + Output : T (message authentication code) +
 + +
 +++
 + Constants: const_Zero is 0x00000000000000000000000000000000 +
 + const_Bsize is 16 +
 + +
 + Variables: K1, K2 for 128-bit subkeys +
 + M_i is the i-th block (i=1..ceil(len/const_Bsize)) +
 + M_last is the last block xor-ed with K1 or K2 +
 + n for number of blocks to be processed +
 + r for number of octets of last block +
 + flag for denoting if last block is complete or not +
 + +
 + Step 1. (K1,K2) := Generate_Subkey(K); +
 + Step 2. n := ceil(len/const_Bsize); +
 + Step 3. if n = 0 +
 + then +
 + n := 1; +
 + flag := false; +
 + else +
 + if len mod const_Bsize is 0 +
 + then flag := true; +
 + else flag := false; +
 + +
 + Step 4. if flag is true +
 + then M_last := M_n XOR K1; +
 + else M_last := padding(M_n) XOR K2; +
 + Step 5. X := const_Zero; +
 + Step 6. for i := 1 to n-1 do +
 + begin +
 + Y := X XOR M_i; +
 + X := AES-128(K,Y); +
 + end +
 + Y := M_last XOR X; +
 + T := AES-128(K,Y); +
 + Step 7. return T; +
 +++

 Figure 2.3. Algorithm AES-CMAC

Song, et al. Informational [Page 8]

RFC 4493 The AES-CMAC Algorithm June 2006

 In step 1, subkeys K1 and K2 are derived from K through the subkey
 generation algorithm.

 In step 2, the number of blocks, n, is calculated. The number of
 blocks is the smallest integer value greater than or equal to the
 quotient determined by dividing the length parameter by the block
 length, 16 octets.

 In step 3, the length of the input message is checked. If the input
 length is 0 (null), the number of blocks to be processed shall be 1,
 and the flag shall be marked as not-complete-block (false).
 Otherwise, if the last block length is 128 bits, the flag is marked
 as complete-block (true); else mark the flag as not-complete-block
 (false).

 In step 4, M_last is calculated by exclusive-OR’ing M_n and one of
 the previously calculated subkeys. If the last block is a complete
 block (true), then M_last is the exclusive-OR of M_n and K1.
 Otherwise, M_last is the exclusive-OR of padding(M_n) and K2.

 In step 5, the variable X is initialized.

 In step 6, the basic CBC-MAC is applied to M_1,...,M_{n-1},M_last.

 In step 7, the 128-bit MAC, T := AES-CMAC(K,M,len), is returned.

 If necessary, the MAC is truncated before it is returned.

2.5. MAC Verification Algorithm

 The verification of the MAC is simply done by a MAC recomputation.
 We use the MAC generation algorithm, which is described in section
 2.4.

 The MAC verification algorithm, Verify_MAC(), takes four inputs, a
 secret key, a message, the length of the message in octets, and the
 received MAC. These are denoted by K, M, len, and T’, respectively.

 The output of the MAC verification algorithm is either INVALID or
 VALID.

 Figure 2.4 describes the MAC verification algorithm.

Song, et al. Informational [Page 9]

RFC 4493 The AES-CMAC Algorithm June 2006

 +++
 + Algorithm Verify_MAC +
 +++
 + +
 + Input : K (128-bit Key) +
 + : M (message to be verified) +
 + : len (length of the message in octets) +
 + : T’ (the received MAC to be verified) +
 + Output : INVALID or VALID +
 + +
 +---+
 + +
 + Step 1. T* := AES-CMAC(K,M,len); +
 + Step 2. if T* is equal to T’ +
 + then +
 + return VALID; +
 + else +
 + return INVALID; +
 +++

 Figure 2.4. Algorithm Verify_MAC

 In step 1, T* is derived from K, M, and len through the MAC
 generation algorithm.

 In step 2, T* and T’ are compared. If T* is equal to T’, then return
 VALID; otherwise return INVALID.

 If the output is INVALID, then the message is definitely not
 authentic, i.e., it did not originate from a source that executed the
 generation process on the message to produce the purported MAC.

 If the output is VALID, then the design of the AES-CMAC provides
 assurance that the message is authentic and, hence, was not corrupted
 in transit; however, this assurance, as for any MAC algorithm, is not
 absolute.

3. Security Considerations

 The security provided by AES-CMAC is built on the strong
 cryptographic algorithm AES. However, as is true with any
 cryptographic algorithm, part of its strength lies in the secret key,
 K, and the correctness of the implementation in all of the
 participating systems. If the secret key is compromised or
 inappropriately shared, it guarantees neither authentication nor
 integrity of message at all. The secret key shall be generated in a
 way that meets the pseudo randomness requirement of RFC 4086
 [RFC4086] and should be kept safe. If and only if AES-CMAC is used

Song, et al. Informational [Page 10]

RFC 4493 The AES-CMAC Algorithm June 2006

 properly it provides the authentication and integrity that meet the
 best current practice of message authentication.

4. Test Vectors

 The following test vectors are the same as those of [NIST-CMAC]. The
 following vectors are also the output of the test program in Appendix
 A.

 --
 Subkey Generation
 K 2b7e1516 28aed2a6 abf71588 09cf4f3c
 AES-128(key,0) 7df76b0c 1ab899b3 3e42f047 b91b546f
 K1 fbeed618 35713366 7c85e08f 7236a8de
 K2 f7ddac30 6ae266cc f90bc11e e46d513b
 --

 --
 Example 1: len = 0
 M <empty string>
 AES-CMAC bb1d6929 e9593728 7fa37d12 9b756746
 --

 Example 2: len = 16
 M 6bc1bee2 2e409f96 e93d7e11 7393172a
 AES-CMAC 070a16b4 6b4d4144 f79bdd9d d04a287c
 --

 Example 3: len = 40
 M 6bc1bee2 2e409f96 e93d7e11 7393172a
 ae2d8a57 1e03ac9c 9eb76fac 45af8e51
 30c81c46 a35ce411
 AES-CMAC dfa66747 de9ae630 30ca3261 1497c827
 --

 Example 4: len = 64
 M 6bc1bee2 2e409f96 e93d7e11 7393172a
 ae2d8a57 1e03ac9c 9eb76fac 45af8e51
 30c81c46 a35ce411 e5fbc119 1a0a52ef
 f69f2445 df4f9b17 ad2b417b e66c3710
 AES-CMAC 51f0bebf 7e3b9d92 fc497417 79363cfe
 --

Song, et al. Informational [Page 11]

RFC 4493 The AES-CMAC Algorithm June 2006

5. Acknowledgement

 Portions of the text herein are borrowed from [NIST-CMAC]. We
 appreciate the OMAC1 authors, the SP 800-38B author, and Russ Housley
 for his useful comments and guidance, which have been incorporated
 herein. We also thank Alfred Hoenes for many useful comments. This
 memo was prepared while Tetsu Iwata was at Ibaraki University, Japan.

 We acknowledge the support from the following grants: Collaborative
 Technology Alliance (CTA) from US Army Research Laboratory, DAAD19-
 01-2-0011; Presidential Award from Army Research Office, W911NF-05-
 1-0491; NSF CAREER ANI-0093187. Results do not reflect any position
 of the funding agencies.

6. References

6.1. Normative References

 [NIST-CMAC] NIST, Special Publication 800-38B, "Recommendation for
 Block Cipher Modes of Operation: The CMAC Mode for
 Authentication", May 2005.

 [NIST-AES] NIST, FIPS 197, "Advanced Encryption Standard (AES)",
 November 2001.
 http://csrc.nist.gov/publications/fips/fips197/fips-
 197.pdf

 [RFC4086] Eastlake, D., 3rd, Schiller, J., and S. Crocker,
 "Randomness Requirements for Security", BCP 106, RFC
 4086, June 2005.

6.2. Informative References

 [RFC-HMAC] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC:
 Keyed-Hashing for Message Authentication", RFC 2104,
 February 1997.

 [OMAC1a] Tetsu Iwata and Kaoru Kurosawa, "OMAC: One-Key CBC MAC",
 Fast Software Encryption, FSE 2003, LNCS 2887, pp. 129-
 153, Springer-Verlag, 2003.

 [OMAC1b] Tetsu Iwata and Kaoru Kurosawa, "OMAC: One-Key CBC MAC",
 Submission to NIST, December 2002. Available from the
 NIST modes of operation web site at
 http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/
 omac/omac-spec.pdf

Song, et al. Informational [Page 12]

RFC 4493 The AES-CMAC Algorithm June 2006

 [XCBCa] John Black and Phillip Rogaway, "A Suggestion for
 Handling Arbitrary-Length Messages with the CBC MAC",
 NIST Second Modes of Operation Workshop, August 2001.
 Available from the NIST modes of operation web site at
 http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/
 xcbc-mac/xcbc-mac-spec.pdf

 [XCBCb] John Black and Phillip Rogaway, "CBC MACs for Arbitrary-
 Length Messages: The Three-Key Constructions", Journal of
 Cryptology, Vol. 18, No. 2, pp. 111-132, Springer-Verlag,
 Spring 2005.

Song, et al. Informational [Page 13]

RFC 4493 The AES-CMAC Algorithm June 2006

Appendix A. Test Code

 This C source is designed to generate the test vectors that appear in
 this memo to verify correctness of the algorithm. The source code is
 not intended for use in commercial products.

 /**/
 /* AES-CMAC with AES-128 bit */
 /* CMAC Algorithm described in SP800-38B */
 /* Author: Junhyuk Song (junhyuk.song@samsung.com) */
 /* Jicheol Lee (jicheol.lee@samsung.com) */
 /**/

 #include <stdio.h>

 /* For CMAC Calculation */
 unsigned char const_Rb[16] = {
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x87
 };
 unsigned char const_Zero[16] = {
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
 };

 /* Basic Functions */

 void xor_128(unsigned char *a, unsigned char *b, unsigned char *out)
 {
 int i;
 for (i=0;i<16; i++)
 {
 out[i] = a[i] ^ b[i];
 }
 }

 void print_hex(char *str, unsigned char *buf, int len)
 {
 int i;

 for (i=0; i<len; i++) {
 if ((i % 16) == 0 && i != 0) printf(str);
 printf("%02x", buf[i]);
 if ((i % 4) == 3) printf(" ");
 if ((i % 16) == 15) printf("\n");
 }
 if ((i % 16) != 0) printf("\n");
 }

Song, et al. Informational [Page 14]

RFC 4493 The AES-CMAC Algorithm June 2006

 void print128(unsigned char *bytes)
 {
 int j;
 for (j=0; j<16;j++) {
 printf("%02x",bytes[j]);
 if ((j%4) == 3) printf(" ");
 }
 }

 void print96(unsigned char *bytes)
 {
 int j;
 for (j=0; j<12;j++) {
 printf("%02x",bytes[j]);
 if ((j%4) == 3) printf(" ");
 }
 }

 /* AES-CMAC Generation Function */

 void leftshift_onebit(unsigned char *input,unsigned char *output)
 {
 int i;
 unsigned char overflow = 0;

 for (i=15; i>=0; i--) {
 output[i] = input[i] << 1;
 output[i] |= overflow;
 overflow = (input[i] & 0x80)?1:0;
 }
 return;
 }

 void generate_subkey(unsigned char *key, unsigned char *K1, unsigned
 char *K2)
 {
 unsigned char L[16];
 unsigned char Z[16];
 unsigned char tmp[16];
 int i;

 for (i=0; i<16; i++) Z[i] = 0;

 AES_128(key,Z,L);

 if ((L[0] & 0x80) == 0) { /* If MSB(L) = 0, then K1 = L << 1 */
 leftshift_onebit(L,K1);
 } else { /* Else K1 = (L << 1) (+) Rb */

Song, et al. Informational [Page 15]

RFC 4493 The AES-CMAC Algorithm June 2006

 leftshift_onebit(L,tmp);
 xor_128(tmp,const_Rb,K1);
 }

 if ((K1[0] & 0x80) == 0) {
 leftshift_onebit(K1,K2);
 } else {
 leftshift_onebit(K1,tmp);
 xor_128(tmp,const_Rb,K2);
 }
 return;
 }

 void padding (unsigned char *lastb, unsigned char *pad, int length)
 {
 int j;

 /* original last block */
 for (j=0; j<16; j++) {
 if (j < length) {
 pad[j] = lastb[j];
 } else if (j == length) {
 pad[j] = 0x80;
 } else {
 pad[j] = 0x00;
 }
 }
 }

 void AES_CMAC (unsigned char *key, unsigned char *input, int length,
 unsigned char *mac)
 {
 unsigned char X[16],Y[16], M_last[16], padded[16];
 unsigned char K1[16], K2[16];
 int n, i, flag;
 generate_subkey(key,K1,K2);

 n = (length+15) / 16; /* n is number of rounds */

 if (n == 0) {
 n = 1;
 flag = 0;
 } else {
 if ((length%16) == 0) { /* last block is a complete block */
 flag = 1;
 } else { /* last block is not complete block */
 flag = 0;
 }

Song, et al. Informational [Page 16]

RFC 4493 The AES-CMAC Algorithm June 2006

 }

 if (flag) { /* last block is complete block */
 xor_128(&input[16*(n-1)],K1,M_last);
 } else {
 padding(&input[16*(n-1)],padded,length%16);
 xor_128(padded,K2,M_last);
 }

 for (i=0; i<16; i++) X[i] = 0;
 for (i=0; i<n-1; i++) {
 xor_128(X,&input[16*i],Y); /* Y := Mi (+) X */
 AES_128(key,Y,X); /* X := AES-128(KEY, Y); */
 }

 xor_128(X,M_last,Y);
 AES_128(key,Y,X);

 for (i=0; i<16; i++) {
 mac[i] = X[i];
 }
 }

 int main()
 {
 unsigned char L[16], K1[16], K2[16], T[16], TT[12];
 unsigned char M[64] = {
 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
 0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
 0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c,
 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,
 0x30, 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11,
 0xe5, 0xfb, 0xc1, 0x19, 0x1a, 0x0a, 0x52, 0xef,
 0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b, 0x17,
 0xad, 0x2b, 0x41, 0x7b, 0xe6, 0x6c, 0x37, 0x10
 };
 unsigned char key[16] = {
 0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6,
 0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c
 };

 printf("--\n");
 printf("K "); print128(key); printf("\n");

 printf("\nSubkey Generation\n");
 AES_128(key,const_Zero,L);
 printf("AES_128(key,0) "); print128(L); printf("\n");
 generate_subkey(key,K1,K2);

Song, et al. Informational [Page 17]

RFC 4493 The AES-CMAC Algorithm June 2006

 printf("K1 "); print128(K1); printf("\n");
 printf("K2 "); print128(K2); printf("\n");

 printf("\nExample 1: len = 0\n");
 printf("M "); printf("<empty string>\n");

 AES_CMAC(key,M,0,T);
 printf("AES_CMAC "); print128(T); printf("\n");

 printf("\nExample 2: len = 16\n");
 printf("M "); print_hex(" ",M,16);
 AES_CMAC(key,M,16,T);
 printf("AES_CMAC "); print128(T); printf("\n");
 printf("\nExample 3: len = 40\n");
 printf("M "); print_hex(" ",M,40);
 AES_CMAC(key,M,40,T);
 printf("AES_CMAC "); print128(T); printf("\n");

 printf("\nExample 4: len = 64\n");
 printf("M "); print_hex(" ",M,64);
 AES_CMAC(key,M,64,T);
 printf("AES_CMAC "); print128(T); printf("\n");

 printf("--\n");

 return 0;
 }

Song, et al. Informational [Page 18]

RFC 4493 The AES-CMAC Algorithm June 2006

Authors’ Addresses

 Junhyuk Song
 University of Washington
 Samsung Electronics

 Phone: (206) 853-5843
 EMail: songlee@ee.washington.edu, junhyuk.song@samsung.com

 Jicheol Lee
 Samsung Electronics

 Phone: +82-31-279-3605
 EMail: jicheol.lee@samsung.com

 Radha Poovendran
 Network Security Lab
 University of Washington

 Phone: (206) 221-6512
 EMail: radha@ee.washington.edu

 Tetsu Iwata
 Nagoya University

 EMail: iwata@cse.nagoya-u.ac.jp

Song, et al. Informational [Page 19]

RFC 4493 The AES-CMAC Algorithm June 2006

Full Copyright Statement

 Copyright (C) The Internet Society (2006).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

Song, et al. Informational [Page 20]

