
Network Working Group A. Melnikov
Request for Comments: 4466 Isode Ltd.
Updates: 2088, 2342, 3501, 3502, 3516 C. Daboo
Category: Standards Track April 2006

 Collected Extensions to IMAP4 ABNF

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2006).

Abstract

 Over the years, many documents from IMAPEXT and LEMONADE working
 groups, as well as many individual documents, have added syntactic
 extensions to many base IMAP commands described in RFC 3501. For
 ease of reference, this document collects most of such ABNF changes
 in one place.

 This document also suggests a set of standard patterns for adding
 options and extensions to several existing IMAP commands defined in
 RFC 3501. The patterns provide for compatibility between existing
 and future extensions.

 This document updates ABNF in RFCs 2088, 2342, 3501, 3502, and 3516.
 It also includes part of the errata to RFC 3501. This document
 doesn’t specify any semantic changes to the listed RFCs.

Melnikov & Daboo Standards Track [Page 1]

RFC 4466 Collected Extensions to IMAP4 ABNF April 2006

Table of Contents

 1. Introduction ..2
 1.1. Purpose of This Document2
 1.2. Conventions Used in This Document3
 2. IMAP ABNF Extensions ..3
 2.1. Optional Parameters with the SELECT/EXAMINE Commands3
 2.2. Extended CREATE Command4
 2.3. Extended RENAME Command5
 2.4. Extensions to FETCH and UID FETCH Commands6
 2.5. Extensions to STORE and UID STORE Commands6
 2.6. Extensions to SEARCH Command7
 2.6.1. Extended SEARCH Command7
 2.6.2. ESEARCH untagged response8
 2.7. Extensions to APPEND Command8
 3. Formal Syntax ...9
 4. Security Considerations ..14
 5. Normative References ...15
 6. Acknowledgements ...15

1. Introduction

1.1. Purpose of This Document

 This document serves several purposes:

 1. rationalize and generalize ABNF for some existing IMAP
 extensions;
 2. collect the ABNF in one place in order to minimize cross
 references between documents;
 3. define building blocks for future extensions so that they can
 be used together in a compatible way.

 It is expected that a future revision of this document will be
 incorporated into a revision of RFC 3501.

 This document updates ABNF in RFCs 2088, 2342, 3501, 3502, and 3516.
 It also includes part of the errata to RFC 3501. This document
 doesn’t specify any semantic changes to the listed RFCs.

 The ABNF in section 6 of RFC 2342 got rewritten to conform to the
 ABNF syntax as defined in RFC 4234 and to reference new non-terminals
 from RFC 3501. It was also restructured to allow for better
 readability. There were no changes "on the wire".

 Section 2 extends ABNF for SELECT, EXAMINE, CREATE, RENAME, FETCH/UID
 FETCH, STORE/UID STORE, SEARCH, and APPEND commands in a consistent
 manner. Extensions to all the commands but APPEND have the same

Melnikov & Daboo Standards Track [Page 2]

RFC 4466 Collected Extensions to IMAP4 ABNF April 2006

 structure. Extensibility for the APPEND command was done slightly
 differently in order to preserve backward compatibility with existing
 extensions.

 Section 2 also defines a new ESEARCH response, whose purpose is to
 define a better version of the SEARCH response defined in RFC 3501.

 Section 3 defines the collected ABNF that replaces pieces of ABNF in
 the aforementioned RFCs. The collected ABNF got generalized to allow
 for easier future extensibility.

1.2. Conventions Used in This Document

 In examples, "C:" and "S:" indicate lines sent by the client and
 server, respectively.

 The key words "MUST", "MUST NOT", "SHOULD", "SHOULD NOT", and "MAY"
 in this document are to be interpreted as defined in "Key words for
 use in RFCs to Indicate Requirement Levels" [KEYWORDS].

2. IMAP ABNF Extensions

 This section is not normative. It provides some background on the
 intended use of different extensions and it gives some guidance about
 how future extensions should extend the described commands.

2.1. Optional Parameters with the SELECT/EXAMINE Commands

 This document adds the ability to include one or more parameters with
 the IMAP SELECT (section 6.3.1 of [IMAP4]) or EXAMINE (section 6.3.2
 of [IMAP4]) commands, to turn on or off certain standard behaviors,
 or to add new optional behaviors required for a particular extension.

 There are two possible modes of operation:

 o A global state change where a single use of the optional parameter
 will affect the session state from that time on, irrespective of
 subsequent SELECT/EXAMINE commands.

 o A per-mailbox state change that will affect the session only for
 the duration of the new selected state. A subsequent
 SELECT/EXAMINE without the optional parameter will cancel its
 effect for the newly selected mailbox.

 Optional parameters to the SELECT or EXAMINE commands are added as a
 parenthesized list of attribute/value pairs, and appear after the
 mailbox name in the standard SELECT or EXAMINE command. The order of
 individual parameters is arbitrary. A parameter value is optional

Melnikov & Daboo Standards Track [Page 3]

RFC 4466 Collected Extensions to IMAP4 ABNF April 2006

 and may consist of atoms, strings, or lists in a specific order. If
 the parameter value is present, it always appears in parentheses (*).
 Any parameter not defined by extensions that the server supports must
 be rejected with a BAD response.

 Example:

 C: a SELECT INBOX (ANNOTATE)
 S: ...
 S: a OK SELECT complete

 In the above example, a single parameter is used with the SELECT
 command.

 Example:

 C: a EXAMINE INBOX (ANNOTATE RESPONSES ("UID Responses")
 CONDSTORE)
 S: ...
 S: a OK EXAMINE complete

 In the above example, three parameters are used with the EXAMINE
 command. The second parameter consists of two items: an atom
 "RESPONSES" followed by a quoted string.

 Example:

 C: a SELECT INBOX (BLURDYBLOOP)
 S: a BAD Unknown parameter in SELECT command

 In the above example, a parameter not supported by the server is
 used. This results in the BAD response from the server.

 (*) - if a parameter has a mandatory value, which can always be
 represented as a number or a sequence-set, the parameter value does
 not need the enclosing (). See ABNF for more details.

2.2. Extended CREATE Command

 Arguments: mailbox name
 OPTIONAL list of CREATE parameters

 Responses: no specific responses for this command

 Result: OK - create completed
 NO - create failure: cannot create mailbox with
 that name
 BAD - argument(s) invalid

Melnikov & Daboo Standards Track [Page 4]

RFC 4466 Collected Extensions to IMAP4 ABNF April 2006

 This document adds the ability to include one or more parameters with
 the IMAP CREATE command (see section 6.3.3 of [IMAP4]), to turn on or
 off certain standard behaviors, or to add new optional behaviors
 required for a particular extension. No CREATE parameters are
 defined in this document.

 Optional parameters to the CREATE command are added as a
 parenthesized list of attribute/value pairs after the mailbox name.
 The order of individual parameters is arbitrary. A parameter value
 is optional and may consist of atoms, strings, or lists in a specific
 order. If the parameter value is present, it always appears in
 parentheses (*). Any parameter not defined by extensions that the
 server supports must be rejected with a BAD response.

 (*) - if a parameter has a mandatory value, which can always be
 represented as a number or a sequence-set, the parameter value does
 not need the enclosing (). See ABNF for more details.

2.3. Extended RENAME Command

 Arguments: existing mailbox name
 new mailbox name
 OPTIONAL list of RENAME parameters

 Responses: no specific responses for this command

 Result: OK - rename completed
 NO - rename failure: cannot rename mailbox with
 that name, cannot rename to mailbox with
 that name, etc.
 BAD - argument(s) invalid

 This document adds the ability to include one or more parameters with
 the IMAP RENAME command (see section 6.3.5 of [IMAP4]), to turn on or
 off certain standard behaviors, or to add new optional behaviors
 required for a particular extension. No RENAME parameters are
 defined in this document.

 Optional parameters to the RENAME command are added as a
 parenthesized list of attribute/value pairs after the new mailbox
 name. The order of individual parameters is arbitrary. A parameter
 value is optional and may consist of atoms, strings, or lists in a
 specific order. If the parameter value is present, it always appears
 in parentheses (*). Any parameter not defined by extensions that the
 server supports must be rejected with a BAD response.

Melnikov & Daboo Standards Track [Page 5]

RFC 4466 Collected Extensions to IMAP4 ABNF April 2006

 (*) - if a parameter has a mandatory value, which can always be
 represented as a number or a sequence-set, the parameter value does
 not need the enclosing (). See ABNF for more details.

2.4. Extensions to FETCH and UID FETCH Commands

 Arguments: sequence set
 message data item names or macro
 OPTIONAL fetch modifiers

 Responses: untagged responses: FETCH

 Result: OK - fetch completed
 NO - fetch error: cannot fetch that data
 BAD - command unknown or arguments invalid

 This document extends the syntax of the FETCH and UID FETCH commands
 (see section 6.4.5 of [IMAP4]) to include optional FETCH modifiers.
 No fetch modifiers are defined in this document.

 The order of individual modifiers is arbitrary. Each modifier is an
 attribute/value pair. A modifier value is optional and may consist
 of atoms and/or strings and/or lists in a specific order. If the
 modifier value is present, it always appears in parentheses (*). Any
 modifiers not defined by extensions that the server supports must be
 rejected with a BAD response.

 (*) - if a modifier has a mandatory value, which can always be
 represented as a number or a sequence-set, the modifier value does
 not need the enclosing (). See ABNF for more details.

2.5. Extensions to STORE and UID STORE Commands

 Arguments: message set
 OPTIONAL store modifiers
 message data item name
 value for message data item

 Responses: untagged responses: FETCH

 Result: OK - store completed
 NO - store error: cannot store that data
 BAD - command unknown or arguments invalid

 This document extends the syntax of the STORE and UID STORE commands
 (see section 6.4.6 of [IMAP4]) to include optional STORE modifiers.
 No store modifiers are defined in this document.

Melnikov & Daboo Standards Track [Page 6]

RFC 4466 Collected Extensions to IMAP4 ABNF April 2006

 The order of individual modifiers is arbitrary. Each modifier is an
 attribute/value pair. A modifier value is optional and may consist
 of atoms and/or strings and/or lists in a specific order. If the
 modifier value is present, it always appears in parentheses (*). Any
 modifiers not defined by extensions that the server supports must be
 rejected with a BAD response.

 (*) - if a modifier has a mandatory value, which can always be
 represented as a number or a sequence-set, the modifier value does
 not need the enclosing (). See ABNF for more details.

2.6. Extensions to SEARCH Command

2.6.1. Extended SEARCH Command

 Arguments: OPTIONAL result specifier
 OPTIONAL [CHARSET] specification
 searching criteria (one or more)

 Responses: REQUIRED untagged response: SEARCH (*)

 Result: OK - search completed
 NO - search error: cannot search that [CHARSET] or
 criteria
 BAD - command unknown or arguments invalid

 This section updates definition of the SEARCH command described in
 section 6.4.4 of [IMAP4].

 The SEARCH command is extended to allow for result options. This
 document does not define any result options.

 The order of individual options is arbitrary. Individual options may
 contain parameters enclosed in parentheses (**). If an option has
 parameters, they consist of atoms and/or strings and/or lists in a
 specific order. Any options not defined by extensions that the
 server supports must be rejected with a BAD response.

 (*) - An extension to the SEARCH command may require another untagged
 response, or no untagged response to be returned. Section 2.6.2
 defines a new ESEARCH untagged response that replaces the SEARCH
 untagged response. Note that for a given extended SEARCH command the
 SEARCH and ESEARCH responses SHOULD be mutually exclusive, i.e., only
 one of them should be returned.

 (**) - if an option has a mandatory parameter, which can always be
 represented as a number or a sequence-set, the option parameter does
 not need the enclosing (). See ABNF for more details.

Melnikov & Daboo Standards Track [Page 7]

RFC 4466 Collected Extensions to IMAP4 ABNF April 2006

2.6.2. ESEARCH untagged response

 Contents: one or more search-return-data pairs

 The ESEARCH response SHOULD be sent as a result of an extended SEARCH
 or UID SEARCH command specified in section 2.6.1.

 The ESEARCH response starts with an optional search correlator. If
 it is missing, then the response was not caused by a particular IMAP
 command, whereas if it is present, it contains the tag of the command
 that caused the response to be returned.

 The search correlator is followed by an optional UID indicator. If
 this indicator is present, all data in the ESEARCH response refers to
 UIDs, otherwise all returned data refers to message numbers.

 The rest of the ESEARCH response contains one or more search data
 pairs. Each pair starts with unique return item name, followed by a
 space and the corresponding data. Search data pairs may be returned
 in any order. Unless specified otherwise by an extension, any return
 item name SHOULD appear only once in an ESEARCH response.

 Example: S: * ESEARCH UID COUNT 5 ALL 4:19,21,28

 Example: S: * ESEARCH (TAG "a567") UID COUNT 5 ALL 4:19,21,28

 Example: S: * ESEARCH COUNT 5 ALL 1:17,21

2.7. Extensions to APPEND Command

 The IMAP BINARY extension [BINARY] extends the APPEND command to
 allow a client to append data containing NULs by using the <literal8>
 syntax. The ABNF was rewritten to allow for easier extensibility by
 IMAP extensions. This document hasn’t specified any semantical
 changes to the [BINARY] extension.

 In addition, the non-terminal "literal8" defined in [BINARY] got
 extended to allow for non-synchronizing literals if both [BINARY] and
 [LITERAL+] extensions are supported by the server.

 The IMAP MULTIAPPEND extension [MULTIAPPEND] extends the APPEND
 command to allow a client to append multiple messages atomically.
 This document defines a common syntax for the APPEND command that
 takes into consideration syntactic extensions defined by both
 [BINARY] and [MULTIAPPEND] extensions.

Melnikov & Daboo Standards Track [Page 8]

RFC 4466 Collected Extensions to IMAP4 ABNF April 2006

3. Formal Syntax

 The following syntax specification uses the Augmented Backus-Naur
 Form (ABNF) notation as specified in [ABNF].

 Non-terminals referenced but not defined below are as defined by
 [IMAP4].

 Except as noted otherwise, all alphabetic characters are case-
 insensitive. The use of uppercase or lowercase characters to define
 token strings is for editorial clarity only. Implementations MUST
 accept these strings in a case-insensitive fashion.

 append = "APPEND" SP mailbox 1*append-message
 ;; only a single append-message may appear
 ;; if MULTIAPPEND [MULTIAPPEND] capability
 ;; is not present

 append-message = append-opts SP append-data

 append-ext = append-ext-name SP append-ext-value
 ;; This non-terminal define extensions to
 ;; to message metadata.

 append-ext-name = tagged-ext-label

 append-ext-value= tagged-ext-val
 ;; This non-terminal shows recommended syntax
 ;; for future extensions.

 append-data = literal / literal8 / append-data-ext

 append-data-ext = tagged-ext
 ;; This non-terminal shows recommended syntax
 ;; for future extensions,
 ;; i.e., a mandatory label followed
 ;; by parameters.

 append-opts = [SP flag-list] [SP date-time] *(SP append-ext)
 ;; message metadata

 charset = atom / quoted
 ;; Exact syntax is defined in [CHARSET].

 create = "CREATE" SP mailbox
 [create-params]
 ;; Use of INBOX gives a NO error.

Melnikov & Daboo Standards Track [Page 9]

RFC 4466 Collected Extensions to IMAP4 ABNF April 2006

 create-params = SP "(" create-param *(SP create-param) ")"

 create-param-name = tagged-ext-label

 create-param = create-param-name [SP create-param-value]

 create-param-value= tagged-ext-val
 ;; This non-terminal shows recommended syntax
 ;; for future extensions.

 esearch-response = "ESEARCH" [search-correlator] [SP "UID"]
 *(SP search-return-data)
 ;; Note that SEARCH and ESEARCH responses
 ;; SHOULD be mutually exclusive,
 ;; i.e., only one of the response types
 ;; should be
 ;; returned as a result of a command.

 examine = "EXAMINE" SP mailbox [select-params]
 ;; modifies the original IMAP EXAMINE command
 ;; to accept optional parameters

 fetch = "FETCH" SP sequence-set SP ("ALL" / "FULL" /
 "FAST" / fetch-att /
 "(" fetch-att *(SP fetch-att) ")")
 [fetch-modifiers]
 ;; modifies the original IMAP4 FETCH command to
 ;; accept optional modifiers

 fetch-modifiers = SP "(" fetch-modifier *(SP fetch-modifier) ")"

 fetch-modifier = fetch-modifier-name [SP fetch-modif-params]

 fetch-modif-params = tagged-ext-val
 ;; This non-terminal shows recommended syntax
 ;; for future extensions.

 fetch-modifier-name = tagged-ext-label

 literal8 = "˜{" number ["+"] "}" CRLF *OCTET
 ;; A string that might contain NULs.
 ;; <number> represents the number of OCTETs
 ;; in the response string.
 ;; The "+" is only allowed when both LITERAL+ and
 ;; BINARY extensions are supported by the server.

Melnikov & Daboo Standards Track [Page 10]

RFC 4466 Collected Extensions to IMAP4 ABNF April 2006

 mailbox-data =/ Namespace-Response /
 esearch-response

 Namespace = nil / "(" 1*Namespace-Descr ")"

 Namespace-Command = "NAMESPACE"

 Namespace-Descr = "(" string SP
 (DQUOTE QUOTED-CHAR DQUOTE / nil)
 *(Namespace-Response-Extension) ")"

 Namespace-Response-Extension = SP string SP
 "(" string *(SP string) ")"

 Namespace-Response = "NAMESPACE" SP Namespace
 SP Namespace SP Namespace
 ;; This response is currently only allowed
 ;; if the IMAP server supports [NAMESPACE].
 ;; The first Namespace is the Personal Namespace(s)
 ;; The second Namespace is the Other Users’ Namespace(s)
 ;; The third Namespace is the Shared Namespace(s)

 rename = "RENAME" SP mailbox SP mailbox
 [rename-params]
 ;; Use of INBOX as a destination gives
 ;; a NO error, unless rename-params
 ;; is not empty.

 rename-params = SP "(" rename-param *(SP rename-param) ")"

 rename-param = rename-param-name [SP rename-param-value]

 rename-param-name = tagged-ext-label

 rename-param-value= tagged-ext-val
 ;; This non-terminal shows recommended syntax
 ;; for future extensions.

 response-data = "*" SP response-payload CRLF

 response-payload= resp-cond-state / resp-cond-bye /
 mailbox-data / message-data / capability-data

 search = "SEARCH" [search-return-opts]
 SP search-program

 search-correlator = SP "(" "TAG" SP tag-string ")"

Melnikov & Daboo Standards Track [Page 11]

RFC 4466 Collected Extensions to IMAP4 ABNF April 2006

 search-program = ["CHARSET" SP charset SP]
 search-key *(SP search-key)
 ;; CHARSET argument to SEARCH MUST be
 ;; registered with IANA.

 search-return-data = search-modifier-name SP search-return-value
 ;; Note that not every SEARCH return option
 ;; is required to have the corresponding
 ;; ESEARCH return data.

 search-return-opts = SP "RETURN" SP "(" [search-return-opt
 *(SP search-return-opt)] ")"

 search-return-opt = search-modifier-name [SP search-mod-params]

 search-return-value = tagged-ext-val
 ;; Data for the returned search option.
 ;; A single "nz-number"/"number" value
 ;; can be returned as an atom (i.e., without
 ;; quoting). A sequence-set can be returned
 ;; as an atom as well.

 search-modifier-name = tagged-ext-label

 search-mod-params = tagged-ext-val
 ;; This non-terminal shows recommended syntax
 ;; for future extensions.

 select = "SELECT" SP mailbox [select-params]
 ;; modifies the original IMAP SELECT command to
 ;; accept optional parameters

 select-params = SP "(" select-param *(SP select-param) ")"

 select-param = select-param-name [SP select-param-value]
 ;; a parameter to SELECT may contain one or
 ;; more atoms and/or strings and/or lists.

 select-param-name= tagged-ext-label

 select-param-value= tagged-ext-val
 ;; This non-terminal shows recommended syntax
 ;; for future extensions.

 status-att-list = status-att-val *(SP status-att-val)
 ;; Redefines status-att-list from RFC 3501.

Melnikov & Daboo Standards Track [Page 12]

RFC 4466 Collected Extensions to IMAP4 ABNF April 2006

 ;; status-att-val is defined in RFC 3501 errata

 status-att-val = ("MESSAGES" SP number) /
 ("RECENT" SP number) /
 ("UIDNEXT" SP nz-number) /
 ("UIDVALIDITY" SP nz-number) /
 ("UNSEEN" SP number)
 ;; Extensions to the STATUS responses
 ;; should extend this production.
 ;; Extensions should use the generic
 ;; syntax defined by tagged-ext.

 store = "STORE" SP sequence-set [store-modifiers]
 SP store-att-flags
 ;; extend [IMAP4] STORE command syntax
 ;; to allow for optional store-modifiers

 store-modifiers = SP "(" store-modifier *(SP store-modifier)
 ")"

 store-modifier = store-modifier-name [SP store-modif-params]

 store-modif-params = tagged-ext-val
 ;; This non-terminal shows recommended syntax
 ;; for future extensions.

 store-modifier-name = tagged-ext-label

 tag-string = string
 ;; tag of the command that caused
 ;; the ESEARCH response, sent as
 ;; a string.

 tagged-ext = tagged-ext-label SP tagged-ext-val
 ;; recommended overarching syntax for
 ;; extensions

 tagged-ext-label = tagged-label-fchar *tagged-label-char
 ;; Is a valid RFC 3501 "atom".

 tagged-label-fchar = ALPHA / "-" / "_" / "."

 tagged-label-char = tagged-label-fchar / DIGIT / ":"

Melnikov & Daboo Standards Track [Page 13]

RFC 4466 Collected Extensions to IMAP4 ABNF April 2006

 tagged-ext-comp = astring /
 tagged-ext-comp *(SP tagged-ext-comp) /
 "(" tagged-ext-comp ")"
 ;; Extensions that follow this general
 ;; syntax should use nstring instead of
 ;; astring when appropriate in the context
 ;; of the extension.
 ;; Note that a message set or a "number"
 ;; can always be represented as an "atom".
 ;; An URL should be represented as
 ;; a "quoted" string.

 tagged-ext-simple = sequence-set / number

 tagged-ext-val = tagged-ext-simple /
 "(" [tagged-ext-comp] ")"

4. Security Considerations

 This document updates ABNF in RFCs 2088, 2342, 3501, 3502, and 3516.
 The updated documents must be consulted for security considerations
 for the extensions that they define.

 As a protocol gets more complex, parser bugs become more common
 including buffer overflow, denial of service, and other common
 security coding errors. To the extent that this document makes the
 parser more complex, it makes this situation worse. To the extent
 that this document makes the parser more consistent and thus simpler,
 the situation is improved. The impact will depend on how many
 deployed IMAP extensions are consistent with this document.
 Implementers are encouraged to take care of these issues when
 extending existing implementations. Future IMAP extensions should
 strive for consistency and simplicity to the greatest extent
 possible.

 Extensions to IMAP commands that are permitted in NOT AUTHENTICATED
 state are more sensitive to these security issues due to the larger
 possible attacker community prior to authentication, and the fact
 that some IMAP servers run with elevated privileges in that state.
 This document does not extend any commands permitted in NOT
 AUTHENTICATED state. Future IMAP extensions to commands permitted in
 NOT AUTHENTICATED state should favor simplicity over consistency or
 extensibility.

Melnikov & Daboo Standards Track [Page 14]

RFC 4466 Collected Extensions to IMAP4 ABNF April 2006

5. Normative References

 [KEYWORDS] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [IMAP4] Crispin, M., "INTERNET MESSAGE ACCESS PROTOCOL -
 VERSION 4rev1", RFC 3501, March 2003.

 [ABNF] Crocker, D., Ed., and P. Overell, "Augmented BNF for
 Syntax Specifications: ABNF", RFC 4234, October 2005.

 [CHARSET] Freed, N. and J. Postel, "IANA Charset Registration
 Procedures", BCP 19, RFC 2978, October 2000.

 [MULTIAPPEND] Crispin, M., "Internet Message Access Protocol (IMAP) -
 MULTIAPPEND Extension", RFC 3502, March 2003.

 [NAMESPACE] Gahrns, M. and C. Newman, "IMAP4 Namespace", RFC 2342,
 May 1998.

 [LITERAL+] Myers, J., "IMAP4 non-synchronizing literals", RFC
 2088, January 1997.

 [BINARY] Nerenberg, L., "IMAP4 Binary Content Extension", RFC
 3516, April 2003.

6. Acknowledgements

 This documents is based on ideas proposed by Pete Resnick, Mark
 Crispin, Ken Murchison, Philip Guenther, Randall Gellens, and Lyndon
 Nerenberg.

 However, all errors and omissions must be attributed to the authors
 of the document.

 Thanks to Philip Guenther, Dave Cridland, Mark Crispin, Chris Newman,
 Elwyn Davies, and Barry Leiba for comments and corrections.

 literal8 syntax was taken from RFC 3516.

Melnikov & Daboo Standards Track [Page 15]

RFC 4466 Collected Extensions to IMAP4 ABNF April 2006

Authors’ Addresses

 Alexey Melnikov
 Isode Limited
 5 Castle Business Village
 36 Station Road
 Hampton, Middlesex, TW12 2BX
 UK

 EMail: Alexey.Melnikov@isode.com

 Cyrus Daboo

 EMail: cyrus@daboo.name

Melnikov & Daboo Standards Track [Page 16]

RFC 4466 Collected Extensions to IMAP4 ABNF April 2006

Full Copyright Statement

 Copyright (C) The Internet Society (2006).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

Melnikov & Daboo Standards Track [Page 17]

