
Network Working Group B. Harris
Request for Comments: 4432 March 2006
Category: Standards Track

 RSA Key Exchange for the Secure Shell (SSH)
 Transport Layer Protocol

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2006).

Abstract

 This memo describes a key-exchange method for the Secure Shell (SSH)
 protocol based on Rivest-Shamir-Adleman (RSA) public-key encryption.
 It uses much less client CPU time than the Diffie-Hellman algorithm
 specified as part of the core protocol, and hence is particularly
 suitable for slow client systems.

1. Introduction

 Secure Shell (SSH) [RFC4251] is a secure remote-login protocol. The
 core protocol uses Diffie-Hellman key exchange. On slow CPUs, this
 key exchange can take tens of seconds to complete, which can be
 irritating for the user. A previous version of the SSH protocol,
 described in [SSH1], uses a key-exchange method based on
 Rivest-Shamir-Adleman (RSA) public-key encryption, which consumes an
 order of magnitude less CPU time on the client, and hence is
 particularly suitable for slow client systems such as mobile devices.
 This memo describes a key-exchange mechanism for the version of SSH
 described in [RFC4251] that is similar to that used by the older
 version, and about as fast, while retaining the security advantages
 of the newer protocol.

Harris Standards Track [Page 1]

RFC 4432 SSH RSA Key Exchange March 2006

2. Conventions Used in This Document

 The key words "MUST" and "SHOULD" in this document are to be
 interpreted as described in [RFC2119].

 The data types "byte", "string", and "mpint" are defined in Section 5
 of [RFC4251].

 Other terminology and symbols have the same meaning as in [RFC4253].

3. Overview

 The RSA key-exchange method consists of three messages. The server
 sends to the client an RSA public key, K_T, to which the server holds
 the private key. This may be a transient key generated solely for
 this SSH connection, or it may be re-used for several connections.
 The client generates a string of random bytes, K, encrypts it using
 K_T, and sends the result back to the server, which decrypts it. The
 client and server each hash K, K_T, and the various key-exchange
 parameters to generate the exchange hash, H, which is used to
 generate the encryption keys for the session, and the server signs H
 with its host key and sends the signature to the client. The client
 then verifies the host key as described in Section 8 of [RFC4253].

 This method provides explicit server identification as defined in
 Section 7 of [RFC4253]. It requires a signature-capable host key.

4. Details

 The RSA key-exchange method has the following parameters:

 HASH hash algorithm for calculating exchange hash, etc.
 HLEN output length of HASH in bits
 MINKLEN minimum transient RSA modulus length in bits

 Their values are defined in Section 5 and Section 6 for the two
 methods defined by this document.

 The method uses the following messages.

 First, the server sends:

 byte SSH_MSG_KEXRSA_PUBKEY
 string server public host key and certificates (K_S)
 string K_T, transient RSA public key

Harris Standards Track [Page 2]

RFC 4432 SSH RSA Key Exchange March 2006

 The key K_T is encoded according to the "ssh-rsa" scheme described in
 Section 6.6 of [RFC4253]. Note that unlike an "ssh-rsa" host key,
 K_T is used only for encryption, and not for signature. The modulus
 of K_T MUST be at least MINKLEN bits long.

 The client generates a random integer, K, in the range
 0 <= K < 2^(KLEN-2*HLEN-49), where KLEN is the length of the modulus
 of K_T, in bits. The client then uses K_T to encrypt:

 mpint K, the shared secret

 The encryption is performed according to the RSAES-OAEP scheme of
 [RFC3447], with a mask generation function of MGF1-with-HASH, a hash
 of HASH, and an empty label. See Appendix A for a proof that the
 encoding of K is always short enough to be thus encrypted. Having
 performed the encryption, the client sends:

 byte SSH_MSG_KEXRSA_SECRET
 string RSAES-OAEP-ENCRYPT(K_T, K)

 Note that the last stage of RSAES-OAEP-ENCRYPT is to encode an
 integer as an octet string using the I2OSP primitive of [RFC3447].
 This, combined with encoding the result as an SSH "string", gives a
 result that is similar, but not identical, to the SSH "mpint"
 encoding applied to that integer. This is the same encoding as is
 used by "ssh-rsa" signatures in [RFC4253].

 The server decrypts K. If a decryption error occurs, the server
 SHOULD send SSH_MESSAGE_DISCONNECT with a reason code of
 SSH_DISCONNECT_KEY_EXCHANGE_FAILED and MUST disconnect. Otherwise,
 the server responds with:

 byte SSH_MSG_KEXRSA_DONE
 string signature of H with host key

 The hash H is computed as the HASH hash of the concatenation of the
 following:

 string V_C, the client’s identification string
 (CR and LF excluded)
 string V_S, the server’s identification string
 (CR and LF excluded)
 string I_C, the payload of the client’s SSH_MSG_KEXINIT
 string I_S, the payload of the server’s SSH_MSG_KEXINIT
 string K_S, the host key
 string K_T, the transient RSA key
 string RSAES_OAEP_ENCRYPT(K_T, K), the encrypted secret
 mpint K, the shared secret

Harris Standards Track [Page 3]

RFC 4432 SSH RSA Key Exchange March 2006

 This value is called the exchange hash, and it is used to
 authenticate the key exchange. The exchange hash SHOULD be kept
 secret.

 The signature algorithm MUST be applied over H, not the original
 data. Most signature algorithms include hashing and additional
 padding. For example, "ssh-dss" specifies SHA-1 hashing. In such
 cases, the data is first hashed with HASH to compute H, and H is then
 hashed again as part of the signing operation.

5. rsa1024-sha1

 The "rsa1024-sha1" method specifies RSA key exchange as described
 above with the following parameters:

 HASH SHA-1, as defined in [RFC3174]
 HLEN 160
 MINKLEN 1024

6. rsa2048-sha256

 The "rsa2048-sha256" method specifies RSA key exchange as described
 above with the following parameters:

 HASH SHA-256, as defined in [FIPS-180-2]
 HLEN 256
 MINKLEN 2048

7. Message Numbers

 The following message numbers are defined:

 SSH_MSG_KEXRSA_PUBKEY 30
 SSH_MSG_KEXRSA_SECRET 31
 SSH_MSG_KEXRSA_DONE 32

8. Security Considerations

 The security considerations in [RFC4251] apply.

 If the RSA private key generated by the server is revealed, then the
 session key is revealed. The server should thus arrange to erase
 this from memory as soon as it is no longer required. If the same
 RSA key is used for multiple SSH connections, an attacker who can
 find the private key (either by factorising the public key or by
 other means) will gain access to all of the sessions that used that
 key. As a result, servers SHOULD use each RSA key for as few key
 exchanges as possible.

Harris Standards Track [Page 4]

RFC 4432 SSH RSA Key Exchange March 2006

 [RFC3447] recommends that RSA keys used with RSAES-OAEP not be used
 with other schemes, or with RSAES-OAEP using a different hash
 function. In particular, this means that K_T should not be used as a
 host key, or as a server key in earlier versions of the SSH protocol.

 Like all key-exchange mechanisms, this one depends for its security
 on the randomness of the secrets generated by the client (the random
 number K) and the server (the transient RSA private key). In
 particular, it is essential that the client use a high-quality
 cryptographic pseudo-random number generator to generate K. Using a
 bad random number generator will allow an attacker to break all the
 encryption and integrity protection of the Secure Shell transport
 layer. See [RFC4086] for recommendations on random number
 generation.

 The size of transient key used should be sufficient to protect the
 encryption and integrity keys generated by the key-exchange method.
 For recommendations on this, see [RFC3766]. The strength of
 RSAES-OAEP is in part dependent on the hash function it uses.
 [RFC3447] suggests using a hash with an output length of twice the
 security level required, so SHA-1 is appropriate for applications
 requiring up to 80 bits of security, and SHA-256 for those requiring
 up to 128 bits.

 Unlike the Diffie-Hellman key-exchange method defined by [RFC4253],
 this method allows the client to fully determine the shared secret,
 K. This is believed not to be significant, since K is only ever used
 when hashed with data provided in part by the server (usually in the
 form of the exchange hash, H). If an extension to SSH were to use K
 directly and to assume that it had been generated by Diffie-Hellman
 key exchange, this could produce a security weakness. Protocol
 extensions using K directly should be viewed with extreme suspicion.

 This key-exchange method is designed to be resistant to collision
 attacks on the exchange hash, by ensuring that neither side is able
 to freely choose its input to the hash after seeing all of the other
 side’s input. The server’s last input is in SSH_MSG_KEXRSA_PUBKEY,
 before it has seen the client’s choice of K. The client’s last input
 is K and its RSA encryption, and the one-way nature of RSA encryption
 should ensure that the client cannot choose K so as to cause a
 collision.

9. IANA Considerations

 IANA has assigned the names "rsa1024-sha1" and "rsa2048-sha256" as
 Key Exchange Method Names in accordance with [RFC4250].

Harris Standards Track [Page 5]

RFC 4432 SSH RSA Key Exchange March 2006

10. Acknowledgements

 The author acknowledges the assistance of Simon Tatham with the
 design of this key exchange method.

 The text of this document is derived in part from [RFC4253].

11. References

11.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3174] Eastlake, D. and P. Jones, "US Secure Hash Algorithm 1
 (SHA1)", RFC 3174, September 2001.

 [RFC3447] Jonsson, J. and B. Kaliski, "Public-Key Cryptography
 Standards (PKCS) #1: RSA Cryptography Specifications
 Version 2.1", RFC 3447, February 2003.

 [RFC4251] Ylonen, T. and C. Lonvick, "The Secure Shell (SSH)
 Protocol Architecture", RFC 4251, January 2006.

 [RFC4253] Ylonen, T. and C. Lonvick, "The Secure Shell (SSH)
 Transport Layer Protocol", RFC 4253, January 2006.

 [RFC4250] Lehtinen, S. and C. Lonvick, "The Secure Shell (SSH)
 Protocol Assigned Numbers", RFC 4250, January 2006.

 [FIPS-180-2] National Institute of Standards and Technology (NIST),
 "Secure Hash Standard (SHS)", FIPS PUB 180-2,
 August 2002.

11.2. Informative References

 [SSH1] Ylonen, T., "SSH -- Secure Login Connections over the
 Internet", 6th USENIX Security Symposium, pp. 37-42,
 July 1996.

 [RFC3766] Orman, H. and P. Hoffman, "Determining Strengths For
 Public Keys Used For Exchanging Symmetric Keys",
 BCP 86, RFC 3766, April 2004.

 [RFC4086] Eastlake, D., Schiller, J., and S. Crocker, "Randomness
 Requirements for Security", BCP 106, RFC 4086,
 June 2005.

Harris Standards Track [Page 6]

RFC 4432 SSH RSA Key Exchange March 2006

Appendix A. On the Size of K

 The requirements on the size of K are intended to ensure that it is
 always possible to encrypt it under K_T. The mpint encoding of K
 requires a leading zero bit, padding to a whole number of bytes, and
 a four-byte length field, giving a maximum length in bytes,
 B = (KLEN-2*HLEN-49+1+7)/8 + 4 = (KLEN-2*HLEN-9)/8 (where "/" denotes
 integer division rounding down).

 The maximum length of message that can be encrypted using RSAEP-OAEP
 is defined by [RFC3447] in terms of the key length in bytes, which is
 (KLEN+7)/8. The maximum length is thus L = (KLEN+7-2*HLEN-16)/8 =
 (KLEN-2*HLEN-9)/8. Thus, the encoded version of K is always small
 enough to be encrypted under K_T.

Author’s Address

 Ben Harris
 2a Eachard Road
 CAMBRIDGE
 CB4 1XA
 UNITED KINGDOM

 EMail: bjh21@bjh21.me.uk

Harris Standards Track [Page 7]

RFC 4432 SSH RSA Key Exchange March 2006

Full Copyright Statement

 Copyright (C) The Internet Society (2006).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

Harris Standards Track [Page 8]

