Net wor k Wor ki ng Group D. Rand
Request for Comments: 1978 Novel
Cat egory: I nfornmational August 1996

PPP Predi ctor Conpression Protoco
Status of This Menp
This meno provides information for the Internet community. This nmeno
does not specify an Internet standard of any kind. Distribution of
this nenmo is unlinted.

Abstract

The Point-to-Point Protocol (PPP) [1] provides a standard nethod of
encapsul ating nmultiple protocol datagrans over point-to-point |inks.

The PPP Conpression Control Protocol [2] provides a nmethod for
transporting nulti-protocol datagranms over PPP encapsul ated |inks.

Thi s docunent describes the use of the Predictor data conpression
al gorithm for conpressing PPP encapsul at ed packets.

Tabl e of Contents

1. Introduction 1
2. Li CENSI NG ..o 2
3. Predictor Packets i, 2

3.1 Predictor theory 2

3.2 Encapsul ation for Predictor type 1 7

3.3 Encapsul ation for Predictor type 2 8
4. Configuration Option Format 9
SECURI TY CONSIDERATIONS e 9
REFERENCES 9
ACKNOWLEDGEMENTS . . .o e e e e 9
CHAIR' 'S ADDRESS . ..ottt e e e e e e e 9
AUTHOR S ADDRESSottt ettt e e e e e e 9

1. Introduction

Predictor is a high speed conpression algorithm avail able without
license fees. The conpression ratio obtained using predictor is not
as good as other conpression algorithnms, but it remains one of the
fastest al gorithns avail able.

Not e that al though care has been taken to ensure that the follow ng
code does not infringe any patents, there is no assurance that it is

Rand | nf or mati onal [Page 1]

RFC 1978 Predi ctor Protocol August 1996

2.

3.

not covered by a patent.
Li censi ng

There are no license fees or costs associated with using the
Predictor algorithm

Use the followi ng code at your own risk.
Predi ct or Packets

Bef ore any Predictor packets may be comuni cated, PPP nust reach the
Net wor k- Layer Protocol phase, and the Conpression Control Protoco
nmust reach the Opened state.

Exactly one Predictor datagramis encapsulated in the PPP Information
field, where the PPP Protocol field indicates type hex OOFD
(conpressed dat agram .

The maxi mum | ength of the Predictor datagramtransmitted over a PPP
link is the same as the maxi mum |l ength of the Information field of a
PPP encapsul at ed packet.

Prior to conpression, the unconpressed data begins with the PPP
Prot ocol nunber. This value MAY be conpressed when Protocol -Fi el d-
Conpressi on i s negoti at ed.

PPP Link Control Protocol packets MJUST NOT be send within conpressed
dat a.

1. Predictor theory

Predictor works by filling a guess table with values, based on the
hash of the previous characters seen. Since we are either emtting
the source data, or depending on the guess table, we add a flag bit
for every byte of input, telling the deconpressor if it should
retrieve the byte fromthe conpressed data stream or the guess
table. Blocking the input into groups of 8 characters neans that we
don’t have to bit-insert the conpressed output - a flag byte preceeds
every 8 bytes of conpressed data. Each bit of the flag byte
corresponds to one byte of reconstructed data.

Take the source file:

000000 4141 4141 4141 410a 4141 4141 4141 410a AAAAAAA. AAAAAAA.
000010 4141 4141 4141 410a 4141 4141 4141 410a AAAAAAA. AAAAAAA.
000020 4142 4142 4142 410a 4241 4241 4241 420a ABABABA. BABABAB
000030 7878 7878 7878 780a XXXXXXX.

Rand I nf or mati onal [Page 2]

RFC 1978 Predi ctor Protoco

Conpressi ng the above data yields the foll ow ng:
000000 6041 4141 4141 0a60 4141 4141 410a 6f41
000010 0a6f 410a 4142 4142 4142 0a60 4241 4241
000020 420a 6078 7878 7878 Oa

Readi ng t he above data says:

flag = Ox60 - 2 bytes in this block were
Reconstructed data is: 01234567
File: AAAAA
Guess tabl e: A A
flag = Ox60 - 2 bytes in this block were
Reconstructed data is: 01234567
File: AAAAA
Guess tabl e: A A
flag = Ox6f - 6 bytes in this block were
Reconstructed data is: 01234567
File: A
Guess tabl e: AAAA AA
flag = Ox6f - 6 bytes in this block were guessed correctly, 0-3, 5 and 6.
Reconstructed data is: 01234567
File: A
Guess tabl e: AAAA AA
flag = 0x41 - 2 bytes in this block were guessed correctly, 0 and 6.
Reconstructed data is: 01234567
File: BABAB
Guess tabl e: A A
flag = 0x60 - 2 bytes in this block were
Reconstructed data is: 01234567
File: BABAB
Guess tabl e: A B
flag = Ox60 - 2 bytes in this block were
Reconstructed data is: 01234567
File: X X X X X
Guess tabl e: X X

August 1996

“ AAAAA. * AAAAA. 0A
. OA. ABABAB. ‘' BABA
B. * XXXXX.

guessed correctly, 5 and 6.

guessed correctly, 5 and 6.

guessed correctly, 0-3, 5 and 6.

guessed correctly, 5 and 6.

guessed correctly, 5 and 6

And now, on to the source - note that it has been nodified to work
with a split block. If your data streamcan’'t be split within a block
(e.g., conpressing packets), then the code dealing with "final", and
the menctpy are not required. You can detect this situation (or
errors, for that matter) by observing that the flag byte indicates
that nore data is required fromthe conpressed data stream but you

are out of data (len in deconpress is <= 0). It
and flags indicate guess table usage.

#i ncl ude <stdi o. h>
#i fdef _ STDC

Rand | nf or mat i ona

is ok if len == 0,

[Page 3]

RFC 1978 Predi ctor Protocol August 1996

#i ncl ude <stdlib. h>

#endi f
#i ncl ude <string. h>
/*
* pred.c -- Test programfor Dave Rand’s rendition of the
* predictor algorithm
* Updated by: iand@abtam | abtam oz.au (1an Donal dson)
* Updated by: Carsten Bormann <cabo@s.tu-berlin.de>
* Original : Dave Rand <dl r @ungi . conp/ <dave_rand@ovel |l . conp
*

/

/* The follow ng hash code is the heart of the algorithm
* |t builds a sliding hash sum of the previous 3-and-a-bit
* characters which will be used to index the guess table.
* A better hash function would result in additional conpression
* at the expense of tine.
*/
#defi ne HASH(x) Hash = (Hash << 4) ~ (x)

static unsigned short int Hash;
static unsigned char GuessTabl e[65536] ;

static int
conpress(source, dest, |en)
unsi gned char *source, *dest;

int |len;
t
int i, bitmask;
unsi gned char *fl agdest, flags, *orgdest;
orgdest = dest;
while (len) {
flagdest = dest++; flags = 0; /* Al guess wong initially */
for (bitmask=1, i=0; i < 8 & len; i++, bitmask <<= 1) {
i f (GQuessTabl e[Hash] == *source) {
flags | = bitmask; /* Guess was right - don't output */
} else {
GuessTabl e[Hash] = *sour ce;
*dest ++ = *source; /* Quess wong, output char */
HASH(*sour ce++) ;| en- -;
}
*f|l agdest = fl ags;
return(dest - orgdest);
}
static int

Rand I nf or mati onal [Page 4]

RFC 1978 Predi ctor Protocol August 1996

deconpress(source, dest, lenp, final)
unsi gned char *source, *dest;
int *lenp, final

{
int i, bitmask;
unsi gned char flags, *orgdest;
int len = *|l enp;
orgdest = dest;
while (len >= 9) {
flags = *source++
for (i=0, bitmask = 1; i < 8; i++, bitmask <<= 1) {
if (flags & bitmask) {
dest = QuessTabl e[Hash]; / Guess correct */
} else {
GuessTabl e[Hash] = *sour ce; /* GQuess wrong */
*dest = *source++; /* Read from source */
l en--;
}
HASH(* dest ++) ;
}
| en--;
}
while (final &% len) {
flags = *source++
| en--;
for (i=0, bitmask = 1; i < 8; i++, bitmask <<= 1) {
if (flags & bitmask) {
dest = CQuessTabl e[Hash]; / Quess correct */
} else {
if (!'len)
break; /* we seemto be really done -- cabo */
GuessTabl e[Hash] = *source; /* GQuess wrong */
*dest = *source++; /* Read from source */
len--;
}
HASH(*dest ++) ;
}
}
*lenp = len;
return(dest - orgdest);
}

#define SIZ1 8192

static void
conpress_file(f) FILE *f; {
char buf p[SI 21] ;
char bufc[SI Z1/ 8*9+9] ;

Rand I nf or mati onal [Page 5]

RFC 1978 Predi ctor Protoco

}

int lenl, |en2;

while ((lenl = fread(bufp, 1, SIz1, f)) > 0) {
| en2 = conpress((unsigned char *)bufp,
(unsi gned char *)bufc, lenl);
(void) fwite(bufc, 1, len2, stdout);

static void
deconpress _file(f) FILE *f; {

}

i nt

char buf p[SI Z1+9] ;
char bufc[SI Z1*9+9] ;
int lenl, len2, |en3;

lenl = O;
while ((len3 = fread(bufp+l enl, 1, SIzZ1, f)) > 0) {
l enl += | en3;
len3 = |l enl;
| en2 = deconpress((unsigned char *)bufp,
(unsi gned char *)bufc, & enl, 0);
(void) fwite(bufc, 1, len2, stdout);
(void) nencpy(bufp, bufp+l en3-1enl, lenl);

| en2 = deconpress((unsigned char *)bufp,
(unsi gned char *)bufc, & enl, 1);
(void) fwite(bufc, 1, len2, stdout);

mai n(ac, av)

Rand

int ac;
char** av;

char **p = av+1;
int dflag = O;

for (; --ac > 0; p++) {
if (!'strcnp(*p, "-d"))

dflag = 1;
else if (Istrcmp(*p, "-"))
(dfl ag?deconpress_fil e:conpress_file)(stdin);
el se {
FILE *f = fopen(*p, "r");
if ('f) {
perror(*p);
exit(l);

}
(df l ag?deconpress_file:conpress file)(f);

| nf or mat i ona

August 1996

[Page 6]

RFC 1978 Predi ctor Protocol August 1996
(void) fclose(f);
}
return(0);

3.2. Encapsulation for Predictor type 1

The correct encapsul ation for type 1 conpression is the protoco
type, 1 bit indicating if the data is conpressed or not, 15 bits of
the unconpressed data length in octets, conpressed data, and
unconpressed CRC-16 of the two octets of unsigned | ength in network
byte order, followed by the original, unconpressed data packet.

0 1
0123456789012345
B i S S S it s ol T S S
CCP Protocol ldentifier |
I S Sl i e S
Unconpressed | ength (octets)| * is conpressed flag
i e it T B R R R 1 nmeans data i s conpressed

*

>
| *|

+- - +-

| Compressed data... | 0 means data is not conpressed

B i S S S it s ol T S S

| CRC - 16

T S EE o s ok Tk e N e

The CCP Protocol Identifier that starts the packet is always Oxfd.

If PPP Protocol field conpression has not be negotiated, it MJST be a
16-bit field.

The Conpressed data is the Protocol ldentifier and the Info fields of
the original PPP packet described in [1], but not the Address,
Control, FCS, or Flag. The CCP Protocol field MAY be conpressed as
described in [1], regardl ess of whether the Protocol field of the CCP
Protocol ldentifier is conpressed or whether PPP Protocol field
conpressi on has been negoti at ed.

It is not required that any of the fields |Iand on an even word
boundary - the conpressed data nay be of any length. |[If during the
decode procedure, the CRC- 16 does not match the decoded frane, it
nmeans that the conpress or deconpress process has becone
desyncroni zed. This will happen as a result of a frame being lost in
transit if LAPBis not used. 1In this case, a new configure-request
must be sent, and the CCP will drop out of the open state. Upon
recei pt of the configure-ack, the predictor tables are cleared to
zero, and conpression can be resumed wi thout data | oss.

Rand I nf or mati onal [Page 7]

RFC 1978 Predi ctor Protocol August 1996

3.3. Encapsul ation for Predictor type 2

The correct encapsul ation for type 2 conpression is the protoco
type, followed by the data stream Wthin the data streamis the
current frame |length (unconmpressed), conpressed data, and
unconpressed CRC-16 of the two octets of unsigned | ength in network
byte order, followed by the original, unconpressed data. The data
stream may be broken at any conveni ent place for encapsul ation
purposes. Wth type 2 encapsul ation, LAPB is al nost essential for
correct delivery.

0 1

0123456789012345

R i T S e ol it (R R

| CCP Protocol Identifier |

B i i I R e e S i ol i T S R R

| *] Unconpressed | ength (octets)]| * is compressed fl ag

R S SR S S S S S i I S 1 neans data is conpressed
| Conpressed data.. | 0 neans data is not conpressed
S I il o + S I o R

| CRC-16

B i i I R e e S i ol i T S R R

| *] Unconpressed | ength (octets)]| * is compressed fl ag

R R et ol I NI B B R R R R R R

The CCP Protocol Identifier that starts the packet is always Oxfd.
If PPP Protocol field conpression has not be negotiated, it MJST be a
16-bit field.

The Conpressed data is the Protocol ldentifier and the Info fields of
the original PPP packet described in [1], but not the Address,
Control, FCS, or Flag. The CCP Protocol field MAY be conpressed as
described in [1], regardl ess of whether the Protocol field of the CCP
Protocol ldentifier is conpressed or whether PPP Protocol field

conpr essi on

It is not required that any field land on an even word boundary - the
conpressed data may be of any length. |If during the decode
procedure, the CRC- 16 does not match the decoded frane, it means that
the conpress or deconpress process has become desyncroni zed. This
wi Il happen as a result of a frame being lost in transit if LAPBis
not used. 1In this case, a new configure-request nust be sent, and
the CCP will drop out of the open state. Upon receipt of the
configure-ack, the predictor tables are cleared to zero, and
conpressi on can be resuned wi thout data | oss.

Rand I nf or mati onal [Page 8]

RFC 1978 Predi ctor Protocol August 1996

4. Configuration Option Fornmat

There are no options for Predictor type one or two.
Security Considerations

Security issues are not discussed in this nmeno.
Ref er ences

[1] Si npson, W, "The Point-to-Point Protocol", STD 51, RFC
1661, July 1994.

[2] Rand, D., "The PPP Conpression Control Protocol (CCP)",
RFC 1962, June 1996.

[3] Rand, D., "PPP Reliable Transm ssion", RFC 1663,
July 1994,

Acknowl edgnent s

The predictor algorithmwas originally inplemented by Tino Raita, at
the ACM SI G Conference, New Ol eans, 1987

Bill Sinpson helped with the docunent formatting.
Chair’s Address

The working group can be contacted via the current chair

Karl Fox

Ascend Conmuni cati ons

3518 Riverside Drive, Suite 101

Col umbus, ©Chio 43221

EMai | : karl| @scend. com
Aut hor’ s Address

Questions about this nmeno can al so be directed to:

Dave Rand

Novel I, Inc.

2180 Fortune Drive

San Jose, CA 95131

+1 408 321-1259
EMai | : dave_rand@ovel | . com

Rand I nf or mati onal [Page 9]

