
ï»¿

Internet Engineering Task Force (IETF) S. Kini
Request for Comments: 8662
Category: Standards Track K. Kompella
ISSN: 2070-1721 Juniper
 S. Sivabalan
 Cisco
 S. Litkowski
 Orange
 R. Shakir
 Google
 J. Tantsura
 Apstra, Inc.
 December 2019

 Entropy Label for Source Packet Routing in Networking (SPRING) Tunnels

Abstract

 Segment Routing (SR) leverages the source-routing paradigm. A node
 steers a packet through an ordered list of instructions, called
 segments. Segment Routing can be applied to the Multiprotocol Label
 Switching (MPLS) data plane. Entropy labels (ELs) are used in MPLS
 to improve load-balancing. This document examines and describes how
 ELs are to be applied to Segment Routing MPLS.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8662.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction
 1.1. Requirements Language
 2. Abbreviations and Terminology
 3. Use Case Requiring Multipath Load-Balancing
 4. Entropy Readable Label Depth
 5. Maximum SID Depth
 6. LSP Stitching Using the Binding SID
 7. Insertion of Entropy Labels for SPRING Path
 7.1. Overview
 7.1.1. Example 1: The Ingress Node Has a Sufficient MSD

 7.1.2. Example 2: The Ingress Node Does Not Have a Sufficient
 MSD
 7.2. Considerations for the Placement of Entropy Labels
 7.2.1. ERLD Value
 7.2.2. Segment Type
 7.2.3. Maximizing Number of LSRs That Will Load-Balance
 7.2.4. Preference for a Part of the Path
 7.2.5. Combining Criteria
 8. A Simple Example Algorithm
 9. Deployment Considerations
 10. Options Considered
 10.1. Single EL at the Bottom of the Stack
 10.2. An EL per Segment in the Stack
 10.3. A Reusable EL for a Stack of Tunnels
 10.4. EL at Top of Stack
 10.5. ELs at Readable Label Stack Depths
 11. IANA Considerations
 12. Security Considerations
 13. References
 13.1. Normative References
 13.2. Informative References
 Acknowledgements
 Contributors
 Authors’ Addresses

1. Introduction

 Segment Routing [RFC8402] is based on source-routed tunnels to steer
 a packet along a particular path. This path is encoded as an ordered
 list of segments. When applied to the MPLS data plane [RFC8660],
 each segment is an LSP (Label Switched Path) with an associated MPLS
 label value. Hence, label stacking is used to represent the ordered
 list of segments, and the label stack associated with an SR tunnel
 can be seen as nested LSPs (LSP hierarchy) in the MPLS architecture.

 Using label stacking to encode the list of segments has implications
 on the label stack depth.

 Traffic load-balancing over ECMP (Equal-Cost Multipath) or LAGs (Link
 Aggregation Groups) is usually based on a hashing function. The
 local node that performs the load-balancing is required to read some
 header fields in the incoming packets and then compute a hash based
 on those fields. The result of the hash is finally mapped to a list
 of outgoing next hops. The hashing technique is required to perform
 a per-flow load-balancing and thus, prevents packet misordering. For
 IP traffic, the usual fields that are hashed are the source address,
 the destination address, the protocol type, and, if provided by the
 upper layer, the source port and destination port.

 The MPLS architecture brings some challenges when an LSR (Label
 Switching Router) tries to look up at header fields. An LSR needs be
 able to look up at header fields that are beyond the MPLS label stack
 while the MPLS header does not provide any information about the
 upper-layer protocol. An LSR must perform a deeper inspection
 compared to an ingress router, which could be challenging for some
 hardware. Entropy labels (ELs) [RFC6790] are used in the MPLS data
 plane to provide entropy for load-balancing. The idea behind the
 entropy label is that the ingress router computes a hash based on
 several fields from a given packet and places the result in an
 additional label named "entropy label". Then, this entropy label can
 be used as part of the hash keys used by an LSR. Using the entropy
 label as part of the hash keys reduces the need for deep packet
 inspection in the LSR while keeping a good level of entropy in the
 load-balancing. When the entropy label is used, the keys used in the
 hashing functions are still a local configuration matter, and an LSR
 may use solely the entropy label or a combination of multiple fields
 from the incoming packet.

 When using LSP hierarchies, there are implications on how [RFC6790]
 should be applied. The current document addresses the case where a
 hierarchy is created at a single LSR as required by Segment Routing.

 A use case requiring load-balancing with SR is given in Section 3. A
 recommended solution is described in Section 7 keeping in
 consideration the limitations of implementations when applying
 [RFC6790] to deeper label stacks. Options that were considered to
 arrive at the recommended solution are documented for historical
 purposes in Section 10.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. Abbreviations and Terminology

 Adj-SID Adjacency Segment Identifier

 ECMP Equal-Cost Multipath

 EL Entropy Label

 ELI Entropy Label Indicator

 ELC Entropy Label Capability

 ERLD Entropy Readable Label Depth

 FEC Forwarding Equivalence Class

 LAG Link Aggregation Group

 LSP Label Switched Path

 LSR Label Switching Router

 MPLS Multiprotocol Label Switching

 MSD Maximum SID Depth

 Node SID Node Segment Identifier

 OAM Operations, Administration, and Maintenance

 RLD Readable Label Depth

 SID Segment Identifier

 SPT Shortest Path Tree

 SR Segment Routing

 SRGB Segment Routing Global Block

 VPN Virtual Private Network

3. Use Case Requiring Multipath Load-Balancing

 Traffic engineering is one of the applications of MPLS and is also a
 requirement for Segment Routing [RFC7855]. Consider the topology
 shown in Figure 1. The LSR S requires data to be sent to LSR D along
 a traffic-engineered path that goes over the link L1. Good load-
 balancing is also required across equal-cost paths (including
 parallel links). To steer traffic along a path that crosses link L1,
 the label stack that LSR S creates consists of a label to the Node
 SID of LSR P3 stacked over the label for the Adj-SID (Adjacency
 Segment Identifier) of link L1 and that in turn is stacked over the
 label to the Node SID of LSR D. For simplicity, lets assume that all
 LSRs use the same label space for Segment Routing (as a reminder, it

 is called the SRGB, Segment Routing Global Block). Let L_N-Px denote
 the label to be used to reach the Node SID of LSR Px. Let L_A-Ln
 denote the label used for the Adj-SID for link Ln. In our example,
 the LSR S must use the label stack <L_N-P3, L_A-L1, L_N-D>. However,
 to achieve good load-balancing over the equal-cost paths P2-P4-D,
 P2-P5-D, and the parallel links L3 and L4, a mechanism such as
 entropy labels [RFC6790] should be adapted for Segment Routing.
 Indeed, the Source Packet Routing in Networking (SPRING) architecture
 with the MPLS data plane [RFC8660] uses nested MPLS LSPs composing
 the source-routed label stack.

 +------+
 | |
 +-------| P3 |-----+
 | +-----| |---+ |
 L3| |L4 +------+ L1| |L2 +----+
 | | | | +--| P4 |--+
 +-----+ +-----+ +-----+ | +----+ | +-----+
 | S |-----| P1 |------------| P2 |--+ +--| D |
 | | | | | |--+ +--| |
 +-----+ +-----+ +-----+ | +----+ | +-----+
 +--| P5 |--+
 +----+
 Key:
 S = Source LSR
 D = Destination LSR
 P1, P2, P3, P4, P5 = Transit LSRs
 L1, L2, L3, L4 = Links

 Figure 1: Traffic-Engineering Use Case

 An MPLS node may have limitations in the number of labels it can
 push. It may also have a limitation in the number of labels it can
 inspect when looking for hash keys during load-balancing. While the
 entropy label is normally inserted at the bottom of the transport
 tunnel, this may prevent an LSR from taking into account the EL in
 its load-balancing function if the EL is too deep in the stack. In a
 Segment Routing environment, it is important to define the
 considerations that need to be taken into account when inserting an
 EL. Multiple ways to apply entropy labels were considered and are
 documented in Section 10 along with their trade-offs. A recommended
 solution is described in Section 7.

4. Entropy Readable Label Depth

 The Entropy Readable Label Depth (ERLD) is defined as the number of
 labels a router can both:

 a. Read in an MPLS packet received on its incoming interface(s)
 (starting from the top of the stack).

 b. Use in its load-balancing function.

 The ERLD means that the router will perform load-balancing using the
 EL if the EL is placed within the first ERLD labels.

 A router capable of reading N labels but not using an EL located
 within those N labels MUST consider its ERLD to be 0.

 In a distributed switching architecture, each line card may have a
 different capability in terms of ERLD. For simplicity, an
 implementation MAY use the minimum ERLD of all line cards as the ERLD
 value for the system.

 There may also be a case where a router has a fast switching path
 (handled by an Application-Specific Integrated Circuit, or ASIC, or
 network processor) and a slow switching path (handled by a CPU) with
 a different ERLD for each switching path. Again, for simplicity’s
 sake, an implementation MAY use the minimum ERLD as the ERLD value
 for the system.

 The drawback of using a single ERLD for a system lower than the
 capability of one or more specific components is that it may increase
 the number of ELI/ELs inserted. This leads to an increase of the
 label stack size and may have an impact on the capability of the
 ingress node to push this label stack.

 Examples:

 | Payload |
 +----------+
 | Payload | | EL | P7
 +----------+ +----------+
 | Payload | | EL | | ELI |
 +----------+ +----------+ +----------+
 | Payload | | EL | | ELI | | Label 50 |
 +----------+ +----------+ +----------+ +----------+
 | Payload | | EL | | ELI | | Label 40 | | Label 40 |
 +----------+ +----------+ +----------+ +----------+ +----------+
 | EL | | ELI | | Label 30 | | Label 30 | | Label 30 |
 +----------+ +----------+ +----------+ +----------+ +----------+
 | ELI | | Label 20 | | Label 20 | | Label 20 | | Label 20 |
 +----------+ +----------+ +----------+ +----------+ +----------+
 | Label 16 | | Label 16 | | Label 16 | | Label 16 | | Label 16 | P1
 +----------+ +----------+ +----------+ +----------+ +----------+
 Packet 1 Packet 2 Packet 3 Packet 4 Packet 5

 Figure 2: Label Stacks with ELI/EL

 In Figure 2, we consider the displayed packets received on a router
 interface. We consider also a single ERLD value for the router.

 * If the router has an ERLD of 3, it will be able to load-balance
 Packet 1 displayed in Figure 2 using the EL as part of the load-
 balancing keys. The ERLD value of 3 means that the router can
 read and take into account the entropy label for load-balancing if
 it is placed between position 1 (top of the MPLS label stack) and
 position 3.

 * If the router has an ERLD of 5, it will be able to load-balance
 Packets 1 to 3 in Figure 2 using the EL as part of the load-
 balancing keys. Packets 4 and 5 have the EL placed at a position
 greater than 5, so the router is not able to read it and use it as
 part of the load-balancing keys.

 * If the router has an ERLD of 10, it will be able to load-balance
 all the packets displayed in Figure 2 using the EL as part of the
 load-balancing keys.

 To allow an efficient load-balancing based on entropy labels, a
 router running SPRING SHOULD advertise its ERLD (or ERLDs), so all
 the other SPRING routers in the network are aware of its capability.
 How this advertisement is done is outside the scope of this document
 (see Section 7.2.1 for potential approaches).

 To advertise an ERLD value, a SPRING router:

 * MUST be entropy label capable and, as a consequence, MUST apply
 the data-plane procedures defined in [RFC6790].

 * MUST be able to read an ELI/EL, which is located within its ERLD
 value.

 * MUST take into account an EL within the first ERLD labels in its
 load-balancing function.

5. Maximum SID Depth

 The Maximum SID Depth defines the maximum number of labels that a
 particular node can impose on a packet. This can include any kind of
 labels (service, entropy, transport, etc.). In an MPLS network, the
 MSD is a limit of the head-end of an SR tunnel or a Binding SID

 anchor node that performs imposition of additional labels on an
 existing label stack.

 Depending on the number of MPLS operations (POP, SWAP, etc.) to be
 performed before the PUSH, the MSD can vary due to hardware or
 software limitations. As for the ERLD, different MSD limits can
 exist within a single node based on the line-card types used in a
 distributed switching system. Thus, the MSD is a per link and/or
 per-node property.

 An external controller can be used to program a label stack on a
 particular node. This node SHOULD advertise its MSD to the
 controller in order to let the controller know the maximum label
 stack depth of the path computed that is supported on the head-end.
 How this advertisement is done is outside the scope of this document.
 ([RFC8476], [RFC8491], and [MSD-BGP] provide examples of
 advertisement of the MSD.) As the controller does not have the
 knowledge of the entire label stack to be pushed by the node, in
 addition to the MSD value, the node SHOULD advertise the type of the
 MSD. For instance, the MSD value can represent the limit for pushing
 transport labels only while in reality the node can push an
 additional service label. As another example, the MSD value can
 represent the full limit of the node including all label types
 (transport, service, entropy, etc.). This gives the ability for the
 controller to program a label stack while leaving room for the local
 node to add more labels (e.g., service, entropy, etc.) without
 reaching the hardware/software limit. If the node does not provide
 the meaning of the MSD value, the controller could program an LSP
 using a number of labels equal to the full limit of the node. When
 receiving this label stack from the controller, the ingress node may
 not be able to add any service (L2VPN, L3VPN, EVPN, etc.) label on
 top of this label stack. The consequence could be for the ingress
 node to drop service packets that should have been forwarded over the
 LSP.

 P7 ---- P8 ---- P9
 / \
 PE1 --- P1 --- P2 --- P3 --- P4 --- P5 --- P6 --- PE2
 | \ |
 ----> P10 \ |
 IP Pkt | \ |
 P11 --- P12 --- P13
 100 10000

 Figure 3: Topology Illustrating Label Stack Reduction

 In Figure 3, an IP packet comes into the MPLS network at PE1. All
 metrics are considered equal to 1 except P12-P13, which is 10000, and
 P11-P12, which is 100. PE1 wants to steer the traffic using a SPRING
 path to PE2 along PE1 -> P1 -> P7 -> P8 -> P9 -> P4 -> P5 -> P10 ->
 P11 -> P12 -> P13 -> PE2. By using Adj-SIDs only, PE1 (acting as an
 ingress LSR, also known as an I-LSR) will be required to push 10
 labels on the IP packet received and thus, requires an MSD of 10. If
 the IP packet should be carried over an MPLS service like a regular
 layer 3 VPN, an additional service label should be imposed requiring
 an MSD of 11 for PE1. In addition, if PE1 wants to insert an ELI/EL
 for load-balancing purposes, PE1 will need to push 13 labels on the
 IP packet requiring an MSD of 13.

 In the SPRING architecture, Node SIDs or Binding SIDs can be used to
 reduce the label stack size. As an example, to steer the traffic on
 the same path as before, PE1 could use the following label stack:
 <Node_P9, Node_P5, Binding_P5, Node_PE2>. In this example, we
 consider a combination of Node SIDs and a Binding SID advertised by
 P5 that will stitch the traffic along the path P10 -> P11 -> P12 ->
 P13. The instruction associated with the Binding SID at P5 is thus
 to swap Binding_P5 to Adj_P12-P13 and then push <Adj_P11-P12,
 Node_P11>. P5 acts as a stitching node that pushes additional labels
 on an existing label stack; P5’s MSD needs also to be taken into
 account and may limit the number of labels that can be imposed.

6. LSP Stitching Using the Binding SID

 The Binding SID allows binding a segment identifier to an existing
 LSP. As examples, the Binding SID can represent an RSVP-TE tunnel,
 an LDP path (through the Mapping Server Advertisement), or a SPRING
 path. Each tail-end router of an MPLS LSP associated with a Binding
 SID has its own entropy label capability. The entropy label
 capability of the associated LSP is advertised in the control-plane
 protocol used to signal the LSP.

 In Figure 4, we consider that:

 * P6, PE2, P10, P11, P12, and P13 are pure LDP routers.

 * PE1, P1, P2, P3, P4, P7, P8, and P9 are pure SPRING routers.

 * P5 is running SPRING and LDP.

 * P5 acts as a Mapping Server and advertises Prefix-SIDs for the LDP
 FECs: an index value of 20 is used for PE2.

 * All SPRING routers use an SRGB of [1000, 1999].

 * P6 advertises label 20 for the PE2 FEC.

 * Traffic from PE1 to PE2 uses the shortest path.

 PE1 ----- P1 -- P2 -- P3 -- P4 ---- P5 --- P6 --- PE2
 --> +----+ +----+ +----+ +----+
 IP Pkt | IP | | IP | | IP | | IP |
 +----+ +----+ +----+ +----+
 |1020| |1020| | 20 |
 +----+ +----+ +----+
 SPRING LDP

 Figure 4: Example Illustrating Need for ELC Propagation

 In terms of packet forwarding, by learning the Mapping Server
 Advertisement from P5, PE1 imposes a label 1020 to an IP packet
 destined to PE2. SPRING routers along the shortest path to PE2 will
 switch the traffic until it reaches P5. P5 will perform the LSP
 stitching by swapping the SPRING label 1020 to the LDP label 20
 advertised by the next hop P6. P6 will finally forward the packet
 using the LDP label towards PE2.

 PE1 cannot push an ELI/EL for the Binding SID without knowing that
 the tail end of the LSP associated with the binding (PE2) is entropy
 label capable.

 To accommodate the mix of signaling protocols involved during the
 stitching, the entropy label capability SHOULD be propagated between
 the signaling domains. Each Binding SID SHOULD have its own entropy
 label capability that MUST be inherited from the entropy label
 capability of the associated LSP. If the router advertising the
 Binding SID does not know the ELC state of the target FEC, it MUST
 NOT set the ELC for the Binding SID. An ingress node MUST NOT push
 an ELI/EL associated with a Binding SID unless this Binding SID has
 the entropy label capability. How the entropy label capability is
 advertised for a Binding SID is outside the scope of this document
 (see Section 7.2.1 for potential approaches).

 In our example, if PE2 is LDP entropy label capable, it will add the
 entropy label capability in its LDP advertisement. When P5 receives
 the FEC/label binding for PE2, it learns about the ELC and can set
 the ELC in the Mapping Server Advertisement. Thus, PE1 learns about
 the ELC of PE2 and may push an ELI/EL associated with the Binding
 SID.

 The proposed solution only works if the SPRING router advertising the
 Binding SID is also performing the data-plane LSP stitching. In our
 example, if the Mapping Server function is hosted on P8 instead of

 P5, P8 does not know about the ELC state of PE2’s LDP FEC. As a
 consequence, it does not set the ELC for the associated Binding SID.

7. Insertion of Entropy Labels for SPRING Path

7.1. Overview

 The solution described in this section follows the data-plane
 processing defined in [RFC6790]. Within a SPRING path, a node may be
 ingress, egress, transit (regarding the entropy label processing
 described in [RFC6790]), or it can be any combination of those. For
 example:

 * The ingress node of a SPRING domain can be an ingress node from an
 entropy label perspective.

 * Any LSR terminating a segment of the SPRING path is an egress node
 (because it terminates the segment) but can also be a transit node
 if the SPRING path is not terminated because there is a subsequent
 SPRING MPLS label in the stack.

 * Any LSR processing a Binding SID may be a transit node and an
 ingress node (because it may push additional labels when
 processing the Binding SID).

 As described earlier, an LSR may have a limitation (the ERLD) on the
 depth of the label stack that it can read and process in order to do
 multipath load-balancing based on entropy labels.

 If an EL does not occur within the ERLD of an LSR in the label stack
 of an MPLS packet that it receives, then it would lead to poor load-
 balancing at that LSR. Hence, an ELI/EL pair must be within the ERLD
 of the LSR in order for the LSR to use the EL during load-balancing.

 Adding a single ELI/EL pair for the entire SPRING path can also lead
 to poor load-balancing as well because the ELI/EL may not occur
 within the ERLD of some LSR on the path (if too deep) or may not be
 present in the stack when it reaches some LSRs (if it is too
 shallow).

 In order for the EL to occur within the ERLD of LSRs along the path
 corresponding to a SPRING label stack, multiple <ELI, EL> pairs MAY
 be inserted in this label stack.

 The insertion of an ELI/EL MUST occur only with a SPRING label
 advertised by an LSR that advertised an ERLD (the LSR is entropy
 label capable) or with a SPRING label associated with a Binding SID
 that has the ELC set.

 The ELs among multiple <ELI, EL> pairs inserted in the stack MAY be
 the same or different. The LSR that inserts <ELI, EL> pairs can have
 limitations on the number of such pairs that it can insert and also
 the depth at which it can insert them. If, due to limitations, the
 inserted ELs are at positions such that an LSR along the path
 receives an MPLS packet without an EL in the label stack within that
 LSR’s ERLD, then the load-balancing performed by that LSR would be
 poor. An implementation MAY consider multiple criteria when
 inserting <ELI, EL> pairs.

7.1.1. Example 1: The Ingress Node Has a Sufficient MSD

 ECMP LAG LAG
 PE1 --- P1 --- P2 --- P3 --- P4 --- P5 --- P6 --- PE2

 Figure 5: Accommodating MSD Limitations

 In Figure 5, PE1 wants to forward some MPLS VPN traffic over an
 explicit path to PE2 resulting in the following label stack to be
 pushed onto the received IP header: <Adj_P1P2, Adj_set_P2P3,
 Adj_P3P4, Adj_P4P5, Adj_P5P6, Adj_P6PE2, VPN_label>. PE1 is limited
 to push a maximum of 11 labels (MSD=11). P2, P3, and P6 have an ERLD

 of 3 while others have an ERLD of 10.

 PE1 can only add two ELI/EL pairs in the label stack due to its MSD
 limitation. It should insert them strategically to benefit load-
 balancing along the longest part of the path.

 PE1 can take into account multiple parameters when inserting ELs; as
 examples:

 * The ERLD value advertised by transit nodes.

 * The requirement of load-balancing for a particular label value.

 * Any service provider preference: favor beginning of the path or
 end of the path.

 In Figure 5, a good strategy may be to use the following stack
 <Adj_P1P2, Adj_set_P2P3, ELI1, EL1, Adj_P3P4, Adj_P4P5, Adj_P5P6,
 Adj_P6PE2, ELI2, EL2, VPN_label>. The original stack requests P2 to
 forward based on an L3 adjacency-set that will require load-
 balancing. Therefore, it is important to ensure that P2 can load-
 balance correctly. As P2 has a limited ERLD of 3, an ELI/EL must be
 inserted just after the label that P2 will use to forward. On the
 path to PE2, P3 has also a limited ERLD, but P3 will forward based on
 a regular adjacency segment that may not require load-balancing.
 Therefore, it does not seem important to ensure that P3 can do load-
 balancing despite its limited ERLD. The next nodes along the
 forwarding path have a high ERLD that does not cause any issue,
 except P6. Moreover, P6 is using some LAGs to PE2 and so is expected
 to load-balance. It becomes important to insert a new ELI/EL just
 after the P6 forwarding label.

 In the case above, the ingress node was able to support a sufficient
 MSD to ensure end-to-end load-balancing while taking into account the
 path attributes. However, there might be cases where the ingress
 node may not have the necessary label imposition capacity.

7.1.2. Example 2: The Ingress Node Does Not Have a Sufficient MSD

 ECMP LAG ECMP ECMP
 PE1 --- P1 --- P2 --- P3 --- P4 --- P5 --- P6 --- P7 --- P8 --- PE2

 Figure 6: MSD Considerations

 In Figure 6, PE1 wants to forward MPLS VPN traffic over an explicit
 path to PE2 resulting in the following label stack to be pushed onto
 the IP header: <Adj_P1P2, Adj_set_P2P3, Adj_P3P4, Adj_P4P5, Adj_P5P6,
 Adj_set_P6P7, Adj_P7P8; Adj_set_P8PE2, VPN_label>. PE1 is limited to
 push a maximum of 11 labels. P2, P3, and P6 have an ERLD of 3 while
 others have an ERLD of 15.

 Using a similar strategy as the previous case may lead to a dilemma,
 as PE1 can only push a single ELI/EL while we may need a minimum of
 three to load-balance the end-to-end path. An optimized stack that
 would enable end-to-end load-balancing may be: <Adj_P1P2,
 Adj_set_P2P3, ELI1, EL1, Adj_P3P4, Adj_P4P5, Adj_P5P6, Adj_set_P6P7,
 ELI2, EL2, Adj_P7P8, Adj_set_P8PE2, ELI3, EL3, VPN_label>.

 A decision needs to be taken to favor some part of the path for load-
 balancing considering that load-balancing may not work on the other
 parts. A service provider may decide to place the ELI/EL after the
 P6 forwarding label as it will allow P4 and P6 to load-balance.
 Placing the ELI/EL at the bottom of the stack is also a possibility
 enabling load-balancing for P4 and P8.

7.2. Considerations for the Placement of Entropy Labels

 The sample cases described in the previous section showed that ELI/EL
 placement when the maximum number of labels to be pushed is limited
 is not an easy decision, and multiple criteria may be taken into
 account.

 This section describes some considerations that an implementation MAY
 take into account when placing ELI/ELs. This list of criteria is not
 considered exhaustive and an implementation MAY take into account
 additional criteria or tiebreakers that are not documented here. As
 the insertion of ELI/ELs is performed by the ingress node, having
 ingress nodes that do not use the same criteria does not cause an
 interoperability issue. However, from a network design and operation
 perspective, it is better to have all ingress routers using the same
 criteria.

 An implementation SHOULD try to maximize the possibility of load-
 balancing along the path by inserting an ELI/EL where multiple equal-
 cost paths are available and minimize the number of ELI/ELs that need
 to be inserted. In case of a trade-off, an implementation SHOULD
 provide flexibility to the operator to select the criteria to be
 considered when placing ELI/ELs or specify a subobjective for
 optimization.

 2 2
 PE1 -- P1 -- P2 --P3 --- P4 --- P5 -- ... -- P8 -- P9 -- PE2
 | |
 P3’--- P4’--- P5’

 Figure 7: MSD Trade-Offs

 Figure 7 will be used as reference in the following subsections. All
 metrics are equal to 1 except P3-P4 and P4-P5, which have a metric 2.
 We consider the MSD of nodes to be the full limit of label imposition
 (including service labels, entropy labels, and transport labels).

7.2.1. ERLD Value

 As mentioned in Section 7.1, the ERLD value is an important parameter
 to consider when inserting an ELI/EL. If an ELI/EL does not fall
 within the ERLD of a node on the path, the node will not be able to
 load-balance the traffic efficiently.

 The ERLD value can be advertised via protocols, and those extensions
 are described in separate documents (for instance, [ISIS-ELC] and
 [OSPF-ELC]).

 Let’s consider a path from PE1 to PE2 using the following stack
 pushed by PE1: <Adj_P1P2, Node_P9, Adj_P9PE2, Service_label>.

 Using the ERLD as an input parameter can help to minimize the number
 of required ELI/EL pairs to be inserted. An ERLD value must be
 retrieved for each SPRING label in the label stack.

 For a label bound to an adjacency segment, the ERLD is the ERLD of
 the node that has advertised the adjacency segment. In the example
 above, the ERLD associated with Adj_P1P2 would be the ERLD of router
 P1, as P1 will perform the forwarding based on the Adj_P1P2 label.

 For a label bound to a node segment, multiple strategies MAY be
 implemented. An implementation MAY try to evaluate the minimum ERLD
 value along the node segment path. If an implementation cannot find
 the minimum ERLD along the path of the segment or does not support
 the computation of the minimum ERLD, it SHOULD instead use the ERLD
 of the tail-end node. Using the ERLD of the tail end of the node
 segment mimics the behavior of [RFC6790] where the ingress takes only
 care of the egress of the LSP. In the example above, if the
 implementation supports computation of minimum ERLD along the path,
 the ERLD associated with label Node_P9 would be the minimum ERLD
 between nodes {P2,P3,P4 ..., P8}. If the implementation does not
 support the computation of minimum ERLD, it will consider the ERLD of
 P9 (tail-end node of Node_P9 SID). While providing the more optimal
 ELI/EL placement, evaluating the minimum ERLD increases the
 complexity of ELI/EL insertion. As the path to the Node SID may
 change over time, a recomputation of the minimum ERLD is required for
 each topology change. This recomputation may require the positions

 of the ELI/ELs to change.

 For a label bound to a Binding Segment, if the Binding Segment
 describes a path, an implementation MAY also try to evaluate the
 minimum ERLD along this path. If the implementation cannot find the
 minimum ERLD along the path of the segment or does not support this
 evaluation, it SHOULD instead use the ERLD of the node advertising
 the Binding SID. As for the node segment, evaluating the minimum
 ERLD adds complexity in the ELI/EL insertion process.

7.2.2. Segment Type

 Depending on the type of segment a particular label is bound to, an
 implementation can deduce that this particular label will be subject
 to load-balancing on the path.

7.2.2.1. Node SID

 An MPLS label bound to a Node SID represents a path that may cross
 multiple hops. Load-balancing may be needed on the node starting
 this path but also on any node along the path.

 In Figure 7, let’s consider a path from PE1 to PE2 using the
 following stack pushed by PE1: <Adj_P1P2, Node_P9, Adj_P9PE2,
 Service_label>.

 If, for example, PE1 is limited to push 6 labels, it can add a single
 ELI/EL within the label stack. An operator may want to favor a
 placement that would allow load-balancing along the Node SID path.
 In Figure 7, P3, which is along the Node SID path, requires load-
 balancing between two equal-cost paths.

 An implementation MAY try to evaluate if load-balancing is really
 required within a node segment path. This could be done by running
 an additional SPT (Shortest Path Tree) computation and analyzing of
 the node segment path to prevent a node segment that does not really
 require load-balancing from being preferred when placing ELI/ELs.
 Such inspection may be time consuming for implementations and without
 a 100% guarantee, as a node segment path may use LAGs that are
 invisible to the IP topology. As a simpler approach, an
 implementation MAY consider that a label bound to a Node SID will be
 subject to load-balancing and require an ELI/EL.

7.2.2.2. Adjacency-Set SID

 An adjacency-set is an Adj-SID that refers to a set of adjacencies.
 When an adjacency-set segment is used within a label stack, an
 implementation can deduce that load-balancing is expected at the node
 that advertised this adjacency segment. An implementation MAY favor
 the insertion of an ELI/EL after the Adj-SID representing an
 adjacency-set.

7.2.2.3. Adjacency SID Representing a Single IP Link

 When an adjacency segment representing a single IP link is used
 within a label stack, an implementation can deduce that load-
 balancing may not be expected at the node that advertised this
 adjacency segment.

 An implementation MAY NOT place an ELI/EL after a regular Adj-SID in
 order to favor the insertion of ELI/ELs following other segments.

 Readers should note that an adjacency segment representing a single
 IP link may require load-balancing. This is the case when a LAG (L2
 bundle) is implemented between two IP nodes and the L2 bundle SR
 extensions [RFC8668] are not implemented. In such a case, it could
 be useful to insert an ELI/EL in a readable position for the LSR
 advertising the label associated with the adjacency segment. To
 communicate the requirement for load-balancing for a particular
 Adjacency SID to ingress nodes, a user can enforce the use of the L2
 bundle SR extensions defined in [RFC8668] or can declare the single

 adjacency as an adjacency-set.

7.2.2.4. Adjacency SID Representing a Single Link within an L2 Bundle

 When the L2 bundle SR extensions [RFC8668] are used, adjacency
 segments may be advertised for each member of the bundle. In this
 case, an implementation can deduce that load-balancing is not
 expected on the LSR advertising this segment and MAY NOT insert an
 ELI/EL after the corresponding label.

7.2.2.5. Adjacency SID Representing an L2 Bundle

 When the L2 bundle SR extensions [RFC8668] are used, an adjacency
 segment may be advertised to represent the bundle. In this case, an
 implementation can deduce that load-balancing is expected on the LSR
 advertising this segment and MAY insert an ELI/EL after the
 corresponding label.

7.2.3. Maximizing Number of LSRs That Will Load-Balance

 When placing ELI/ELs, an implementation MAY optimize the number of
 LSRs that both need to load-balance (i.e., have ECMPs) and that will
 be able to perform load-balancing (i.e., the EL is within their
 ERLD).

 Let’s consider a path from PE1 to PE2 using the following stack
 pushed by PE1: <Adj_P1P2, Node_P9, Adj_P9PE2, Service_label>. All
 routers have an ERLD of 10 except P1 and P2, which have an ERLD of 4.
 PE1 is able to push 6 labels, so only a single ELI/EL can be added.

 In the example above, adding an ELI/EL after Adj_P1P2 will only allow
 load-balancing at P1, while inserting it after Adj_PE2P9 will allow
 load-balancing at P2, P3 ... P9 and maximize the number of LSRs that
 can perform load-balancing.

7.2.4. Preference for a Part of the Path

 An implementation MAY allow the user to favor a part of the end-to-
 end path when the number of ELI/ELs that can be pushed is not enough
 to cover the entire path. As an example, a service provider may want
 to favor load-balancing at the beginning of the path or at the end of
 the path, so the implementation favors putting the ELI/ELs near the
 top or the bottom of the stack.

7.2.5. Combining Criteria

 An implementation MAY combine multiple criteria to determine the best
 ELI/ELs placement. However, combining too many criteria could lead
 to implementation complexity and high resource consumption. Each
 time the network topology changes, a new evaluation of the ELI/EL
 placement will be necessary for each impacted LSP.

8. A Simple Example Algorithm

 A simple implementation might take into account the ERLD when placing
 ELI/EL while trying to minimize the number of ELI/ELs inserted and
 trying to maximize the number of LSRs that can load-balance.

 The example algorithm is based on the following considerations:

 * An LSR that can insert a limited number of <ELI, EL> pairs should
 insert such pairs deeper in the stack.

 * An LSR should try to insert <ELI, EL> pairs at positions to
 maximize the number of transit LSRs for which the EL occurs within
 the ERLD of those LSRs.

 * An LSR should try to insert the minimum number of such pairs while
 trying to satisfy the above criteria.

 The pseudocode of the example algorithm is shown below.

 Initialize the current EL insertion point to the
 bottom-most label in the stack that is EL-capable
 while (local-node can push more <ELI,EL> pairs OR
 insertion point is not above label stack) {
 insert an <ELI,EL> pair below current insertion point
 move new insertion point up from current insertion point until
 ((last inserted EL is below the ERLD) AND (ERLD > 2)
 AND
 (new insertion point is EL-capable))
 set current insertion point to new insertion point
 }

 Figure 8: Example Algorithm to Insert <ELI, EL> Pairs in a Label
 Stack

 When this algorithm is applied to the example described in Section 3,
 it will result in ELs being inserted in two positions; one after the
 label L_N-D and another after L_N-P3. Thus, the resulting label
 stack would be <L_N-P3, ELI, EL, L_A-L1, L_N-D, ELI, EL>.

9. Deployment Considerations

 As long as LSR node data-plane capabilities are limited (number of
 labels that can be pushed or number of labels that can be inspected),
 hop-by-hop load-balancing of SPRING-encapsulated flows will require
 trade-offs.

 The entropy label is still a good and usable solution as it allows
 load-balancing without having to perform deep packet inspection on
 each LSR: It does not seem reasonable to have an LSR inspecting UDP
 ports within a GRE tunnel carried over a 15-label SPRING tunnel.

 Due to the limited capacity of reading a deep stack of MPLS labels,
 multiple ELI/ELs may be required within the stack, which directly
 impacts the capacity of the head-end to push a deep stack: each ELI/
 EL inserted requires two additional labels to be pushed.

 Placement strategies of ELI/ELs are required to find the best trade-
 off. Multiple criteria could be taken into account, and some level
 of customization (by the user) is required to accommodate different
 deployments. Since analyzing the path of each destination to
 determine the best ELI/EL placement may be time consuming for the
 control plane, we encourage implementations to find the best trade-
 off between simplicity, resource consumption, and load-balancing
 efficiency.

 In the future, hardware and software capacity may increase data-plane
 capabilities and may remove some of these limitations, increasing
 load-balancing capability using entropy labels.

10. Options Considered

 Different options that were considered to arrive at the recommended
 solution are documented in this section.

 These options are detailed here only for historical purposes.

10.1. Single EL at the Bottom of the Stack

 In this option, a single EL is used for the entire label stack. The
 source LSR S encodes the entropy label at the bottom of the label
 stack. In the example described in Section 3, it will result in the
 label stack at LSR S to look like <L_N-P3, L_A-L1, L_N-D, ELI, EL>
 <remaining packet header>. Note that the notation in [RFC6790] is
 used to describe the label stack. An issue with this approach is
 that as the label stack grows due an increase in the number of SIDs,
 the EL goes correspondingly deeper in the label stack. Hence,
 transit LSRs have to access a larger number of bytes in the packet
 header when making forwarding decisions. In the example described in
 Section 3, if we consider that the LSR P1 has an ERLD of 3, P1 would

 load-balance traffic poorly on the parallel links L3 and L4 since the
 EL is below the ERLD of P1. A load-balanced network design using
 this approach must ensure that all intermediate LSRs have the
 capability to read the maximum label stack depth as required for the
 application that uses source-routed stacking.

 This option was rejected since there exist a number of hardware
 implementations that have a low maximum readable label depth.
 Choosing this option can lead to a loss of load-balancing using EL in
 a significant part of the network when that is a critical requirement
 in a service-provider network.

10.2. An EL per Segment in the Stack

 In this option, each segment/label in the stack can be given its own
 EL. When load-balancing is required to direct traffic on a segment,
 the source LSR pushes an <ELI, EL> before pushing the label
 associated to this segment. In the example described in Section 3,
 the source label stack that is LSR S encoded would be <L_N-P3, ELI,
 EL, L_A-L1, L_N-D, ELI, EL>, where all the ELs can be the same.
 Accessing the EL at an intermediate LSR is independent of the depth
 of the label stack and hence, independent of the specific application
 that uses source-routed tunnels with label stacking. A drawback is
 that the depth of the label stack grows significantly, almost 3 times
 as the number of labels in the label stack. The network design
 should ensure that source LSRs have the capability to push such a
 deep label stack. Also, the bandwidth overhead and potential MTU
 issues of deep label stacks should be considered in the network
 design.

 This option was rejected due to the existence of hardware
 implementations that can push a limited number of labels on the label
 stack. Choosing this option would result in a hardware requirement
 to push two additional labels per tunnel label. Hence, it would
 restrict the number of tunnels that can be stacked in an LSP and
 hence, constrain the types of LSPs that can be created. This was
 considered unacceptable.

10.3. A Reusable EL for a Stack of Tunnels

 In this option, an LSR that terminates a tunnel reuses the EL of the
 terminated tunnel for the next inner tunnel. It does this by storing
 the EL from the outer tunnel when that tunnel is terminated and
 reinserting it below the next inner tunnel label during the label-
 swap operation. The LSR that stacks tunnels should insert an EL
 below the outermost tunnel. It should not insert ELs for any inner
 tunnels. Also, the penultimate hop LSR of a segment must not pop the
 ELI and EL even though they are exposed as the top labels since the
 terminating LSR of that segment would reuse the EL for the next
 segment.

 In Section 3, the source label stack that is LSR S encoded would be
 <L_N-P3, ELI, EL, L_A-L1, L_N-D>. At P1, the outgoing label stack
 would be <L_N-P3, ELI, EL, L_A-L1, L_N-D> after it has load-balanced
 to one of the links L3 or L4. At P3, the outgoing label stack would
 be <L_N-D, ELI, EL>. At P2, the outgoing label stack would be <L_N-
 D, ELI, EL> and it would load-balance to one of the next-hop LSRs P4
 or P5. Accessing the EL at an intermediate LSR (e.g., P1) is
 independent of the depth of the label stack and hence, independent of
 the specific use case to which the label stack is applied.

 This option was rejected due to the significant change in label-swap
 operations that would be required for existing hardware.

10.4. EL at Top of Stack

 A slight variant of the reusable EL option is to keep the EL at the
 top of the stack rather than below the tunnel label. In this case,
 each LSR that is not terminating a segment should continue to keep
 the received EL at the top of the stack when forwarding the packet
 along the segment. An LSR that terminates a segment should use the

 EL from the terminated segment at the top of the stack when
 forwarding onto the next segment.

 This option was rejected due to the significant change in label swap
 operations that would be required for existing hardware.

10.5. ELs at Readable Label Stack Depths

 In this option, the source LSR inserts ELs for tunnels in the label
 stack at depths such that each LSR along the path that must load-
 balance is able to access at least one EL. Note that the source LSR
 may have to insert multiple ELs in the label stack at different
 depths for this to work since intermediate LSRs may have differing
 capabilities in accessing the depth of a label stack. The label
 stack depth access value of intermediate LSRs must be known to create
 such a label stack. How this value is determined is outside the
 scope of this document. This value can be advertised using a
 protocol such as an IGP.

 Applying this method to the example in Section 3, if LSR P1 needs to
 have the EL within a depth of 4, then the source label stack that is
 LSR S encoded would be <L_N-P3, ELI, EL, L_A-L1, L_N-D, ELI, EL>,
 where all the ELs would typically have the same value.

 In the case where the ERLD has different values along the path and
 the LSR that is inserting <ELI, EL> pairs has no limit on how many
 pairs it can insert, and it knows the appropriate positions in the
 stack where they should be inserted, this option is the same as the
 recommended solution in Section 7.

 Note that a refinement of this solution, which balances the number of
 pushed labels against the desired entropy, is the solution described
 in Section 7.

11. IANA Considerations

 This document has no IANA actions.

12. Security Considerations

 Compared to [RFC6790], this document introduces the notion of ERLD
 and MSD, and may require an ingress node to push multiple ELIs/ELs.
 These changes do not introduce any new security considerations beyond
 those already listed in [RFC6790].

13. References

13.1. Normative References

 [RFC6790] Kompella, K., Drake, J., Amante, S., Henderickx, W., and
 L. Yong, "The Use of Entropy Labels in MPLS Forwarding",
 RFC 6790, DOI 10.17487/RFC6790, November 2012,
 <https://www.rfc-editor.org/info/rfc6790>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8402] Filsfils, C., Ed., Previdi, S., Ed., Ginsberg, L.,
 Decraene, B., Litkowski, S., and R. Shakir, "Segment
 Routing Architecture", RFC 8402, DOI 10.17487/RFC8402,
 July 2018, <https://www.rfc-editor.org/info/rfc8402>.

 [RFC8660] Bashandy, A., Ed., Filsfils, C., Ed., Previdi, S.,
 Litkowski, S., and R. Shakir, "Segment Routing with the
 MPLS Data Plane", RFC 8660, DOI 10.17487/RFC8660, December

 2019, <https://www.rfc-editor.org/info/rfc8660>.

13.2. Informative References

 [ISIS-ELC] Xu, X., Kini, S., Psenak, P., Filsfils, C., Litkowski, S.,
 and M. Bocci, "Signaling Entropy Label Capability and
 Entropy Readable Label Depth Using IS-IS", Work in
 Progress, Internet-Draft, draft-ietf-isis-mpls-elc-10, 21
 October 2019,
 <https://tools.ietf.org/html/draft-ietf-isis-mpls-elc-10>.

 [OSPF-ELC] Xu, X., Kini, S., Psenak, P., Filsfils, C., Litkowski, S.,
 and M. Bocci, "Signaling Entropy Label Capability and
 Entropy Readable Label-stack Depth Using OSPF", Work in
 Progress, Internet-Draft, draft-ietf-ospf-mpls-elc-12, 25
 October 2019,
 <https://tools.ietf.org/html/draft-ietf-ospf-mpls-elc-12>.

 [RFC8668] Ginsberg, L., Bashandy, A., Filsfils, C., Nanduri, M., and
 E. Aries, "Advertising Layer 2 Bundle Member Link
 Attributes in IS-IS", RFC 8668, DOI 10.17487/RFC8668,
 December 2019, <https://www.rfc-editor.org/info/rfc8668>.

 [RFC7855] Previdi, S., Ed., Filsfils, C., Ed., Decraene, B.,
 Litkowski, S., Horneffer, M., and R. Shakir, "Source
 Packet Routing in Networking (SPRING) Problem Statement
 and Requirements", RFC 7855, DOI 10.17487/RFC7855, May
 2016, <https://www.rfc-editor.org/info/rfc7855>.

 [RFC8476] Tantsura, J., Chunduri, U., Aldrin, S., and P. Psenak,
 "Signaling Maximum SID Depth (MSD) Using OSPF", RFC 8476,
 DOI 10.17487/RFC8476, December 2018,
 <https://www.rfc-editor.org/info/rfc8476>.

 [RFC8491] Tantsura, J., Chunduri, U., Aldrin, S., and L. Ginsberg,
 "Signaling Maximum SID Depth (MSD) Using IS-IS", RFC 8491,
 DOI 10.17487/RFC8491, November 2018,
 <https://www.rfc-editor.org/info/rfc8491>.

 [MSD-BGP] Tantsura, J., Chunduri, U., Talaulikar, K., Mirsky, G.,
 and N. Triantafillis, "Signaling MSD (Maximum SID Depth)
 using Border Gateway Protocol Link-State", Work in
 Progress, Internet-Draft, draft-ietf-idr-bgp-ls-segment-
 routing-msd-09, 15 October 2019,
 <https://tools.ietf.org/html/draft-ietf-idr-bgp-ls-
 segment-routing-msd-09>.

Acknowledgements

 The authors would like to thank John Drake, Loa Andersson, Curtis
 Villamizar, Greg Mirsky, Markus Jork, Kamran Raza, Carlos Pignataro,
 Bruno Decraene, Chris Bowers, Nobo Akiya, Daniele Ceccarelli, and Joe
 Clarke for their review, comments, and suggestions.

Contributors

 Xiaohu Xu
 Huawei
 Email: xuxiaohu@huawei.com

 Wim Hendrickx
 Nokia
 Email: wim.henderickx@nokia.com

 Gunter Van de Velde
 Nokia
 Email: gunter.van_de_velde@nokia.com

 Acee Lindem
 Cisco
 Email: acee@cisco.com

Authors’ Addresses

 Sriganesh Kini

 Email: sriganeshkini@gmail.com

 Kireeti Kompella
 Juniper

 Email: kireeti@juniper.net

 Siva Sivabalan
 Cisco

 Email: msiva@cisco.com

 Stephane Litkowski
 Orange

 Email: slitkows.ietf@gmail.com

 Rob Shakir
 Google

 Email: robjs@google.com

 Jeff Tantsura
 Apstra, Inc.

 Email: jefftant.ietf@gmail.com

