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1. Introduction

There has been an increased focus on small, constrained devices that

nmake up the Internet of Things (1oT). One of the standards that has
cone out of this process is "Concise Binary Object Representation

(CBOR) ™

[ RFC7049]. CBOR extended the data nodel of the JavaScri pt

nj ect Notation (JSON) [RFC7159] by allowi ng for binary data, anong
ot her changes. CBOR is being adopted by several of the | ETF working
groups dealing with the 1oT world as their encodi ng of data
structures. CBOR was designed specifically to be both snall in terns
of nmessages transport and inplenentation size and be a schema-free

decoder.

A need exists to provide nessage security services for 10T,

and using CBOR as the nessage-encodi ng format nakes sense.

The JOSE wor ki ng group produced a set of docunents [ RFC/515]

[ RFC7516] [ RFC7517] [RFC7518] using JSON that specified howto
process encryption, signatures, and Message Authentication Code (MAC)
operations and how to encode keys using JSON. This docunent defines
the CBOR nject Signing and Encryption (COSE) standard, which does
the sanme thing for the CBOR encoding format. While there is a strong
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attenpt to keep the flavor of the original JSON Object Signing and
Encryption (JOSE) docunents, two considerations are taken into
account :

o

1.1.

Schaad

CBOR has capabilities that are not present in JSON and are
appropriate to use. One exanple of this is the fact that CBOR has
a nethod of encoding binary directly without first converting it
into a base64-encoded string.

COSE is not a direct copy of the JOSE specification. 1In the
process of creating COSE, decisions that were made for JOSE were
re-examned. |In many cases, different results were decided on as
the criteria were not always the sane.

Desi gn Changes from JOSE

Define a single top nmessage structure so that encrypted, signed,
and MACed nessages can easily be identified and still have a
consi stent vi ew.

Si gned nessages di stingui sh between the protected and unprotected
paranmeters that relate to the content fromthose that relate to
the signature.

MACed nessages are separated from si gned nessages.

MACed nmessages have the ability to use the same set of recipient
al gorithms as envel oped nessages for obtaining the MAC

aut henti cati on key.

Use binary encodings for binary data rather than base64url
encodi ngs.

Conbi ne the authentication tag for encryption algorithns with the
ci phertext.

The set of cryptographic algorithns has been expanded in sone
directions and trinmed in others.

St andards Track [ Page 5]



RFC 8152 CBOR nj ect Signing and Encryption (COSE) July 2017

1.2. Requirenents Tern nol ogy

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOWENDED', "NOT RECOMVENDED', "MAY", and
"OPTIONAL" in this docunent are to be interpreted as described in BCP
14 [ RFC2119] [ RFC8174] when, and only when, they appear in al
capitals, as shown here.

When the words appear in lowercase, this interpretati on does not
apply.

1. 3. CBOR G ammar

There is currently no standard CBOR grammar avail able for use by
specifications. The CBOR structures are therefore described in
prose.

The docunment was devel oped by first working on the granmmar and then
devel oping the prose to go with it. An artifact of this is that the
prose was witten using the primtive type strings defined by CBOR
Data Definition Language (CDDL) [CDDL]. |In this specification, the
following primtive types are used:

any -- non-specific value that permts all CBOR values to be
pl aced here.

bool -- a bool ean value (true: nmajor type 7, value 21; false:
maj or type 7, value 20).

bstr -- byte string (major type 2).

int -- an unsigned integer or a negative integer

nil -- a null value (major type 7, value 22).

nint -- a negative integer (major type 1).

tstr -- a UTF-8 text string (najor type 3).

uint -- an unsigned integer (major type 0).

Two syntaxes from CDDL appear in this docurment as shorthand. These
are:

FOO / BAR -- indicates that either FOO or BAR can appear here.

[+ FOO -- indicates that the type FOO appears one or nore tinmes
in an array.
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As well as the prose description, a version of a CBOR gramar is
presented in CDDL. Since CDDL has not been published in an RFC, this
grammar may not work with the final version of CDDL. The CDDL
grammar is informational; the prose description is normative.

The coll ected CDDL can be extracted fromthe XM. version of this
docunent via the followi ng XPath expression below (Depending on the
XPat h eval uator one is using, it may be necessary to deal with &gt;
as an entity.)

[lartwork[ @ype="CDDL']/text()

CDDL expects the initial non-termnal synmbol to be the first synbol
inthe file. For this reason, the first fragment of CDDL is
presented here.

start = COSE_Messages / COSE_Key / COSE KeySet / Internal _Types

; This is defined to nake the tool quieter:
Internal _Types = Sig structure / Enc_structure / MAC structure /
COSE_KDF_Cont ext

The non-term nal Internal _Types is defined for dealing with the
automat ed val i dation tools used during the witing of this docunent.
It references those non-ternmnals that are used for security
conputations but are not enmitted for transport.

1.4. CBOR-Rel ated Term nol ogy

In JSON, maps are called objects and only have one kind of map key: a
string. In COSE, we use strings, negative integers, and unsigned
integers as map keys. The integers are used for conpactness of
encodi ng and easy conparison. The inclusion of strings allows for an
addi ti onal range of short encoded values to be used as well. Since
the word "key" is mainly used in its other meaning, as a
cryptographic key, we use the term"label" for this usage as a nmap
key.

The presence of a label in a COSE map that is not a string or an
integer is an error. Applications can either fail processing or
process nessages with incorrect |abels; however, they MJST NOT create
nessages with incorrect |abels.

A CDDL grammar fragnent defines the non-terminal 'label’, as in the
previ ous paragraph, and ’'values’', which permits any value to be used.

label = int / tstr
val ues = any
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1.5. Docunent Term nol ogy
In this docunent, we use the follow ng termn nol ogy:
Byte is a synonymfor octet.

Constrai ned Application Protocol (CoAP) is a specialized web transfer
protocol for use in constrained systems. It is defined in [RFC7252].

Aut henti cated Encryption (AE) [RFC5116] algorithms are those
encryption algorithnms that provide an authentication check of the
contents algorithmwi th the encryption service.

Aut henti cated Encryption with Authenticated Data (AEAD) [ RFC5116]

al gorithms provide the sane content authentication service as AE

al gorithms, but they additionally provide for authentication of non-
encrypted data as well.

2. Basic COSE Structure

The COSE object structure is designed so that there can be a | arge
amount of conmmon code when parsing and processing the different types
of security nessages. All of the message structures are built on the
CBOR array type. The first three elenents of the array al ways
contain the sane information:

1. The set of protected header paraneters wapped in a bstr.
2. The set of unprotected header paraneters as a map

3. The content of the nessage. The content is either the plaintext
or the ciphertext as appropriate. The content nmay be detached,
but the location is still used. The content is wapped in a bstr
when present and is a nil val ue when detached.

El ements after this point are dependent on the specific nessage type.

COSE nessages are al so built using the concept of |layers to separate
di fferent types of cryptographic concepts. As an exanple of howthis
wor ks, consider the COSE_Encrypt message (Section 5.1). This nmessage
type is broken into two | ayers: the content |ayer and the recipient
layer. 1In the content |ayer, the plaintext is encrypted and

i nformati on about the encrypted nmessage is placed. In the recipient

| ayer, the content encryption key (CEK) is encrypted and information
about how it is encrypted for each recipient is placed. A single

| ayer version of the encryption message COSE_EncryptO (Section 5.2)
is provided for cases where the CEK i s pre-shared.
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Identification of which type of nessage has been presented is done by
the foll ow ng nethods:

1. The specific message type is known fromthe context. This may be
defined by a marker in the containing structure or by
restrictions specified by the application protocol

2. The message type is identified by a CBOR tag. Messages with a
CBOR tag are known in this specification as tagged nessages,
whil e those without the CBOR tag are known as untagged nessages.
Thi s docunent defines a CBOR tag for each of the nessage
structures. These tags can be found in Table 1.

3. Wen a COSE object is carried in a nedia type of 'application/
cose’, the optional paraneter ’'cose-type’ can be used to identify
the enbedded object. The parameter is OPTIONAL if the tagged
version of the structure is used. The parameter is REQU RED if
the untagged version of the structure is used. The value to use
with the paraneter for each of the structures can be found in
Tabl e 1.

4. \Wen a COSE object is carried as a CoAP payl oad, the CoAP
Content-Format Option can be used to identify the nessage
content. The CoAP Content-Format val ues can be found in
Table 26. The CBOR tag for the nessage structure is not required
as each security nmessage is uniquely identified.

S Fom e e e e oo - Fom e e e e oo - Tt +
| CBOR | cose-type | Data lItem | Semantics |
| Tag | | | |
Fomm o - o o T +
| 98 | cose-sign | COSE_Sign | COSE Signed Data Object

| 18 | cose-signl | COSE_Signil | COSE Single Signer Data

| | | | Obj ect |
| 96 | cose-encrypt | COSE_Encrypt | COSE Encrypted Data |
| | | | Object N |
| 16 | cose-encryptO0 | COSE EncryptO0 | COSE Single Recipient |
| | | | Encrypted Data hject |
| 97 | cose-nmac | COSE_Mac | COSE MACed Data Object

| 17 | cose-macO | COSE_MacO | COSE Mac w o Recipients

| | | | Obj ect |
R, Fom e e e oo oo - Fom e e e oo oo - T +

Table 1. COSE Message ldentification
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The following CODL fragnent identifies all of the top nessages
defined in this docunent. Separate non-termnals are defined for the
tagged and the untagged versions of the nessages.

COSE_Messages = COSE_Unt agged_Message / COSE_Tagged_Message

COSE_Unt agged _Message = COSE_Sign / COSE _Signl /
COSE_Encrypt / COSE EncryptO /
COSE_Mac / COSE_MacO

COSE_Tagged_Message = COSE_Si gn_Tagged / COSE_Si gnl_Tagged /
COSE_Encrypt _Tagged / COSE _Encrypt 0_Tagged /
COSE_Mac_Tagged / COSE MacO_Tagged

3. Header Paraneters

The structure of COSE has been designed to have two buckets of
information that are not considered to be part of the payload itself,
but are used for holding information about content, algorithns, keys,
or evaluation hints for the processing of the |ayer. These two
buckets are available for use in all of the structures except for
keys. \While these buckets are present, they may not all be usable in

all instances. For exanple, while the protected bucket is defined as
part of the recipient structure, sone of the algorithns used for
reci pient structures do not provide for authenticated data. |If this

is the case, the protected bucket is left enpty.

Bot h buckets are inplenmented as CBOR maps. The map key is a '|abel
(Section 1.4). The value portion is dependent on the definition for
the label. Both nmaps use the sanme set of |abel/value pairs. The

i nteger and string values for |abels have been divided into severa
sections including a standard range, a private range, and a range
that is dependent on the algorithm selected. The defined | abels can
be found in the "COSE Header Paraneters" |ANA registry

(Section 16.2).

Two buckets are provided for each |ayer:

protected: Contains paranmeters about the current |ayer that are to
be cryptographically protected. This bucket MJST be enpty if it
is not going to be included in a cryptographic conputation. This
bucket is encoded in the message as a binary object. This value
i s obtained by CBOR encodi ng the protected map and wapping it in
a bstr object. Senders SHOULD encode a zero-length nmap as a zero-
length string rather than as a zero-length map (encoded as h'a0').
The zero-length binary encoding is preferred because it is both
shorter and the version used in the serialization structures for
cryptographi c conputation. After encoding the map, the value is
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wrapped in the binary object. Recipients MIST accept both a zero-
l ength binary value and a zero-length map encoded in the binary
val ue. The wapping allows for the encoding of the protected map

to be transported with a greater chance that it will not be
altered in transit. (Badly behaved internedi ates coul d decode and
re-encode, but this will result in a failure to verify unless the

re-encoded byte string is identical to the decoded byte string.)
This avoids the problemof all parties needing to be able to do a
comon canoni cal encodi ng.

unprotected: Contains paraneters about the current l[ayer that are
not cryptographically protected.

Only paraneters that deal with the current |ayer are to be placed at
that layer. As an exanple of this, the parameter 'content type
descri bes the content of the message being carried in the message.

As such, this paraneter is placed only in the content |layer and is
not placed in the recipient or signature layers. |In principle, one
shoul d be able to process any given | ayer without reference to any
other layer. Wth the exception of the COSE Sign structure, the only
data that needs to cross layers is the cryptographic key.

The buckets are present in all of the security objects defined in
this docunment. The fields in order are the 'protected bucket (as a
CBOR 'bstr’ type) and then the 'unprotected’ bucket (as a CBOR 'nap’
type). The presence of both buckets is required. The paraneters
that go into the buckets come fromthe | ANA "COSE Header Paraneters"
registry (Section 16.2). Sone comon paraneters are defined in the
next section, but a nunber of paraneters are defined throughout this
docunent .

Label s in each of the maps MJST be uni que. Wen processi ng nessages,
if a label appears multiple times, the nessage MIST be rejected as
mal formed. Applications SHOULD verify that the same | abel does not
occur in both the protected and unprotected headers. |If the nessage
is not rejected as nalfornmed, attributes MUST be obtained fromthe
protected bucket before they are obtained fromthe unprotected
bucket .
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The following CDDL fragnent represents the two header buckets. A
group "Headers" is defined in CDDL that represents the two buckets in
which attributes are placed. This group is used to provide these two
fields consistently in all locations. A type is also defined that
represents the map of common headers.

Headers = (
protected : enpty_or_serialized_map,
unprotected : header_nap

)

header _map = {
CGeneri c_Headers,
* | abel => val ues

}

enpty_or_serialized_mp = bstr .cbor header_map / bstr .size O

3.1. Common COSE Headers Paraneters

This section defines a set of conmmon header paraneters. A sunmary of
these paraneters can be found in Table 2. This table should be
consulted to determ ne the value of |abel and the type of the val ue.

The set of header paraneters defined in this section are:

alg: This paraneter is used to indicate the algorithmused for the
security processing. This paranmeter MJST be authenticated where
the ability to do so exists. This support is provided by AEAD
al gorithnms or construction (COSE_Sign, COSE SignO, COSE Mac, and
COSE_Mac0). This authentication can be done either by placing the
header in the protected header bucket or as part of the externally
supplied data. The value is taken fromthe "COSE Al gorithns"
registry (see Section 16.4).

crit: The paraneter is used to indicate which protected header
| abel s an application that is processing a nessage is required to
understand. Parameters defined in this docunent do not need to be
i ncl uded as they should be understood by all inplementations.
VWhen present, this paranmeter MJST be placed in the protected
header bucket. The array MJST have at |east one value in it.

Not all labels need to be included in the "crit’ paranmeter. The
rul es for deciding which header | abels are placed in the array
are:

* Integer labels in the range of 0 to 8 SHOULD be omtted.
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* |Integer labels in the range -1 to -128 can be onmitted as they
are algorithmdependent. |If an application can correctly
process an algorithm it can be assuned that it will correctly
process all of the common paraneters associated with that
algorithm Integer labels in the range -129 to -65536 SHOULD
be included as these would be | ess common paraneters that m ght
not be generally supported.

* Labels for paraneters required for an applicati on MAY be
omtted. Applications should have a statement if the | abel can
be omtted.

The header paraneter values indicated by "crit’ can be processed
by either the security library code or an application using a
security library; the only requirement is that the paraneter is
processed. |If the "crit’ value list includes a value for which
the paraneter is not in the protected bucket, this is a fata
error in processing the nessage.

content type: This paraneter is used to indicate the content type of
the data in the payl oad or ciphertext fields. |Integers are from
the "CoAP Content-Formats" | ANA registry table [ COAP. For mat s] .
Text values follow ng the syntax of "<type-nane>/<subtype-name>"
wher e <type-name> and <subtype-nane> are defined in Section 4.2 of
[ RFC6838]. Leading and trailing whitespace is also onmitted.
Textual content values along with paraneters and subparaneters can
be | ocated using the I ANA "Medi a Types" registry. Applications
SHOULD provide this paranmeter if the content structure is
potential |y anbi guous.

kid: This paraneter identifies one piece of data that can be used as
input to find the needed cryptographic key. The value of this
paraneter can be matched against the 'kid menber in a COSE_Key
structure. O her methods of key distribution can define an
equi valent field to be matched. Applications MJST NOT assune t hat
"kid values are unique. There may be nore than one key with the
same 'kid value, so all of the keys associated with this "kid
may need to be checked. The internal structure of "kid values is
not defined and cannot be relied on by applications. Key
identifier values are hints about which key to use. This is not a
security-critical field. For this reason, it can be placed in the
unpr ot ect ed headers bucket.

IV:  This paranmeter holds the Initialization Vector (1V) value. For
some symmretric encryption algorithms, this may be referred to as a
nonce. The IV can be placed in the unprotected header as
nodi fying the IV will cause the decryption to yield plaintext that
is readily detectable as garbl ed.
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Partial 1V: This paraneter holds a part of the IV value. Wen using

the COSE EncryptO structure, a portion of the IV can be part of
the context associated with the key. This field is used to carry
a value that causes the IV to be changed for each nessage. The IV
can be placed in the unprotected header as nodifying the IV wll
cause the decryption to yield plaintext that is readily detectable
as garbled. The 'Initialization Vector’ and 'Partia
Initialization Vector’ parameters MJUST NOT both be present in the
same security |ayer.

The nessage IV is generated by the foll owi ng steps:
1. Left-pad the Partial IV with zeros to the length of |V

2. XOR the padded Partial IV with the context IV.

counter signature: This parameter holds one or nore counter

Schaad

signature values. Counter signatures provide a nethod of having a
second party sign sonme data. The counter signature paraneter can
occur as an unprotected attribute in any of the follow ng
structures: COSE _Signl, COSE_Signature, COSE Encrypt,

COSE _reci pi ent, COSE_Encrypt0, COSE Mac, and COSE_MacO. These
structures all have the sanme begi nning el enments, so that a

consi stent cal culation of the counter signature can be conputed.
Details on conputing counter signatures are found in Section 4.5.
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. o U o +
| Label | Value Type | Val ue | Description
| | | Registry | |
R R T S T +
1 int / tstr COSE Crypt ographi c

| | | | |

| | | Algorithms | algorithmto

| | | registry | use |

| 2 | [+ I abel] | COSE Header | Critical

| | | Paraneters | headers to be

| | | registry | understood

| 3 | tstr / uint | CoAP | Content type

| | | Content- | of the payl oad

| | | Formats or | |

| | | Media Types | |

| | | registries | |

| 4 | bstr | | Key identifier

| 5 | bstr | | Full |

| | | | Initialization

| | | | Vector |

| 6 | bstr | | Parti al |

| | | | Initialization

| | | | Vector |

| 7 | COSE_Signature | | CBOR-encoded

| | /1 [+ | | signature |

| | COSE_Signature | | structure |

| | ] | | |
R oo R oo +

Tabl e 2: Common Header Paraneters

agnent that represents the set of headers defined in this
gi ven bel ow. Each of the headers is tagged as optiona

y do not need to be in every nmap; headers required in
speci fic maps are di scussed above.

Generi c_Headers = (

? 1=
? 2 =>
? 3 =
?2 4 =>
?2 5 =>
?2 6 =>
27 =
)
Schaad

int / tstr, ; algorithmidentifier
[+l abel ], ; criticality

tstr / int, content type
bstr, key identifier
bstr, 1V

bstr, ; Partial 1V

COSE_Si gnature / [+COSE_Si gnat ur €]
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4. Signing ojects

COSE supports two different signature structures. COSE Sign allows
for one or nore signatures to be applied to the sane content.
COSE_Signl is restricted to a single signer. The structures cannot
be converted between each other; as the signature conputation

i ncludes a paraneter identifying which structure is being used, the
converted structure will fail signature validation

4.1. Signing with One or Mdre Signers

The COSE Sign structure allows for one or nore signhatures to be
applied to a nessage payload. Paraneters relating to the content and
paranmeters relating to the signature are carried along with the
signature itself. These paraneters may be authenticated by the
signature, or just present. An exanple of a parameter about the
content is the content type. Exanples of paraneters about the
signature would be the algorithmand key used to create the signature
and counter signatures.

RFC 5652 indicates that:

VWen nore than one signature is present, the successful validation
of one signature associated with a given signer is usually treated
as a successful signature by that signer. However, there are sone
application environments where other rules are needed. An
application that enploys a rule other than one valid signature for
each signer nust specify those rules. Also, where sinple matching
of the signer identifier is not sufficient to determ ne whether
the signatures were generated by the sane signer, the application
speci fication nust describe how to determ ne which signatures were
generated by the same signer. Support for different comunities
of recipients is the primary reason that signers choose to include
nore than one signature.

For exanple, the COSE Sign structure m ght include signatures
generated with the Edwards-curve Digital Signature Al gorithm (EJDSA)
[ RFC8032] and with the Elliptic Curve Digital Signature Al gorithm
(ECDSA) [DSS]. This allows recipients to verify the signature
associ ated with one algorithmor the other. More-detailed
information on nultiple signature eval uations can be found in

[ RFC5752] .
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The signature structure can be encoded as either tagged or untagged
depending on the context it will be used in. A tagged COSE_Sign
structure is identified by the CBOR tag 98. The CDDL fragnent that
represents this is:

COSE_Si gn_Tagged = #6. 98( COSE_Si gn)

A COSE Signed Message is defined in tw parts. The CBOR object that
carries the body and i nformati on about the body is called the
COSE_Sign structure. The CBOR object that carries the signature and
i nformati on about the signature is called the COSE_Signature
structure. Exanples of COSE Signed Messages can be found in
Appendi x C. 1.

The COSE _Sign structure is a CBOR array. The fields of the array in
order are:

protected: This is as described in Section 3.
unprotected: This is as described in Section 3.

payl oad: This field contains the serialized content to be signed.
If the payload is not present in the nessage, the application is
required to supply the payl oad separately. The payload is w apped
in a bstr to ensure that it is transported w thout changes. |If
the payload is transported separately ("detached content"), then a
nil CBOR object is placed in this location, and it is the
responsibility of the application to ensure that it will be
transported w t hout changes.

Not e: Wien a signature with a nessage recovery algorithmis used
(Section 8), the nmaxi mum nunber of bytes that can be recovered is
the length of the payload. The size of the payload is reduced by
the nunber of bytes that will be recovered. If all of the bytes
of the payl oad are consuned, then the payload is encoded as a
zero-length binary string rather than as being absent.

signatures: This field is an array of signatures. Each signature is
represented as a COSE_Si gnature structure.

Schaad St andards Track [ Page 17]



RFC 8152 CBOR nj ect Signing and Encryption (COSE) July 2017

The CDDL fragment that represents the above text for COSE Sign
fol | ows.

COSE_Sign = |
Header s,
payl oad : bstr / nil,
signatures : [+ COSE_Si ghature]

]

The COSE Signature structure is a CBOR array. The fields of the
array in order are:

protected: This is as described in Section 3.
unprotected: This is as described in Section 3.

signature: This field contains the conputed signature value. The
type of the fieldis a bstr. Al gorithnms MJST specify padding if
the signature value is not a nultiple of 8 bits.

The CDDL fragment that represents the above text for COSE_Signhature
foll ows.

COSE_Si gnature = |
Header s,
signhature : bstr

4.2. Signing with One Signer

The COSE _Signl signature structure is used when only one signature is
going to be placed on a message. The paranmeters dealing with the
content and the signature are placed in the sane pair of buckets

rat her than having the separation of COSE_Sign.

The structure can be encoded as either tagged or untagged dependi ng
on the context it will be used in. A tagged COSE Signl structure is
identified by the CBOR tag 18. The CDDL fragnment that represents
this is:

COSE_Si gnl_Tagged = #6. 18( COSE_Si gn1l)

The CBOR object that carries the body, the signature, and the

i nformati on about the body and signature is called the COSE Signl

structure. Exanples of COSE_Signl nessages can be found in
Appendi x C. 2.
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The COSE _Signl structure is a CBOR array. The fields of the array in
order are:

protected: This is as described in Section 3.
unprotected: This is as described in Section 3.
payl oad: This is as described in Section 4. 1.

signature: This field contains the conputed signature value. The
type of the field is a bstr.

The CDDL fragment that represents the above text for COSE _Signl
fol | ows.

COSE_Signl = |
Header s,
payl oad : bstr / nil,
signature : bstr

4.3. Externally Supplied Data

One of the features offered in the COSE docunent is the ability for
applications to provide additional data to be authenticated, but that
is not carried as part of the COSE object. The prinmary reason for
supporting this can be seen by | ooking at the CoAP nessage structure
[ RFC7252], where the facility exists for options to be carried before
the payl oad. Exanples of data that can be placed in this |ocation
woul d be the CoAP code or CoAP options. |If the data is in the header
section, then it is available for proxies to help in performng its
operations. For exanple, the Accept Option can be used by a proxy to
determine if an appropriate value is in the proxy’'s cache. But the
sender can prevent a proxy from changing the set of values that it
will accept by including that value in the resulting authentication
tag. However, it may al so be desired to protect these values so that
if they are nodified in transit, it can be detected.

Thi s docunent describes the process for using a byte array of
external ly supplied authenticated data; however, the method of
constructing the byte array is a function of the application
Applications that use this feature need to define how the externally
supplied authenticated data is to be constructed. Such a
construction needs to take into account the follow ng issues:

o If multiple items are included, applications need to ensure that

the sanme byte string is not produced if there are different
inputs. This could occur by appending the strings 'AB and ' CDE
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or by appending the strings "ABC and 'DE'. This is usually
addressed by making fields a fixed width and/or encoding the
length of the field as part of the output. Using options from
CoAP [ RFC7252] as an exanple, these fields use a TLV structure so
they can be concatenated w t hout any probl ens.

o If multiple itenms are included, an order for the itens needs to be
defined. Using options from CoAP as an exanple, an application
could state that the fields are to be ordered by the option
nunber .

o Applications need to ensure that the byte streamis going to be
the sanme on both sides. Using options from CoAP might give a
problemif the same relative nunbering is kept. An internediate
node could insert or renove an option, changing how the relative
nunber is done. An application would need to specify that the
rel ati ve nunmber must be re-encoded to be relative only to the
options that are in the external data

4.4. Signing and Verification Process

In order to create a signature, a well-defined byte streamis needed.
The Sig structure is used to create the canonical form This signing
and verification process takes in the body information (COSE _Sign or
COSE_Signl), the signer information (COSE_Signature), and the
application data (external source). A Sig structure is a CBOR array.
The fields of the Sig _structure in order are:

1. Atext string identifying the context of the signature. The
context string is:

"Sighature" for signatures using the COSE _Signature structure.
"Signaturel" for signatures using the COSE_Signl structure.

"Count er Si gnature" for signatures used as counter signature
attributes.

2. The protected attributes fromthe body structure encoded in a
bstr type. |If there are no protected attributes, a bstr of
l ength zero is used.

3. The protected attributes fromthe signer structure encoded in a
bstr type. |If there are no protected attributes, a bstr of
length zero is used. This field is onmtted for the COSE_Signl
signature structure
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Sig

The
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The protected attributes fromthe application encoded in a bstr
type. If this field is not supplied, it defaults to a zero-

[ ength binary string. (See Section 4.3 for application guidance
on constructing this field.)

The payl oad to be signed encoded in a bstr type. The payload is
pl aced here i ndependent of how it is transported.

CDDL fragnent that describes the above text is:

_Structure = |

context : "Signature" / "Signaturel"” / "CounterSignature"
body protected : enpty or_serialized_map,

? sign_protected : enpty or_serialized_map,

external _aad : bstr,

payl oad : bstr

to conpute a signature:

Create a Sig_structure and populate it with the appropriate
fields.

Create the val ue ToBeSi gned by encoding the Sig structure to a
byte string, using the encodi ng described in Section 14.

Call the signature creation algorithmpassing in K (the key to
sign with), alg (the algorithmto sign with), and ToBeSi gned (the
val ue to sign).

Pl ace the resulting signature value in the "signature’ field of
the array.

steps for verifying a signature are:

Create a Sig_structure object and populate it with the
appropriate fields.

Create the val ue ToBeSi gned by encoding the Sig structure to a
byte string, using the encodi ng described in Section 14.

Call the signature verification algorithmpassing in K (the key

to verify with), alg (the algorithmused sign with), ToBeSi gned
(the value to sign), and sig (the signature to be verified).
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In addition to perform ng the signature verification, the application
may al so performthe appropriate checks to ensure that the key is
correctly paired with the signing identity and that the signing
identity is authorized before perform ng actions.

4.5. Computing Counter Signatures

Counter signatures provide a nmethod of associating a different
signature generated by different signers with sone piece of content.
This is normally used to provide a signature on a signature allow ng
for a proof that a signature existed at a given tine (i.e., a
Tinmestanp). In this docunent, we allow for counter signatures to
exist in a greater nunber of environments. As an exanple, it is
possible to place a counter signature in the unprotected attributes
of a COSE_Encrypt object. This would allow for an internmediary to
either verify that the encrypted byte stream has not been nodified,
wi t hout being able to decrypt it, or assert that an encrypted byte
streameither existed at a given tine or passed through it in ternms
of routing (i.e., a proxy signature).

An exanpl e of a counter signature on a signhature can be found in
Appendi x C.1.3. An exanple of a counter signature in an encryption
obj ect can be found in Appendi x C. 3. 3.

The creation and validation of counter signatures over the different
items relies on the fact that the objects have the sanme structure.
The elements are a set of protected attributes, a set of unprotected
attributes, and a body, in that order. This nmeans that the

Sig _structure can be used in a uniform manner to get the byte stream
for processing a signature. |If the counter signature is going to be
conputed over a COSE _Encrypt structure, the body protected and

payl oad itens can be mapped into the Sig structure in the sane manner
as fromthe COSE Sign structure

It should be noted that only a signature algorithmwth appendi x (see
Section 8) can be used for counter signatures. This is because the
body should be able to be processed without having to evaluate the
counter signature, and this is not possible for signature schenes

wi th nmessage recovery.

5. Encryption Objects

COSE supports two different encryption structures. COSE EncryptO is
used when a recipient structure is not needed because the key to be
used is known inplicitly. COSE Encrypt is used the rest of the tine.
This includes cases where there are multiple recipients or a

reci pient algorithmother than direct is used.
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5.1. Envel oped COSE Structure

The envel oped structure allows for one or nore recipients of a
message. There are provisions for paraneters about the content and
par anmet ers about the recipient information to be carried in the
nessage. The protected paraneters associated with the content are
aut henticated by the content encryption algorithm The protected
paranmeters associated with the recipient are authenticated by the
reci pi ent al gorithm (when the algorithm supports it). Exanples of
par amet ers about the content are the type of the content and the
content encryption algorithm Exanples of parameters about the
recipient are the recipient’s key identifier and the recipient’s
encryption al gorithm

The sane techniques and structures are used for encrypting both the
pl ai ntext and the keys. This is different fromthe approach used by
both "Cryptographi c Message Syntax (CVM5)" [ RFC5652] and "JSON Wb
Encryption (JVWE)" [RFC7516] where different structures are used for
the content layer and for the recipient layer. Two structures are
defined: COSE Encrypt to hold the encrypted content and

COSE recipient to hold the encrypted keys for recipients. Exanples
of encrypted messages can be found in Appendix C. 3.

The COSE Encrypt structure can be encoded as either tagged or

unt agged depending on the context it will be used in. A tagged
COSE_Encrypt structure is identified by the CBOR tag 96. The CDDL
fragment that represents this is:

COSE_Encrypt _Tagged = #6. 96( COSE_Encrypt)

The COSE Encrypt structure is a CBOR array. The fields of the array
in order are:

protected: This is as described in Section 3.

unprotected: This is as described in Section 3.

ciphertext: This field contains the ciphertext encoded as a bstr.
If the ciphertext is to be transported i ndependently of the
control information about the encryption process (i.e., detached
content), then the field is encoded as a nil val ue.

recipients: This field contains an array of recipient infornmation

structures. The type for the recipient information structure is a
COSE_r eci pient.
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The CDDL fragment that corresponds to the above text is:

COSE_Encrypt = [

Header s,

ci phertext : bstr / nil,

reci pients : [+COSE recipient]
]

The COSE_recipient structure is a CBOR array. The fields of the
array in order are:

protected: This is as described in Section 3.
unprotected: This is as described in Section 3.

ci phertext: This field contains the encrypted key encoded as a bstr.
Al'l encoded keys are symetric keys; the binary value of the key
is the content. |If there is not an encrypted key, then this field
is encoded as a nil val ue.

recipients: This field contains an array of recipient information
structures. The type for the recipient information structure is a
COSE _reci pient (an exanple of this can be found in Appendix B).
If there are no recipient information structures, this elenent is
absent .

The CDDL fragment that corresponds to the above text for
COSE reci pient is:

COSE recipient = |
Header s,
ci phertext : bstr / nil,
? recipients : [+COSE_recipient]

]
5.1.1. Content Key Distribution Mthods

An encrypted nessage consists of an encrypted content and an
encrypted CEK for one or nore recipients. The CEK is encrypted for
each recipient, using a key specific to that recipient. The details
of this encryption depend on which class the recipient algorithm
falls into. Specific details on each of the classes can be found in
Section 12. A short sunmary of the five content key distribution
met hods i s:

direct: The CEK is the same as the identified previously distributed

symmetric key or is derived froma previously distributed secret.
No CEK is transported in the nessage.
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symmetric key-encryption keys (KEK): The CEK is encrypted using a
previously distributed symetric KEK. Al so known as key w ap.

key agreenment: The recipient’s public key and a sender’s private key
are used to generate a pairw se secret, a Key Derivation Function
(KDF) is applied to derive a key, and then the CEK is either the
derived key or encrypted by the derived key.

key transport: The CEK is encrypted with the recipient’s public key.
No key transport algorithms are defined in this docunent.

passwords: The CEK is encrypted in a KEK that is derived froma
password. No password algorithns are defined in this docunent.

5.2. Single Recipient Encrypted
The COSE EncryptO encrypted structure does not have the ability to

specify recipients of the nmessage. The structure assunmes that the
reci pient of the object will already know the identity of the key to

be used in order to decrypt the nmessage. |If a key needs to be
identified to the recipient, the envel oped structure ought to be
used.

Exampl es of encrypted nessages can be found in Appendi x C. 3.

The COSE EncryptO structure can be encoded as either tagged or

unt agged depending on the context it will be used in. A tagged
COSE_EncryptO structure is identified by the CBOR tag 16. The CDDL
fragment that represents this is:

COSE_Encrypt 0_Tagged = #6. 16( COSE_Encrypt 0)

The COSE EncryptO structure is a CBOR array. The fields of the array
in order are:

protected: This is as described in Section 3.
unprotected: This is as described in Section 3.
ci phertext: This is as described in Section 5.1.

The CDDL fragment for COSE EncryptO that corresponds to the above
text is:

COSE_Encrypt0 = |

Header s,
ci phertext : bstr / nil,
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5.3. How to Encrypt and Decrypt for AEAD Al gorithms

The encryption algorithmfor AEAD algorithns is fairly sinple. The
first step is to create a consistent byte streamfor the

aut henticated data structure. For this purpose, we use an
Enc_structure. The Enc_structure is a CBOR array. The fields of the
Enc_structure in order are:

1. Atext string identifying the context of the authenticated data
structure. The context string is:

"Encrypt 0" for the content encryption of a COSE EncryptO data
structure.

"Encrypt" for the first layer of a COSE Encrypt data structure
(i.e., for content encryption).

"Enc_Recipient” for a recipient encoding to be placed in an
COSE_Encrypt data structure.

"Mac_Recipient” for a recipient encoding to be placed in a
MACed message structure.

"Rec_Recipient" for a recipient encoding to be placed in a
reci pi ent structure.

2. The protected attributes fromthe body structure encoded in a
bstr type. |If there are no protected attributes, a bstr of
l ength zero is used.

3. The protected attributes fromthe application encoded in a bstr
type. If this field is not supplied, it defaults to a zero-
length bstr. (See Section 4.3 for application guidance on
constructing this field.)

The CDDL fragment that describes the above text is:

Enc_structure = |
context : "Encrypt" / "EncryptQ0" / "Enc_Recipient" /
"Mac_Recipient” / "Rec_Recipient"”,
protected : enpty_or_serialized_map,
external _aad : bstr

]

How to encrypt a message:

1. Create an Enc_structure and populate it with the appropriate
fields.
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Encode the Enc_structure to a byte stream (Additiona
Aut henticated Data (AAD)), using the encoding described in
Section 14.

Determ ne the encryption key (K). This step is dependent on the
class of recipient algorithmbeing used. For

No Recipients: The key to be used is determned by the algorithm
and key at the current layer. Exanples are key transport keys
(Section 12.3), key wap keys (Section 12.2.1), or pre-shared
secrets.

Direct Encryption and Direct Key Agreenment: The key is
determi ned by the key and algorithmin the recipient
structure. The encryption algorithmand size of the key to be
used are inputs into the KDF used for the recipient. (For
direct, the KDF can be thought of as the identity operation.)
Exanpl es of these algorithns are found in Sections 12.1.2 and
12. 4. 1.

QO her: The key is randomy or pseudorandom y generat ed.

Call the encryption algorithmwith K (the encryption key), P (the
pl aintext), and AAD. Place the returned ciphertext into the
"ciphertext’ field of the structure.

For recipients of the nessage, recursively performthe encryption
algorithmfor that recipient, using K (the encryption key) as the
pl ai nt ext .

to decrypt a nessage:

Create an Enc_structure and populate it with the appropriate
fields.

Encode the Enc_structure to a byte stream (AAD), using the
encodi ng described in Section 14.

Determ ne the decryption key. This step is dependent on the
class of recipient algorithmbeing used. For

No Recipients: The key to be used is determned by the algorithm
and key at the current layer. Exanples are key transport keys
(Section 12.3), key wap keys (Section 12.2.1), or pre-shared
secrets.
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4.

5. 4.

Direct Encryption and Direct Key Agreenment: The key is
determi ned by the key and algorithmin the recipient
structure. The encryption algorithmand size of the key to be
used are inputs into the KDF used for the recipient. (For
direct, the KDF can be thought of as the identity operation.)
Exanpl es of these algorithns are found in Sections 12.1.2 and
12. 4. 1.

O her: The key is determ ned by decodi ng and decrypting one of
the recipient structures.

Call the decryption algorithmwith K (the decryption key to use),
C (the ciphertext), and AAD.

How to Encrypt and Decrypt for AE Al gorithns

How to encrypt a message:

1

2.

Schaad

Verify that the 'protected’ field is enpty.

Verify that there was no external additional authenticated data
supplied for this operation.

Determ ne the encryption key. This step is dependent on the
class of recipient algorithmbeing used. For

No Recipients: The key to be used is deternmined by the al gorithm
and key at the current layer. Exanples are key transport keys
(Section 12.3), key wap keys (Section 12.2.1), or pre-shared
secrets.

Direct Encryption and Direct Key Agreenent: The key is
deterni ned by the key and algorithmin the recipient
structure. The encryption algorithmand size of the key to be
used are inputs into the KDF used for the recipient. (For
direct, the KDF can be thought of as the identity operation.)

Exampl es of these algorithns are found in Sections 12.1.2 and
12. 4. 1.

O her: The key is randonmly generat ed.

Call the encryption algorithmwith K (the encryption key to use)
and P (the plaintext). Place the returned ciphertext into the
"ciphertext’ field of the structure.

For recipients of the message, recursively performthe encryption

algorithmfor that recipient, using K (the encryption key) as the
pl ai nt ext .
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6.

How t o decrypt a nessage:
1. Verify that the 'protected field is enpty.

2. Verify that there was no external additional authenticated data
supplied for this operation.

3. Deternine the decryption key. This step is dependent on the
class of recipient algorithmbeing used. For

No Recipients: The key to be used is determned by the algorithm
and key at the current layer. Exanples are key transport keys
(Section 12.3), key wap keys (Section 12.2.1), or pre-shared
secrets.

Direct Encryption and Direct Key Agreenment: The key is
determ ned by the key and algorithmin the recipient
structure. The encryption algorithmand size of the key to be
used are inputs into the KDF used for the recipient. (For
direct, the KDF can be thought of as the identity operation.)
Exanpl es of these algorithns are found in Sections 12.1.2 and
12. 4. 1.

O her: The key is determ ned by decoding and decrypting one of
the recipient structures.

4. Call the decryption algorithmwith K (the decryption key to use)
and C (the ciphertext).

MAC (bj ects

COSE supports two different MAC structures. COSE MACO is used when a
reci pient structure is not needed because the key to be used is
implicitly knowmn. COSE MAC is used for all other cases. These
include a requirenment for nultiple recipients, the key being unknown,
and a recipient algorithmof other than direct.

In this section, we describe the structure and nethods to be used
when doi ng MAC aut hentication in COSE. This docunent allows for the
use of all of the same classes of recipient algorithns as are all owed
for encryption.

When usi ng MAC operations, there are two nodes in which they can be
used. The first is just a check that the content has not been
changed since the MAC was conputed. Any class of recipient algorithm
can be used for this purpose. The second node is to both check that
the content has not been changed since the MAC was conputed and to
use the recipient algorithmto verify who sent it. The classes of
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reci pient algorithns that support this are those that use a pre-
shared secret or do static-static (SS) key agreenent (w thout the key
wap step). In both of these cases, the entity that created and sent
the message MAC can be validated. (This know edge of the sender
assunes that there are only two parties involved and that you did not
send the nessage to yourself.) The origination property can be
obtained with both of the MAC nessage structures.

6.1. MACed Message with Recipients

The multiple reci pient MACed nmessage uses two structures: the
COSE_Mac structure defined in this section for carrying the body and
the COSE recipient structure (Section 5.1) to hold the key used for
the MAC conputation. Exanples of MACed nessages can be found in
Appendi x C. 5.

The MAC structure can be encoded as either tagged or untagged
depending on the context it will be used in. A tagged COSE Mac
structure is identified by the CBOR tag 97. The CDDL fragnent that
represents this is:

COSE_Mac_Tagged = #6. 97( COSE_Mac)

The COSE Mac structure is a CBOR array. The fields of the array in
order are:

protected: This is as described in Section 3.
unprotected: This is as described in Section 3.

payl oad: This field contains the serialized content to be MACed. |If
the payload is not present in the nessage, the application is
required to supply the payl oad separately. The payload is w apped
in a bstr to ensure that it is transported w thout changes. |If
the payload is transported separately (i.e., detached content),
then a nil CBOR value is placed in this location, and it is the
responsibility of the application to ensure that it will be
transported without changes.

tag: This field contains the MAC val ue.

recipients: This is as described in Section 5. 1.
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The CDDL fragment that represents the above text for COSE Mac
fol | ows.

COSE_Mac = |
Header s,
payl oad : bstr / nil,
tag : bstr,
reci pients :[+COSE recipi ent]

6.2. MACed Messages with Inmplicit Key
In this section, we describe the structure and nethods to be used
when doi ng MAC aut hentication for those cases where the recipient is
implicitly known.
The MACed message uses the COSE MacO structure defined in this
section for carrying the body. Exanples of MACed nmessages with an
inmplicit key can be found in Appendi x C. 6.
The MAC structure can be encoded as either tagged or untagged
dependi ng on the context it will be used in. A tagged COSE_MacO
structure is identified by the CBOR tag 17. The CDDL fragnent that
represents this is:

COSE_MacO_Tagged = #6. 17( COSE_MacO0)

The COSE _MacO structure is a CBOR array. The fields of the array in
order are:

protected: This is as described in Section 3.
unprotected: This is as described in Section 3.
payl oad: This is as described in Section 6. 1.
tag: This field contains the MAC val ue.
The CDDL fragment that corresponds to the above text is:
COSE_MacO = [

Header s,

payl oad : bstr / nil,
tag : bstr,
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6.3. Howto Conpute and Verify a MAC

In order to get a consistent encoding of the data to be

aut henticated, the MAC structure is used to have a canonical form
The MAC structure is a CBOR array. The fields of the MAC structure
in order are:

1. Atext string that identifies the structure that is being
encoded. This string is "MAC' for the COSE_Mac structure. This
string is "MACO" for the COSE MacO structure.

2. The protected attributes fromthe COSE MAC structure. If there
are no protected attributes, a zero-length bstr is used.

3. The protected attributes fromthe application encoded as a bstr
type. If this field is not supplied, it defaults to a zero-
l ength binary string. (See Section 4.3 for application guidance
on constructing this field.)

4. The payload to be MACed encoded in a bstr type. The payload is
pl aced here independent of how it is transported.

The CDDL fragment that corresponds to the above text is:
MAC structure = |

context : "MAC' / "MACO",

protected : enpty_or_serialized_map,

external _aad : bstr,
payl oad : bstr

The steps to conpute a MAC are:

1. Create a MAC structure and populate it with the appropriate
fields.

2. Create the value ToBeMaced by encoding the MAC structure to a
byte stream using the encodi ng described in Section 14.

3. Call the MAC creation algorithmpassing in K (the key to use),
alg (the algorithmto MAC with), and ToBeMaced (the value to
conpute the MAC on).

4. Place the resulting MACin the "tag’ field of the COSE Mac or
COSE_MacO structure.

5. Encrypt and encode the MAC key for each recipient of the nessage.
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The steps to verify a MAC are:

1. Create a MAC structure object and populate it with the
appropriate fields.

2. Create the value ToBeMaced by encoding the MAC structure to a
byte stream using the encodi ng described in Section 14.

3. Ontain the cryptographic key fromone of the recipients of the
message.

4. Call the MAC creation algorithmpassing in K (the key to use),
alg (the algorithmto MAC with), and ToBeMaced (the value to
conpute the MAC on).

5. Conpare the MAC value to the "tag’ field of the COSE Mac or
COSE_MacO structure

7. Key njects

A CCSE Key structure is built on a CBOR map object. The set of
conmon paraneters that can appear in a COSE Key can be found in the
| ANA "COSE Key Common Paraneters" registry (Section 16.5).

Addi tional paraneters defined for specific key types can be found in
the | ANA "COSE Key Type Paraneters" registry (Section 16.6).

A COSE Key Set uses a CBOR array object as its underlying type. The
val ues of the array elenments are COSE Keys. A COSE Key Set MJIST have
at least one elenment in the array. Exanmples of COSE Key Sets can be
found in Appendix C. 7.

Each el enent in a COSE Key Set MJST be processed independently. If
one elenent in a COSE Key Set is either mal formed or uses a key that
i s not understood by an application, that key is ignored and the

ot her keys are processed nornmally.

The element "kty" is a required elenent in a COSE Key nap.
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The CDDL grammar describing COSE Key and COSE KeySet is:

COSE_Key = {
1 =>tstr / int, ; kty
? 2 => pbstr, ; kid
? 3 =>tstr / int, , alg
? 4 => [+ (tstr / int) ], ; key_ops
? 5 => pstr, , Base IV
* | abel => val ues

}

COSE_KeySet = [ +COSE_Key]

7.1. COSE Key Common Paraneters

Thi s docunent defines a set of comon paranmeters for a COSE Key
object. Table 3 provides a summary of the parameters defined in this
section. There are also paraneters that are defined for specific key
types. Key-type-specific paraneters can be found in Section 13.
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. Fomm o - o Fom ek o e e ek +
| Name | Label | CBOR Type | Val ue | Description |
| | | | Registry | |
B R B T B RS e +
kty 1 tstr / int COSE Key I dentification of

I I I
| | the key type |
| Paraneters |

I I I
kid bstr | | Key |
| | identification |
| | value -- match to

| | kid in nessage

I I I
alg tstr / int | COsE | Key usage |
| Algorithms | restriction to |
| | this algorithm |
I I I
| | Restrict set of
| | perm ssible |
| | operations |
I I I
I I I
I I I
I I I

key ops [+ (tstr/int)]

Base |V Base |V to be
xor-ed wth

Partial 1Vs

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
| bstr
I

I

Tabl e 3: Key Map Label s

kty: This paraneter is used to identify the famly of keys for this
structure and, thus, the set of key-type-specific paranmeters to be
found. The set of values defined in this document can be found in
Tabl e 21. This paranmeter MJUST be present in a key object.
| mpl ement ati ons MUST verify that the key type is appropriate for
the al gorithm being processed. The key type MJST be included as
part of the trust decision process.

alg: This paraneter is used to restrict the algorithmthat is used
with the key. |If this paraneter is present in the key structure,
the application MJST verify that this algorithm matches the
algorithm for which the key is being used. |If the algorithns do
not match, then this key object MJST NOT be used to performthe
cryptographic operation. Note that the sane key can be in a
different key structure with a different or no algorithm
speci fied; however, this is considered to be a poor security
practice.
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kid: This paraneter is used to give an identifier for a key. The
identifier is not structured and can be anything froma user-
provided string to a value conputed on the public portion of the
key. This field is intended for matching against a 'kid
paranmeter in a nessage in order to filter down the set of keys
that need to be checked.

key_ops: This paraneter is defined to restrict the set of operations
that a key is to be used for. The value of the field is an array
of values from Table 4. Algorithns define the val ues of key ops
that are permitted to appear and are required for specific
operations. The set of values matches that in [RFC7517] and
[ WVBC. WbCrypt 0] .

Base IV: This paranmeter is defined to carry the base portion of an
IV. It is designed to be used with the Partial |V header
paranmeter defined in Section 3.1. This field provides the ability
to associate a Partial IV with a key that is then nodified on a
per nmessage basis with the Partial |V.

Extreme care needs to be taken when using a Base IV in an
application. Many encryption algorithns |ose security if the sane
IV is used twice.

If different keys are derived for each sender, using the sane Base
IVwith Partial IVs starting at zero is likely to ensure that the
IV woul d not be used twice for a single key. |If different keys
are derived for each sender, starting at the same Base IV is
likely to satisfy this condition. |If the sane key is used for

nmul tiple senders, then the application needs to provide for a

net hod of dividing the IV space up between the senders. This
could be done by providing a different base point to start fromor
a different Partial IV to start with and restricting the nunber of
nmessages to be sent before rekeying.
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The key is used to create signatures. Requires
private key fields.

| o |
| verify | 2 | The key is used for verification of signatures.

| encrypt | 3 | The key is used for key transport encryption.

| decrypt | 4 | The key is used for key transport decryption.

| | | Requires private key fields. |
| wrap | 5 | The key is used for key wap encryption. |
| key | | |
| unwap | 6 | The key is used for key wap decryption. |
| key | | Requires private key fields.

| derive | 7 | The key is used for deriving keys. Requires

| key | | private key fields. |
| derive | 8 | The key is used for deriving bits not to be |
| bits | | used as a key. Requires private key fields. |
| MAC | 9 | The key is used for creating MACs.

| create | | |
| MAC | 10 | The key is used for validating MACs.

| verify | | |
S S o m e e e e e e e e e e e e e e e e e e e e e e memamao o +

Tabl e 4: Key Operation Val ues
8. Signature Al gorithns

There are two signature algorithmschenes. The first is signature
with appendix. In this schenme, the nmessage content is processed and
a signature is produced; the signature is called the appendix. This
is the schenme used by algorithms such as ECDSA and the RSA
Probabilistic Signature Schene (RSASSA-PSS). (In fact, the SSA in
RSASSA- PSS stands for Signature Schene with Appendi x.)

The signature functions for this schene are:
signature = Sign(nessage content, key)
valid = Verification(nessage content, key, signature)

The second scheme is signature with message recovery (an exanpl e of
such an algorithmis [PVSig]). 1In this schenme, the nmessage content
is processed, but part of it is included in the signature. Mving
bytes of the nessage content into the signature allows for snaller
signatures; the signature size is still potentially large, but the
nmessage content has shrunk. This has inplications for systens

i mpl enenting these algorithms and for applications that use them
The first is that the nessage content is not fully available unti
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after a signature has been validated. Until that point, the part of
the nmessage contained inside of the signature is unrecoverable. The
second is that the security analysis of the strength of the signature
is very much based on the structure of the message content. Messages
that are highly predictable require additional randomess to be
supplied as part of the signature process. |In the worst case, it
becones the sane as doing a signature with appendix. Finally, in the
event that multiple signatures are applied to a nessage, all of the
signature algorithnms are going to be required to consunme the sane
nunber of bytes of message content. This means that the m xing of
the different schenmes in a single nessage is not supported, and if a
recovery signature schene is used, then the sane anmpunt of content
needs to be consurmed by all of the signatures.

The signature functions for this schene are:
signature, nessage sent = Sign(message content, key)
val id, nmessage content = Verification(nmessage sent, key, signature)

Signature algorithns are used with the COSE_Si gnature and COSE_Si gnl
structures. At this time, only signatures with appendi xes are
defined for use with COSE; however, considerable interest has been
expressed in using a signature with nmessage recovery algorithmdue to
the effective size reduction that is possible. Inplementations wll
need to keep this in mnd for |later possible integration

8.1. ECDSA

ECDSA [DSS] defines a signature algorithmusing ECC. |Inplenentations
SHOULD use a deterministic version of ECDSA such as the one defined
in [RFC6979]. The use of a deterministic signature algorithmallows
for systenms to avoid relying on random nunber generators in order to
avoi d generating the sane value of 'k’ (the per-nmessage random

val ue). Biased generation of the value 'k’ can be attacked, and
collisions of this value |eads to | eaked keys. It additionally
allows for doing determnistic tests for the signature algorithm

The use of determ nistic ECDSA does not | essen the need to have good
random number generation when creating the private key.

The ECDSA signature algorithmis paraneterized with a hash function
(h). In the event that the I ength of the hash function output is
greater than the group of the key, the | eftnost bytes of the hash
out put are used.
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The al gorithnms defined in this docunent can be found in Table 5.

Fommma - Fommma - S . +
| Name | Value | Hash | Description |
Fomm - Fomm - SR o e e e e e oo - +
| ES256 | -7 | SHA-256 | ECDSA w SHA- 256
| ES384 | -35 | SHA-384 | ECDSA w SHA- 384
| ES512 | -36 | SHA-512 | ECDSA w SHA-512
Fommma - Fommma - T . +

Tabl e 5: ECDSA Al gorithm Val ues

Thi s docunent defines ECDSA to work only with the curves P-256,
P-384, and P-521. This docunent requires that the curves be encoded
using the "EC2" (2 coordinate elliptic curve) key type.

| mpl ement ati ons need to check that the key type and curve are correct
when creating and verifying a signature. Oher docunments can define
it to work with other curves and points in the future

In order to pronote interoperability, it is suggested that SHA-256 be
used only with curve P-256, SHA-384 be used only with curve P-384,
and SHA-512 be used with curve P-521. This is aligned with the
recomendation in Section 4 of [RFC5480].

The signature algorithmresults in a pair of integers (R, S). These
integers will be the sane length as the I ength of the key used for
the signature process. The signature is encoded by converting the
integers into byte strings of the sane length as the key size. The
length is rounded up to the nearest byte and is |left padded with zero
bits to get to the correct length. The two integers are then
concatenated together to forma byte string that is the resulting

si gnat ure.

Using the function defined in [RFC8017], the signature is:
Signature = I20SP(R, n) | 12CSP(S, n)
where n = ceiling(key_ length / 8)

When using a COSE key for this algorithm the follow ng checks are
made:

o The "kty field MJST be present, and it MJST be 'EC2' .

o If the "alg’ field is present, it MJST match the ECDSA signhature
al gorithm bei ng used.

o If the "key_ ops’ field is present, it MJST include ’sign when
creating an ECDSA signature.
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8.

8.

1

2.

o If the "key ops’ field is present, it MJIST include 'verify’ when
verifying an ECDSA signature.

1. Security Considerations

The security strength of the signature is no greater than the m ni num
of the security strength associated with the bit | ength of the key
and the security strength of the hash function

Note: Use of this technique is a good idea even when good random
nunber generation exists. Doing so both reduces the possibility of
havi ng the sane value of "k’ in two signature operations and all ows
for reproduci bl e signature val ues, which hel ps testing.

There are two substitution attacks that can theoretically be nounted
agai nst the ECDSA signature al gorithm

o Changing the curve used to validate the signature: |If one changes
the curve used to validate the signature, then potentially one
could have two nessages with the sane signature, each conputed
under a different curve. The only requirenent on the new curve is
that its order be the sane as the old one and it be acceptable to
the client. An exanple would be to change from using the curve
secp256r1 (aka P-256) to using secp256kl. (Both are 256-bit
curves.) We currently do not have any way to deal with this
versi on of the attack except to restrict the overall set of curves
that can be used.

0 Change the hash function used to validate the signature: If one
either has two different hash functions of the sane I ength or can
truncate a hash function down, then one could potentially find
col I'i sions between the hash functions rather than within a single
hash function (for exanple, truncating SHA-512 to 256 bits m ght
collide with a SHA-256 bit hash value). As the hash algorithmis
part of the signature algorithmidentifier, this attack is
mtigated by including a signature algorithmidentifier in the
prot ected header.

Edwar ds- Curve Digital Signature Al gorithnms (EdJDSAs)

[ RFC8032] describes the elliptic curve signature scheme Edwards-curve
Digital Signature Algorithm (EdDSA). |In that document, the signature
algorithmis instantiated using paraneters for edwards25519 and

edwar ds448 curves. The docunent additionally describes two variants
of the EdDSA al gorithm Pure EJdDSA, where no hash function is applied
to the content before signing, and HashEdDSA, where a hash function
is applied to the content before signing and the result of that hash
function is signed. For EdDSA, the content to be signed (either the
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8.

2.

nessage or the pre-hash value) is processed tw ce inside of the
signature algorithm For use with COSE, only the pure EdDSA version
is used. This is because it is not expected that extrenely |arge
contents are going to be needed and, based on the arrangenment of the
message structure, the entire nmessage is going to need to be held in
menory in order to create or verify a signature. This nmeans that
there does not appear to be a need to be able to do bl ock updates of
the hash, followed by elimnating the message from nenory.
Applications can provide the sane features by defining the content of
the message as a hash value and transporting the COSE object (with
the hash value) and the content as separate itens.

The al gorithnms defined in this docunent can be found in Table 6. A
single signature algorithmis defined, which can be used for multiple
curves.

Fomm - Fomm - S +
| Name | Value | Description

Fomm o - Fomm o - U +
| EADSA | -8 | EdDSA |
R R R +

Tabl e 6: EdDSA Al gorithm Val ues
[ RFC8032] describes the nmethod of encoding the signature val ue.

When using a COSE key for this algorithm the follow ng checks are
made:

o The 'kty' field MJST be present, and it MJST be 'OKP (Cctet Key
Pair).

o The 'crv' field MIST be present, and it MJST be a curve defined
for this signature algorithm

o If the "alg’ field is present, it MJST nmatch ' EdDSA

o If the "key ops’ field is present, it MJST include 'sign’ when
creating an EdDSA signature.

o If the "key_ ops’ field is present, it MJIST include ’'verify’ when
verifying an EdDSA si gnature.

1. Security Considerations
How public values are conmputed is not the sane when | ooki ng at EdDSA

and Elliptic Curve Diffie-Hell man (ECDH); for this reason, they
shoul d not be used with the other algorithm
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I f batch signature verification is perfornmed, a well-seeded

crypt ographi ¢ random nunber generator is REQUI RED. Signing and non-
batch signature verification are determnistic operations and do not
need random nunbers of any ki nd.

9. Message Authentication Code (MAC) Al gorithns

Message Aut henticati on Codes (MACs) provide data authentication and
integrity protection. They provide either no or very linited data
origination. A MAC, for exanple, can be used to prove the identity
of the sender to a third party.

MACs use the sane schene as signhature with appendi x al gorithns. The
nessage content is processed and an authentication code is produced.
The authentication code is frequently called a tag.

The MAC functions are:
tag = MAC Create(nessage content, key)
valid = MAC Verify(nessage content, key, tag)

MAC al gorithms can be based on either a bl ock cipher algorithm(i.e.,
AES- MAC) or a hash algorithm (i.e., a Hash-based Message

Aut hentication Code (HMAC)). This docunent defines a MAC al gorithm
usi ng each of these constructions.

MAC al gorithms are used in the COSE Mac and COSE_MacO structures.
9.1. Hash-Based Message Authentication Codes (HVACs)

HVAC [ RFC2104] [ RFC4231] was designed to deal with | ength extension
attacks. The algorithmwas also designed to allow for new hash
algorithms to be directly plugged in wthout changes to the hash
function. The HMAC design process has been shown as solid since,
while the security of hash algorithns such as MD5 has decreased over
time; the security of HVAC conbined with MD5 has not yet been shown
to be conproni sed [ RFC6151] .

The HVAC al gorithmis paraneterized by an inner and outer padding, a
hash function (h), and an authentication tag value length. For this
specification, the inner and outer padding are fixed to the val ues
set in [RFC2104]. The length of the authentication tag corresponds
to the difficulty of producing a forgery. For use in constrained
environnents, we define a set of HVAC al gorithns that are truncated.
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There are currently no known i ssues with truncation; however, the
security strength of the nessage tag is correspondingly reduced in
strength. Wen truncating, the leftnost tag length bits are kept and
transmtted.

The al gorithns defined in this docunent can be found in Table 7.

Fom e Fommm o - Fomm e S o m e e e i e e oo +
| Name | Value | Hash | Tag | Description |
| | | | Length | |
TSR Fomm - SR TSR T +
| HVAC | 4 | SHA-256 | 64 | HVAC w SHA- 256 |
| 256/64 | | | | truncated to 64 bits |
| HVAC | 5 | SHA-256 | 256 | HVAC w SHA- 256 |
| 256/ 256 | | | | |
| HVAC | 6 | SHA-384 | 384 | HVAC w SHA-384 |
| 384/384 | | | | |
| HVAC | 7 | SHA-512 | 512 | HVAC w SHA-512 |
| 512/512 | | | | |
Fom e Fommm o - Fomm e S o m e e e i e e oo +

Table 7: HMAC Al gorithm Val ues

Sone recipient algorithns carry the key while others derive a key
fromsecret data. For those algorithns that carry the key (such as
AES Key Wap), the size of the HVAC key SHOULD be the sane size as
the underlying hash function. For those algorithms that derive the
key (such as ECDH), the derived key MJST be the sane size as the
under | yi ng hash functi on.

When using a COSE key for this algorithm the follow ng checks are
made:

o The 'kty field MJST be present, and it MJST be ' Synmetric’.

o If the "alg’ field is present, it MJST match the HVAC al gorithm
bei ng used.

o If the "key ops’ field is present, it MJIST include ' MAC create’
when creating an HVAC aut hentication tag.

o If the "key ops’ field is present, it MJIST include ' MAC verify’
when verifying an HVAC aut hentication tag.

| npl enentations creating and validati ng MAC val ues MJST val i date that

the key type, key length, and algorithmare correct and appropriate
for the entities involved.
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9.1.1. Security Considerations

HVAC has proved to be resistant to attack even when used with
weakened hash algorithms. The current best known attack is to brute
force the key. This neans that key size is going to be directly
related to the security of an HMAC operation

9.2. AES Message Aut henticati on Code (AES-CBC MAC)

AES-CBC-MAC is defined in [MAC]. (Note that this is not the sane
al gorithm as AES G pher-Based Message Aut hentication Code (AES-CVACQ)
[ RFC4493] .)

AES- CBC- MAC i s paraneterized by the key length, the authentication
tag length, and the IV used. For all of these algorithns, the IVis
fixed to all zeros. W provide an array of algorithms for various
key lengths and tag |l engths. The algorithns defined in this docunent
are found in Table 8.

S oo - S S oo +
| Name | Value | Key | Tag | Description |
| | | Length | Length | |
S Fomm - TSR TSR o e e e e e +
| AES- MAC | 14 | 128 | 64 | AES-MAC 128-bit key,
| 128/64 | | | | 64-bit tag |
| AES- MAC | 15 | 256 | 64 | AES- MAC 256-bit key,
| 256/64 | | | | 64-bit tag |
| AES- MAC | 25 | 128 | 128 | AES-MAC 128-bit key,
| 128/128 | | | | 128-bit tag |
| AES- MAC | 26 | 256 | 128 | AES- MAC 256-bit key,
| 256/128 | | | | 128-bit tag |
e R S S oo +

Tabl e 8: AES- MAC Al gorithm Val ues
Keys nmay be obtained either froma key structure or froma recipient
structure. |Inplenentations creating and validating MAC val ues MJUST
val idate that the key type, key length, and algorithmare correct and
appropriate for the entities invol ved.

VWhen using a COSE key for this algorithm the follow ng checks are
made:

o The 'kty' field MJST be present, and it MJST be ' Synmmetric’

o If the "alg’ field is present, it MJST match the AES-MAC al gorithm
bei ng used.
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9.

2.

10.

o If the "key ops’ field is present, it MJST include ' MAC create
when creating an AES- MAC aut hentication tag

o If the "key ops’ field is present, it MJIST include ' MAC verify’
when verifying an AES- MAC aut hentication tag.

1. Security Considerations

A nunmber of attacks exist against G pher Bl ock Chaining Message
Aut henti cati on Code (CBC-MAC) that need to be consi dered.

o A single key nust only be used for nessages of a fixed and known
length. If this is not the case, an attacker will be able to
generate a nmessage with a valid tag given two nessage and tag
pairs. This can be addressed by using different keys for messages
of different |lengths. The current structure mtigates this
problem as a specific encoding structure that includes lengths is
built and signed. (CMAC also addresses this issue.)

o Cipher Block Chaining (CBC) node, if the sane key is used for both
encryption and authenticati on operations, an attacker can produce
nmessages with a valid authentication code.

o If the IV can be nodified, then nessages can be forged. This is
addressed by fixing the IV to all zeros.

Content Encryption Al gorithms

Content encryption algorithnms provide data confidentiality for
potentially large bl ocks of data using a symetric key. They provide
integrity on the data that was encrypted; however, they provide
either no or very limted data origination. (One cannot, for

exanpl e, be used to prove the identity of the sender to a third
party.) The ability to provide data origination is |linked to how the
CEK i s obtai ned

COSE restricts the set of |egal content encryption algorithns to
those that support authentication both of the content and additiona
data. The encryption process will generate sone type of

aut hentication value, but that value may be either explicit or
implicit interns of the algorithmdefinition. For sinplicity’s
sake, the authentication code will normally be defined as being
appended to the ciphertext stream The encryption functions are:

ci phertext = Encrypt(message content, key, additional data)

val id, nmessage content = Decrypt(cipher text, key, additional data)
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Most AEAD al gorithns are logically defined as returning the nessage
content only if the decryption is valid. Many but not all

i mpl enentations will follow this convention. The message content
MUST NOT be used if the decryption does not validate.

These al gorithns are used in COSE Encrypt and COSE EncryptO.
10.1. AES GCM

The Gal oi s/ Counter Mbde (GCM) npde is a generic authenticated
encryption block cipher node defined in [AES-GCM. The GCM node is
conbined with the AES bl ock encryption algorithmto define an AEAD
ci pher.

The GCM node is parameterized by the size of the authentication tag
and the size of the nonce. This docunent fixes the size of the nonce
at 96 bits. The size of the authentication tag is limted to a snall
set of values. For this docunent however, the size of the
authentication tag is fixed at 128 bits.

The set of algorithns defined in this docunent are in Table 9.

R R, T +
| Nane | Value | Description |
Fomm e Fommm o - o m m e e e e e e e e e e e e e e e e e mmae— oo +
| A128GCM | 1 | AES-GCM node w 128-bit key, 128-bit tag |
| A192GCM | 2 | AES-GCM npde w 192-bit key, 128-bit tag |
| A256GCM | 3 | AES- GCM npde w 256-bit key, 128-bit tag |
R R, T +

Table 9: Al gorithm Value for AES- GCM
Keys may be obtained either froma key structure or froma recipient
structure. Inplenentations encrypting and decrypting MJST validate
that the key type, key length, and algorithmare correct and
appropriate for the entities involved.

When using a COSE key for this algorithm the follow ng checks are
made:

o The 'kty' field MJST be present, and it MJST be ’'Symmetric’.

o If the "alg’ field is present, it MJST nmatch the AES-GCM al gorithm
bei ng used.

o If the "key_ops’ field is present, it MJST include "encrypt’ or
"wrap key' when encrypting.
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10.

10.

o If the "key ops’ field is present, it MJST include 'decrypt’ or
"unw ap key’' when decrypting.

1.1. Security Considerations
When using AES-GCM the follow ng restrictions MIUST be enforced:
o The key and nonce pair MJST be unique for every nessage encrypted.

o The total amunt of data encrypted for a single key MJST NOT
exceed 2739 - 256 bits. An explicit check is required only in
environnents where it is expected that it mght be exceeded.

Consi derati on was given to supporting smaller tag val ues; the
constrained comunity would desire tag sizes in the 64-bit range.
Doi ng so drastically changes both the maxi mum nessages size
(generally not an issue) and the nunmber of tinmes that a key can be
used. Gven that Counter with CBCMAC (CCM is the usual node for
constrai ned environments, restricted nodes are not supported.

2. AES CcMm

CCMis a generic authentication encryption block ci pher node defined
in [RFC3610]. The CCM node is conbined with the AES bl ock encryption
algorithmto define a commonly used content encryption algorithm used
in constrai ned devices.

The CCM node has two paraneter choices. The first choice is M the
size of the authentication field. The choice of the value for M

i nvol ves a trade-off between nmessage growmh (fromthe tag) and the
probability that an attacker can undetectably nodify a nessage. The
second choice is L, the size of the length field. This value
requires a trade-off between the maxi mum nessage size and the size of
t he Nonce.

It is unfortunate that the specification for CCM specified L and M as
a count of bytes rather than a count of bits. This |eads to possible
m sunder st andi ngs where AES-CCM8 is frequently used to refer to a
version of CCM node where the size of the authentication is 64 bits
and not 8 bits. These values have traditionally been specified as
bit counts rather than byte counts. This docunent will followthe
convention of using bit counts so that it is easier to conpare the
different algorithnms presented in this docunent.

We define a matrix of algorithnms in this docunent over the val ues of
L and M Constrai ned devices are usually operating in situations
where they use short nessages and want to avoid doing recipient-
specific cryptographic operations. This favors smaller val ues of
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both L and M Less-constrained devices will want to be able to use
| arger nessages and are nore willing to generate new keys for every
operation. This favors larger values of L and M

The foll owi ng values are used for L:

16 bits (2): This limts nessages to 2716 bytes (64 KiB) in |length.
This is sufficiently long for nessages in the constrained world.
The nonce length is 13 bytes allowi ng for 27(13*8) possible val ues
of the nonce w thout repeating.

64 bits (8): This limts nessages to 2764 bytes in length. The
nonce length is 7 bytes allowi ng for 2756 possi bl e val ues of the
nonce w thout repeating.

The foll owi ng val ues are used for M

64 bits (8): This produces a 64-bit authentication tag. This
inplies that there is a 1 in 2764 chance that a nodifi ed nessage
wi |l authenticate.

128 bits (16): This produces a 128-bit authentication tag. This

inplies that there is a 1 in 27128 chance that a nodified nessage
wi || authenticate.
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AES- CCM 16- 64- 128 AES- CCM node
128-bit key, 64-bit
tag, 13-byte nonce
AES- CCM node
256-bit key, 64-bit
tag, 13-byte nonce
AES- CCM node
128-bit key, 64-bit
tag, 7-byte nonce
AES- CCM node
256-bit key, 64-bit
tag, 7-byte nonce
AES- CCM node
128-bit key,

|

|

AES- CCM 16- 64- 256 |
|
|
|
|
|
|
|
|
|
128-bit tag, |
|
|
|
|
|
|
|
|
|
|
|
|
|

AES- CCM 64- 64- 128 12 64 64 128

AES- CCM 64- 64- 256 13 64 64 256

AES- CCM 16- 128-128 30 16 128 128

13- byt e nonce

AES- CCM node
256-bit key,

128-bit tag,

13- byt e nonce

AES- CCM node
128-bit key,

128-bit tag, 7-byte
nonce

AES- CCM node
256-bit key,

128-bit tag, 7-byte
nonce

AES- CCM 16-128-256 | 31 16 128 256

AES- CCM 64- 128- 128 32 64 128 128

AES- CCM 64- 128- 256 33 64 128 256

Tabl e 10: Al gorithm Val ues for AES-CCM
Keys nmay be obtained either froma key structure or froma recipient
structure. |Inplenentations encrypting and decrypting MJST validate
that the key type, key length, and algorithmare correct and
appropriate for the entities invol ved.

VWhen using a COSE key for this algorithm the follow ng checks are
made:

o The 'kty' field MJST be present, and it MJST be ' Synmmetric’

o If the "alg’ field is present, it MJST match the AES-CCM al gorithm
bei ng used.
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o If the "key ops’ field is present, it MJST include 'encrypt’ or
"wrap key' when encrypting.

o If the "key_ ops’ field is present, it MJST include 'decrypt’ or
"unwr ap key’ when decrypting.

10.2.1. Security Considerations
When using AES-CCM the followi ng restrictions MIST be enforced:

o The key and nonce pair MJST be unique for every nessage encrypted.
Note that the value of L influences the nunber of unique nonces.

o The total nunber of tines the AES bl ock cipher is used MJST NOT
exceed 2761 operations. This limtation is the sumof tines the
bl ock ci pher is used in conputing the MAC value and in performng
stream encryption operations. An explicit check is required only
in environnents where it is expected that it m ght be exceeded.

[ RFC3610] additionally calls out one other consideration of note. It
is possible to do a pre-conputation attack against the algorithmin
cases where portions of the plaintext are highly predictable. This
reduces the security of the key size by half. Ways to deal with this
attack include adding a random portion to the nonce val ue and/ or

i ncreasing the key size used. Using a portion of the nonce for a
random val ue will decrease the nunber of messages that a single key
can be used for. Increasing the key size may require nore resources
in the constrai ned device. See Sections 5 and 10 of [RFC3610] for
nore information.

10.3. ChaCha20 and Pol y1305

ChaCha20 and Pol y1305 conbi ned together is an AEAD node that is
defined in [RFC7539]. This is an algorithmdefined to be a cipher
that is not AES and thus would not suffer from any future weaknesses
found in AES. These cryptographic functions are designed to be fast
in software-only inplenmentations.

The ChaCha20/ Pol y1305 AEAD construction defined in [ RFC7539] has no
paraneterization. |t takes a 256-bit key and a 96-bit nonce, as well
as the plaintext and additional data as inputs and produces the

ci phertext as an option. W define one algorithmidentifier for this
algorithmin Table 11.
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S R S S S +
| Name | Value | Description |
I Fommma - e N YTST +
| ChaCha20/ Pol y1305 | 24 | ChaCha20/ Pol y1305 w 256-bit key, |
| | | 128-bit tag |
o e e e oo R, o e m e e e e e e e e e e m e +

Tabl e 11: Al gorithm Val ue for AES-GCM
Keys may be obtained either froma key structure or froma recipient
structure. Inplenentations encrypting and decrypting MJST val i date
that the key type, key length, and algorithmare correct and
appropriate for the entities involved.

When using a COSE key for this algorithm the follow ng checks are
made:

o The 'kty' field MJUST be present, and it MJST be ' Symmetric’

o If the "alg’ field is present, it MJST nmatch the ChaCha20/ Pol y1305
al gorithm bei ng used.

o If the "key_ops’ field is present, it MJST include "encrypt’ or
"wrap key' when encrypting.

o If the "key ops’ field is present, it MJST include 'decrypt’ or
"unw ap key’' when decrypting.

10.3.1. Security Considerations
The key and nonce val ues MJST be a unique pair for every invocation
of the algorithm Nonce counters are considered to be an acceptable
way of ensuring that they are unique.

11. Key Derivation Functions (KDFs)

KDFs are used to take sonme secret value and generate a different one.
The secret value cones in three flavors:

0 Secrets that are uniformy random This is the type of secret that
is created by a good random number generator.

0 Secrets that are not uniformy random This is type of secret that
is created by operations |ike key agreenent.

0 Secrets that are not random This is the type of secret that
peopl e generate for things |ike passwords.
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11.

CGeneral KDFs work well with the first type of secret, can do
reasonably well with the second type of secret, and generally do
poorly with the last type of secret. None of the KDFs in this
section are designed to deal with the type of secrets that are used
for passwords. Functions |ike PBES2 [ RFC8018] need to be used for
that type of secret.

The sane KDF can be set up to deal with the first two types of
secrets in a different way. The KDF defined in Section 11.1 is such
a function. This is reflected in the set of algorithnms defined for
the HVAC- based Extract-and- Expand Key Derivation Function (HKDF).

When usi ng KDFs, one component that is included is context
information. Context information is used to allow for different
keying information to be derived fromthe sane secret. The use of
cont ext - based keying material is considered to be a good security
practice.

Thi s docunent defines a single context structure and a single KDF
These el enents are used for all of the recipient algorithns defined
in this docunment that require a KDF process. These algorithns are
defined in Sections 12.1.2, 12.4.1, and 12.5.1.

1. HMAC- Based Extract-and-Expand Key Derivation Function (HKDF)
The HKDF key derivation algorithmis defined in [ RFC5869].
The HKDF al gorithmtakes these inputs:

secret -- a shared value that is secret. Secrets nmay be either
previously shared or derived fromoperations like a Diffie-Hellmn
(DH) key agreenent.

salt -- an optional value that is used to change the generation
process. The salt value can be either public or private. |If the
salt is public and carried in the nmessage, then the 'salt’

al gorithm header paraneter defined in Table 13 is used. Wile

[ RFC5869] suggests that the length of the salt be the sane as the
l ength of the underlying hash val ue, any anount of salt wll

i mprove the security as different key values will be generated.
This paraneter is protected by being included in the key
conput ati on and does not need to be separately authenticated. The
salt val ue does not need to be unique for every nessage sent.

l ength -- the nunmber of bytes of output that need to be generated.
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context information -- Information that describes the context in
which the resulting value will be used. Mking this information
specific to the context in which the material is going to be used
ensures that the resulting material will always be tied to that
usage. The context structure defined in Section 11.2 is used by
the KDFs in this docunent.

PRF -- The underlying pseudorandom function to be used in the HKDF
algorithm The PRF is encoded into the HKDF al gorithm sel ection.

HKDF is defined to use HVAC as the underlying PRF. However, it is
possi ble to use other functions in the sane construct to provide a
different KDF that is nore appropriate in the constrai ned worl d.
Specifically, one can use AES-CBC-MAC as the PRF for the expand step,
but not for the extract step. Wen using a good random shared secret
of the correct length, the extract step can be skipped. For the AES
al gorithm versions, the extract step is always ski pped.

The extract step cannot be skipped if the secret is not uniformy
random for exanple, if it is the result of an ECDH key agreenent
step. This inplies that the AES HKDF version cannot be used with
ECDH. If the extract step is skipped, the "salt’ value is not used
as part of the HKDF functionality.

The al gorithnms defined in this docunent are found in Table 12.

. e ' +
| Nare | PRF | Description |
Fom e e e oo - o e oo o e m e e e e e e e e e e e +
| HKDF SHA-256 | HVAC with | HKDF using HVAC SHA- 256 as the |
| | SHA-256 | PRF |
| HKDF SHA-512 | HMAC with | HKDF using HVAC SHA-512 as the |
| | SHA-512 | PRF |
| HKDF AES- | AES- CBC- MAC-128 | HKDF using AES-MAC as the PRF |
| MAC- 128 | | w 128-bit key |
| HKDF AES- | AES- CBC- MAC- 256 | HKDF using AES-MAC as the PRF |
| MAC- 256 | | w 256-bit key |
. o mmeeeiaaaaaas N +

Tabl e 12: HKDF Al gorithmns
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11.

| direct+HKDF- SHA- 256, direct |

| +HKDF- SHA-512, direct +HKDF- | |
| AES-128, direct+HKDF- AES- 256, |

| ECDH ES+HKDF- 256, ECDH- | |
| ES+HKDF-512, ECDH | |
| SS+HKDF- 256, ECDH | |
| SS+HKDF-512, ECDH ES+A128KW |

| ECDH ES+A192KW ECDH | |
| ES+A256KW ECDH SS+A128KW | |
| ECDH SS+A192KW ECDH | |
| SS+A256KW | |

Tabl e 13: HKDF Al gorithm Paraneters
2. Context Information Structure

The context information structure is used to ensure that the derived
keying material is "bound" to the context of the transaction. The
context information structure used here is based on that defined in
[ SPB00-56A]. By using CBOR for the encodi ng of the context

i nformation structure, we automatically get the same type and | ength
separation of fields that is obtained by the use of ASN.1. This
nmeans that there is no need to encode the I engths for the base
elements, as it is done by the encoding used in JOSE (Section 4.6.2
of [ RFC7518]).

The context infornmation structure refers to PartyU and PartyV as the
two parties that are doing the key derivation. Unless the
application protocol defines differently, we assign PartyU to the
entity that is creating the nessage and PartyV to the entity that is
recei ving the message. By doing this association, different keys
will be derived for each direction as the context information is
different in each direction

The context structure is built frominformation that is known to both
entities. This information can be obtained froma variety of
sour ces:

o Fields can be defined by the application. This is commonly used
to assign fixed nanes to parties, but it can be used for other
items such as nonces.

o Fields can be defined by usage of the output. Exanples of this
are the algorithmand key size that are bei ng generat ed.
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Fi el ds can be defined by parameters fromthe nessage. W define a
set of paraneters in Table 14 that can be used to carry the val ues
associated with the context structure. Exanples of this are
identities and nonce values. These parameters are designed to be
pl aced in the unprotected bucket of the recipient structure; they
do not need to be in the protected bucket since they already are

i ncluded in the cryptographic conputation by virtue of being
included in the context structure.
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di r ect +HKDF- SHA- 256

di r ect +HKDF- SHA- 512,

di r ect +HKDF- AES- 128,

di r ect +HKDF- AES- 256,
ECDH ES+HKDF- 256, ECDH-
ES+HKDF- 512, ECDH-
SS+HKDF- 256, ECDH-
SS+HKDF- 512, ECDH-

ES+A128KW
ES+A192KW
ES+A256 KW
SS+A128KW
SS+A192KW

ECDH-
ECDH-
ECDH-
ECDH-
ECDH- SS+A256 KW

di r ect +HKDF- SHA- 256,

di r ect +HKDF- SHA- 512,

di r ect +HKDF- AES- 128,

di r ect +HKDF- AES- 256,
ECDH- ES+HKDF- 256, ECDH-
ES+HKDF- 512, ECDH-

SS+HKDF- 512, ECDH-

ES+A128KW
ES+A192KW
ES+A256KW
SS+A128KW
SS+A192KW

ECDH-
ECDH-
ECDH-
ECDH-
ECDH- SS+A256 KW

di r ect +HKDF- SHA- 256,

di r ect +HKDF- SHA- 512,

di r ect +HKDF- AES- 128,

di r ect +HKDF- AES- 256,
ECDH- ES+HKDF- 256, ECDH-
ES+HKDF- 512, ECDH
SS+HKDF- 256, ECDH-
SS+HKDF- 512, ECDH-

ES+A128KW
ES+A192KW
ES+A256KW
SS+A128KW
SS+A192KW

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
SS+HKDF- 256, ECDH- |
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

ECDH-
ECDH-
ECDH-
ECDH-
ECDH SS+A256 KW
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di r ect +HKDF- SHA- 256,

di r ect +HKDF- SHA- 512,

di r ect +HKDF- AES- 128,

di r ect +HKDF- AES- 256,
ECDH- ES+HKDF- 256, ECDH-
ES+HKDF- 512, ECDH-
SS+HKDF- 256, ECDH-
SS+HKDF- 512, ECDH

ES+A128KW
ES+A192KW
ES+A256KW
SS+A128KW
SS+A192KW

ECDH-
ECDH-
ECDH-
ECDH-
ECDH SS+A256 KW

di r ect +HKDF- SHA- 256,

di r ect +HKDF- SHA- 512,

di r ect +HKDF- AES- 128,

di r ect +HKDF- AES- 256,
ECDH- ES+HKDF- 256, ECDH-
ES+HKDF- 512, ECDH

SS+HKDF- 512, ECDH

ES+A128KW
ES+A192KW
ES+A256 KW
SS+A128KW
SS+A192KW

ECDH-
ECDH-
ECDH-
ECDH-
ECDH SS+A256 KW

di r ect +HKDF- SHA- 256,

di r ect +HKDF- SHA- 512,

di r ect +HKDF- AES- 128,

di r ect +HKDF- AES- 256,
ECDH- ES+HKDF- 256, ECDH-
ES+HKDF- 512, ECDH-
SS+HKDF- 256, ECDH-
SS+HKDF- 512, ECDH

ES+A128KW
ES+A192KW
ES+A256 KW
SS+A128KW
SS+A192KW

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
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I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
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ECDH-
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ECDH-
ECDH SS+A256 KW

Tabl e 14: Context Al gorithm Paraneters
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We define a CBOR object to hold the context information. This object
is referred to as COSE KDF_Context. The object is based on a CBOR
array type. The fields in the array are:

AlgorithmiD: This field indicates the algorithmfor which the key
material will be used. This normally is either a key wap
algorithmidentifier or a content encryption algorithmidentifier
The values are fromthe "COSE Al gorithnms" registry. This field is
required to be present. The field exists in the context
information so that if the same environnent is used for different
algorithms, then conpletely different keys will be generated for
each of those algorithns. This practice neans if algorithmA is
broken and thus is easier to find, the key derived for algorithmB
will not be the sane as the key derived for algorithm A

PartyU nfo: This field holds information about party U  The
PartyU nfo is encoded as a CBOR array. The elenments of PartyU nfo
are encoded in the order presented. The elenments of the
PartyU nfo array are:

identity: This contains the identity information for party U
The identities can be assigned in one of two manners. First, a
protocol can assign identities based on roles. For exanple,
the roles of "client" and "server" may be assigned to different
entities in the protocol. Each entity would then use the
correct |label for the data they send or receive. The second
way for a protocol to assign identities is to use a name based
on a nam ng system (i.e., DNS, X 509 names).

We define an algorithm paraneter 'PartyU identity’ that can be
used to carry identity information in the nmessage. However,
identity information is often known as part of the protocol and
can thus be inferred rather than nade explicit. |If identity
information is carried in the nmessage, applications SHOULD have
a way of validating the supplied identity information. The
identity informati on does not need to be specified and is set
to nil in that case

nonce: This contains a nonce value. The nonce can either be
implicit fromthe protocol or be carried as a value in the
unpr ot ect ed headers.

We define an al gorithm parameter 'PartyU nonce’ that can be
used to carry this value in the nessage; however, the nonce
val ue coul d be determined by the application and the val ue
det erm ned from el sewhere.
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Thi s option does not need to be specified and is set to nil in
that case

other: This contains other information that is defined by the
protocol. This option does not need to be specified and is set
to nil in that case

PartyVinfo: This field holds information about party V. The content
of the structure is the same as for the PartyU nfo but for party
V.

SuppPubl nfo: This field contains public information that is nutually
known to both parties.

keyDat aLength: This is set to the nunmber of bits of the desired
out put value. This practice nmeans if algorithmA can use two
di fferent key lengths, the key derived for |onger key size wll
not contain the key for shorter key size as a prefix.

protected: This field contains the protected paraneter field. |If
there are no elenents in the protected field, then use a zero-
| ength bstr.

other: This fieldis for free formdata defined by the

application. An exanple is that an application could define
two different strings to be placed here to generate different
keys for a data streamversus a control stream This field is
optional and will only be present if the application defines a
structure for this information. Applications that define this
SHOULD use CBOR to encode the data so that types and | engths
are correctly included.

SuppPrivinfo: This field contains private information that is
mutual Iy known private information. An exanple of this
i nformati on woul d be a preexisting shared secret. (This could,
for exanple, be used in conbination with an ECDH key agreenent to
provi de a secondary proof of identity.) The field is optional and
will only be present if the application defines a structure for
this information. Applications that define this SHOULD use CBOR
to encode the data so that types and | engths are correctly
i ncl uded.
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The foll owing CDDL fragnent corresponds to the text above.

Partylnfo = (
identity : bstr / nil,
nonce : bstr / int / nil
other : bstr / nil

)

COSE_KDF_Context = [

AlgorithmiD: int [/ tstr,

PartyU nfo : [ Partylnfo ],

PartyVinfo : [ Partylnfo ],

SuppPubl nfo : |
keyDat aLength : uint,
protected : enpty_or_serialized_map,
? other : bstr

] 1
? SuppPrivinfo : bstr

12. Content Key Distribution Methods

Content key distribution nethods (recipient algorithms) can be
defined into a nunber of different classes. COSE has the ability to
support many classes of recipient algorithns. |In this section, a
nunber of classes are listed, and then a set of algorithnms are
specified for each of the classes. The nanes of the recipient

al gorithm cl asses used here are the sane as those defined in

[ RFC7516]. O her specifications use different ternms for the

reci pient algorithmclasses or do not support sone of the recipient
al gorithm cl asses.

12.1. Direct Encryption
The direct encryption class algorithms share a secret between the
sender and the recipient that is used either directly or after
mani pul ation as the CEK. Wen direct encryption node is used, it
MUST be the only node used on the nessage.

The COSE Reci pient structure for the recipient is organized as
fol | ows:

o The 'protected field MIUST be a zero-length itemunless it is used
in the computation of the content key.

o The "alg paraneter MJST be present.

o A paraneter identifying the shared secret SHOULD be present.
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o The 'ciphertext’ field MJST be a zero-length item

o The 'recipients’ field MIST be absent.

1.1. Direct Key

This recipient algorithmis the sinplest; the identified key is
directly used as the key for the next |ayer down in the nessage.

There are no algorithm paraneters defined for this algorithm The
algorithmidentifier value is assigned in Table 15.

When this algorithmis used, the protected field MJST be zero |ength.

The key type MJST be 'Symetric’

I Fommma - e +
| Name | Value | Description |
Fomm e Fomm - o e a o +
| direct | -6 | Direct use of CEK

S S DT S T IRy +

Tabl e 15: Direct Key
1.1.1. Security Considerations

This recipient algorithmhas several potential problens that need to
be consi dered:

0 These keys need to have some nmethod to be regul arly updated over
time. Al of the content encryption algorithns specified in this
docunent have limts on how nany tinmes a key can be used without
significant | oss of security.

0 These keys need to be dedicated to a single algorithm There have
been a nunber of attacks devel oped over tinme when a single key is
used for multiple different algorithns. One exanple of this is
the use of a single key for both the CBC encrypti on node and the
CBC- MAC aut henti cati on npde.

o Breaking one nessage nmeans all nessages are broken. [If an
adversary succeeds in determning the key for a single message,
then the key for all nessages is al so determ ned.

1.2. Direct Key with KDF
These recipient algorithns take a common shared secret between the

two parties and applies the HKDF function (Section 11.1), using the
context structure defined in Section 11.2 to transformthe shared
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secret into the CEK. The 'protected’ field can be of non-zero
length. Either the 'salt’ paraneter of HKDF or the ’'PartyU nonce’
paraneter of the context structure MJST be present. The salt/nonce
par ameter can be generated either randomy or determnistically. The
requirenent is that it be a unique value for the shared secret in
guesti on.

If the salt/nonce value is generated randomy, then it is suggested
that the length of the random val ue be the sane |l ength as the hash
function underlying HKDF. Wile there is no way to guarantee that it
will be unique, there is a high probability that it will be unique.
If the salt/nonce value is generated deterministically, it can be
guaranteed to be unique, and thus there is no | ength requirenent.

A new |V nmust be used for each nessage if the sanme key is used. The
IV can be nodified in a predictable manner, a random manner, or an
unpredi ctabl e manner (i.e., encrypting a counter).

The 1V used for a key can al so be generated fromthe sanme HKDF
functionality as the key is generated. |If HKDF is used for
generating the 1V, the algorithmidentifier is set to "IV-
GENERATI ON".

When these algorithns are used, the key type MJIST be 'symmetric’.

The set of algorithns defined in this docunent can be found in
Tabl e 16.

T Fomm - S o e e e e e +
| Nane | Value | KDF | Description |
e Fomm o - U o e e a o +
| direct+HKDF SHA-256 | -10 | HKDF | Shared secret w HKDF |
| | | SHA- 256 | and SHA- 256

| direct+HKDF- SHA-512 | -11 | HKDF | Shared secret w HKDF |
| | | SHA-512 | and SHA-512 |
| direct+HKDF- AES-128 | -12 | HKDF AES- | Shared secret w AES- |
| | | MAC-128 | MAC 128-bit key |
| direct+HKDF AES-256 | -13 | HKDF AES- | Shared secret w AES- |
| | | MAC- 256 | MAC 256-bit key |
o m e e e e aa o - S Fom e e e e oo - Tt +

Table 16: Direct Key with KDF
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When using a COSE key for this algorithm the follow ng checks are
made:

o The "kty field MJST be present, and it MJST be ' Synmetric’

o If the "alg’ field is present, it MJST match the al gorithm being
used.

o If the "key_ ops’ field is present, it MJIST include 'deriveKey' or
"deriveBits’

1.2.1. Security Considerations

The shared secret needs to have sonme nethod to be regularly updated
over tine. The shared secret forns the basis of trust. Although not
used directly, it should still be subject to schedul ed rotation

Wil e these nethods do not provide for perfect forward secrecy, as
the sane shared secret is used for all of the keys generated, if the
key for any single nessage is discovered, only the nessage (or series
of messages) using that derived key are conprom sed. A new key
derivation step will generate a new key that requires the same anount
of work to get the key.

2. Key Wap

In key wap node, the CEK is randomy generated and that key is then
encrypted by a shared secret between the sender and the recipient.

Al of the currently defined key wap algorithms for COSE are AE
algorithnms. Key wap node is considered to be superior to direct
encryption if the system has any capability for doi ng random key
generation. This is because the shared key is used to wap random
data rather than data that has sone degree of organization and may in
fact be repeating the sane content. The use of key wap |oses the
weak data origination that is provided by the direct encryption

al gorithns.

The COSE Encrypt structure for the recipient is organized as foll ows:

0o The 'protected field MIST be absent if the key wap algorithmis
an AE al gorithm

o The 'recipients’ field is normally absent, but can be used.
Applications MIUST deal with a recipient field being present, not
being able to decrypt that recipient is an acceptable way of
dealing with it. Failing to process the nessage is not an
acceptabl e way of dealing with it.

Schaad St andards Track [ Page 63]



RFC 8152 CBOR nj ect Signing and Encryption (COSE) July 2017

o The plaintext to be encrypted is the key from next |ayer down
(usually the content |ayer).

o At a mininum the "unprotected field MIST contain the "alg
par amet er and SHOULD contain a parameter identifying the shared
secret.

12.2.1. AES Key Wap

The AES Key Wap algorithmis defined in [RFC3394]. This algorithm
uses an AES key to wap a value that is a nultiple of 64 bits. As
such, it can be used to wap a key for any of the content encryption
algorithns defined in this docunment. The algorithmrequires a single
fixed parameter, the initial value. This is fixed to the val ue
specified in Section 2.2.3.1 of [RFC3394]. There are no public
paranmeters that vary on a per-invocation basis. The protected header
field MIUST be enpty.

Keys nmay be obtained either froma key structure or froma recipient
structure. |Inplenentations encrypting and decrypting MJST val i date
that the key type, key length, and algorithmare correct and
appropriate for the entities invol ved.

When using a COSE key for this algorithm the follow ng checks are
made:

o The "kty' field MJST be present, and it MJST be ’'Synmetric’.

o If the "alg’ field is present, it MJST match the AES Key Wap
al gori thm bei ng used.

o If the "key ops’ field is present, it MJST include 'encrypt’ or
"wrap key' when encrypting.

o If the "key_ops’ field is present, it MJST include '"decrypt’ or
"unwrap key’ when decrypting.

Fomm e Fommm o - S Fomm e e e i i e e +
| Name | Value | Key Size | Description |
Fomm e m oo - S Fomm oo - o m e e e e e e eemao - +
| AL28KW| -3 | 128 | AES Key Wap w 128-bit key

| AL92KW| -4 | 192 | AES Key Wap w 192-bit key

| A256KW | -5 | 256 | AES Key Wap w 256-bit key |
Fomm e Fommm o - S Fomm e e e i i e e +

Table 17: AES Key Wap Al gorithm Val ues
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2.1.1. Security Considerations for AES-KW

The shared secret needs to have sonme nethod to be regul arly updated
over tine. The shared secret is the basis of trust.

3. Key Transport

Key transport node is also called key encrypti on node in sone
standards. Key transport node differs fromkey wap node in that it
uses an asymretric encryption algorithmrather than a symetric
encryption algorithmto protect the key. This docunent does not
define any key transport node al gorithns.

When using a key transport algorithm the COSE Encrypt structure for
the recipient is organized as foll ows:

o The ’"protected field MJIST be absent.

o0 The plaintext to be encrypted is the key fromthe next |ayer down
(usually the content |ayer).

o At a mininum the 'unprotected field MJIST contain the
par amet er and SHOULD contain a paraneter identifying the
asymetric key.

alg

4. Direct Key Agreenent

The ' direct key agreenment’ class of recipient algorithms uses a key
agreement nmethod to create a shared secret. A KDF is then applied to
the shared secret to derive a key to be used in protecting the data.
This key is normally used as a CEK or MAC key, but could be used for
ot her purposes if nore than two |ayers are in use (see Appendi x B)

The npbst commonly used key agreenent algorithmis Diffie-Hellnman, but
ot her variants exist. Since COSE is designed for a store and forward
environnent rather than an online environnent, many of the DH
variants cannot be used as the receiver of the nessage cannot provide
any dynam c key material. One side effect of this is that perfect
forward secrecy (see [ RFC4949]) is not achievable. A static key will
al ways be used for the receiver of the COSE object.

Two variants of DH that are supported are:

Epheneral -Static (ES) DH. where the sender of the nessage creates
a one-time DH key and uses a static key for the recipient. The
use of the epheneral sender key means that no additional random
input is needed as this is randomy generated for each nessage.
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Static-Static DH: where a static key is used for both the sender
and the recipient. The use of static keys allows for the

reci pient to get a weak version of data origination for the
message. Wen static-static key agreement is used, then sone

pi ece of unique data for the KDF is required to ensure that a
different key is created for each nessage.

When direct key agreenent node is used, there MJST be only one
recipient in the message. This nethod creates the key directly, and
that makes it difficult to mix with additional recipients. |If
multiple recipients are needed, then the version with key wap needs
to be used.

The COSE Encrypt structure for the recipient is organized as foll ows:

o At a mininum headers MJST contain the "alg parameter and SHOULD
contain a paraneter identifying the recipient’s asynretric key.

o The headers SHOULD identify the sender’s key for the static-static
versi ons and MUST contain the sender’s epheneral key for the
epheneral -static versions.

12.4.1. ECDH

The mat henatics for ECDH can be found in [RFC6090]. In this
docunent, the algorithmis extended to be used with the two curves
defined in [ RFC7748].

ECDH i s paraneterized by the foll ow ng:

o Curve Typel/ Curve: The curve selected controls not only the size of
the shared secret, but the mathematics for conputing the shared
secret. The curve selected also controls how a point in the curve
is represented and what happens for the identity points on the
curve. In this specification, we allow for a nunber of different
curves to be used. A set of curves are defined in Table 22.

The math used to obtain the conputed secret is based on the curve
sel ected and not on the ECDH algorithm For this reason, a new
al gorithm does not need to be defined for each of the curves.

o Computed Secret to Shared Secret: Once the conputed secret is
known, the resulting value needs to be converted to a byte string
to run the KDF. The x-coordinate is used for all of the curves
defined in this docunent. For curves X25519 and X448, the
resulting value is used directly as it is a byte string of a known
l ength. For the P-256, P-384, and P-521 curves, the x-coordinate
is run through the 120SP function defined in [RFC8017], using the
sanme conputation for n as is defined in Section 8.1.
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o Epheneral-Static or Static-Static: The key agreenent process nay
be done using either a static or an epheneral key for the sender’s
side. Wen using epheneral keys, the sender MJST generate a new
epheneral key for every key agreenent operation. The ephenera
key is placed in the 'epheneral key’ paraneter and MJST be present
for all algorithmidentifiers that use epheneral keys. Wen using
static keys, the sender MJUST either generate a new random val ue or
create a unique value. For the KDFs used, this nmeans either the
"salt’ parameter for HKDF (Table 13) or the 'PartyU nonce
paranmeter for the context structure (Table 14) MJST be present
(both can be present if desired). The value in the paraneter MJST
be unique for the pair of keys being used. It is acceptable to
use a global counter that is increnented for every static-static
operation and use the resulting value. Wen using static keys,
the static key should be identified to the recipient. The static
key can be identified either by providing the key (’static key')
or by providing a key identifier for the static key (’static key
id). Both of these paraneters are defined in Table 19.

0 Key Derivation Algorithm The result of an ECDH key agreement
process does not provide a uniformy random secret. As such, it
needs to be run through a KDF in order to produce a usable key.
Processing the secret through a KDF also allows for the
i ntroduction of context material: how the key is going to be used
and one-tinme material for static-static key agreenent. All of the
algorithms defined in this docunent use one of the HKDF al gorithmns
defined in Section 11.1 with the context structure defined in
Section 11. 2.

o Key Wap Algorithm No key wap algorithmis used. This is
represented in Table 18 as 'none’'. The key size for the context
structure is the content |ayer encryption algorithm size.

The set of direct ECDH al gorithnms defined in this document are found
in Table 18.

Schaad St andards Track [ Page 67]



RFC 8152

ECDH- ES +
HKDF- 256

ECDH- ES +
HKDF- 512

ECDH- SS +
HKDF- 256

ECDH- SS +
HKDF- 512

ephener al
key

static
key

static
key id

Schaad

CBOR nj ect Signing and Encryption (COSE) July 2017
------- T T L T LT
Val ue | KDF | Ephemeral - | Key | Description |
| | Static | Wap | |
------- T
-25 | HKDF - | yes | none | ECDH ES w/ |
| SHA-256 | | | HKDF - |
| | | | generate key |
| | | | directly |
-26 | HKDF - | yes | none | ECDH ES w |
| SHA-512 | | | HKDF - |
| | | | generate key |
| | | | directly |
-27 | HKDF - | no | none | ECDH SS w |
| SHA-256 | | | HKDF - |
| | | | generate key |
| | | | directly |
-28 | HKDF - | no | none | ECDH SS w/ |
| SHA-512 | | | HKDF - |
| | | | generate key |
| | | | directly |
------- T L e
Tabl e 18: ECDH Al gorithm Val ues
------- e T e
Label | Type | Algorithm | Description |
------- e e
-1 | COSE_Key | ECDH ES+HKDF- 256, | Ephemeral |
| | ECDH ES+HKDF- 512, | public key |
| | ECDH ES+A128KW | for the |
| | ECDH ES+A192KW | sender |
| | ECDH ES+A256KW | |
-2 | COSE_Key | ECDH SS+HKDF- 256, | Static |
| | ECDH SS+HKDF-512, | public key |
| | ECDH SS+A128KW | for the |
| | ECDH SS+A192KW | sender |
| | ECDH SS+A256KW | |
-3 | bstr | ECDH SS+HKDF- 256, | Static |
| | ECDH SS+HKDF- 512, | public key |
| | ECDH SS+A128KW | identifier |
| | ECDH SS+A192KW | for the |
| | ECDH SS+A256KW | sender |
------- e T e

Tabl e 19: ECDH Al gorithm Paraneters
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Thi s docunent defines these algorithnms to be used with the curves

P- 256, P-384, P-521, X25519, and X448. |Inplenmentati ons MJST verify
that the key type and curve are correct. Different curves are
restricted to different key types. Inplenentations MJST verify that
the curve and algorithm are appropriate for the entities involved.

When using a COSE key for this algorithm the follow ng checks are
made:

o The 'kty field MJST be present, and it MJST be ' EC2’ or ' CKP

o If the "alg’ field is present, it MJST match the key agreenent
al gori thm bei ng used.

o If the "key_ ops’ field is present, it MJIST include 'derive key' or
"derive bits’ for the private key.

o If the "key ops’ field is present, it MJUST be enpty for the public
key.

4.2. Security Considerations

There is a nethod of checking that points provided from externa
entities are valid. For the "EC2' key format, this can be done by
checking that the x and y values forma point on the curve. For the
"OKP' format, there is no sinple way to do point validation

Consi deration was given to requiring that the public keys of both
entities be provided as part of the key derivation process (as
recommended in Section 6.1 of [RFC7748]). This was not done as COSE
is used in a store and forward fornat rather than in online key

exchange. |In order for this to be a problem either the receiver
public key has to be chosen maliciously or the sender has to be
mal i cious. In either case, all security evaporates anyway.

A proof of possession of the private key associated with the public
key is recommended when a key is noved fromuntrusted to trusted
(either by the end user or by the entity that is responsible for
maki ng trust statenents on keys).

5. Key Agreement with Key Wap

Key Agreement with Key Wap uses a randomy generated CEK. The CEK
is then encrypted using a key wap algorithmand a key derived from
the shared secret conputed by the key agreenment algorithm The
function for this would be:

encrypt edKey = KeyW ap( KDF( DH Shar ed, context), CEK)

Schaad St andards Track [ Page 69]



RFC 8152 CBOR nj ect Signing and Encryption (COSE) July 2017

The COSE Encrypt structure for the recipient is organized as foll ows:
o0 The 'protected field is fed into the KDF context structure.

o0 The plaintext to be encrypted is the key fromthe next |ayer down
(usually the content |ayer).

o The "alg paraneter MJST be present in the |ayer.

o0 A paraneter identifying the recipient’s key SHOULD be present. A
paraneter identifying the sender’s key SHOULD be present.

12.5.1. ECDH
These al gorithns are defined in Table 20.

ECDH wi th Key Agreement is paraneterized by the same paraneters as
for ECDH, see Section 12.4.1, with the follow ng nodifications:

o Key Wap Algorithm Any of the key wap algorithns defined in
Section 12.2.1 are supported. The size of the key used for the
key wap algorithmis fed into the KDF. The set of identifiers
are found in Table 20.
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| | | | Static | Wap | |

Al28KW | ECDH ES w/
Concat KDF
and AES Key
Wap w
128-bit key

ECDH- ES +
A192KW

HKDF -
SHA- 256

Al92KW | ECDH ES w/
Concat KDF
and AES Key
Wap w
192-bit key

yes

ECDH- ES
A256 KW

+

HKDF -
SHA- 256

A256KW | ECDH ES w/
Concat KDF
and AES Key
Wap w
256-bit key

yes

ECDH- SS +
Al128KW

HKDF -
SHA- 256

no
Concat KDF
and AES Key
Wap w

128-bit key

ECDH- SS +
A192KW

HKDF -
SHA- 256

Al92KW | ECDH SS w/
Concat KDF
and AES Key
Wap w
192-bit key

no

ECDH- SS
A256 KW

+

HKDF -
SHA- 256

ECDH SS w/
Concat KDF
and AES Key
Wap w
256-bit key

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

I

Al28KW | ECDH SS w/

|

|

|

|

|

|

|

|

|

|

|

no |
|
|
|
|

Tabl e 20: ECDH Al gorithm Val ues with Key Wap
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When using a COSE key for this algorithm the follow ng checks are
made:

o The 'kty field MJST be present, and it MJST be ' EC2’ or ' CKP

o If the "alg’ field is present, it MJST match the key agreenent
al gori thm bei ng used.

o If the "key_ ops’ field is present, it MJIST include 'derive key' or
"derive bits’ for the private key.

o If the "key ops’ field is present, it MJUST be enpty for the public
key.

13. Key bject Paraneters

The COSE _Key object defines a way to hold a single key object. It is
still required that the nenbers of individual key types be defined.
This section of the docunent is where we define an initial set of
menbers for specific key types.

For each of the key types, we define both public and private menbers.
The public nenbers are what is transmitted to others for their usage.
Private nmenbers allow for the archival of keys by individuals.
However, there are sonme circunstances in which private keys may be
distributed to entities in a protocol. Exanples include: entities
that have poor random nunber generation, centralized key creation for
mul ti-cast type operations, and protocols in which a shared secret is
used as a bearer token for authorization purposes.

Key types are identified by the "kty' menber of the COSE Key object.
In this docunent, we define four values for the nenber

S B o +
| Name | Value | Description |
R —— E oo o o e e e e e e e e e e e e e oo oo - +
| OKP | 1 | Cctet Key Pair |
| EC2 | 2 | Elliptic Curve Keys w x- and y-coordi nate

| | | pair |
| Symmetric | 4 | Symmetric Keys |
| Reserved | O | This value is reserved |
R —— E oo o o e e e e e e e e e e e e e oo oo - +

Tabl e 21: Key Type Val ues
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1. Eliptic Curve Keys

Two different key structures are defined for elliptic curve keys.

One version uses both an x-coordi nate and a y-coordinate, potentially
with point conpression ("EC2’). This is the traditional EC point
representation that is used in [ RFC5480]. The other version uses
only the x-coordinate as the y-coordinate is either to be reconputed
or not needed for the key agreenment operation (' OKP ).

Applications MUST check that the curve and the key type are
consi stent and reject a key if they are not.

S e S S S R e +
| Name | Value | Key Type | Description |
T Fommma - R Y +
| P-256 | 1 | EC2 | NI ST P-256 al so known as secp256r1l

| P-384 | 2 | EC2 | NI ST P-384 al so known as secp384r1l

| P-521 | 3 | EC2 | NIST P-521 al so known as secp521r1l

| X25519 | 4 | OKP | X25519 for use w ECDH only |
| X448 | 5 | OKP | X448 for use w ECDH only |
| Ed25519 | 6 | OKP | Ed25519 for use w EdDSA only |
| Ed448 | 7 | OKP | Ed448 for use w EdDSA only |
SR Fomm - TSR o e m e e e e e e e e e e e e e e e +

Table 22: Elliptic Curves
1.1. Doubl e Coordi nate Curves

The traditional way of sending ECs has been to send either both the
x-coordi nate and y-coordi nate or the x-coordinate and a sign bit for
the y-coordinate. The latter encodi ng has not been recomrended in
the I ETF due to potential |IPR issues. However, for operations in
constrained environments, the ability to shrink a nmessage by not
sendi ng the y-coordinate is potentially useful.

For EC keys with both coordi nates, the 'kty' nenber is set to 2
(EC2). The key paraneters defined in this section are sumrmarized in
Tabl e 23. The menbers that are defined for this key type are:

crv: This contains an identifier of the curve to be used with the
key. The curves defined in this docunent for this key type can
be found in Table 22. Qher curves nmay be registered in the
future, and private curves can be used as well.

X: This contains the x-coordinate for the EC point. The integer is
converted to an octet string as defined in [ SECl]. Leading zero
octets MJST be preserved.
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13.

y: This contains either the sign bit or the value of the
y-coordi nate for the EC point. When encoding the value y, the
integer is converted to an octet string (as defined in [ SEC1])
and encoded as a CBOR bstr. Leading zero octets MJST be
preserved. The conpressed point encoding is al so supported.
Conpute the sign bit as laid out in the Elliptic-Curve-Point-to-
Cctet-String Conversion function of [SEC1]. |If the sign bit is
zero, then encode y as a CBOR fal se val ue; otherw se, encode y
as a CBOR true value. The encoding of the infinity point is not
support ed.

d: This contains the private key.

For public keys, it is REQURED that 'crv', 'x', and 'y' be present
in the structure. For private keys, it is REQURED that ’'crv’ and

"d’” be present in the structure. For private keys, it is RECOMVENDED
that 'x’ and 'y’ also be present, but they can be reconputed fromthe
required elements and omtting them saves on space.

Fommm o - Fomm - - Fommm o - Fomm e o m e e e e e e e e e e eme— oo +
| Key | Name | Label | CBOR | Description |
| Type | | | Type | |
Fomm - S R, Fomm - Fomm e o e m e e e e e e e e e e e e +
| 2 | crv | -1 | int / | ECidentifier - Taken fromthe

| | | | tstr | "COSE Elliptic Curves" registry

| 2 | x | -2 | bstr | x-coordinate |
| 2 | vy | -3 | bstr / | y-coordinate |
| | | | bool | |
| 2 | d | -4 | bstr | Private key |
R, S R, R, Fomm oo o e m e e e e e e e e e e e e ao oo +

Tabl e 23: EC Key Paraneters
2. Cctet Key Pair

A new key type is defined for Octet Key Pairs (OKP). Do not assune
that keys using this type are elliptic curves. This key type could
be used for other curve types (for exanple, nathenatics based on
hyper-elliptic surfaces).

The key paraneters defined in this section are sumrmarized in
Table 24. The nenbers that are defined for this key type are:

crv: This contains an identifier of the curve to be used with the
key. The curves defined in this docunent for this key type can
be found in Table 22. (Qher curves nmay be registered in the
future and private curves can be used as well.
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X: This contains the x-coordinate for the EC point. The octet
string represents a little-endian encodi ng of x.

d: This contains the private key.

For public keys, it is REQURED that "crv’' and 'x' be present in the
structure. For private keys, it is REQURED that 'crv’ and 'd be
present in the structure. For private keys, it is RECOWENDED t hat
"x' also be present, but it can be reconputed fromthe required
elements and omtting it saves on space.

S R, R, R, Fomm oo o e m e e e e e e e e e e e e ao oo +
| Name | Key | Label | Type | Description |
| | Type | | | |
S S R S S oo oeaooo-- +
| crv | 1 | -1 | int / | ECidentifier - Taken fromthe

| | | | tstr | "COSE Key Conmon Paraneters”

| | | | | registry |
| x | 1 | -2 | bstr | x-coordinate |
| d | 1 | -4 | bstr | Private key |
S S S S o oo +

Tabl e 24: Cctet Key Pair Paraneters
13.3. Symmetric Keys

Qccasionally it is required that a symmetric key be transported
between entities. This key structure allows for that to happen.

For symmetric keys, the "kty' menber is set to 4 (' Symmetric’). The
nmenber that is defined for this key type is:

k: This contains the value of the key.

This key structure does not have a formthat contains only public
nmenbers. As it is expected that this key structure is going to be
transmtted, care must be taken that it is never transnitted
accidentally or insecurely. For symetric keys, it is REQU RED t hat
"k’ be present in the structure.

S R, TSR Fomm - S R, S +
| Name | Key Type | Label | Type | Description
Fomm o R Fomm o - Fomm o U +
| k | 4 | -1 | bstr | Key Val ue

S R S R S R R +

Tabl e 25: Symretric Key Parameters
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14. CBOR Encoder Restrictions

There has been an attenpt to linmit the nunber of places where the
docunent needs to inmpose restrictions on how the CBOR Encoder needs
to work. We have managed to narrow it down to the foll ow ng
restrictions:

o0 The restriction applies to the encoding of the Sig structure, the
Enc_structure, and the MAC structure

o The rules for "Canonical CBOR' (Section 3.9 of RFC 7049) MJST be
used in these locations. The main rule that needs to be enforced

is that all lengths in these structures MJST be encoded such that
they are using definite I engths, and the mninumlength encoding
is used.

o Applications MIST NOT generate messages with the sane | abel used
twice as a key in a single map. Applications MJST NOT parse and
process nessages with the sane | abel used twice as a key in a
single map. Applications can enforce the parse and process
requi renent by using parsers that will fail the parse step or by
using parsers that will pass all keys to the application, and the
application can performthe check for duplicate keys.

15. Application Profiling Considerations

Thi s docunent is designed to provide a set of security services, but
not inplenmentation requirenents for specific usage. The
interoperability requirements are provided for how each of the

i ndi vidual services are used and how the algorithns are to be used
for interoperability. The requirenents about which algorithns and
whi ch services are needed are deferred to each application

An exanple of a profile can be found in [ OSCOAP] where two profiles
are being developed. One is for carrying content by itself, and the
other is for carrying content in conbination with CoAP headers.

It is intended that a profile of this docunent be created that
defines the interoperability requirenents for that specific
application. This section provides a set of guidelines and topics
that need to be considered when profiling this document.

o Applications need to determ ne the set of nessages defined in this
document that they will be using. The set of nessages corresponds
fairly directly to the set of security services that are needed
and to the security | evels needed.
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Applications may defi ne new header paraneters for a specific
purpose. Applications will often tines select specific header
paranmeters to use or not to use. For exanple, an application
would normal ly state a preference for using either the IV or the
Partial 1V paraneter. |If the Partial IV parameter is specified,
then the application would al so need to define how the fixed
portion of the IV would be determ ned.

When applications use externally defined authenticated data, they
need to define how that data is encoded. This docunment assunes
that the data will be provided as a byte stream Mre informtion
can be found in Section 4.3.

Applications need to determne the set of security algorithns that
are to be used. When selecting the algorithnms to be used as the
mandat ory-t o-i npl enent set, consideration should be given to
choosing different types of algorithnms when two are chosen for a
specific purpose. An exanple of this would be choosi ng HVAC
SHA512 and AES-CMAC as different MAC al gorithns; the construction
is vastly different between these two algorithnms. This neans that
a weakeni ng of one algorithmwould be unlikely to lead to a
weakeni ng of the other algorithms. O course, these algorithms do
not provide the sane | evel of security and thus may not be
conparable for the desired security functionality.

Applications may need to provide sonme type of negotiation or

di scovery nethod if nultiple algorithnms or nessage structures are
permtted. The method can be as sinple as requiring
preconfiguration of the set of algorithns to providing a discovery
nmethod built into the protocol. S/M M provided a nunber of

di fferent ways to approach the problemthat applications could
fol |l ow

* Advertising in the nessage (S/M ME capabilities) [RFC5751].

* Advertising in the certificate (capabilities extension)
[ RFC4262] .

*  Mnimmrequirenents for the S/M Mg, which have been updated

over tinme [RFC2633] [RFC5751] (note that [RFC2633] has been
obsol eted by [RFC5751]).
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16.

16.

16

| ANA Consi der ati ons
1. CBOR Tag Assi gnment

| ANA has assigned the following tags fromthe "CBOR Tags" registry.
The tags for COSE Signl, COSE EncryptO, and COSE MacO were assigned
inthe 1 to 23 value range (one byte | ong when encoded). The tags
for COSE_Sign, COSE Encrypt, and COSE _Mac were assigned in the 24 to
255 val ue range (two bytes | ong when encoded).

The tags assigned are in Table 1

.2. COSE Header Paraneters Registry

| ANA has created a new registry titled "COSE Header Paraneters". The
regi stry has been created to use the "Expert Revi ew Required"

regi stration procedure [ RFC8126]. (uidelines for the experts are
provided in Section 16.11. It should be noted that, in addition to
the expert review, sone portions of the registry require a
specification, potentially a Standards Track RFC, be supplied as
wel | .

The colums of the registry are:
Nane: The nane is present to make it easier to refer to and di scuss

the registration entry. The value is not used in the protocol
Nanes are to be unique in the table.

Label: This is the value used for the |abel. The |abel can be
either an integer or a string. Registration in the table is based
on the value of the | abel requested. |Integer values between 1 and

255 and strings of length 1 are designated as "Standards Action".
I nt eger val ues from 256 to 65535 and strings of length 2 are

desi gnated as "Specification Required". Integer values of greater
than 65535 and strings of length greater than 2 are designated as
"Expert Review'. Integer values in the range -1 to -65536 are

"del egated to the COSE Header Al gorithm Paranmeters registry".
I nteger val ues |less than -65536 are narked as private use.

Val ue Type: This contains the CBOR type for the value portion of the
| abel .

Val ue Registry: This contains a pointer to the registry used to
contain values where the set is linmted.

Description: This contains a brief description of the header field.
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Ref erence: This contains a pointer to the specification defining the
header field (where public).

The initial contents of the registry can be found in Tables 2 and 27.
Al of the entries in the "References" colum of this registry point
to this document.

Additionally, the label of 0 is to be marked as ' Reserved’
16.3. COSE Header Al gorithm Paranmeters Registry

| ANA has created a new registry titled "COSE Header Al gorithm
Paranmeters". The registry uses the "Expert Revi ew Required"

regi stration procedure. Expert review guidelines are provided in
Section 16.11.

The colums of the registry are:

Nane: The nane is present to make it easier to refer to and di scuss
the registration entry. The value is not used in the protocol

Al gorithm The algorithn(s) that this registry entry is used for.
This value is taken fromthe "COSE Al gorithns" registry. Miltiple
algorithnms can be specified in this entry. For the table, the
al gorithni | abel pair MJST be uni que.

Label: This is the value used for the label. The label is an
integer in the range of -1 to -65536.

Type: This contains the CBOR type for the value portion of the
| abel .

Description: This contains a brief description of the header field.

Ref erence: This contains a pointer to the specification defining the
header field (where public).

The initial contents of the registry can be found in Tables 13, 14,
and 19. Al of the entries in the "References" colum of this
registry point to this document.

16.4. COSE Al gorithns Registry
| ANA has created a new registry titled "COSE Al gorithns". The

regi stry has been created to use the "Expert Revi ew Required"
regi stration procedure. Cuidelines for the experts are provided in
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Section 16.11. It should be noted that, in addition to the expert
review, sone portions of the registry require a specification
potentially a Standards Track RFC, be supplied as well.

The colums of the registry are:

Nane: A value that can be used to identify an algorithmin docunents
for easier conprehension. The nane SHOULD be uni que. However,
the 'Value' field is what is used to identify the algorithm not
the "name’ field.

Va

ue: The value to be used to identify this algorithm Al gorithm
val ues MJST be uni que. The value can be a positive integer, a
negative integer, or a string. Integer values between -256 and
255 and strings of length 1 are designated as "Standards Action".
I nt eger val ues from -65536 to 65535 and strings of length 2 are

designated as "Specification Required". Integer values greater
than 65535 and strings of length greater than 2 are designated as
"Expert Review'. Integer values |ess than -65536 are narked as

private use
Description: A short description of the algorithm

Ref erence: A docunent where the algorithmis defined (if publicly
avai |l abl e) .

Recomrended: Does the | ETF have a consensus reconmendation to use
the algorithn? The |legal values are 'Yes', 'No’, and
" Depr ecat ed’

The initial contents of the registry can be found in Tables 5, 6, 7,
8, 9, 10, 11, 15, 16, 17, 18, and 20. Al of the entries in the
"Ref erences" colum of this registry point to this docunent. Al of
the entries in the "Recormended" colum are set to "Yes".

Additionally, the label of 0 is to be nmarked as ' Reserved’

NOTE: The assignnent of algorithmidentifiers in this document was
done so that positive nunmbers were used for the first |ayer objects
(COSE_Si gn, COSE _Signl, COSE_Encrypt, COSE Encrypt0, COSE_Mac, and
COSE_Mac0O). Negative nunmbers were used for second | ayer objects
(CCOSE_Si gnature and COSE recipient). Expert reviewers should
consider this practice, but are not expected to be restricted by this
precedent .
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5. COSE Key Conmon Paraneters Registry

| ANA has created a new registry titled "COSE Key Common Paraneters"”
The regi stry has been created to use the "Expert Revi ew Required"
regi stration procedure. Cuidelines for the experts are provided in
Section 16.11. It should be noted that, in addition to the expert
review, sone portions of the registry require a specification
potentially a Standards Track RFC, be supplied as well.

The colums of the registry are:

Nanme: This is a descriptive nane that enabl es easier reference to
the item It is not used in the encoding.

Label : The value to be used to identify this algorithm Key map
| abel s MUST be uni que. The |abel can be a positive integer, a
negative integer, or a string. Integer values between 0 and 255

and strings of length 1 are designated as "Standards Action".

I nteger values from 256 to 65535 and strings of length 2 are

desi gnated as "Specification Required". Integer values of greater
than 65535 and strings of length greater than 2 are designated as
"Expert Review'. Integer values in the range -65536 to -1 are
"used for key parameters specific to a single al gorithm del egat ed
to the COSE Key Type Paraneters registry". Integer values |ess
than -65536 are narked as private use.

CBOR Type: This field contains the CBOR type for the field.

Val ue Registry: This field denotes the registry that val ues cone
from if one exists.

Description: This field contains a brief description for the field.

Ref erence: This contains a pointer to the public specification for
the field if one exists.

This registry has been initially populated by the values in Table 3.
Al of the entries in the "References" colum of this registry point
to this docunent.

6. COSE Key Type Paraneters Registry

| ANA has created a new registry titled "COSE Key Type Paraneters"
The registry has been created to use the "Expert Revi ew Required"
regi stration procedure. Expert review guidelines are provided in
Section 16. 11.
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The columms of the table are:

Key Type: This field contains a descriptive string of a key type.
This should be a value that is in the "COSE Key Comon Paraneters"
registry and is placed in the "kty' field of a COSE Key structure.

Nane: This is a descriptive nane that enables easier reference to
the item It is not used in the encoding.

Label: The label is to be unique for every value of key type. The
range of values is from-65536 to -1. Labels are expected to be
reused for different keys.

CBOR Type: This field contains the CBOR type for the field.

Description: This field contains a brief description for the field.

Ref erence: This contains a pointer to the public specification for
the field if one exists.

This registry has been initially popul ated by the values in Tables
23, 24, and 25. Al of the entries in the "References" colum of
this registry point to this document.

16.7. COSE Key Types Registry

| ANA has created a new registry titled "COSE Key Types". The

regi stry has been created to use the "Expert Revi ew Required"

regi stration procedure. Expert review guidelines are provided in

Section 16.11.

The colums of this table are:

Nane: This is a descriptive nane that enables easier reference to
the item The name MJUST be unique. It is not used in the
encodi ng.

Value: This is the value used to identify the curve. These val ues
MUST be unique. The value can be a positive integer, a negative
i nteger, or a string.

Description: This field contains a brief description of the curve.

Ref erences: This contains a pointer to the public specification for
the curve if one exists.
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This registry has been initially populated by the values in Table 21
The specification columm for all of these entries will be this
document .

8. COSE Elliptic Curves Registry

| ANA has created a new registry titled "COSE Elliptic Curves". The
regi stry has been created to use the "Expert Revi ew Required"

regi stration procedure. Cuidelines for the experts are provided in
Section 16.11. It should be noted that, in addition to the expert
review, sone portions of the registry require a specification
potentially a Standards Track RFC, be supplied as well.

The columms of the table are:

Nane: This is a descriptive nane that enables easier reference to
the item It is not used in the encoding.

Value: This is the value used to identify the curve. These val ues
MUST be unique. The integer values from-256 to 255 are

desi gnated as "Standards Action". The integer values from256 to
65535 and -65536 to -257 are designated as "Specification
Required". Integer values over 65535 are designated as "Expert
Review'. Integer values |less than -65536 are marked as private
use.

Key Type: This designates the key type(s) that can be used with this
curve.

Description: This field contains a brief description of the curve.

Ref erence: This contains a pointer to the public specification for
the curve if one exists.

Recomrended: Does the | ETF have a consensus recomendati on to use
the algorithn? The legal values are 'Yes', 'No’, and
' Depr ecat ed’

This registry has been initially popul ated by the values in Table 22.
Al of the entries in the "References" colum of this registry point
to this docunment. All of the entries in the "Reconrended" colum are
set to "Yes".
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16.9. Media Type Registrations
16.9.1. COSE Security Message
This section registers the "application/cose’ media type in the
"Medi a Types" registry. These nmedia types are used to indicate that
the content is a COSE nessage.
Type name: application
Subt ype nane: cose
Required paraneters: NA
Optional paraneters: cose-type

Encodi ng consi derations: binary

Security considerations: See the Security Considerations section
of RFC 8152.

Interoperability considerations: NA
Publ i shed specification: RFC 8152

Applications that use this nmedia type: 0T applications sending
security content over HITP(S) transports.

Fragment identifier considerations: NA

Addi tional information:

* Deprecated alias nanes for this type: NA
* Magic nunber(s): NA

* File extension(s): chor

* Macintosh file type code(s): NA

Person & email address to contact for further information:
iesg@etf.org

I nt ended usage: COVMON
Restrictions on usage: N A

Aut hor: Jim Schaad, ietf@ugustcellars.com
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Change Controller: |ESG
Provi sional registration? No
16.9.2. COSE Key Media Type

This section registers the "application/cose-key' and 'application/
cose-key-set’ nedia types in the "Media Types" registry. These nedia
types are used to indicate, respectively, that content is a COSE_Key
or COSE_KeySet object.
The tenplate for registering 'application/cose-key' is:

Type name: application

Subt ype nane: cose-key

Required paraneters: NA

Optional parameters: NA

Encodi ng consi derations: binary

Security considerations: See the Security Considerations section
of RFC 8152.

Interoperability considerations: NA
Publ i shed specification: RFC 8152

Applications that use this nmedia type: Distribution of COSE based
keys for |oT applications.

Fragment identifier considerations: NA

Addi tional information:

* Deprecated alias nanes for this type: NA
* Magic nunber(s): NA

* File extension(s): chor

* Macintosh file type code(s): NA

Person & email address to contact for further information:
iesg@etf.org
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I nt ended usage: COVMON
Restrictions on usage: N A
Aut hor: Jim Schaad, ietf@ugustcellars.com
Change Controller: |ESG
Provi sional registration? No
The tenplate for registering *application/cose-key-set’ is:
Type nane: application
Subt ype name: cose-key- set
Requi red paraneters: N A
Optional paraneters: NA
Encodi ng consi derations: binary

Security considerations: See the Security Considerations section
of RFC 8152.

Interoperability considerations: NA
Publ i shed specification: RFC 8152

Applications that use this nmedia type: Distribution of COSE based
keys for |oT applications.

Fragment identifier considerations: NA

Addi tional information:

* Deprecated alias nanes for this type: NA
* Magic nunber(s): NA

* File extension(s): cbor

* Macintosh file type code(s): NA

Person & email address to contact for further infornmation:
iesg@etf.org

I nt ended usage: COVMON
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16.

Restrictions on usage: N A
Aut hor: Jim Schaad, ietf@ugustcellars.com
Change Controller: |ESG
Provi sional registration? No
10. CoAP Content-Formats Registry

| ANA has added the following entries to the "CoAP Cont ent - For mat s"
registry.

o m e e e e e e e e e e e eaao o S +o-m - - Fom e +
| Media Type | Encoding | ID | Reference
o m e e e e e e e e e e e e e e e e o Fomm oo - Fo-m - - S +
| application/cose; cose-type="cose- | | 98 | [RFC8152]
| sign” | | | |
| application/cose; cose-type="cose- | | 18 | [RFC8152]
| signi" | | | |
| application/cose; cose-type="cose- | | 96 | [RFC8152]
| encrypt” | | | |
| application/cose; cose-type="cose- | | 16 | [RFC8152]
| encryptO” | | | |
| application/cose; cose-type="cose- | | 97 | [RFC8152]
| mac” | | | |
| application/cose; cose-type="cose- | | 17 | [RFC8152]
| maco" | | | |
| application/cose-key | | 101 | [ RFC8152]
| | | |

appl i cati on/ cose-key- set 102 | [ RFC8152]

Tabl e 26: CoAP Content-Formats for COSE
11. Expert Review Instructions

Al of the IANA registries established in this docunent are defined
as expert review. This section gives sonme general guidelines for
what the experts should be | ooking for, but they are being designated
as experts for a reason, so they should be given substantia

| atitude.

Expert reviewers should take into consideration the follow ng points:

o Point squatting should be discouraged. Reviewers are encouraged
to get sufficient information for registration requests to ensure
that the usage is not going to duplicate one that is already
regi stered, and that the point is likely to be used in
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depl oynments. The zones tagged as private use are intended for
testing purposes and cl osed environnments; code points in other
ranges shoul d not be assigned for testing.

o Specifications are required for the standards track range of point
assignment. Specifications should exist for specification
required ranges, but early assignnent before a specification is
avail able is considered to be pernissible. Specifications are
needed for the first-cone, first-serve range if they are expected
to be used outside of closed environments in an interoperable way.
VWhen specifications are not provided, the description provided
needs to have sufficient information to identify what the point is
bei ng used for.

o Experts should take into account the expected usage of fields when
approvi ng point assignnent. The fact that there is a range for
standards track documents does not nean that a standards track
docunent cannot have points assigned outside of that range. The
| ength of the encoded val ue shoul d be wei ghed agai nst how many

code points of that length are left, the size of device it will be
used on, and the nunmber of code points left that encode to that
si ze.

o Wien algorithns are registered, vanity registrations should be
di scouraged. One way to do this is to require registrations to
provi de additional docunentation on security analysis of the
algorithm Another thing that should be considered is requesting
an opinion on the algorithmfromthe Crypto Forum Research G oup
(CFRG). Algorithns that do not neet the security requirenents of
the community and the nmessages structures shoul d not be
regi stered.

17. Security Considerations

There are a nunber of security considerations that need to be taken
into account by inmplementers of this specification. The security
considerations that are specific to an individual algorithmare

pl aced next to the description of the algorithm Wile sone

consi derati ons have been hi ghlighted here, additional considerations
may be found in the documents listed in the references.

| mpl enent ati ons need to protect the private key material for any
i ndividuals. There are sone cases in this docunent that need to be
hi ghl'i ghted on this issue.

o Using the sane key for two different algorithns can | eak

i nformati on about the key. It is therefore recommended that keys
be restricted to a single algorithm
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o Use of '"direct’ as a recipient algorithmconbined with a second
reci pient al gorithm exposes the direct key to the second
reci pi ent.

o Several of the algorithnms in this docunent have limts on the
nunber of times that a key can be used wi thout |eaking information
about the key.

The use of ECDH and direct plus KDF (with no key wap) will not
directly lead to the private key being | eaked; the one way function
of the KDF will prevent that. There is, however, a different issue
that needs to be addressed. Having two recipients requires that the
CEK be shared between two recipients. The second recipient therefore
has a CEK that was derived frommterial that can be used for the
weak proof of origin. The second recipient could create a nmessage
using the same CEK and send it to the first recipient; the first

reci pient would, for either static-static ECDH or direct plus KDF
nmake an assunption that the CEK could be used for proof of origin
even though it is fromthe wong entity. |f the key wap step is
added, then no proof of originis inplied and this is not an issue.

Al t hough it has been nentioned before, the use of a single key for

mul tiple algorithnms has been denonstrated in sone cases to |eak

i nformati on about a key, provide the opportunity for attackers to
forge integrity tags, or gain informati on about encrypted content.
Binding a key to a single algorithm prevents these problens. Key
creators and key consuners are strongly encouraged not only to create
new keys for each different algorithm but to include that selection
of algorithmin any distribution of key material and strictly enforce
the matching of algorithns in the key structure to algorithns in the
nessage structure. In addition to checking that algorithns are
correct, the key formneeds to be checked as well. Do not use an
"EC2" key where an ' OKP' key is expected.

Bef ore using a key for transm ssion, or before acting on informtion
received, a trust decision on a key needs to be nade. 1Is the data or
action sonething that the entity associated with the key has a right
to see or a right to request? A nunber of factors are associ ated
with this trust decision. Sone of the ones that are highlighted here
are:

o Wiat are the perm ssions associated with the key owner?
o |Is the cryptographic algorithmacceptable in the current context?

0 Have the restrictions associated with the key, such as algorithm
or freshness, been checked and are they correct?
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18.

18.

o |Is the request sonething that is reasonable, given the current
state of the application?

0 Have any security considerations that are part of the nessage been
enforced (as specified by the application or "crit’ paraneter)?

There are a | arge nunber of algorithns presented in this docunent
that use nonce values. For all of the nonces defined in this
docunent, there is some type of restriction on the nonce being a

uni que value either for a key or for sone other conditions. In al

of these cases, there is no known requirenent on the nonce being both
uni que and unpredi ctabl e; under these circunstances, it’'s reasonable
to use a counter for creation of the nonce. In cases where one wants
the pattern of the nonce to be unpredictable as well as unique, one
can use a key created for that purpose and encrypt the counter to
produce the nonce val ue.

One area that has been starting to get exposure is doing traffic

anal ysis of encrypted nessages based on the I ength of the nessage.
Thi s specification does not provide for a uniform nethod of providing
paddi ng as part of the nessage structure. An observer can

di stingui sh between two different strings (for exanmple, 'YES and
"NO ) based on the length for all of the content encryption
algorithns that are defined in this document. This nmeans that it is
up to the applications to document how content padding is to be done
in order to prevent or discourage such analysis. (For exanple, the
strings could be defined as 'YES and 'NO '.)
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App

A 1.

Sch

endix A Quidelines for External Data Authentication of Al gorithns

A portion of the working group has expressed a strong desire to rel ax
the rule that the algorithmidentifier be required to appear in each
| evel of a COSE object. There are two basic reasons that have been
advanced to support this position. First, the resulting nessage wl|
be smaller if the algorithmidentifier is omtted fromthe nost
comon nessages in a CoAP environment. Second, there is a potentia
bug that will arise if full checking is not done correctly between
the different places that an algorithmidentifier could be placed
(the message itself, an application statenent, the key structure that
the sender possesses, and the key structure the recipient possesses).

Thi s appendi x [ ays out how such a change can be nmade and the details
that an application needs to specify in order to use this option

Two different sets of details are specified: those needed to omit an
algorithmidentifier and those needed to use a variant on the counter
signature attribute that contains no attributes about itself.

Al gorithm ldentification

In this section, three sets of recomrendations are laid out. The
first set of recommendations apply to having an inplicit algorithm
identified for a single |ayer of a COSE object. The second set of
recomendati ons apply to having multiple inplicit algorithns
identified for nultiple |ayers of a COSE object. The third set of
recomendati ons apply to having inplicit algorithns for multiple COSE
obj ect constructs.

The key words from RFC 2119 are deliberately not used here. This
specification can provide reconmendati ons, but it cannot enforce
t hem

This set of recomendati ons applies to the case where an application
is distributing a fixed algorithmalong with the key information for
use in a single COSE object. This normally applies to the snall est
of the COSE objects, specifically COSE Signl, COSE MacO, and
COSE_Encrypt O, but could apply to the other structures as well.

The following itens should be taken into account:

o Applications need to list the set of COSE structures that inplicit
algorithns are to be used in. Applications need to require that
the receipt of an explicit algorithmidentifier in one of these
structures will lead to the nmessage being rejected. This
requirenment is stated so that there will never be a case where
there is any anbiguity about the question of which algorithm
shoul d be used, the inmplicit or the explicit one. This applies
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even if the transported algorithmidentifier is a protected
attribute. This applies even if the transported algorithmis the
sane as the inplicit algorithm

o Applications need to define the set of information that is to be
considered to be part of a context when omtting al gorithm
identifiers. At a mininum this would be the key identifier (if
needed), the key, the algorithm and the COSE structure it is used
with. Applications should restrict the use of a single key to a
single algorithm As noted for some of the algorithnms in this
docunent, the use of the sanme key in different related al gorithns
can |l ead to | eakage of infornation about the key, |eakage about
the data or the ability to performforgeries.

o In many cases, applications that make the algorithmidentifier
implicit will also want to make the context identifier inmplicit
for the same reason. That is, omtting the context identifier
wi || decrease the nessage size (potentially significantly
depending on the length of the identifier). Applications that do
this will need to describe the circunstances where the context
identifier is to be omtted and how the context identifier is to
be inferred in these cases. (An exhaustive search over all of the
keys would normal ly not be considered to be acceptable.) An
exanpl e of how this can be done is to tie the context to a
transaction identifier. Both would be sent on the origina
nessage, but only the transaction identifier would need to be sent
after that point as the context is tied into the transaction
identifier. Another way would be to associate a context with a
networ k address. All nmessages com ng froma single network
address can be assunmed to be associated with a specific context.
(In this case, the address would nornally be distributed as part
of the context.)

o Applications cannot rely on key identifiers being unique unless
they take significant efforts to ensure that they are computed in
such a way as to create this guarantee. Even when an application
does this, the uniqueness mght be violated if the application is
run in different contexts (i.e., with a different context
provider) or if the system conbines the security contexts from
di fferent applications together into a single store.

o Applications should continue the practice of protecting the
algorithmidentifier. Since this is not done by placing it in the
protected attributes field, applications should define an
application-specific external data structure that includes this
value. This external data field can be used as such for content
encryption, MAC, and signature algorithms. It can be used in the
SuppPrivinfo field for those algorithnms that use a KDF to derive a
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key value. Applications may al so want to protect other
information that is part of the context structure as well. It
shoul d be noted that those fields, such as the key or a Base |V,
are protected by virtue of being used in the cryptographic
conput ati on and do not need to be included in the external data
field.

The second case is having multiple inplicit algorithmidentifiers
specified for a multiple | ayer COSE object. An exanple of how this
woul d work is the encryption context that an application specifies,
whi ch contains a content encryption algorithm a key wap algorithm
a key identifier, and a shared secret. The sender onmits sending the
algorithmidentifier for both the content |ayer and the recipient

| ayer leaving only the key identifier. The receiver then uses the
key identifier to get the inplicit algorithmidentifiers.

The followi ng additional items need to be taken into consideration

o Applications that want to support this will need to define a
structure that allows for, and clearly identifies, both the COSE
structure to be used with a given key and the structure and
algorithmto be used for the secondary |ayer. The key for the
secondary layer is computed as normal fromthe recipient |ayer.

The third case is having multiple inplicit algorithmidentifiers, but
targeted at potentially unrelated |ayers or different COSE objects.
There are a nunber of different scenarios where this m ght be
applicable. Sone of these scenarios are:

0o Two contexts are distributed as a pair. Each of the contexts is
for use with a COSE Encrypt nmessage. Each context will consist of
di stinct secret keys and |IVs and potentially even different
algorithms. One context is for sending messages fromparty Ato
party B, and the second context is for sending nessages from party
B to party A. This neans that there is no chance for a reflection
attack to occur as each party uses different secret keys to send
its messages; a nessage that is reflected back to it would fail to
decrypt.

o Two contexts are distributed as a pair. The first context is used
for encryption of the message, and the second context is used to
pl ace a counter signature on the nessage. The intention is that
the second context can be distributed to other entities
i ndependently of the first context. This allows these entities to
val idate that the message cane from an individual w thout being
able to decrypt the nessage and see the content.
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o Two contexts are distributed as a pair. The first context
contains a key for dealing with MACed nessages, and the second
context contains a key for dealing with encrypted nessages. This
allows for a unified distribution of keys to participants for
different types of nmessages that have different keys, but where
the keys may be used in a coordi nated nmanner.

For these cases, the followi ng additional itenms need to be
consi der ed:

o Applications need to ensure that the multiple contexts stay
associated. |If one of the contexts is invalidated for any reason
all of the contexts associated with it should al so be invalidated.

Counter Signature wthout Headers

There is a group of people who want to have a counter signature
paranmeter that is directly tied to the val ue being signed, and thus
the aut henticated and unaut henticated buckets can be renoved fromthe
nessage being sent. The focus on this is an even smaller size, as
all of the information on the process of creating the counter
signature is inplicit rather than being explicitly carried in the
message. This includes not only the algorithmidentifier as
presented above, but also itens such as the key identification, which
is always external to the signature structure. This neans that the
entities that are doing the validation of the counter signature are
required to infer which key is to be used from context rather than
being explicit. One way of doing this would be to presune that al
data coming froma specific port (or to a specific URL) is to be

val idated by a specific key. (Note that this does not require that
the key identifier be part of the value signed as it does not serve a
cryptographic purpose. |If the key validates the counter signature,
then it should be presunmed that the entity associated with that key
produced the signature.)

When conputing the signature for the bare counter signature header
the same Sig structure defined in Section 4.4 is used. The
sign_protected field is omtted, as there is no protected header
field in this counter signature header. The val ue of
"Count er Si gnature0" is placed in the context field of the

Si g_stucture.
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o e e ek Fomm o - Fomm o - Fomm o - o e e a o +
| Name | Label | Value | Value | Description |
| | | Type | | |
e B B B o e e e e e i e o +
| CounterSignatureO0 | 9 | bstr | | Counter signature |

| | | | | with inplied signer
| | | | | and headers |
Tabl e 27: Header Parameter for CounterSi gnature0

Appendi x B. Two Layers of Recipient Information
Al of the currently defined recipient algorithmclasses only use two
| ayers of the COSE_Encrypt structure. The first layer is the nessage
content, and the second |layer is the content key encryption
However, if one uses a recipient algorithmsuch as the RSA Key
Encapsul ati on Mechani sm (RSA-KEM (see Appendi x A of RSA- KEM
[ RFC5990]), then it nakes sense to have three |layers of the
COSE_Encrypt structure.
These | ayers woul d be:

o Layer 0: The content encryption layer. This layer contains the
payl oad of the nessage.

o Layer 1: The encryption of the CEK by a KEK

o Layer 2: The encryption of a long random secret using an RSA key
and a key derivation function to convert that secret into the KEK

This is an exanple of what a triple |ayer nmessage woul d | ook |ike.
The nessage has the follow ng | ayers:

o Layer 0: Has a content encrypted with AES-GCM using a 128-bit key.
o Layer 1. Uses the AES Key Wap algorithmwith a 128-bit key.

o Layer 2: Uses ECDH Epheneral -Static direct to generate the layer 1
key.
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In effect, this exanple is a deconposed version of using the
ECDH ES+A128KW al gorithm

Size of binary file is 183 bytes

96(
[
/ protected / h al0l10l' / {
\'alg\ 1:1 \ AES-GCM 128 \
P
/ unprotected / {
/[ iv [ 5:h 02d1f 7e6f 26c43d4868d87ce
}

/’ciphertext / h'64f 84d913ba60a76070a9a48f 26e97e863e2852948658f 0
811139868826e89218a75715b’
[/ recipients [/ |

[
/| protected / h'’,

/ unprotected / {
[ alg [/ 1:.-3 /] AL28KW/

} H

| ciphertext / h’dbd43c4e9d719¢c27c6275c67d628d493f 090593db82
18f11’,

/| recipients / |

/ protected / h' al013818" / {
\ ' alg\ 1:-25 \ ECDH ES + HKDF-256 \
P
/ unprotected / {
/ ephemeral / -1:{
[ kty [ 1:2,
[ crv /[ -1:1
/ x| -2:h"b2add44368ea6d641f 9ca9af 308b4079aeb519f 11
e9b8a55a600b21233e86€68’
[yl -3:false

} y
[/ kid / 4:"nmeriadoc. brandybuck@uckl and. exanpl e’

} H
[ ciphertext / h'’
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Appendi x C. Exanpl es

Thi s appendi x includes a set of exanples that show the different
features and nessage types that have been defined in this docunent.
To make the examples easier to read, they are presented using the
ext ended CBOR di agnostic notation (defined in [CDDL]) rather than as
a binary dump.

A G tHub project has been created at <https://github.conl cose-wy/
Exanmpl es> that contains not only the exanples presented in this
docunent, but a nore conplete set of testing exanples as well. Each
exanple is found in a JSON file that contains the inputs used to
create the exanple, sone of the internedi ate values that can be used
i n debugging the exanple and the output of the exanple presented in
both a hex and a CBOR diagnostic notation format. Some of the
exanples at the site are designed failure testing cases; these are
clearly marked as such in the JSON file. If errors in the exanples
in this docunent are found, the exanples on GtHub will be updated,
and a note to that effect will be placed in the JSON file.

As noted, the exanples are presented using the CBOR s diagnostic
notation. A Ruby-based tool exists that can convert between the

di agnostic notation and binary. This tool can be installed with the
comand | i ne:

geminstall cbor-diag

The di agnostic notation can be converted into binary files using the
foll owi ng command | i ne:

di ag2cbor.rb < inputfile > outputfile

The exampl es can be extracted fromthe XML version of this document
via an XPath expression as all of the artwork is tagged with the
attribute type=" CBORdi ag’. (Depending on the XPath eval uator one is
using, it may be necessary to deal with &yt; as an entity.)

[lartwork[ @ype="CDDL']/text()
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C.1. Exanples of Signed Messages

C. 1.1. Single Signhature
Thi s exanpl e uses the foll ow ng:
o Signature Algorithm ECDSA w SHA-256, Curve P-256
Size of binary file is 103 bytes

98(
[
protected / h'',
unprotected / {},
payl oad / 'This is the content.’,
I

si gnat ures
/| protected / h al0l26’ [/ {
\'alg\ 1:.-7 \ ECDSA 256 \
P
[/ unprotected / {
[ kid [/ 4:"11
}

/’signature / h’e2aeaf d40d69d19df e6e52077c5d7f f 4e408282chef b
5d06¢cbf 414af 2e19d982ac45ac98b8544¢c908b4507del1e90b717¢3d34816f e926a2b
98f 53af d2f a0f 30a’

]
]
]
)

C. 1.2 Miltiple Signers

~ Y~~~

Thi s exanpl e uses the foll ow ng:
o Signature Algorithm ECDSA w SHA-256, Curve P-256

o Signature Algorithm ECDSA w SHA-512, Curve P-521
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Size of binary file is 277 bytes

98(
[
protected / h'’,
unprotected / {},
payl oad / 'This is the content.’,
signatures / [
[
/| protected / h al0l26’ [/ {
\alg\ 1:-7 \ ECDSA 256 \
P
/ unprotected / {
[ kid [/ 4:"11
}

/,signature / h'e2aeaf d40d69d19df e6e52077c5d7f f 4e408282chef b
5d06¢cbf 414af 2e19d982ac45ac98b8544¢c908b4507dele90b717c3d34816f e926a2b
98f 53af d2f aOf 30a’

] y

[
/ protected / h' al013823" [/ {

\ alg\ 1:-36
P
/ unprotected / {
[/ kid / 4:’bilbo.baggi ns@obbiton.exanpl e’
}

/ signature / h’ 00a2d28a7c2bdb1587877420f 65adf 7d0b9a06635dd1
de64bb62974c863f 0b160dd2163734034e6ac003b01e8705524c5c4ca479a952f 024
7ee8cb0b4f b7397ba08d009e0c8bf 482270cc5771aal43966e5a469a09f 613488030
c5b07ec6d722e3835adb5b2d8c44e95f f b13877dd2582866883535de3bb03d01753f
83ab87bb4f 7a0297’
]
]

~ Y~~~

]
)

C.1.3. Counter Signature
Thi s exanpl e uses the foll ow ng:
o Signature Algorithm ECDSA w SHA-256, Curve P-256

o The sane paraneters are used for both the signature and the
counter signature.
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Size of binary file is 180 bytes

98(
[
/ protected / h' ',
/ unprotected / {
/ countersign / 7:]
/| protected / h al0l26’ [/ {
\ alg\ 1:-7 \ ECDSA 256 \
P
/ unprotected / {
[ kid [/ 4:"11
}

/’signature / h’5ac05e289d5d0elb0a7f 048a5d2b643813ded50bc9e4

9220f 4f 7278f 85f 19d4a77d655¢c9d3b51e805a74b099e1e085aacd97f c29d72f 887e
8802bb6650cceb2c’

]

} y
/| payload / 'This is the content.’,
/ signatures / |

/| protected / h al0l26’ [/ {
\alg\ 1:-7 \ ECDSA 256 \
P
/ unprotected / {
[ kid [/ 4:"11
}

/,signature / h'e2aeaf d40d69d19df e6e52077c5d7f f 4e408282chef b

5d06¢chf 414af 2e19d982ac45ac98h8544c908b4507del1e90b717c3d34816f e926a2b
98f 53af d2f aOf 30a’

]
]
]
)

C.1.4. Signature with Criticality
Thi s exanpl e uses the foll ow ng:
o Signature Algorithm ECDSA w SHA-256, Curve P-256

o There is a criticality marker on the "reserved" header paraneter
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Size of binary file is 125 bytes

98(
[
| protected / h' a2687265736572766564f 40281687265736572766564" /
{
"reserved": fal se
\crit \ 2]
"reserved"
]
Lo

/ unprotected / {},
payl oad / 'This is the content.’,
[/ signatures / |

~

/| protected / h al0l26’ [/ {
\alg\ 1:-7 \ ECDSA 256 \
| S
/ unprotected / {
[ kid/ 4:"11
}

/,signature / h'3fc54702aa56e1b2cb20284294¢c9106a63f 91bac658d

69351210a031d8f c7c5f f 3e4be39445b1a3e83e1510dlaca2f 2e8a7c081¢c7645042b
18aba9dilf adlbd9c

]
]
]
)

C. 2. Single Signer Exanples
C. 2.1. Single ECDSA Signature
Thi s exanpl e uses the foll ow ng:

o Signature Algorithm ECDSA w SHA-256, Curve P-256
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Size of binary file is 98 hytes

18(

[
/| protected / h al0l26’ [/ {

\alg\ 1:-7 \ ECDSA 256 \

P
/ unprotected / {
[ kid [/ 4:"11
}

/'payload /[ "This is the content.’,
/ signature / h' 8eb33e4ca3ldlc465ab05aac34cc6b23d58f ef 5c083106¢c4
d25a91aef 0b0117e2af 9a291aa32el4ah834dc56ed2a223444547e01f 11d3b0916e5

a4c345cach36’

]
)

C. 3. Exanples of Envel oped Messages
C.3.1. Direct ECDH
Thi s exanpl e uses the foll ow ng:
0o CEK: AES-GCM w 128-bit key

o Recipient class: ECDH Epheneral -Static, Curve P-256
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Size of binary file is 151 bytes

96(

[
/| protected / h al010l" / {

\'alg\ 1:1\ AES-GCM 128 \
P
/ unprotected / {
[ iv [ 5:h'c9cf4df 2f e6¢c632bf 7886413
}

/'ciphertext / h’ 7adbe2709ca818f b415f 1e5df 66f 4e1a51053ba6d65alal
c52a357da7a644b8070a151b0’ ,
/ recipients / |

/| protected / h' al013818" [/ {
\ alg\ 1:-25 \ ECDH ES + HKDF- 256 \

P
/ unprotected / {

/ ephemeral / -1:{
[ kty [ 1:2,
[ crv /[ -1:1
!/ x | -2:h"98f50a4ff6c05861c8860d13a638ea56¢c3f 5ad7590bbf

bf 054e1c7b4d91d6280’ ,

/'yl -3:true

} y
[/ kid / 4:"nmeriadoc. brandybuck@uckl and. exanpl e’

/,ciphertext /[ h"’

]
]
]
)

C.3.2. Direct Plus Key Derivation
Thi s exanpl e uses the foll ow ng:
o CEK AES-CCMw 128-bit key, truncate the tag to 64 bits

0 Recipient class: Use HKDF on a shared secret with the foll ow ng
implicit fields as part of the context.

* salt: "aabbccddeeffgghh"
* PartyU identity: "lighting-client"

* PartyV identity: "lighting-server"”
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*  Suppl enentary Public Qther: "Encryption Exanple 02"
Size of binary file is 91 bytes

96(

[
/| protected / h'alOlOa’ [/ {

\ alg \ 1:10 \ AES-CCM 16-64-128 \
Yo

/ unprotected /
/ iv [ 5:h"89f52f 65a1c580933bh5261a76¢c’
}

/’ciphertext / h’753548a19b1307084ca7b2056924ed95f 2e3b17006df €93
1b687b847’
[/ recipients [/ |

[
/ protected / h al0129 [/ {

\'alg\ 1:-10

P
/ unprotected / {
[/ salt / -20:'aabbccddeef f gghh’

/ kid / 4:’our-secret’

} 1
/ ciphertext / h'’

]
]
]
)

C.3.3. Counter Signature on Encrypted Content
Thi s exanpl e uses the foll ow ng:
o CEK AES-GCMw 128-bit key

o Recipient class: ECDH Epheneral -Static, Curve P-256
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Size of binary file is 326 bytes

96(
[
/| protected / h al010l" / {
\'alg\ 1:1 \ AES-GCM 128 \
P
/ unprotected / {
[ iv [ 5:h’c9cf4df 2f e6¢c632bf 7886413’ ,
[/ countersign / 7:]
/ protected / h al013823" / {
\ alg\ 1:-36
P
/ unprotected / {
[/ kid / 4:’bilbo.baggi ns@obbiton. exanpl e’
}

/ signature / h’00929663c8789bb28177ae28467e66377dal2302d7f9
594d2999af abdf a531294f 8896f 2b6cdf 1740014f 4c7f 1a358e3a6¢f 57f 4ed6f b02f
cf 8f 7aa989f 5df dO7f 0700a3a7d8f 3c604ba70f a9411bd10c2591b483e1d2¢c31de00
3183e434d8f bal8f 17a4c7e3df a003aclcf 3d30d44d2533¢c4989d3ac38¢c38b71481c
c3430c9d65e7ddf f’
}]
/ ciphertext / h’7adbe2709ca818f b415f 1e5df 66f 4ela51053ba6d65alal
c52a357da7a644b8070a151b0’ ,
[/ recipients / |
[
/| protected / h al013818" / {
\ ' alg\ 1:-25 \ ECDH ES + HKDF- 256 \
Yoo,
/ unprotected / {
/ ephemeral / -1:{

[ kty [ 1:2,

/| crv /[ -1:1,

/ x | -2:h 98f50a4ff6c05861c8860d13a638ea56¢c3f 5ad7590bbf
bf 054e1c7b4d91d6280’ ,
[yl -3:true

} H
[/ kid / 4:"nmeriadoc. brandybuck@uckl and. exanpl e’

} 1
[ ciphertext / h’

]
]
]
)
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C.3.4. Encrypted Content with External Data
Thi s exanpl e uses the foll ow ng:
o CEK AES-GCMw 128-bit key
o0 Recipient class: ECDH static-Static, Curve P-256 with AES Key Wap
o Externally Supplied AAD: h’' 001lbbcc22dd44ee55f f 660077’
Size of binary file is 173 bytes

96(

[
[/ protected / h al010l' / {

\'alg\ 1:1\ AES-GCM 128 \
o
/ unprotected /
/[ iv [ 5:h 02d1f 7e6f 26c43d4868d87ce’
}

/ ’ ci phertext / h’64f84d913ba60a76070a9a48f 26e97e863e28529d8f 5335
e5f 0165eee976b4a5f 6¢6f 09d’
/[ recipients [/ |

[
/| protected / h' al01381f' /[ {

\ alg\ 1:-32 \ ECHD SS+A128KW\

P
/ unprotected / {
/ static kid / -3:’peregrin.took@ uckborough. exanpl e’
[/ kid / 4:’neriadoc. brandybuck@uckl and. exanpl e’ ,
/ U nonce / -22:h’0101’

} H
[ ciphertext / h'41e0d76f579dbd0d936a662d54d8582037de2e366f d
elc62’

]
]
]
)

C. 4. Exanples of Encrypted Messages
C.4.1. Sinple Encrypted Message
Thi s exanpl e uses the foll ow ng:

o CEK AES-CCMw 128-bit key and a 64-bit tag
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Size of binary file is 52 bhytes

16(

[
/| protected / h alOl0a’ [/ {

\ 'alg\ 1:10 \ AES-CCM 16-64-128 \

P
/ unprotected / {

/ iv /| 5:h"89f52f 65a1c580933b5261a78c
}

/'ciphertext / h'5974e1b99a3a4cc09a659aa2e9e7fff 161d38ce71lch45ce
460f f b569

]
)

C.4.2. Encrypted Message with a Partial 1V
Thi s exanpl e uses the foll ow ng:
o CEK AES-CCMw 128-bit key and a 64-bit tag
o Prefix for IV is 89F52F65A1C580933B52
Size of bhinary file is 41 bytes
16(

[
/| protected / h alOl0a’ [/ {

\ alg\ 1:10 \ AES-CCM 16-64-128 \

o
/ unprotected / {

/[ partial iv / 6:h'6la7’
}

/,ciphertext / h’252a8911d465c125b6764739700f 0141ed09192de139e05
3bd09abca’

]
)

C. 5. Exanples of MACed Messages
C.5.1. Shared Secret Direct MAC
Thi s exanpl e uses the foll ow ng:
o MAC AES-CMAC, 256-bit key, truncated to 64 bits

0 Recipient class: direct shared secret
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Size of binary file is 57 bhytes

97(
[
/| protected / h alOolof’ [/ {
\ alg \ 1:15 \ AES- CBC MAC- 256/ /64 \
P
unprotected / {},
payl oad / 'This is the content.’,
tag / h'9el226balf 81b848’
recipients / [
[
/| protected / h'’,
/ unprotected / {
[/ alg/ 1:-6 / direct /,
/[ kid [/ 4:’our-secret’

~ Y~~~

} 1
/ ciphertext / h'’

]
]
]
)

C.5.2. ECDH Direct MAC
Thi s exanpl e uses the foll ow ng:

o MAC. HVAC w SHA- 256, 256-bit key

o Recipient class: ECDH key agreenent, two static keys,

context structure
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Size of binary file is 214 bytes

97(
[
/| protected / h al0l1l05 [/ {
\'alg\ 1:5\ HVAC 256//256 \
P

/ unprotected / {},

/| payload / 'This is the content.’,

/ tag / h’81a03448acd3d305376eaallf b3f e416a955be2cbe7ec96f 012¢c99
4bc3f 16a4l’

/| recipients / |

[
/| protected / h'alOl38la’ [/ {

\ 'alg\ 1:-27 \ ECDH SS + HKDF-256 \
P
/ unprotected / {

/ static kid / -3:’peregrin.took@ uckborough. exanpl e’

[/ kid / 4:"neriadoc. brandybuck@uckl and. exanpl e’ ,

/ U nonce / -22:h" 4d8553e7e74f 3c6a3a9dd3ef 286a8195chf 8a23d
19558ccf ec7d34b824f 42d92bd06bd2c7f 0271f 0214e141f b779ae2856abf 585a583
68b017e7f 2a9e5ceddb’’

}y
/ ciphertext / h'’
]

]
]
)

C.5.3. Wapped MAC
Thi s exanpl e uses the foll ow ng:
o MAC. AES-MAC, 128-bit key, truncated to 64 bits

o0 Recipient class: AES Key Wap w a pre-shared 256-bit key
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Size of binary file is 109 bytes

97(
[
/| protected / h alO0l0e’ [/ {
\ alg \ 1:14 \ AES-CBC- MAC-128//64 \
P
unprotected / {},
payl oad / 'This is the content.’,
tag / h’ 36f 5af af Obab5d43’
recipients / [
[
/| protected / h'’,
/ unprotected / {
/[ alg / 1:-5 ] A256KW/,
[/ kid / 4:°018c0ae5-4d9b- 471b- bf d6- eef 314bc7037

~ Y~~~

} 1
[ ciphertext / h’71lab0dc2fc4585dce27effa6781c8093ehba906f 227
b6eb0’

]
]
]
)

C.5.4. Milti-Recipient MACed Message
Thi s exanpl e uses the foll ow ng:
o MAC. HWVAC w SHA-256, 128-bit key
0 Recipient class: Uses three different nethods

1. ECDH Epheneral -Static, Curve P-521, AES Key Wap w 128-bit
key

2. AES Key Wap w 256-hit key
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Size of binary file is 309 bytes

97(
[
/| protected / h al0l1l05 [/ {
\'alg\ 1:5\ HVAC 256//256 \
P
/ unprotected / {},
/| payload / 'This is the content.’,
/ tag / h’bf48235e809b5c42e995f 2b7d5f a1l3620e7ed834e337f 6aa43df 16
1e49e9323¢e’ ,
/ recipients / |
[
/ protected / h'al01381lc’ [/ {
\ alg \ 1:-29 \ ECHD ES+A128KW\
P
/ unprotected / {
/ ephemeral / -1:{
[ kty [ 1:2,
/[ crv [ -1:3,
/ x [ -2:h"0043b12669acac3f d27898f f baObcd2e6c366d53bc4db
71f 909a759304acf b5el18cdc7balbl3ff 8c7636271a6924b1ac63c02688075b55ef 2
d613574e7dc242f 79¢3’,
/'yl -3:true

}1
/[ kid / 4:’bilbo.baggi ns@obbiton.exanpl e’
}1
[ ciphertext / h'339bc4f 79984cdc6b3e6bce5f 315a4c7d2b0ac466f ce
a69e8c07df bca5bb1f 661bc5f 8e0df 9e3ef f 5’
]1

[
/| protected / h'’,
/

/ unprotected {

[ alg [/ 1:-5/ A256KW/,

[/ kid / 4:°018c0ae5-4d9b- 471b- bf d6- eef 314bc7037
} y
/ ciphertext / h'0b2c7cfce04e98276342d6476a7723c090df dd15f 9a
518e7736549e€998370695e6d6a83b4ae507bb

]
]
]
)
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52 CBOR nj ect Signing and Encryption (COSE)

Exanmpl es of MACO Messages
Shared Secret Direct MAC
s exanpl e uses the foll ow ng:
MAC. AES- CMAC, 256-bit key, truncated to 64 bits
Reci pi ent cl ass: direct shared secret

e of binary file is 37 bytes

[/ protected / halOolof’ [/ {
\ alg \ 1:15 \ AES-CBC MAC- 256//64 \
P
/ unprotected / {},
/| payload / 'This is the content.’,
/[ tag / h'726043745027214f"’

July 2017

Note that this exanple uses the sane inputs as Appendi x C 5. 1.

C 7.
C7.1.

Thi
pub

In

o

Schaad

CCSE Keys

Publ i c Keys

s is an exanple of a COSE Key Set. This exanple includes the

lic keys for all of the previous exanples.

order the keys are:

An EC key with a kid of "meriadoc. brandybuck@uckl and. exanpl e"

An EC key with a kid of "peregrin.took@uckborough. exanmpl e"

An EC key with a kid of "bil bo. baggi ns@aobbiton. exanpl e"

An EC key with a kid of "11"

St andards Track
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Size of binary file is 481 bytes

[
{
-1:1,
-2: h’ 65edabal2577c2bae829437f e338701al0aaa375elbb5b5de108de439c0
8551d’,
-3: h' 1e52ed75701163f 7f 9e40ddf 9f 341b3dc9ba860af 7eOca7ca7e9eecd008
4d19c’,
1: 2,
2:" meri adoc. brandybuck@uckl and. exanpl e’
b,
{
-1:1,
-2: h' bacbbllcad8f 99f 9¢c72b05cf 4b9e26d244dc189f 745228255a219a86d6a
09eff’,
-3: h’ 20138bf 82dc1b6d562be0f a54ab7804a3a64b6d72ccf ed6b6f b6ed28bbf
cli7e’,
1:2,
2: 11
b,
{

-1: 3,

-2: h’ 0072992cb3ac08ecf 3e5c63dedec0d51a8c1f 79ef 2f 82f 94f 3¢ 737bf 5de
7986671eac625f e8257bbd0394644caaa3aaf 8f 27a4585f bbcad0Of 2457620085e5¢8
f42ad’,

-3: h’' 01dcab6947bce88bc5790485ac97427342bc35f 887d86d65a089377e247¢e
60baab5e4e8501e2ada5724ac51d6909008033ebc10ac999b9d7f 5¢cc2519f 3f eleal
do475’

1: 2,

2:' bi | bo. baggi ns@obbi t on. exanpl e’

} H
{

-1:1,

-2: h’ 98f 50a4f f 6c05861c8860d13a638ea56¢c3f 5ad7590bbf bf 054e1c7b4d91
d6280’ ,

-3:h’ 1 01400b089867804b8e9f c96c3932161f 1934f 4223069170d924b7e03bf
822bb’ ,

1: 2,

2:' peregrin.took@uckbor ough. exanmpl e
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C7.

2. Private Keys

This is an exanple of a COSE Key Set. This exanple includes the
private keys for all of the previous exanpl es.

In order the keys are:

0 An EC key with a kid of "neriadoc. brandybuck@uckl and. exanpl e"
0 A shared-secret key with a kid of "our-secret”

0 An EC key with a kid of "peregrin.took@ uckborough. exanpl e"

0 A shared-secret key with a kid of "018c0Oae5-4d9b-471b-
bf d6- eef 314bc7037"

0 An EC key with a kid of "bil bo.baggi ns@obbiton. exanpl e"
0 An EC key with a kid of "11"

Size of binary file is 816 bytes

[
{

1:2,

2: ' meriadoc. brandybuck@uckl and. exanpl e’ ,

-1:1,

-2: h’ 65edab5al2577c2bae829437f e338701al0aaa375elbb5b5de108de439c0
8551d’,

-3: h’ 1e52ed75701163f 7f 9e40ddf 9f 341b3dc9ba860af 7e0Oca7ca7e9eecd008
4d19c’

-4: h' af f 907¢c99f 9ad3aaebc4dcdf 21122bce2bd68b5283e6907154ad911840f a
208cf’

b
{

1: 2,

2:711,

-1:1,

-2: h' bacbbllcad8f 99f 9¢c72b05cf 4b9e26d244dc189f 745228255a219a86d6a
09eff’,

-3: h’ 20138bf 82dc1b6d562be0f a54ab7804a3a64b6d72ccf ed6b6f h6ed28bbf
clive’

-4: h'57¢92077664146e876760c9520d054aa93c3af b04e306705db609030850
7b4d3’

}
{

1: 2,
2:' bi | bo. baggi ns@obbi t on. exanpl e’
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-1: 3,

-2: h' 0072992cb3ac08ecf 3e5c63dedec0d51a8c1f 79ef 2f 82f 94f 3¢ 737bf 5de
7986671eac625f e8257bbd0394644caaa3aaf 8f 27a4585f bbcad0f 2457620085e5¢8
f42ad’ ,

-3: h’ 01dca6947bce88bc5790485ac97427342bc35f 887d86d65a089377e247¢e
60baab55e4e8501e2ada5724ac51d6909008033ebc10ac999b9d7f 5¢cc2519f 3f eleal
do475’

-4: h’' 00085138ddabf 5ca975f 5860f 91a08e91d6d5f 9a76ad4018766a476680b
55¢d339e8ab6¢c72b5f acdb2a2a50ac25bd086647dd3e2e6e99e84ca2¢3609f df 177f
eb26d’

I
{

1: 4,

2:'our-secret’,

-1: h’ 849b57219dae48de646d07dbb533566e976686457¢c1491be3a76dceabecs
27188’

I
{

1:2,

-1:1,

2:’ peregrin.took@ uckborough. exanpl e’

-2: h' 98f 50a4f f 6c05861c8860d13a638ea56c3f 5ad7590bbf bf 054elc7b4d91
d6280’ ,

-3: h’ f01400b089867804h8e9f c96c3932161f 1934f 4223069170d924b7e03bf
822bb’

-4: h' 02d1f 7e6f 26c43d4868d87ceb2353161740aacf 1f 7163647984b522a848
df 1¢c3’

b,
{

1: 4,

2:’our-secret?2’,

-1: h' 849b5786457c1491be3a76dceabc4271

b,
{

1: 4,

2:7018c0ae5-4d9b- 471b- bf d6- eef 314bc7037 ,

-1: h’ 849b57219dae48de646d07dbb533566e976686457c1491be3a76dceabec4
27188’

}
]
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