I nt ernet Engi neering Task Force (1 ETF) M Jones

Request for Comments: 7516 M cr osoft
Cat egory: Standards Track J. Hildebrand
| SSN: 2070-1721 Ci sco

May 2015

JSON Wb Encryption (JVE)
Abst r act

JSON Wb Encryption (JVE) represents encrypted content using

JSON- based data structures. Cryptographic algorithns and identifiers
for use with this specification are described in the separate JSON
Web Al gorithms (JWA) specification and | ANA registries defined by
that specification. Related digital signature and Message

Aut hentication Code (MAC) capabilities are described in the separate
JSON Wb Signature (JW5) specification

Status of This Meno
This is an Internet Standards Track document.

Thi s docunent is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the |IETF comunity. It has
recei ved public review and has been approved for publication by the
Internet Engineering Steering Goup (IESG. Further information on
Internet Standards is available in Section 2 of RFC 5741.

I nformati on about the current status of this docunment, any errata,
and how to provide feedback on it may be obtained at
http://ww.rfc-editor.org/info/rfc7516

Copyri ght Notice

Copyright (c) 2015 | ETF Trust and the persons identified as the
document authors. All rights reserved.

Thi s docunent is subject to BCP 78 and the | ETF Trust’'s Lega

Provi sions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunment. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunment. Code Conponents extracted fromthis document rnust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.

Jones & Hil debrand St andards Track [Page 1]

RFC 7516 JSON Wb Encryption (JVE)

Tabl e of Contents

1.

2.
3.

9.
10

1.

N

PRrABREAADPROO

I ntroducti on G

1. Notational Conventions

Term nol ogy . .

JSON Wb Encryptr on (JV\E) O/ervr ew

.1. JVE Conpact Serialization Overview

JWE JSON Serialization Overview .
Exampl e JVE .
OSE Header . .
Regi stered Header Par amet er Nanes . .
1.1. "alg" (Algorithn) Header Paraneter
1.2. "enc" (Encryption Al gorithm Header Paraneter
1.3. "zip" (Conpression Al gorithm Header Paraneter
1.4. "jku" (JW Set URL) Header Paraneter -
1.5, "jwk" (JSON Wb Key) Header Paraneter
1.6. "kid" (Key ID) Header Paraneter .
1.7. "x5u" (X 509 URL) Header Paraneter Ce e
1.8. "x5c¢" (X.509 Certificate Chain) Header Paraneter
1.9. "x5t" (X 509 Certificate SHA-1 Thunbprint) Header
Par ameter . .
4.1.10. "x5t#S256" (X 509 Cert|f| cate SHA- 256 Thurrbprr nt)
Header Par ameter . . -
4.1.11. "typ" (Type) Header Parameter .o
4.1.12. "cty" (Content Type) Header Pararreter
4.1.13. "crit" (Critical) Header Paraneter
2. Public Header Paraneter Nanes . .
3. Private Header Paraneter Nanes
Produci ng and Consum ng JWES
.1. Message Encryption
.2. Message Decryption .
.3. String Comparison Rules .

Key ldentification
Serializations

.1. JVE Conpact Seri aI [zatr on .

2. JV\E JSON Serialization . . .
7.2. General JWE JSON Seri al i zat| on Synt ax .o
7.2. 2 Flattened JWE JSON Serialization Syntax .
TLS Requr rement s .

Di sti ngui shi ng betV\reen JV\B and JV\E OOJ ects
I ANA Consi derations .

iO. 1. JSON Wb Si gnature and Encryptr on Header iDa.rarnerers.

Regi stration . .
10.1.1. Registry Oontents

11. Security Considerations . . .

11.1. Key Entropy and Random VaI ues

11.2. Key Protection . . .
11.3. Using Matching Al gorr t hm St rengt hs .

Jones & Hil debrand St andards Track

May 2015

RPRRPRRRRRPRRRRE
WWWWWNNNRRPOWODOWOUAD

14

14
14
14
14
14
15
15
15
17

20
20
20
20
21
23
24
24
25

25
25
27
27
27
28

[Page 2]

RFC 7516

11. 4.

11. 5.

12. 1.

12. 2.
Appendi x A. .
Exarrpl e JVWE using RSAES— OAEP and AES GCI\/I

A 1.

>

@D
WNE S o

5
DWW

Jones & Hil debrand

NPBPBEDP D

wWrrPrrr>r

>R PI>>P>>>P>

b Sk el

e
PN AWM

NN

PNoORWONE

JSON Wb Encryption (JVE)

Adapti ve Chosen-Ci phertext Attacks .
Tim'ngAttacks.
12. References .

Nor mati ve Ref erences .

I nformati ve References .

JVE Exarrpl es .

JCSE Header . . .

Content Encryption Key (CEK)
Key Encryption .
Initialization Vector .
Addi tional Authenticated Dat a .
Content Encryption .

Oorrpl ete Representation .

Val i dati on

Exanpl e JVE usi ng RSAES- PKCS1-v1 5 and
AES 128 CBC_HVAC SHA 256 T

JOSE Header . . .

Content Encrypti on Key (CEK)
Key Encryption .
Initialization Vector .
Addi tional Authenticated Dat a .
Cont ent Encryption .

Coan ete Representation .

Val i dation

Exarrpl e JVE Usi dg AES Key Wap and
AES 128 CBC HMAC SHA 256 .

\‘F”P’PW!\’!“QW.\‘P’P‘P.‘*’!\’"

JOSE Header .

Content Encrypti on Key (CEK)
Key Encryption .
Initialization Vector .
Addi ti onal Authenticated Dat a .
Content Encryption .

Corrpl ete Representation .

Val i dati on

arrpl e JVE Using General JWE JSON Serialization

JVE Per - Reci pi ent Unprotected Headers .
JVE Protected Header . . Coe
JWE Shar ed Unprotected Header

Conpl ete JOSE Header Val ues .

Addi ti onal Authenticated Data .

Content Encryption

Conpl ete JVWE JSON Seri al | zat| on Represent at| on

Exarrpl e JWE Using Flattened JWE JSON Seri alization

d|xB

Exanpl e AES_128_CBC_HMAC_SHA 256 Conputation .

Extract MAC_KEY and ENC KEY from Key
Encrypt Plaintext to Create G phertext .
64-Bit Bi g- Endi an Representation of AAD Lengt h

St andards Track

May 2015

28
28
29
29
30
32
32
32
32
33
34
35
35
36
36

36
37
37
38
39
40
40
40
41

41
41
42
42
42
43
43
43
44
44
45
45
45
45
46
46
47
47
48
48
49
49

[Page 3]

RFC 7516 JSON Wb Encryption (JVE) May 2015

B.4. Initialization Vector Value 49
B.5. Create Input to HWAC Conmputation 50
B.6. Conpute HWAC Value 50
B.7. Truncate HVAC Value to Create Authentication Tag 50
Acknowl edgenents b0
Authors’ Addresses B

1. Introduction

JSON Wb Encryption (JVE) represents encrypted content using JSON
based data structures [RFC7159]. The JVE cryptographi c mechani snms
encrypt and provide integrity protection for an arbitrary sequence of
octets.

Two closely related serializations for JWEs are defined. The JWE
Conpact Serialization is a conpact, URL-safe representation intended
for space constrai ned environnents such as HITP Aut horization headers
and URI query parameters. The JWE JSON Serialization represents JWEs
as JSON objects and enables the sane content to be encrypted to
multiple parties. Both share the sane cryptographi c under pi nni ngs.

Cryptographic algorithns and identifiers for use with this
specification are described in the separate JSON Wb Al gorithns (JWA)
[JWA] specification and 1 ANA registries defined by that
specification. Related digital signature and MAC capabilities are
described in the separate JSON Wb Sighature (JW5) [JW5

speci fication.

Nanes defined by this specification are short because a core goal is
for the resulting representations to be conpact.

1.1. Notational Conventions

The key words "MJST", "MJST NOT", "REQU RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOWMMENDED', "NOT RECOMVENDED', "MAY", and
"OPTIONAL" in this docunent are to be interpreted as described in
"Key words for use in RFCs to Indicate Requirenent Levels" [RFC2119].
The interpretation should only be applied when the terns appear in
all capital letters.

BASE64URL(OCTETS) denotes the base64url encodi ng of OCTETS, per
Section 2 of [JWH].

UTF8(STRI NG denotes the octets of the UTF-8 [RFC3629] representation

of STRING where STRING is a sequence of zero or nore Unicode
[UNI CODE] characters.

Jones & Hil debrand St andards Track [Page 4]

RFC 7516 JSON Wb Encryption (JVE) May 2015

ASCI | (STRING denotes the octets of the ASCII [RFC20] representation
of STRING where STRING is a sequence of zero or nore ASCI
characters.

The concatenation of two values A and B is denoted as A || B
2. Term nol ogy

The ternms "JSON Wb Signature (JW5)", "Base64url Encodi ng",
"Col |'i si on-Resi stant Name", "Header Paraneter", "JOSE Header", and
"StringOrURI" are defined by the JW5 specification [JW5].

The ternms "Ciphertext", "Digital Signature", "lInitialization Vector
(Iv)", "Message Authentication Code (MAC)", and "Plaintext" are
defined by the "Internet Security G ossary, Version 2" [RFC4949].

These terns are defined by this specification

JSON Wb Encryption (JVE)
A data structure representing an encrypted and integrity-protected
nmessage.

Aut henti cated Encryption with Associ ated Data (AEAD)
An AEAD al gorithmis one that encrypts the plaintext, allows
Addi tional Authenticated Data to be specified, and provides an
integrated content integrity check over the ciphertext and
Addi tional Authenticated Data. AEAD al gorithns accept two inputs,
the plaintext and the Additional Authenticated Data val ue, and
produce two outputs, the ciphertext and the Authentication Tag
val ue. AES &l oi s/ Counter Mdde (GCM is one such algorithm

Addi tional Authenticated Data (AAD)
An input to an AEAD operation that is integrity protected but not
encrypt ed.

Aut henti cation Tag
An output of an AEAD operation that ensures the integrity of the
ci phertext and the Additional Authenticated Data. Note that sone
al gorithms may not use an Authentication Tag, in which case this
value is the enpty octet sequence.

Content Encryption Key (CEK)

A symmetric key for the AEAD al gorithmused to encrypt the
pl ai ntext to produce the ciphertext and the Authentication Tag.

Jones & Hil debrand St andards Track [Page 5]

RFC 7516 JSON Wb Encryption (JVE) May 2015

JVE Encrypted Key
Encrypted Content Encryption Key value. Note that for sone
al gorithms, the JWE Encrypted Key value is specified as being the
enpty octet sequence.

JVWE |nitialization Vector
Initialization Vector val ue used when encrypting the plaintext.
Note that sonme algorithns nay not use an Initialization Vector, in
whi ch case this value is the enpty octet sequence.

JVE AAD
Additional value to be integrity protected by the authenticated
encryption operation. This can only be present when using the JVWE
JSON Serialization. (Note that this can al so be achi eved when
using either the JWE Conpact Serialization or the JWE JSON
Serialization by including the AAD value as an integrity-protected
Header Parameter value, but at the cost of the val ue being double
base64url encoded.)

JVE Ci phertext
G phertext value resulting from authenticated encryption of the
pl ai ntext wi th Additional Authenticated Data.

JVE Aut hentication Tag
Aut hentication Tag value resulting from authenticated encryption
of the plaintext with Additional Authenticated Data.

JVE Protected Header
JSON obj ect that contains the Header Parameters that are integrity
protected by the authenticated encryption operation. These
paranmeters apply to all recipients of the JWE. For the JVWE
Conpact Serialization, this conprises the entire JOSE Header. For
the JWE JSON Serialization, this is one conmponent of the JOSE
Header .

JVE Shar ed Unprotected Header
JSON obj ect that contains the Header Parameters that apply to al
reci pients of the JWE that are not integrity protected. This can
only be present when using the JWE JSON Serialization

JVEE Per - Reci pi ent Unprot ect ed Header
JSON obj ect that contains Header Paraneters that apply to a single
reci pient of the JWE. These Header Paraneter val ues are not
integrity protected. This can only be present when using the JVWE
JSON Serialization.

JVE Conpact Serialization
A representation of the JWE as a conpact, URL-safe string

Jones & Hil debrand St andards Track [Page 6]

RFC 7516 JSON Wb Encryption (JVE) May 2015

JWE JSON Serialization
A representation of the JWE as a JSON object. The JWE JSON
Serialization enables the sane content to be encrypted to multiple
parties. This representation is neither optimzed for conpactness
nor URL safe.

Key Managenent Mode
A method of determining the Content Encryption Key value to use.
Each al gorithmused for determ ning the CEK val ue uses a specific
Key Managenent Mdde. Key Management Modes enpl oyed by this
specification are Key Encryption, Key Wapping, D rect Key
Agreenent, Key Agreenent with Key Wapping, and Direct Encryption

Key Encryption
A Key Managenent Mde in which the CEK value is encrypted to the
i ntended recipi ent using an asynmetric encryption algorithm

Key W appi ng
A Key Managenent Mode in which the CEK value is encrypted to the
i ntended recipient using a synmetric key wapping algorithm

Direct Key Agreenent
A Key Managenment Mode in which a key agreenent algorithmis used
to agree upon the CEK val ue.

Key Agreenment with Key Wapping
A Key Managenent Mode in which a key agreenent algorithmis used
to agree upon a symetric key used to encrypt the CEK value to the
i ntended recipient using a symmetric key wapping algorithm

Direct Encryption

A Key Managenent Modde in which the CEK value used is the secret
symetric key val ue shared between the parties.

Jones & Hil debrand St andards Track [Page 7]

RFC 7516 JSON Wb Encryption (JVE) May 2015

3. JSON Web Encryption (JWE) Overvi ew

JVEE represents encrypted content using JSON data structures and
base64url encoding. These JSON data structures MAY contain
whi t espace and/or |ine breaks before or after any JSON val ues or
structural characters, in accordance with Section 2 of RFC 7159

[RFC7159]. A JVE represents these |ogical values (each of which is
defined in Section 2):

JOSE Header

JVE Encrypted Key

JVWE |nitialization Vector
JVE AAD

JVE Ci phertext

JVE Aut henticati on Tag

O O0OO0OO0OO0Oo

For a JWE, the JOSE Header nenbers are the union of the nenbers of
these val ues (each of which is defined in Section 2):

o JVE Protected Header
o JWE Shared Unprotected Header
o JWE Per-Recipient Unprotected Header

JVE utilizes authenticated encryption to ensure the confidentiality
and integrity of the plaintext and the integrity of the JWE Protected
Header and the JWE AAD.

Thi s docunent defines two serializations for JWES: a conpact, URL-
safe serialization called the JWE Conpact Serialization and a JSON
serialization called the JWE JSON Serialization. In both
serializations, the JWE Protected Header, JWE Encrypted Key, JWE
Initialization Vector, JWE C phertext, and JWE Authentication Tag are
base64url encoded, since JSON |l acks a way to directly represent
arbitrary octet sequences. Wen present, the JWE AAD is al so
base64ur|l encoded.

3.1. JVE Conpact Serialization Overview
In the JWE Conpact Serialization, no JWE Shared Unprotected Header or

JVEE Per - Reci pi ent Unprotected Header are used. In this case, the
JOSE Header and the JWE Protected Header are the same.

Jones & Hil debrand St andards Track [Page 8]

RFC 7516 JSON Wb Encryption (JVE) May 2015

In the JWE Conpact Serialization, a JWE is represented as the
concat enati on:

BASE64URL(UTF8(JVE Protected Header)) || *. ||
BASE64URL(JWE Encrypted Key) || . ||
BASE64URL(JWE I nitialization Vector) || '." ||
BASE64URL(JWE Ci phertext) || '." ||
BASE64URL(JWE Aut henti cation Tag)

See Section 7.1 for nore information about the JWE Conpact
Serialization.

3.2. JWE JSON Serialization Overview

In the JWE JSON Serialization, one or nore of the JWE Protected
Header, JWE Shared Unprotected Header, and JWE Per- Reci pi ent

Unpr ot ect ed Header MJST be present. 1In this case, the nenbers of the
JOSE Header are the union of the menmbers of the JWE Protected Header,
JVWE Shared Unprotected Header, and JWE Per- Reci pi ent Unprotected
Header val ues that are present.

In the JWE JSON Serialization, a JWE is represented as a JSON obj ect
contai ning some or all of these eight nenbers:

"protected", with the val ue BASE64URL(UTF8(JWE Prot ected Header))
"unprotected", with the value JWE Shared Unprotected Header
"header", with the value JWE Per - Reci pi ent Unprotected Header
"encrypted_key", with the val ue BASE64URL(JVE Encrypted Key)
"iv", with the val ue BASEG64URL(JWE Initialization Vector)
"ciphertext", with the val ue BASE64URL(JVE Ci phertext)

"tag", with the val ue BASE64URL(JWVE Aut henticati on Tag)

"aad", with the val ue BASE64URL(JWE AAD)

The six base64url -encoded result strings and the two unprotected JSON
obj ect values are represented as nenbers within a JSON object. The

i nclusion of some of these values is OPTIONAL. The JVWE JSON
Serialization can also encrypt the plaintext to nultiple recipients.
See Section 7.2 for nmore information about the JVWE JSON
Serialization.

Jones & Hil debrand St andards Track [Page 9]

RFC 7516 JSON Wb Encryption (JVE) May 2015

3.3. Exanple JVE

This exanple encrypts the plaintext "The true sign of intelligence is
not know edge but imagination." to the recipient.

The foll owi ng exanpl e JWE Protected Header declares that:

o The Content Encryption Key is encrypted to the recipient using the
RSAES- QAEP [RFC3447] algorithmto produce the JWE Encrypted Key.

0o Authenticated encryption is performed on the plaintext using the
AES GCM [AES] [NI ST.800-38D] algorithmwi th a 256-bit key to
produce the ciphertext and the Authentication Tag.

{"al g":"RSA- OAEP", "enc": " A256GCM'}

Encoding this JWE Protected Header as BASEG64URL(UTF8(JWE Protected
Header)) gives this val ue:

eyJhbCci G JSUOEt TOFFUCI sl mVuYyl 61 kEyNTZHQOO0i f Q
The remaining steps to finish creating this JW are:
0 GCenerate a random Content Encryption Key (CEK)

o Encrypt the CEK with the recipient’s public key using the RSAES
OAEP al gorithmto produce the JWE Encrypted Key.

o0 Base64url-encode the JWE Encrypted Key.
0 Cenerate a random JWE Initialization Vector.
0 Baseb64url-encode the JWE Initialization Vector.

0 Let the Additional Authenticated Data encryption paraneter be
ASCI | (BASE64URL(UTF8(JWE Prot ect ed Header))).

o Performauthenticated encryption on the plaintext with the AES GCM
al gorithmusing the CEK as the encryption key, the JVE
Initialization Vector, and the Additional Authenticated Data
val ue, requesting a 128-bit Authentication Tag out put.

0 Base64url-encode the ciphertext.

0 Base64url-encode the Authentication Tag.

Jones & Hil debrand St andards Track [Page 10]

RFC 7516 JSON Wb Encryption (JVE) May 2015

o Assenble the final representation: The Conpact Serialization of
this result is the string BASE64URL(UTF8(JWE Protected Header)) ||
.7 || BASE64URL(JVE Encrypted Key) || '." || BASE64URL(JVE
Initialization Vector) || '." || BASE64URL(JWE Ci phertext) || ’.
N

BASE64URL(JWE Aut henti cation Tag).
The final result in this exanple (with line breaks for display
pur poses only) is:

eyJhbCGci O JSUOEt TOFFUCI sl muYyl 61 kEy NTZHQOOi f Q.

OKCawbDo13gRp20j aHV7LFpZcgV7T6DVZKTY KOMIYUrKo TCVIRgck CL9ki MT03JGe
i psEAdY3nmx_et LbbW5r Fr 05kLzcSr 4gKAg7YN7e9] wQRb23nf a6¢c9d- St nl Gy FDb
Sv04uVux| p5Zns 1gNxKKK2Da14B8S4r zVRI t dYwam | Dp5XnZAYpQdb76Fdl KLaV
nygf wX7XWRxv2322i - vDXRf qNzo_t ETKzpVLzf i wQyeyPGLBI O66YJ7eCbdv0j €8
1860ppamavo35UgoRdbYaBcoh9Qcf yl Qr 660c6vFWKRcZ_ZT2LawCWI | y3br GP

6UKI f Cpl M I j f7i GAXKHzg.

48V1_ALb6US04U3b.

5eynBTW c8SuKOI t J3r pYl zOCeDQz 7TALVt u6UE@oM4vpzs9t X EFShS8i B7j 6] i

Sdi wkl r 3aj wQzaBt QD_A.

XFBoMYUZodet ZdvTi FvSkQ

See Appendix A. 1 for the conplete details of computing this JWE. See
Appendi x A for additional exanples, including exanples using the JVE
JSON Serialization in Sections A 4 and A 5.

4. JOSE Header

For a JWE, the nenbers of the JSON object(s) representing the JOSE
Header describe the encryption applied to the plaintext and
optionally additional properties of the JWE. The Header Paraneter
nanes within the JOSE Header MJST be unique, just as described in
Section 4 of [JWE]. The rules about handling Header Paraneters that
are not understood by the inplenentation are also the sane. The

cl asses of Header Paraneter nanes are |ikew se the sarne.

4.1. Registered Header Paraneter Nanes

The foll owi ng Header Paraneter nanes for use in JWES are registered
in the ANA "JSON Wb Signature and Encrypti on Header Paraneters"
registry established by [JW5], with neanings as defined bel ow

As indicated by the common registry, JWss and JWEs share a conmon
Header Paraneter space; when a paraneter is used by both
specifications, its usage nmust be conpati bl e between the

speci fications.

Jones & Hil debrand St andards Track [Page 11]

RFC 7516 JSON Wb Encryption (JVE) May 2015

4.1.1. "alg" (Al gorithm Header Paraneter

Thi s paraneter has the sanme meani ng, syntax, and processing rules as
the "al g" Header Paraneter defined in Section 4.1.1 of [JW5], except
that the Header Paraneter identifies the cryptographic algorithmused
to encrypt or determ ne the value of the CEK. The encrypted content
is not usable if the "alg" val ue does not represent a supported
algorithm or if the recipient does not have a key that can be used
with that algorithm

A list of defined "alg" values for this use can be found in the | ANA
"JSON Wb Signature and Encryption Algorithns" registry established
by [JWA]; the initial contents of this registry are the val ues
defined in Section 4.1 of [JWA].

4.1.2. "enc" (Encryption Al gorithm Header Paraneter

The "enc" (encryption algorithn) Header Paraneter identifies the
content encryption algorithmused to perform authenticated encryption
on the plaintext to produce the ciphertext and the Authentication
Tag. This algorithm MJST be an AEAD algorithmw th a specified key

l ength. The encrypted content is not usable if the "enc" val ue does
not represent a supported algorithm "enc" values should either be
registered in the | ANA "JSON Wb Signhature and Encryption Al gorithns"
registry established by [JWA] or be a value that contains a

Col I'i si on-Resi stant Name. The "enc" value is a case-sensitive ASCI
string containing a StringOrURI value. This Header Paraneter MJST be
present and MJST be understood and processed by inpl ementations.

A list of defined "enc" values for this use can be found in the | ANA
"JSON Wb Signature and Encryption Al gorithns" registry established
by [JWA]; the initial contents of this registry are the val ues
defined in Section 5.1 of [JWA].

4.1.3. "zip" (Conpression Al gorithn) Header Parameter

The "zip" (conmpression algorithm applied to the plaintext before
encryption, if any. The "zip" value defined by this specification
is:

o "DEF' - Compression with the DEFLATE [RFC1951] al gorithm

QO her val ues MAY be used. Conpression algorithmvalues can be
registered in the | ANA "JSON Wb Encryption Conpression Al gorithns"
regi stry established by [JWA]. The "zip" value is a case-sensitive
string. |If no "zip" paranmeter is present, no conpression is applied
to the plaintext before encryption. Wen used, this Header Parameter
MUST be integrity protected; therefore, it MJST occur only within the

Jones & Hil debrand St andards Track [Page 12]

RFC 7516 JSON Wb Encryption (JVE) May 2015

JWE Protected Header. Use of this Header Paraneter is OPTI ONAL
Thi s Header Paraneter MJST be understood and processed by
i mpl ement ati ons.

4.1.4. "jku" (JW Set URL) Header Paraneter

Thi s paraneter has the same neaning, syntax, and processing rules as
the "jku" Header Paraneter defined in Section 4.1.2 of [JW5], except
that the JWK Set resource contains the public key to which the JVWE
was encrypted; this can be used to deternmine the private key needed
to decrypt the JVE.

4.1.5. "jwk" (JSON Wb Key) Header Paraneter

Thi s paraneter has the sanme meani ng, syntax, and processing rules as
the "jwk" Header Paraneter defined in Section 4.1.3 of [JW5], except
that the key is the public key to which the JVWE was encrypted; this
can be used to deternine the private key needed to decrypt the JVE.

4.1.6. "kid" (Key I D) Header Paraneter

Thi s paraneter has the sanme meani ng, syntax, and processing rules as
the "kid" Header Paraneter defined in Section 4.1.4 of [JW5], except
that the key hint references the public key to which the JVE was
encrypted; this can be used to deternine the private key needed to
decrypt the JWE. This paraneter allows originators to explicitly
signal a change of key to JVE recipients.

4.1.7. "x5u" (X. 509 URL) Header Paraneter

Thi s paraneter has the same neani ng, syntax, and processing rules as
the "x5u" Header Paraneter defined in Section 4.1.5 of [JW5], except
that the X. 509 public key certificate or certificate chain [RFC5280]
contains the public key to which the JWE was encrypted; this can be
used to deternmine the private key needed to decrypt the JVE.

4.1.8. "x5c" (X. 509 Certificate Chain) Header Paraneter

Thi s paraneter has the sane meaning, syntax, and processing rules as
the "x5c¢" Header Paraneter defined in Section 4.1.6 of [JW5], except
that the X. 509 public key certificate or certificate chain [RFC5280]
contains the public key to which the JWE was encrypted; this can be
used to deternine the private key needed to decrypt the JVE.

See Appendi x B of [JWB] for an exanple "x5c" val ue.

Jones & Hil debrand St andards Track [Page 13]

RFC 7516 JSON Wb Encryption (JVE) May 2015

4.1.9. "x5t" (X. 509 Certificate SHA-1 Thunbprint) Header Paraneter

Thi s paraneter has the sanme meani ng, syntax, and processing rules as
the "x5t" Header Paraneter defined in Section 4.1.7 of [JW5], except
that the certificate referenced by the thunbprint contains the public
key to which the JVWE was encrypted; this can be used to deternine the
private key needed to decrypt the JWE. Note that certificate
thunmbprints are al so sonetinmes known as certificate fingerprints.

4.1.10. "xbt#S256" (X. 509 Certificate SHA-256 Thunbprint) Header
Par amet er

Thi s paraneter has the same neaning, syntax, and processing rules as
the "x5t#S256" Header Paraneter defined in Section 4.1.8 of [JW5],
except that the certificate referenced by the thunbprint contains the
public key to which the JWE was encrypted; this can be used to
determ ne the private key needed to decrypt the JWE. Note that
certificate thunbprints are al so sonetimes known as certificate
fingerprints.

4.1.11. "typ" (Type) Header Paraneter

Thi s paraneter has the sanme meani ng, syntax, and processing rules as
the "typ" Header Paraneter defined in Section 4.1.9 of [JW5], except
that the type is that of this conplete JVE

4.1.12. "cty" (Content Type) Header Paraneter

Thi s paraneter has the same meani ng, syntax, and processing rules as
the "cty" Header Paraneter defined in Section 4.1.10 of [JWB], except
that the type is that of the secured content (the plaintext).

4.1.13. “crit" (Critical) Header Paraneter

Thi s paraneter has the sanme meani ng, syntax, and processing rules as
the "crit" Header Parameter defined in Section 4.1.11 of [JWH],
except that Header Paranmeters for a JWE are being referred to, rather
than Header Paraneters for a JWS.

4.2. Public Header Parameter Nanes

Addi ti onal Header Parameter nanmes can be defined by those using JVEs.
However, in order to prevent collisions, any new Header Paraneter
nane should either be registered in the | ANA "JSON Wb Si gnature and
Encrypti on Header Paraneters" registry established by [JW5 or be a
Public Nane: a value that contains a Collision-Resistant Nane. In
each case, the definer of the name or value needs to take reasonable

Jones & Hil debrand St andards Track [Page 14]

RFC 7516 JSON Wb Encryption (JVE) May 2015

precautions to nake sure they are in control of the part of the
nanespace they use to define the Header Paraneter nane.

New Header Paraneters should be introduced sparingly, as they can
result in non-interoperable JWEs.

4.3. Private Header Paraneter Nanes

A producer and consurer of a JWE may agree to use Header Paraneter
nanes that are Private Names: names that are not Regi stered Header
Par amet er names (Section 4.1) or Public Header Paraneter nanes
(Section 4.2). Unlike Public Header Paraneter names, Private Header
Par amet er nanes are subject to collision and should be used with
cauti on.

5. Produci ng and Consum ng JWES
5.1. Message Encryption

The nmessage encryption process is as follows. The order of the steps
is not significant in cases where there are no dependenci es between
the inputs and outputs of the steps.

1. Determ ne the Key Managenent Mode enpl oyed by the al gorithm used
to determ ne the Content Encryption Key value. (This is the
algorithmrecorded in the "alg" (al gorithn) Header Paraneter of
the resulting JWE.)

2. VWen Key Wappi ng, Key Encryption, or Key Agreenent with Key
W appi ng are enpl oyed, generate a random CEK val ue. See RFC
4086 [RFC4086] for considerations on generating random val ues.
The CEK MJUST have a length equal to that required for the
content encryption algorithm

3. VWen Direct Key Agreenent or Key Agreenment with Key Wapping are
enpl oyed, use the key agreenent algorithmto conpute the val ue
of the agreed upon key. Wen Direct Key Agreenent is enployed,
let the CEK be the agreed upon key. Wen Key Agreenent with Key
W apping is enpl oyed, the agreed upon key will be used to wap
the CEK

4, When Key Wappi ng, Key Encryption, or Key Agreenent with Key
W appi ng are enpl oyed, encrypt the CEK to the recipient and | et
the result be the JWE Encrypted Key.

5. VWen Direct Key Agreenent or Direct Encryption are enployed, |et
the JWE Encrypted Key be the enpty octet sequence.

Jones & Hil debrand St andards Track [Page 15]

RFC 7516

10.

11.

12.

13.

14.

15.

16.

JSON Wb Encryption (JVE) May 2015

When Direct Encryption is enployed, let the CEK be the shared
symmetric key.

Conput e the encoded key val ue BASE64URL(JWVE Encrypted Key).

If the JWE JSON Serialization is being used, repeat this process
(steps 1-7) for each recipient.

Generate a random JVE Initialization Vector of the correct size
for the content encryption algorithm (if required for the
algorithm; otherwise, let the JWE Initialization Vector be the
enpty octet sequence.

Conpute the encoded Initialization Vector val ue BASE64URL(JVE
Initialization Vector).

If a "zip" paranmeter was included, conpress the plaintext using
the specified conpression algorithmand |l et Mbe the octet
sequence representing the conpressed plaintext; otherwise, let M
be the octet sequence representing the plaintext.

Create the JSON object(s) containing the desired set of Header
Par amet ers, whi ch together conprise the JOSE Header: one or nore
of the JWE Protected Header, the JWE Shared Unprotected Header
and the JWE Per-Reci pi ent Unprotected Header

Conput e the Encoded Protected Header val ue BASE64URL(UTF8(JVE
Protected Header)). |If the JWE Protected Header is not present
(whi ch can only happen when using the JWE JSON Serialization and
no "protected" nenmber is present), let this value be the enpty
string.

Let the Additional Authenticated Data encrypti on paramneter be
ASCI | (Encoded Protected Header). However, if a JWE AAD value is
present (which can only be the case when using the JWE JSON
Serialization), instead let the Additional Authenticated Data
encryption paraneter be ASCl | (Encoded Protected Header || '. " |
BASE64URL(JVE AAD)) .

Encrypt Musing the CEK, the JWE Initialization Vector, and the
Addi ti onal Authenticated Data val ue using the specified content
encryption algorithmto create the JWE C phertext value and the
JVE Aut hentication Tag (which is the Authentication Tag out put
fromthe encryption operation).

Conput e the encoded ci phertext val ue BASE64URL(JVE Ci phertext).

Jones & Hil debrand St andards Track [Page 16]

RFC 7516 JSON Wb Encryption (JVE) May 2015
17. Conpute the encoded Authentication Tag val ue BASE64URL(JVE
Aut henti cation Tag).

18. If a JWE AAD value is present, conpute the encoded AAD val ue
BASE64URL(JVEE AAD) .

19. Create the desired serialized output. The Conpact Serialization
of this result is the string BASE64URL(UTF8(JWE Prot ect ed

Header)) || .’ || BASE64URL(JWE Encrypted Key) || *. |
BASE64URL(JWE I nitialization Vector) || '." || BASE64URL(JWE
Ciphertext) || '." || BASE64URL(JVE Aut hentication Tag). The

JWE JSON Serialization is described in Section 7.2.
5.2. Message Decryption

The nessage decryption process is the reverse of the encryption
process. The order of the steps is not significant in cases where
there are no dependenci es between the inputs and outputs of the
steps. |If any of these steps fail, the encrypted content cannot be
val i dat ed

VWen there are multiple recipients, it is an application decision
whi ch of the recipients’ encrypted content must successfully validate

for the JWE to be accepted. In sone cases, encrypted content for al
reci pients nmust successfully validate or the JWE will be considered
invalid. In other cases, only the encrypted content for a single

reci pient needs to be successfully validated. However, in all cases,
the encrypted content for at |east one recipient MJST successfully
validate or the JWE MJUST be considered invalid.

1. Parse the JVE representation to extract the serialized val ues
for the conponents of the JWE. Wen using the JWE Conpact
Serialization, these conponents are the base64url - encoded
representations of the JWE Protected Header, the JWE Encrypted
Key, the JWE Initialization Vector, the JWE C phertext, and the
JVE Aut hentication Tag, and when using the JWE JSON
Serialization, these conponents al so i nclude the base64url -
encoded representation of the JWE AAD and t he unencoded JVE
Shared Unprotected Header and JWE Per - Reci pi ent Unprotected
Header val ues. Wen using the JWE Compact Serialization, the
JVE Protected Header, the JWE Encrypted Key, the JWE
Initialization Vector, the JWE Ci phertext, and the JVWE
Aut hentication Tag are represented as base64url -encoded val ues
in that order, with each val ue being separated fromthe next by
a single period ('.") character, resulting in exactly four
delimting period characters being used. The JWE JSON
Serialization is described in Section 7.2.

Jones & Hil debrand St andards Track [Page 17]

RFC 7516

Jones &

JSON Wb Encryption (JVE) May 2015

Base64ur|l decode the encoded representations of the JWE

Prot ected Header, the JWE Encrypted Key, the JWE Initialization
Vector, the JWE Ciphertext, the JWE Authentication Tag, and the
JVWE AAD, following the restriction that no |ine breaks,

whi t espace, or other additional characters have been used.

Verify that the octet sequence resulting fromdecoding the
encoded JWE Protected Header is a UTF-8-encoded representation
of a conpletely valid JSON object conformng to RFC 7159

[RFC7159]; let the JWE Protected Header be this JSON object.

If using the JWE Conpact Serialization, |et the JOSE Header be
the JWE Protected Header. Oherw se, when using the JWE JSON
Serialization, let the JOSE Header be the union of the nenbers
of the JWE Protected Header, the JWE Shared Unprotected Header
and the correspondi ng JVWE Per - Reci pi ent Unprotected Header, al
of which nust be conpletely valid JSON objects. During this
step, verify that the resulting JOSE Header does not contain
dupl i cat e Header Paraneter nanmes. Wen using the JWE JSON
Serialization, this restriction includes that the same Header
Par amet er name al so MJUST NOT occur in distinct JSON object

val ues that together conprise the JOSE Header

Verify that the inplenentation understands and can process al
fields that it is required to support, whether required by this
specification, by the algorithns being used, or by the "crit"
Header Parameter value, and that the val ues of those paraneters
are al so understood and support ed.

Determ ne the Key Managenent Mode enpl oyed by the al gorithm
specified by the "alg" (algorithn) Header Paraneter.

Verify that the JWE uses a key known to the recipient.

VWen Direct Key Agreenent or Key Agreenment with Key Wapping are
enpl oyed, use the key agreenent algorithmto conpute the val ue
of the agreed upon key. Wen Direct Key Agreenent is enployed,
let the CEK be the agreed upon key. Wen Key Agreenent with Key
W apping is enpl oyed, the agreed upon key will be used to
decrypt the JWE Encrypted Key.

When Key Wappi ng, Key Encryption, or Key Agreenent with Key
W appi ng are enpl oyed, decrypt the JWE Encrypted Key to produce
the CEK. The CEK MJUST have a length equal to that required for
the content encryption algorithm Note that when there are

multiple recipients, each recipient will only be able to decrypt
JVE Encrypted Key values that were encrypted to a key in that
reci pient’s possession. It is therefore normal to only be able

Hi | debr and St andards Track [Page 18]

RFC 7516 JSON Wb Encryption (JVE) May 2015

to decrypt one of the per-recipient JWE Encrypted Key values to
obtain the CEK value. Also, see Section 11.5 for security
consi derations on mitigating timng attacks.

10. When Direct Key Agreenent or Direct Encryption are enployed,
verify that the JWE Encrypted Key value is an enpty octet
sequence.

11. Wen Direct Encryption is enployed, let the CEK be the shared
symretric key.

12. Record whether the CEK could be successfully determ ned for this
reci pient or not.

13. If the JWE JSON Serialization is being used, repeat this process
(steps 4-12) for each recipient contained in the representation

14. Conpute the Encoded Protected Header val ue BASE64URL(UTF8(JVE
Protected Header)). |If the JWE Protected Header is not present
(which can only happen when using the JWE JSON Serialization and
no "protected" nenber is present), let this value be the enpty
string.

15. Let the Additional Authenticated Data encrypti on paraneter be
ASCI | (Encoded Protected Header). However, if a JWE AAD value is
present (which can only be the case when using the JWE JSON
Serialization), instead let the Additional Authenticated Data
encryption paraneter be ASClI I (Encoded Protected Header || . |
BASE64URL(JWE AAD)) .

16. Decrypt the JWE Ciphertext using the CEK, the JWE Initialization
Vector, the Additional Authenticated Data val ue, and the JVE
Aut hentication Tag (which is the Authentication Tag input to the
cal cul ation) using the specified content encryption algorithm
returning the decrypted plaintext and validating the JWE
Aut hentication Tag in the manner specified for the algorithm
rejecting the input without emtting any decrypted output if the
JWE Aut hentication Tag is incorrect.

17. If a "zip" paraneter was included, unconpress the decrypted
pl ai ntext using the specified conmpression algorithm

18. If there was no recipient for which all of the decryption steps
succeeded, then the JWE MJUST be considered invalid. O herw se,
output the plaintext. 1In the JWE JSON Serialization case, also
return a result to the application indicating for which of the
reci pients the decryption succeeded and fail ed.

Jones & Hil debrand St andards Track [Page 19]

RFC 7516 JSON Wb Encryption (JVE) May 2015

5.

6.

7.

7.

Finally, note that it is an application decision which algorithns may
be used in a given context. Even if a JWE can be successfully
decrypted, unless the algorithns used in the JWE are acceptable to
the application, it SHOULD consider the JWE to be invalid.

3. String Conparison Rules

1

2.

The string conparison rules for this specification are the same as
those defined in Section 5.3 of [JWE].

Key ldentification

The key identification nethods for this specification are the sane as
those defined in Section 6 of [JWS], except that the key being
identified is the public key to which the JWE was encrypted.

Serializations

JWEs use one of two serializations: the JWE Conpact Serialization or
the JWE JSON Serialization. Applications using this specification
need to specify what serialization and serialization features are
used for that application. For instance, applications night specify
that only the JWE JSON Serialization is used, that only JWE JSON
Serialization support for a single recipient is used, or that support
for multiple recipients is used. JVE inplenentations only need to

i mpl enent the features needed for the applications they are desi gned
to support.

JVE Conpact Serialization

The JWE Conpact Serialization represents encrypted content as a
conpact, URL-safe string. This string is:

BASE64URL(UTF8(JVE Protected Header)) || *. ||
BASE64URL(JWE Encrypted Key) || .7 ||
BASE64URL(JWE I nitialization Vector) || '." ||
BASE64URL(JWE Ci phertext) || '." ||
BASE64URL(JWE Aut henti cation Tag)

Only one recipient is supported by the JWE Conpact Serialization and
it provides no syntax to represent JWE Shared Unprotected Header, JWE
Per - Reci pi ent Unprotected Header, or JWE AAD val ues.

JWE JSON Serialization
The JWE JSON Serialization represents encrypted content as a JSON

object. This representation is neither optimzed for conpactness nor
URL safe.

Jones & Hil debrand St andards Track [Page 20]

RFC 7516 JSON Wb Encryption (JVE) May 2015

Two closely related syntaxes are defined for the JWE JSON
Serialization: a fully general syntax, with which content can be
encrypted to nore than one recipient, and a flattened syntax, which
is optimzed for the single-recipient case.

7.2.1. General JWE JSON Serialization Syntax

The foll owi ng nenbers are defined for use in top-level JSON objects
used for the fully general JWE JSON Serialization syntax:

pr ot ect ed
The "protected" nmenber MJST be present and contain the val ue
BASE64URL(UTF8(JVWE Prot ect ed Header)) when the JWE Protected
Header value is non-enpty; otherwi se, it MJST be absent. These
Header Parameter values are integrity protected.

unpr ot ect ed
The "unprotected" nenber MJUST be present and contain the value JVE
Shared Unprotected Header when the JWE Shared Unprotected Header
val ue is non-enpty; otherwi se, it MJIST be absent. This value is
represented as an unencoded JSON object, rather than as a string.
These Header Paraneter values are not integrity protected.

The "iv" nenber MJUST be present and contain the val ue
BASE64URL(JWE | nitialization Vector) when the JWE Initialization
Vector value is non-enpty; otherwi se, it MJST be absent.

aad
The "aad" nmenber MJST be present and contain the val ue
BASE64URL(JVWE AAD)) when the JWE AAD val ue is non-enpty;
otherwi se, it MJST be absent. A JWE AAD val ue can be included to
supply a base64url -encoded value to be integrity protected but not
encrypt ed.

ci phertext
The "ciphertext" nenber MJST be present and contain the val ue
BASE64URL(JWE Ci phertext).

tag
The "tag" menber MJST be present and contain the val ue
BASE64URL(JWE Aut hentication Tag) when the JWE Aut hentication Tag
val ue is non-enpty; otherwi se, it MJST be absent.

reci pi ents
The "recipients" nenber val ue MJUST be an array of JSON objects.
Each object contains information specific to a single recipient.
Thi s menber MJST be present with exactly one array el enent per

Jones & Hil debrand St andards Track [Page 21]

RFC 7516 JSON Wb Encryption (JVE) May 2015

reci pient, even if some or all of the array el enment values are the
enpty JSON object "{}" (which can happen when all Header Paraneter
val ues are shared between all recipients and when no encrypted key
i s used, such as when doing Direct Encryption).

The foll owi ng nenbers are defined for use in the JSON objects that
are elenents of the "recipients" array:

header
The "header" menber MJST be present and contain the val ue JVWE Per -
Reci pi ent Unprotected Header when the JWE Per-Reci pi ent
Unpr ot ect ed Header value is non-enpty; otherwi se, it MJST be
absent. This value is represented as an unencoded JSON obj ect,
rather than as a string. These Header Paraneter val ues are not
integrity protected.

encrypt ed_key
The "encrypted_key" menber MUST be present and contain the val ue
BASE64URL(JVWE Encrypted Key) when the JWE Encrypted Key value is
non-enpty; otherw se, it MJST be absent.

At | east one of the "header", "protected", and "unprotected" menbers
MJST be present so that "alg" and "enc" Header Paraneter val ues are
conveyed for each recipient conputation

Addi ti onal nenbers can be present in both the JSON objects defined
above; if not understood by inplenentations encountering them they
MJUST be i gnored.

Sone Header Paraneters, including the "alg" paraneter, can be shared
anmong all recipient conputations. Header Paraneters in the JVWE

Prot ect ed Header and JWE Shared Unprotected Header val ues are shared
anong all recipients.

The Header Parameter val ues used when creating or validating per-
reci pi ent ciphertext and Authentication Tag val ues are the union of
the three sets of Header Paraneter values that may be present: (1)
the JWE Protected Header represented in the "protected" nenber, (2)
the JWE Shared Unprotected Header represented in the "unprotected"
menber, and (3) the JWE Per-Recipi ent Unprotected Header represented
in the "header"” menber of the recipient’s array elenment. The union
of these sets of Header Paraneters conprises the JOSE Header. The
Header Paranmeter nanmes in the three | ocations MJST be disjoint.

Each JWE Encrypted Key value is conputed using the paraneters of the
correspondi ng JOSE Header value in the sane manner as for the JWE
Conpact Serialization. This has the desirable property that each JVE
Encrypted Key value in the "recipients" array is identical to the

Jones & Hil debrand St andards Track [Page 22]

RFC 7516 JSON Wb Encryption (JVE) May 2015

val ue that woul d have been conputed for the sane paraneter in the JVWE
Conpact Serialization. Likewi se, the JWE C phertext and JWE

Aut henti cation Tag val ues match t hose produced for the JWE Conpact
Serialization, provided that the JWE Protected Header value (which
represents the integrity-protected Header Paraneter val ues) nmatches
that used in the JWE Conpact Serialization.

Al'l recipients use the sane JWE Protected Header, JWE Initialization
Vector, JWE Ciphertext, and JWE Aut hentication Tag val ues, when
present, resulting in potentially significant space savings if the
message is large. Therefore, all Header Parameters that specify the
treatnment of the plaintext value MJST be the sane for all recipients.
This primarily nmeans that the "enc" (encryption al gorithn) Header
Paraneter value in the JOSE Header for each recipient and any
paraneters of that algorithm MJST be the sarne.

In summary, the syntax of a JWE using the general JWE JSON
Serialization is as follows:

{
"protected":"<integrity-protected shared header contents>"
"unprotected": <non-integrity-protected shared header contents>,
"recipients":|
{"header": <per-reci pi ent unprotected header 1 contents>,
"encrypted_key":"<encrypted key 1 contents>"},

{"header": <per-recipient unprotected header N contents>,
"encrypted_key":"<encrypted key N contents>"}],

"aad":"<additional authenticated data contents>"

"iv':"<initialization vector contents>"

“ci phertext":"<ci phertext contents>",

"tag":"<authentication tag contents>"

}

See Appendix A 4 for an exanple JVE using the general JWE JSON
Serialization syntax.

7.2.2. Flattened JWE JSON Serialization Syntax

The flattened JWE JSON Serialization syntax is based upon the genera
syntax, but flattens it, optimzing it for the single-recipient case.
It flattens it by renoving the "recipients" menber and instead

pl aci ng those nenbers defined for use in the "recipients" array (the
"header" and "encrypted key" nmenbers) in the top-Ilevel JSON object
(at the same level as the "ciphertext" menber).

Jones & Hil debrand St andards Track [Page 23]

RFC 7516 JSON Wb Encryption (JVE) May 2015

The "recipients" nenber MJUST NOT be present when using this syntax.
O her than this syntax difference, JWE JSON Serialization objects
using the flattened syntax are processed identically to those using
the general syntax.

In summary, the syntax of a JWE using the flattened JVWE JSON
Serialization is as foll ows:

{

"protected":"<integrity-protected header contents>"
"unprotected": <non-integrity-protected header contents>,
"header": <nobre non-integrity-protected header contents>,
"encrypted _key":"<encrypted key contents>"
"aad":"<additional authenticated data contents>"
"iv':"<initialization vector contents>"

"ci phertext":"<ci phertext contents>"
"tag":"<authentication tag contents>"

}

Not e that when using the flattened syntax, just as when using the
general syntax, any unprotected Header Paraneter values can reside in
ei ther the "unprotected" nenber or the "header" nenber, or in both.

See Appendix A5 for an exanple JVWE using the flattened JWE JSON
Serialization syntax.

8. TLS Requirenents

The Transport Layer Security (TLS) requirements for this
specification are the sane as those defined in Section 8 of [JWF].

9. Distinguishing between JWs and JVWE bj ects

There are several ways of distinguishing whether an object is a JW5
or JWE.. Al these nmethods will yield the same result for all |ega
i nput values; they may yield different results for mal forned inputs.

o |If the object is using the JW5 Conpact Serialization or the JWE
Conpact Serialization, the nunber of base64url-encoded segnents
separated by period ('.’) characters differs for JWss and JVEs.
JWBs have three segnents separated by two period (’.’) characters.
JVWEs have five segnents separated by four period ('.') characters.

o If the object is using the JW5 JSON Serialization or the JWE JSON
Serialization, the nenbers used will be different. JW5s have a
"payl oad" nenber and JWEs do not. JWEs have a "ciphertext" menber
and JWSs do not.

Jones & Hil debrand St andards Track [Page 24]

RFC 7516 JSON Wb Encryption (JVE) May 2015

o The JCSE Header for a JW5 can be distinguished fromthe JOSE
Header for a JWE by exam ning the "alg" (algorithm Header
Parameter value. |If the value represents a digital signature or
MAC al gorithm or is the value "none", it is for a JW5; if it
represents a Key Encryption, Key Wapping, Direct Key Agreenent,
Key Agreenment with Key Wapping, or Direct Encryption algorithm
it is for a JWE (Extracting the "alg" value to examine is
strai ghtforward when using the JW5 Conpact Serialization or the
JWE Conpact Serialization and nmay be nore difficult when using the
JW5S JSON Serialization or the JWE JSON Serialization.)

o The JOSE Header for a JWS can al so be distinguished fromthe JCSE
Header for a JWE by determ ning whether an "enc" (encryption
al gorithm nenber exists. |If the "enc" menber exists, it is a
JWE, otherwise, it is a JW5
10. |1 ANA Consi derations
10.1. JSON Wb Signature and Encrypti on Header Paraneters Registration
This section registers the Header Paraneter nanes defined in
Section 4.1 in the | ANA "JSON Wb Signature and Encrypti on Header
Par amet ers" registry established by [JW5].

10.1.1. Registry Contents

0 Header Paraneter Nane: "al g"

0 Header Paraneter Description: Algorithm

0 Header Paraneter Usage Location(s): JWE

o Change Controller: |ESG

o Specification Docunent(s): Section 4.1.1 of RFC 7516
0 Header Paraneter Nane: "enc"

0 Header Paraneter Description: Encryption Al gorithm
0 Header Paraneter Usage Location(s): JVWE

o Change Controller: |IESG

o Specification Docunent(s): Section 4.1.2 of RFC 7516
0 Header Paraneter Nane: "zip"

0 Header Paraneter Description: Conpression Al gorithm
0 Header Paraneter Usage Location(s): JWE

o Change Controller: |IESG

o Specification Docunent(s): Section 4.1.3 of RFC 7516

Jones & Hil debrand St andards Track [Page 25]

RFC 7516 JSON Wb Encryption (JVE) May 2015
0 Header Paraneter Nane: "jku"
0 Header Paraneter Description: JW Set URL
0 Header Paraneter Usage Location(s): JWE
o Change Controller: |ESG
o Specification Document(s): Section 4.1.4 of RFC 7516
0 Header Paraneter Nane: "jwk"
0 Header Paraneter Description: JSON Wb Key
0 Header Paraneter Usage Location(s): JWE
o0 Change Controller: |ESG
o Specification Docunent(s): Section 4.1.5 of RFC 7516
0 Header Paraneter Nane: "kid"
0 Header Paraneter Description: Key ID
0 Header Paraneter Usage Location(s): JWE
o Change Controller: |IESG
o Specification Docunent(s): Section 4.1.6 of RFC 7516
0 Header Paraneter Nane: "x5u"
0 Header Paraneter Description: X 509 URL
0 Header Paraneter Usage Location(s): JWE
o0 Change Controller: |IESG
o Specification Docunent(s): Section 4.1.7 of RFC 7516
0 Header Paraneter Nane: "x5c"
0 Header Paraneter Description: X 509 Certificate Chain
0 Header Paraneter Usage Location(s): JWE
o0 Change Controller: |ESG
o Specification Docunent(s): Section 4.1.8 of RFC 7516
0 Header Paraneter Nane: "x5t"
0 Header Paraneter Description: X 509 Certificate SHA-1 Thunbpri nt
0 Header Paraneter Usage Location(s): JWE
o Change Controller: |ESG
o Specification Docunent(s): Section 4.1.9 of RFC 7516
0 Header Paraneter Nane: "x5t#S256"
0 Header Paraneter Description: X 509 Certificate SHA-256 Thunbpri nt
0 Header Paraneter Usage Location(s): JWE
o Change Controller: |ESG
o Specification Docunent(s): Section 4.1.10 of RFC 7516
0 Header Paraneter Nane: "typ"
0 Header Paraneter Description: Type
0 Header Paraneter Usage Location(s): JWE
o Change Controller: |IESG
o Specification Docunent(s): Section 4.1.11 of RFC 7516
Jones & Hil debrand St andards Track [Page 26]

RFC 7516 JSON Wb Encryption (JVE) May 2015

0 Header Paraneter Nane: "cty"

0 Header Paraneter Description: Content Type

0 Header Paraneter Usage Location(s): JWE

o Change Controller: |ESG

o Specification Document(s): Section 4.1.12 of RFC 7516
0 Header Paraneter Nane: "crit"

0 Header Paraneter Description: Critica

0 Header Paraneter Usage Location(s): JVE

o0 Change Controller: |ESG
o Specification Docunent(s): Section 4.1.13 of RFC 7516

11. Security Considerations

Al of the security issues that are pertinent to any cryptographic
application nust be addressed by JW5/ JWE/ JWK agents. Ampbng these
i ssues are protecting the user’s asymetric private and symmetric
secret keys and enpl oyi ng counterneasures to various attacks.

Al'l the security considerations in the JW5 specification also apply
to this specification. Likewi se, all the security considerations in
XML Encryption 1.1 [WBC. REC-xm enc-corel-20130411] al so apply, other
than those that are XM specific.

11.1. Key Entropy and Random Val ues

See Section 10.1 of [JW5] for security considerations on key entropy
and random values. In addition to the uses of random values |isted
there, note that random val ues are al so used for Content Encryption
Keys (CEKs) and Initialization Vectors (I1Vs) when performng
encryption.

11.2. Key Protection

See Section 10.2 of [JW5] for security considerations on key
protection. 1In addition to the keys listed there that nust be
protected, inplenmentations performng encryption nust protect the key
encryption key and the Content Encryption Key. Conproni se of the key
encryption key may result in the disclosure of all contents protected
with that key. Simlarly, conprom se of the Content Encryption Key
may result in disclosure of the associated encrypted content.

Jones & Hil debrand St andards Track [Page 27]

RFC 7516 JSON Wb Encryption (JVE) May 2015

11.3. Using Matching Al gorithm Strengths

Al gorithns of matching strengths should be used together whenever
possi bl e. For instance, when AES Key Wap is used with a given key
size, using the sanme key size is recomended when AES GCMis al so
used. |If the key encryption and content encryption algorithns are
different, the effective security is determined by the weaker of the
two al gorithns.

Al so, see RFC 3766 [RFC3766] for information on determ ning strengths
for public keys used for exchanging symmetric keys.

11. 4. Adaptive Chosen-Ci phertext Attacks

When decrypting, particular care nmust be taken not to allow the JWE
reci pient to be used as an oracle for decrypting nessages. RFC 3218
[RFC3218] should be consulted for specific countermeasures to attacks
on RSAES-PKCS1-v1l 5. An attacker mght nodify the contents of the
"al g" Header Paraneter from "RSA-OAEP' to "RSAL 5" in order to
generate a formatting error that can be detected and used to recover
the CEK even if RSAES-OAEP was used to encrypt the CEK. It is
therefore particularly inportant to report all formatting errors to
the CEK, Additional Authenticated Data, or ciphertext as a single
error when the encrypted content is rejected.

Additionally, this type of attack can be prevented by restricting the
use of a key to a limted set of algorithns -- usually one. This
nmeans, for instance, that if the key is marked as being for

"RSA- OAEP" only, any attenpt to decrypt a nessage using the "RSAl 5"
algorithmw th that key should fail immediately due to invalid use of
the key.

11.5. Timing Attacks

To mitigate the attacks described in RFC 3218 [RFC3218], the
reci pi ent MUST NOT di stingui sh between format, padding, and | ength
errors of encrypted keys. It is strongly reconmmended, in the event
of receiving an inproperly formatted key, that the recipient
substitute a randomy generated CEK and proceed to the next step, to
mtigate timng attacks.

Jones & Hil debrand St andards Track [Page 28]

RFC 7516 JSON Wb Encryption (JVE) May 2015

12. References
12.1. Normmtive References

[IWA] Jones, M, "JSON Wb Algorithms (JWA)", RFC 7518,
DA 10.17487/ RFC7518, May 2015,
<http://ww. rfc-editor.org/info/rfc7518>.

[IVK] Jones, M, "JSON Wb Key (JWK)", RFC 7517,
DO 10.17487/ RFC7517, May 2015,
<http://ww.rfc-editor.org/info/rfc7517>.

[IWB] Jones, M, Bradley, J., and N. Sakinura, "JSON V&b
Signature (JW8)", RFC 7515, DO 10.17487/ RFC7515, My
2015, <http://www. rfc-editor.org/info/rfc7515>.

[RFC1951] Deutsch, P., "DEFLATE Conpressed Data Fornmat Specification
version 1.3", RFC 1951, DO 10.17487/ RFC1951, May 1996,
<http://ww. rfc-editor.org/info/rfcl951>.

[RFC20] Cerf, V., "ASCI| format for Network Interchange", STD 80,
RFC 20, DO 10.17487/ RFC0020, Cctober 1969,
<http://ww. rfc-editor.org/info/rfc20>.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi renment Level s", BCP 14, RFC 2119,
DO 10.17487/ RFC2119, March 1997,
<http://ww. rfc-editor.org/info/rfc2119>.

[RFC3629] VYergeau, F., "UTF-8, a transformation fornat of |SO
10646", STD 63, RFC 3629, DO 10.17487/ RFC3629, Novenber
2003, <http://www. rfc-editor.org/info/rfc3629>.

[RFC4949] Shirey, R, "Internet Security d ossary, Version 2",
FYl 36, RFC 4949, DA 10. 17487/ RFC4949, August 2007,
<http://ww. rfc-editor.org/info/rfc4949>.

[RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
Housley, R, and W Polk, "Internet X 509 Public Key
Infrastructure Certificate and Certificate Revocation List
(CRL) Profile", RFC 5280, DO 10.17487/ RFC5280, May 2008,
<http://ww. rfc-editor.org/info/rfc5280>.

[RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data

I nterchange Format", RFC 7159, DO 10.17487/RFC7159, March
2014, <http://ww.rfc-editor.org/info/rfc7159>.

Jones & Hil debrand St andards Track [Page 29]

RFC 7516 JSON Wb Encryption (JVE) May 2015

[UNI CODE] The Uni code Consortium "The Unicode Standard”,
<htt p://wwv. uni code. or g/ versi ons/ | atest/ >.

12. 2. I nformati ve References

[AES] National Institute of Standards and Technol ogy (NI ST),
"Advanced Encryption Standard (AES)", FIPS PUB 197,
Noverber 2001, <http://csrc.nist.gov/publications/
fips/fipsl97/fips-197. pdf>.

[JSE] Bradl ey, J. and N. Sakinura (editor), "JSON Sinple
Encryption", Septenber 2010,
<http://jsonenc.info/enc/1.0/>.

[ISMS] Rescorla, E. and J. Hildebrand, "JavaScript Message
Security Format", Work in Progress,
draft-rescorl a-jsns-00, March 2011.

[NI ST. 800- 38D
National Institute of Standards and Technol ogy (N ST),
"Recomrendati on for Bl ock C pher Mdes of Qperation:
Gal oi s/ Counter Myde (GCM and GVAC', NI ST PUB 800- 38D,
Novenmber 2007, <http://csrc.nist.gov/publications/
ni st pubs/ 800- 38D/ SP- 800- 38D. pdf >.

[RFC3218] Rescorla, E., "Preventing the MIIlion Message Attack on
Crypt ographi c Message Syntax", RFC 3218,
DO 10.17487/ RFC3218, January 2002,
<http://ww.rfc-editor.org/info/rfc3218>.

[RFC3447] Jonsson, J. and B. Kaliski, "Public-Key Cryptography
St andards (PKCS) #1: RSA Cryptography Specifications
Version 2.1", RFC 3447, DO 10.17487/ RFC3447, February
2003, <http://www. rfc-editor.org/info/rfc3447>.

[RFC3766] O nman, H and P. Hoffrman, "Determ ning Strengths For
Public Keys Used For Exchangi ng Synmetric Keys", BCP 86,
RFC 3766, DO 10. 17487/ RFC3766, April 2004,
<http://ww. rfc-editor.org/infol/rfc3766>.

[RFC4086] Eastlake 3rd, D., Schiller, J., and S. Crocker,
"Randomess Requirenments for Security", BCP 106, RFC 4086,
DO 10.17487/ RFC4086, June 2005,
<http://ww.rfc-editor.org/info/rfc4086>.

Jones & Hil debrand St andards Track [Page 30]

RFC 7516 JSON Wb Encryption (JVE) May 2015

[RFC5652] Housley, R, "Cryptographic Message Syntax (CMS)", STD 70,
RFC 5652, DO 10.17487/ RFC5652, Septenber 2009,
<http://ww.rfc-editor.org/infol/rfc5652>.

[WVBC. REC- xml enc- corel-20130411]
Eastl ake, D., Reagle, J., Hrsch, F., and T. Roessler,
"XM. Encryption Syntax and Processing Version 1.1", Wrld
W de Web Consortium Recommendati on
REC- xm enc-corel-20130411, April 2013,
<http://ww. w3. org/ TR/ 2013/ REC- xm enc- cor el- 20130411/ >.

Jones & Hil debrand St andards Track [Page 31]

RFC 7516 JSON Wb Encryption (JVE) May 2015

App

A 1.

A 1.

endi x A. JWE Exanpl es
Thi s section provides exanpl es of JWE conputations.
Exampl e JWE usi ng RSAES- OAEP and AES GCM

Thi s exanpl e encrypts the plaintext "The true sign of intelligence is
not know edge but inagination." to the recipient using RSAES- QAEP f or
key encryption and AES GCM for content encryption. The
representation of this plaintext (using JSON array notation) is:

[84, 104, 101, 32, 116, 114, 117, 101, 32, 115, 105, 103, 110, 32,
111, 102, 32, 105, 110, 116, 101, 108, 108, 105, 103, 101, 110, 99,
101, 32, 105, 115, 32, 110, 111, 116, 32, 107, 110, 111, 119, 108,
101, 100, 103, 101, 32, 98, 117, 116, 32, 105, 109, 97, 103, 105,

110, 97, 116, 105, 111, 110, 46]

1. JOSE Header

The foll owi ng exanpl e JWE Protected Header declares that:

o The Content Encryption Key is encrypted to the recipient using the

RSAES- QAEP al gorithmto produce the JWE Encrypted Key.

o Authenticated encryption is performed on the plaintext using the
AES GCM al gorithmwith a 256-bit key to produce the ciphertext and
t he Aut hentication Tag.

{"al g": " RSA- QAEP", "enc": " A256CGCM'}

Encoding this JWE Protected Header as BASE64URL(UTF8(JWE Protected
Header)) gives this val ue:

eyJhbGei O JSUOEt TOFFUCI s mVuYy! 61 kEyNTZHQOOi f Q

A.1.2. Content Encryption Key (CEK)

CGenerate a 256-bit random CEK. I n this exanple, the value (using
JSON array notation) is:

[177, 161, 244, 128, 84, 143, 225, 115, 63, 180, 3, 255, 107, 154,
212, 246, 138, 7, 110, 91, 112, 46, 34, 105, 47, 130, 203, 46, 122,
234, 64, 252]

Jones & Hil debrand St andards Track [Page 32]

RFC 7516 JSON Wb Encryption (JVE) May 2015

A.1.3. Key Encryption

Encrypt the CEK with the recipient’s public key using the RSAES- OAEP
algorithmto produce the JWE Encrypted Key. This exanple uses the
RSA key represented in JSON Wb Key [JWK] format below (with |ine
breaks within values for display purposes only):

{"kty":"RSA",

"n": " oahU oWWKOus KNuOR6HAwWK f 40BUXHTXRvgbh48E- BWxkeDN bC4he8r UW
cJoZmds2h7M70i mEVhRUSd]j | NXt gl | XI 4DFgcl 1Dgj TOLewND8MA2Kr f 3S
psk_ZkoFni | akGygTwpZ3uesH PFABNI UYpO N15dsQRkgr OvEhxN92i 2a
sbQenSzZeyaxzi K72Uwxr r KOExv6kc5t wXTg4h- QChLA n0_m UZwf sRaVs
t Ps6nB6Xr gxnxbWhoj f 663t uUEQue GC- FCM r a36COknDFGzKsNa7LZK2dj
YgyD3JR _MB_4NUJW TgOQ wHYbxevoJAr m L5St owj zGy- _bq6GW',

"e": " AQAB",

"d":"kLdtlj 6GoDks_ApCSTYQ el cNt t | Ki OyPzM XHel - yk1F7- kpDxY4- WY5N
W/5Knt aEeXS1j 82E375xxhVWWHXyvj YecPTOf pwR_MBgV8n9Hr h2anTpTD9
3Dt 62y pWByDsJzBnTnr Yuli WwARgBKr EYY46qAZI r A2x Amnim2 X7uGR1hghk
gDp0Vgj 3kbSCz1Xyf Cs6_LehBwt xH yh8Ri py40p24nmoQAbgxVw3r xT_vI
t 3UVedWDBJIKJI Ozl pUf - KTVI 2Pt gm dARXTEt E-i d- 4QJr Oh- K- VFs3VSnd
VTl znSxfyrj 81 LL6MG W8YAu7VI LSB3l OM85- 4gE3Dzgr Tj gyQ',

"p":"1r52Xk46¢c- Lsf B5P442p7at dPUr xQSy4nt i _t ZI 3Mgf 2EuFVbUoDBvaRQ
SWkkbkmpEzL7JXr 0SBj Sr K3YI QgYdMgy AEPTPj] Xv_hl 2_1eTSPVZf zLOI f
f Nn031 XgWF5MDFuoUYEOhzb2vhr | N_r Kr bf DI wbTr j j gi eRowC6C 0",

"q": "wWLb35x7hmMZsWInB vl e87i hgZ19S8| BERCOLI sZHayZVe9H 9gDVCOBmM
UDdaDYVTSNx_8FywlYYa9XG GnDew00J28cRUoeBB j KI 1ona00r v1T9aX
| WkKwd4gvxFl nOW 3QRLOKEBRzk2Rat UBnnmDZJ T Af wTs0g68UZHvt c",

"dp": " ZK- YWE7di UnOgR1t R7w8WHt ol Dx3MZ_OTow Fvgf e@Si r esXj nBgZ5KL
hMXvo- uz- KUJWDx S5pFQ_MdevdoldKi RTj Vw_x4Nyqy XPMbnULPkcpU827
r npZz AJKpdhWAgqr XGKAECQHOXt 4t aznj nd_zVpAnZZq60WPVBM KcuE",

"dq": " DgOogf gJ1DdFGXi LvQEZnuKENOUUNnsJBXxK| ydc3j 4ZYdBi MRAY86x0vHC
ywecM YYg4yoCAYZa9hNvVesj qA3Fei L19r k8g6@29Tt Ocj 8qqyFpz9vNDB
Uf CAi JVeESQ JDZPYHJHY8v 1b- 0- Z2X5t vLx- TCekf 7oxyeKDUgKW i s",

"qi " " VI MOMYbPf 47dT1w_z DUXf Pi ms SegnMOAl1z TaX7aGk_8ur Y6R8- Z\WLFx U7
Al WAY LW bqg6t 16VFd7hQd0y6f | UK4SI OydB61gwanOs XGOAOv82cHOE3
eL4Hrt ZkUuKvnPr MhsUUFI f UdybVzxyj z9JF_XyaYl4ar dLSj f 4L_FNY"

Jones & Hil debrand St andards Track [Page 33]

RFC 7516 JSON Wb Encryption (JVE) May 2015

The resulting JWE Encrypted Key val ue is:

[56, 163, 154, 192, 58, 53, 222, 4, 105, 218, 136, 218, 29, 94, 2083,
22, 150, 92, 129, 94, 211, 232, 53, 89, 41, 60, 138, 56, 196, 216,
82, 98, 168, 76, 37, 73, 70, 7, 36, 8, 191, 100, 136, 196, 244, 220,
145, 158, 138, 155, 4, 117, 141, 230, 199, 247, 173, 45, 182, 214,
74, 177, 107, 211, 153, 11, 205, 196, 171, 226, 162, 128, 171, 182,
13, 237, 239, 99, 193, 4, 91, 219, 121, 223, 107, 167, 61, 119, 228,
173, 156, 137, 134, 200, 80, 219, 74, 253, 56, 185, 91, 177, 34, 158,
89, 154, 205, 96, 55, 18, 138, 43, 96, 218, 215, 128, 124, 75, 138,
243, 85, 25, 109, 117, 140, 26, 155, 249, 67, 167, 149, 231, 100, 6,
41, 65, 214, 251, 232, 87, 72, 40, 182, 149, 154, 168, 31, 193, 126,
215, 89, 28, 111, 219, 125, 182, 139, 235, 195, 197, 23, 234, 55, 58,
63, 180, 68, 202, 206, 149, 75, 205, 248, 176, 67, 39, 178, 60, 98,
193, 32, 238, 122, 96, 158, 222, 57, 183, 111, 210, 55, 188, 215,
206, 180, 166, 150, 166, 106, 250, 55, 229, 72, 40, 69, 214, 216,
104, 23, 40, 135, 212, 28, 127, 41, 80, 175, 174, 168, 115, 171, 197,
89, 116, 92, 103, 246, 83, 216, 182, 176, 84, 37, 147, 35, 45, 219,
172, 99, 226, 233, 73, 37, 124, 42, 72, 49, 242, 35, 127, 184, 134,
117, 114, 135, 206]

Encoding this JWE Encrypted Key as BASE64URL(JWE Encrypted Key) gives
this value (with line breaks for display purposes only):

OKCawbDo13gRp20j aHV7LFpZcgV7 T6DVZKTY KOMTYUrKo TCVIRgck CL9Ki MT03JCe
i pSEAdY3mx_et LbbWSr Fr 05kLzcSr 4gKAq7YN7e9j wQRb23nf a6¢c9d- St nl mGy FDb
Sv04uVux| p5Zms 1gNxKKK2Da14B8S4r zVRI t dYwam | Dp5XnZAYpQdb76Fdl KLaV
nggf wX7XWRxv2322i - vDXRf qNzo_t ETKzpVLzf i wQyeyPG.BlI 066YJ7eChdv0j e8
1860ppamavo35UgoRdbYaBcoh9Qcf yl Qr 660c6vFWKRcZ_ZT2LawCWI y3br GPi

6UkI f Cpl M1 j f 7i GAXKHzg

A l. 4. Initialization Vector

CGenerate a random 96-bit JWE Initialization Vector. |In this exanple,
the value is:

[227, 197, 117, 252, 2, 219, 233, 68, 180, 225, 77, 219]

Encoding this JWE Initialization Vector as BASE64URL(JVE
Initialization Vector) gives this val ue:

48V1_ALb6US04U3b

Jones & Hil debrand St andards Track [Page 34]

RFC 7516 JSON Wb Encryption (JVE) May 2015

A.1.5. Additional Authenticated Data

Let the Additional Authenticated Data encryption paramneter be
ASCI | (BASE64URL(UTF8(JWE Protected Header))). This value is:

[101, 121, 74, 104, 98, 71, 99, 105, 79, 105, 74, 83, 85, 48, 69,
116, 84, 48, 70, 70, 85, 67, 73, 115, 73, 109, 86, 117, 89, 121, 73,
54, 73, 107, 69, 121, 78, 84, 90, 72, 81, 48, 48, 105, 102, 81]

A.1.6. Content Encryption

Perform aut henti cated encryption on the plaintext with the AES GCM
al gorithmusing the CEK as the encryption key, the JVWE Initialization
Vector, and the Additional Authenticated Data val ue above, requesting
a 128-bit Authentication Tag output. The resulting ciphertext is:

[229, 236, 166, 241, 53, 191, 115, 196, 174, 43, 73, 109, 39, 122,
233, 96, 140, 206, 120, 52, 51, 237, 48, 11, 190, 219, 186, 80, 111
104, 50, 142, 47, 167, 59, 61, 181, 127, 196, 21, 40, 82, 242, 32,
123, 143, 168, 226, 73, 216, 176, 144, 138, 247, 106, 60, 16, 205,
160, 109, 64, 63, 192]

The resulting Authentication Tag val ue is:

[92, 80, 104, 49, 133, 25, 161, 215, 173, 101, 219, 211, 136, 91,
210, 145]

Encoding this JWE Ci phertext as BASE64URL(JWE Ci phertext) gives this
value (with line breaks for display purposes only):

5eynmBTW c8SuKOl t J3r pYl zCeDQz 7TALVt u6UE@oM4vpzs9t X EFShS8i B7| 6]
Sdi wkl r 3aj wQzaBt @D_A

Encoding this JWE Authentication Tag as BASE64URL(JWE Aut henti cati on
Tag) gives this val ue:

XFBoMyUZodet ZdvTi FvSkQ

Jones & Hil debrand St andards Track [Page 35]

RFC 7516 JSON Wb Encryption (JVE) May 2015

A.1.7. Conplete Representation

Assenbl e the final representation: The Conpact Serialization of this
result is the string BASE64URL(UTF8(JVE Protected Header)) || '. ||
BASE64URL(JWE Encrypted Key) || '." || BASE64URL(JVEE Initialization

Vector) || . || BASE64URL(JVE Ciphertext) || '.’ || BASE64URL(JVE

Aut henti cation Tag).

The final result in this exanple (with line breaks for display
pur poses only) is:

eyJhbCci G JSUOEt TOFFUCI sl mVuYyl 61 kEy NTZHQOOi f Q.

OKCawbDo13gRp20j aHV7LFpZcgV7 T6DVZKTY KOMTYUrKo TCVIRgck CL9Ki MT03JCe
i psEAdY3nmx_et LbbW5r Fr 05kLzcSr 4gKAq7YN7e9j wQRb23nf a6¢c9d- St nl mGy FDb
Sv04uVux| p5Zms 1gNxKKK2Da14B8S4r zVRI t dYwam | Dp5XnZAYpQdb76Fdl KLaV
nggf wX7XWRxv2322i - vDxRf qNzo_t ETKzpVLzf i wQyeyPG.BlI 066YJ7eChdv0j e8
1860ppamavo35UgoRdbYaBcoh9Qcf yl Qr 660c6vFWKRcZ_ZT2LawCWI | y3br GP

6UkI f Cpl M1 j f 7i GAXKHzg.

48V1_ALb6US04U3D.

5eynBTW c8SuKOl t J3r pYl zCeDQz 7TALVt u6UG0M4vpzs9t X EFShS8i B7j 6j i

Sdi wkl r 3aj wQzaBt QD_A.

XFBoMyUZodet ZdvTi FvSkQ

A . 1.8. Validation

This exanple illustrates the process of creating a JWE with

RSAES- QAEP for key encryption and AES GCM for content encryption
These results can be used to validate JWE decryption inplenentations
for these algorithnms. Note that since the RSAES- QAEP computati on

i ncl udes random val ues, the encryption results above will not be
conpl etely reproduci bl e. However, since the AES GCM conputation is
determ nistic, the JWE Encrypted Ci phertext values will be the sane
for all encryptions performed using these inputs.

A. 2. Exanple JWE using RSAES-PKCS1l-vl1l 5 and AES 128 CBC HMAC SHA 256
Thi s exanple encrypts the plaintext "Live long and prosper." to the
reci pi ent using RSAES-PKCS1-v1_ 5 for key encryption and
AES 128 CBC HVAC SHA 256 for content encryption. The representation
of this plaintext (using JSON array notation) is:

[76, 105, 118, 101, 32, 108, 111, 110, 103, 32, 97, 110, 100, 32,
112, 114, 111, 115, 112, 101, 114, 46]

Jones & Hil debrand St andards Track [Page 36]

RFC 7516 JSON Wb Encryption (JVE) May 2015

A 2.1. JOSE Header

The foll owi ng exanpl e JWE Protected Header declares that:

o The Content Encryption Key is encrypted to the recipient using the
RSAES- PKCS1-v1 5 algorithmto produce the JWE Encrypted Key.

0o Authenticated encryption is performed on the plaintext using the
AES 128 CBC HVAC SHA 256 al gorithmto produce the ciphertext and
t he Aut hentication Tag.

{"al g":"RSA1_5", "enc": " A128CBC- HS256" }

Encodi ng this JWE Protected Header as BASE64URL(UTF8(JWE Pr ot ected
Header)) gives this val ue:

eyJhbCGci O JSUWEXxXzUi LCII bnM G JBMIT 4QQJDLUNTM U2I nO
A.2.2. Content Encryption Key (CEK)
Generate a 256-bit random CEK. In this exanple, the key value is:
[4, 211, 31, 197, 84, 157, 252, 254, 11, 100, 157, 250, 63, 170, 106,

206, 107, 124, 212, 45, 111, 107, 9, 219, 200, 177, 0, 240, 143, 156,
44, 207]

Jones & Hil debrand St andards Track [Page 37]

RFC 7516 JSON Wb Encryption (JVE) May 2015

A.2.3. Key Encryption

Encrypt the CEK with the recipient’s public key using the

RSAES- PKCS1-v1 5 algorithmto produce the JWE Encrypted Key. This
exanpl e uses the RSA key represented in JSON Wb Key [JWK] format
bel ow (with line breaks within values for display purposes only):

{"kty":"RSA",

"n":"sXchDaQebHnPi GryDOAT4saGEUet Syo9MKLOoWFsuer i 23bQdgWh4Dy 1W
Uz ewbgBHod5pc MOHI5GORV3J DXbol RROSBi geCsyj ULhGz HHy Xss8UDpr e
cbAYxknTcQkhsl ANGRUZmMITOQBQTRsLAL 6BTYuyvVRIhS8exSZEy_c4gs_
7svl JIJQAHI_Nxsi | oLWAEK7- QBUXERGYw_75I Dr GA84- | A_- Ct 4eTl XHBI
Y2EaV7t 7Lj JaynVJICpkv4LKj TTAum GUI uGhr NhZLuF_RILgqHpM2KkgWFLU
7-VTdL1VbC2t ej vcl 2Bl MkEpk 1BzBZI OKQBOGaDWFLN- aEAW3VRW' ,

e": " AQAB",

"d": " VFOWOgXr 8nvZNyaaJLXdnNPXZKRaWC) kU5QRegQQp TBMahpr MW pR8Sxq
10PThh_J6MJD8Z35wky9b8e EQOpwWNS8x| h1l OFRRBoNgDlI KVOkuOazb-ry
ng8cxj DTLZQBFz 7] Sj RLKI op- YKaUHc9Gs Eof QqYr uPhz SA- Quaj ZGPbE_
0ZaVDJHf yd7UUBUKunFMscbf | YAAOYJqVI VwaYR5zVEEceUj NnTNo_ CVSj
- WXLOBVZf CUAVLgWAdpf 1Srt Zj St 34YLsRar Sb127r eG_DUwg9Ch- Ky
T1SkHgUWRVGey| y 7uvVGRSDws Xy pdr Ni nPA4j | hoNdi zK2zF2CWY',

p":"9gY2wel 6S6L0j uEKsbe DAWpd9WM gqFoeA9vEy EUuk4kLwBKcoelx4HG68
i k918hdDSE9vDQSccA3x XHOAFOPJ8RIEel AbTi 1vwWBYnbTp87X- xcPW EP
kr doUKW60t gslaNd _Nnc9LEVVPMS390zbFxt 8TN _bi aBgel NgbC95sM',

"q":"uKl CKvKv_ZJM/cdl s5vVSU 6¢Pt Yl 11 j Wt ExV_skst VRSN 9r 66j dd9-y

BhVf uG4shsp2j 7r Gnl i 0901RBeHo6 TPKW/VYkPuli YhQXwdj | ABf w- MVsN
- 3bQ76W.dt 2SDxsHs7q7zPy Uy HXnmps7ycZ5¢72wGkUMNG Yel ki NSO",
"dp": "wOkZbV63cVRvVX6yk3C8cMk02qCWvaY8nsqll mVBYhGHAEcL6FWHX5h9yuv
ngs4i LEFk6eALoUSAvI VEwc L4t xwOLsSWH zKI - hwoReoP77cCQdSL4AVcr a
Hawl kpyd2TW E5evgbhW OxnZee3cXJIBKAI 641 k6] Zxbvk- RR3pEhNnCs",
"dqg":"0_8V14SezckO6CNLKs bt PdFi 09 _kClDsuUTd2LAf I | VeMZ7j n1Gus_Ff
7B71 Vx3p5KuBGOVFSL- qi f Lb6nQnLysgHDh132NDi 0ZkhH7m 7hPG- PYE_
odApKdngECHW\WOJ - FOJWAUd6D2B_1TvFINXA2Qx- i GYn8OVVW1Bsmp6qU"',

"qgi":"eNho5yRBEBxhGBt QRwOQ r ZsB66Tr f FReG_Cct el 1aCneTOELGhYI R C

t UKTRcl | f uEPnNsNDPbLoLggqCVznFbvdB7x- Tl - nDl _eFTj 2Ki qwGqE9PZ
BONNTWMV H3VRRSLWACVY PnSi wP8N5Usy - WIRXS- V7 Tbpx| hvepTf EONNo"

Jones & Hil debrand St andards Track [Page 38]

RFC 7516 JSON Wb Encryption (JVE) May 2015

The resulting JWE Encrypted Key val ue is:

[80, 104, 72, 58, 11, 130, 236, 139, 132, 189, 255, 205, 61, 86, 151,
176, 99, 40, 44, 233, 176, 189, 205, 70, 202, 169, 72, 40, 226, 181
156, 223, 120, 156, 115, 232, 150, 209, 145, 133, 104, 112, 237, 156,
116, 250, 65, 102, 212, 210, 103, 240, 177, 61, 93, 40, 71, 231, 223,
226, 240, 157, 15, 31, 150, 89, 200, 215, 198, 203, 108, 70, 117, 66,
212, 238, 193, 205, 23, 161, 169, 218, 243, 203, 128, 214, 127, 253,
215, 139, 43, 17, 135, 103, 179, 220, 28, 2, 212, 206, 131, 158, 128,
66, 62, 240, 78, 186, 141, 125, 132, 227, 60, 137, 43, 31, 152, 199,
54, 72, 34, 212, 115, 11, 152, 101, 70, 42, 219, 233, 142, 66, 151
250, 126, 146, 141, 216, 190, 73, 50, 177, 146, 5, 52, 247, 28, 197,
21, 59, 170, 247, 181, 89, 131, 241, 169, 182, 246, 99, 15, 36, 102,
166, 182, 172, 197, 136, 230, 120, 60, 58, 219, 243, 149, 94, 222,
150, 154, 194, 110, 227, 225, 112, 39, 89, 233, 112, 207, 211, 241,
124, 174, 69, 221, 179, 107, 196, 225, 127, 167, 112, 226, 12, 242,
16, 24, 28, 120, 182, 244, 213, 244, 153, 194, 162, 69, 160, 244,
248, 63, 165, 141, 4, 207, 249, 193, 79, 131, 0, 169, 233, 127, 167,
101, 151, 125, 56, 112, 111, 248, 29, 232, 90, 29, 147, 110, 169,
146, 114, 165, 204, 71, 136, 41, 252]

Encoding this JWE Encrypted Key as BASE64URL(JWE Encrypted Key) gives
this value (with line breaks for display purposes only):

UGhl OguC71 uEvf _NPVaXsGwLOmwc1Gyql | KOKInN94nHPol t GRhWhw7Zx0- kFm
ININ8LE9XShH59 i 8JOPH5ZZy Nf Gy2x GdULU7sHNF6Gp2vPLgNZ deLKxGHZ7Pc
HALUz0CegEl - 8E66] X2E4zyJKx- YxzZI | t RzC5hl Ri r b6Y5C _p- ko3YvkkysZl F
NPccxRU7qvelWYPxgbb2Yw8kZga2r M 5ng8Ct vzl V7el pr CbuPhcCdZ6XDP0_F8
r kXds2vE4X- ncO MBhAYHH 29NXOntKi RaDO- D- | j QTP- cFPgwCp6X- nZZd90HBv
- B3oWh2ThgnScgXVR4gp_A

A 2.4. Initialization Vector

Cenerate a random 128-bit JWE Initialization Vector. |In this
exanpl e, the value is:

[3, 22, 60, 12, 43, 67, 104, 105, 108, 108, 105, 99, 111, 116, 104,
101]

Encoding this JWE Initialization Vector as BASE64URL(JWE
Initialization Vector) gives this val ue:

AxY8DCt Dad shd j b3RoZQ

Jones & Hil debrand St andards Track [Page 39]

RFC 7516 JSON Wb Encryption (JVE) May 2015

A.2.5. Additional Authenticated Data

Let the Additional Authenticated Data encryption paramneter be
ASCI | (BASE64URL(UTF8(JWE Protected Header))). This value is:

[101, 121, 74, 104, 98, 71, 99, 105, 79, 105, 74, 83, 85, 48, 69,
120, 88, 122, 85, 105, 76, 67, 74, 108, 98, 109, 77, 105, 79, 105,
74, 66, 77, 84, 73, 52, 81, 48, 74, 68, 76, 85, 104, 84, 77, 106, 85,
50, 73, 110, 48]

A.2.6. Content Encryption

Perform aut henti cated encryption on the plaintext with the

AES 128 CBC HWVAC SHA 256 al gorithmusing the CEK as the encryption
key, the JWE Initialization Vector, and the Additional Authenticated
Dat a val ue above. The steps for doing this using the values from
Appendi x A.3 are detailed in Appendix B. The resulting ciphertext
is:

[40, 57, 83, 181, 119, 33, 133, 148, 198, 185, 243, 24, 152, 230, 6,
75, 129, 223, 127, 19, 210, 82, 183, 230, 168, 33, 215, 104, 143,
112, 56, 102]

The resulting Authentication Tag val ue is:

[246, 17, 244, 190, 4, 95, 98, 3, 231, 0, 115, 157, 242, 203, 100,
191]

Encoding this JWE Ci phertext as BASE64URL(JWE Ci phertext) gives this
val ue:

KDl Tt XchhZTGuf MYnOYGS4Hf f x PSUr f mgCHXal 9wOGY

Encoding this JWE Authentication Tag as BASE64URL(JWE Aut henti cati on
Tag) gives this val ue:

9hHOVgRf YgPnAHOd8st kvw
A 2.7. Complete Representation
Assenbl e the final representation: The Conpact Serialization of this
result is the string BASE64URL(UTF8(JWE Protected Header)) || *. |
BASE64URL(JWE Encrypted Key) || '." || BASE64URL(JVEE Initialization

Vector) || *.’ || BASE64URL(JVE Ciphertext) || '. || BASE64URL(JIVE
Aut henti cati on Tag).

Jones & Hil debrand St andards Track [Page 40]

RFC 7516 JSON Wb Encryption (JVE) May 2015

The final result in this exanple (with line breaks for display
pur poses only) is:

eyJhbCci G JSUOExXzUi LCII bM G JBMTI 4Q0JDLUNTM U21 nO.

UGhl OguC71 uEvf _NPVaXsGwLOmwc1Gyql | KOKLInN94nHPol t GRhWhw72Zx0- kFm
ININ8LE9IXShH59_i 8J0PH5ZZy Nf Gy 2x GCAULU7sHNF6Gp2vPLgNZ__deLKxGHZ7Pc
HALUzoCegEl - 8E66) X2E4zyJKx- YxzZl | t RzC5hl Ri r b6Y5C _p- ko3YvkkysZI F
NPccxRU7qvelWYPxgbb2Yw8kZga2r M 5ng8Ct vzl V7el pr CouPhcCdz6XDP0_F8
r kXds2vE4X- ncO MBhAYHH 29NXOntKi RaDO- D- | j QTP- cFPgwCp6X- nZZd90OHBv
- B3oWh2ThqnScgXVRr4gp_A.

AxY8DCt Dad sbd j b3RozQ

KDl Tt XchhZTGuf MYnOYGS4Hf f x PSUr f mgCHXal 9wOoGY

9hHOVgRf YgPnAHOd8st kvw

A.2.8. Validation

This exanple illustrates the process of creating a JWE with

RSAES- PKCS1-v1 5 for key encryption and AES CBC HVAC SHA2 for content
encryption. These results can be used to validate JWE decryption

i mpl ementations for these algorithnms. Note that since the

RSAES- PKCS1-v1_5 conputation includes random val ues, the encryption

results above will not be conpletely reproducible. However, since
the AES-CBC conputation is determnistic, the JWE Encrypted
Ci phertext values will be the sanme for all encryptions perfornmed

usi ng these inputs.
A. 3. Exanmple JVE Using AES Key Wap and AES 128 CBC HVAC SHA 256

Thi s exanple encrypts the plaintext "Live long and prosper.” to the
reci pient using AES Key Wap for key encryption and

AES 128 CBC HVAC SHA 256 for content encryption. The representation
of this plaintext (using JSON array notation) is:

[76, 105, 118, 101, 32, 108, 111, 110, 103, 32, 97, 110, 100, 32,
112, 114, 111, 115, 112, 101, 114, 46]

A . 3.1. JOSE Header

The foll owi ng exanpl e JWE Protected Header declares that:

o The Content Encryption Key is encrypted to the recipient using the
AES Key Wap algorithmwith a 128-bit key to produce the JVE
Encrypted Key.

o Authenticated encryption is performed on the plaintext using the
AES 128 CBC HVAC SHA 256 al gorithmto produce the ciphertext and
the Authentication Tag.

{"al g":"AL28KW , "enc": " A128CBC- HS256" }

Jones & Hil debrand St andards Track [Page 41]

RFC 7516 JSON Wb Encryption (JVE) May 2015
Encoding this JWE Protected Header as BASE64URL(UTF8(JWE Prot ected
Header)) gives this val ue:

eyJhbCci G JBMII 4S1ci LCII bnM G JBMTI 4Q0JDLUNTM W21 nO
A.3.2. Content Encryption Key (CEK)
Generate a 256-bit random CEK. In this exanple, the value is:
[4, 211, 31, 197, 84, 157, 252, 254, 11, 100, 157, 250, 63, 170, 106,
206, 107, 124, 212, 45, 111, 107, 9, 219, 200, 177, 0, 240, 143, 156,
44, 207]

A . 3.3. Key Encryption
Encrypt the CEK with the shared symmetric key using the AES Key Wap
algorithmto produce the JVWE Encrypted Key. This exanple uses the
symmetric key represented in JSON Wb Key [JWK] fornat bel ow

{"kty":"oct",
"k": " GawgguFy G VKav 7 AX4VKUg"
The resulting JVWE Encrypted Key val ue is:
[232, 160, 123, 211, 183, 76, 245, 132, 200, 128, 123, 75, 190, 216,
22, 67, 201, 138, 193, 186, 9, 91, 122, 31, 246, 90, 28, 139, 57, 3,
76, 124, 193, 11, 98, 37, 173, 61, 104, 57]

Encodi ng this JWE Encrypted Key as BASE64URL(JVE Encrypted Key) gives
thi s val ue:

6KB707dMDYTI gHt Lvt gWBnKwbhoJWBof 91 oci zkDTHzBC2I | r TLoOQ
A.3.4. Initialization Vector

Cenerate a random 128-bit JWE Initialization Vector. 1In this
exanpl e, the value is:

[3, 22, 60, 12, 43, 67, 104, 105, 108, 108, 105, 99, 111, 116, 104,
101]

Encoding this JWE Initialization Vector as BASE64URL(JVE
Initialization Vector) gives this val ue:

AXY8DCt Dad sbd j b3RoZQ

Jones & Hil debrand St andards Track [Page 42]

RFC 7516 JSON Wb Encryption (JVE) May 2015

A.3.5. Additional Authenticated Data

Let the Additional Authenticated Data encryption paramneter be
ASCI | (BASE64URL(UTF8(JWE Protected Header))). This value is:

[101, 121, 74, 104, 98, 71, 99, 105, 79, 105, 74, 66, 77, 84, 73, 52,
83, 49, 99, 105, 76, 67, 74, 108, 98, 109, 77, 105, 79, 105, 74, 66,
77, 84, 73, 52, 81, 48, 74, 68, 76, 85, 104, 84, 77, 106, 85, 50, 73,
110, 48]

A.3.6. Content Encryption

Perform aut henti cated encryption on the plaintext with the

AES 128 CBC HWVAC SHA 256 al gorithmusing the CEK as the encryption
key, the JWE Initialization Vector, and the Additional Authenticated
Dat a val ue above. The steps for doing this using the values from
this exanple are detailed in Appendix B. The resulting ciphertext
is:

[40, 57, 83, 181, 119, 33, 133, 148, 198, 185, 243, 24, 152, 230, 6,
75, 129, 223, 127, 19, 210, 82, 183, 230, 168, 33, 215, 104, 143,
112, 56, 102]

The resulting Authentication Tag val ue is:

[83, 73, 191, 98, 104, 205, 211, 128, 201, 189, 199, 133, 32, 38,
194, 85]

Encoding this JWE Ci phertext as BASE64URL(JWE Ci phertext) gives this
val ue:

KDl Tt XchhZTGuf MYnOYGS4Hf f x PSUr f mgCHXal 9wOoGY

Encoding this JWE Authentication Tag as BASE64URL(JWE Aut henti cati on
Tag) gives this val ue:

UOm Ynj NO4DJvceFl CbhCvQ
A.3.7. Conmpl ete Representation
Assenbl e the final representation: The Conpact Serialization of this
result is the string BASE64URL(UTF8(JWE Protected Header)) || '. " ||
BASE64URL(JWE Encrypted Key) || '." || BASE64URL(JVEE Initialization

Vector) || *.’ || BASE64URL(JVE Ciphertext) || '. || BASE64URL(JIVE
Aut henti cati on Tag).

Jones & Hil debrand St andards Track [Page 43]

RFC 7516 JSON Wb Encryption (JVE) May 2015

The final result in this exanple (with line breaks for display
pur poses only) is:

eyJhbCci G JBMTI 4S1ci LCII b G JBMTI 4Q0JDLUNTM U21 nO.
6KB707dMDYTI gHt Lvt gWBnKwboJWBof 91 oci zkDTHzBC2I | r TLoOQ.
AxY8DCt Dad sbhd j b3RoZQ

KDl Tt XchhZTGuf MYnOYGS4Hf f x PSUr f ngCHXal 9wOGyY.

UOm Ynj NO4DJvceFl CbhCvVQ

A.3.8. Validation

This exanple illustrates the process of creating a JVWE with AES Key
Wap for key encryption and AES GCM for content encryption. These
results can be used to validate JWE decryption inplenentations for
these algorithms. Al so, since both the AES Key Wap and AES GCM
conputations are determnistic, the resulting JWE value will be the
same for all encryptions performed using these inputs. Since the
conputation is reproducible, these results can also be used to
val i date JVWE encryption inplenentations for these al gorithns.

A 4. Exanple JWE Using CGeneral JWE JSON Serialization

This section contains an exanple using the general JWE JSON
Serialization syntax. This exanple denonstrates the capability for
encrypting the sane plaintext to nultiple recipients.

Two recipients are present in this exanple. The algorithm and key
used for the first recipient are the sane as that used in

Appendi x A.2. The algorithm and key used for the second recipient
are the sanme as that used in Appendix A 3. The resulting JVZE
Encrypted Key values are therefore the sane; those conputations are
not repeated here.

The plaintext, the CEK, JVE Initialization Vector, and JWE Protected

Header are shared by all recipients (which nmust be the case, since
the ci phertext and Authentication Tag are al so shared).

Jones & Hil debrand St andards Track [Page 44]

RFC 7516 JSON Wb Encryption (JVE) May 2015

A 4.1. JVEE Per-Recipient Unprotected Headers

The first recipient uses the RSAES- PKCS1-vl 5 algorithmto encrypt
the CEK. The second uses AES Key Wap to encrypt the CEK. Key ID
val ues are supplied for both keys. The two JWE Per-Reci pi ent
Unpr ot ect ed Header val ues used to represent these algorithns and key
| Ds are:

{"al g":"RSAL1_5","kid":"2011-04-29"}
and
{"al g":"A128KW , "kid":"7"}
A 4.2. JVEE Protected Header

Aut henti cated encryption is perforned on the plaintext using the
AES 128 CBC HVAC SHA 256 al gorithmto produce the comon JVE

Ci phertext and JWE Aut hentication Tag val ues. The JWE Protected
Header val ue representing this is:

"enc": " Al28CBC- HS256" }

Encoding this JWE Protected Header as BASE64URL(UTF8(JWE Protected
Header)) gives this val ue:

eyJl brM G JBMII 4Q0JDLURTM U21 nO
A . 4.3. JVE Shared Unprotected Header

This JWE uses the "jku" Header Paraneter to reference a JWK Set.

This is represented in the foll owi ng JWE Shared Unprotected Header
val ue as:

{"jku":"https://server. exanpl e. com keys. j wks"}
A 4.4, Conplete JOSE Header Val ues

Conbi ni ng the JWE Per - Reci pi ent Unprotected Header, JWE Protected
Header, and JWE Shared Unprotected Header val ues supplied, the JOSE
Header val ues used for the first and second recipient, respectively,
are:

{"al g":"RSA1_5",
"kid":"2011-04- 29",
"enc":" Al128CBC- HS256",
"jku":"https://server. exanpl e. com keys. jwks"}

Jones & Hil debrand St andards Track [Page 45]

RFC 7516 JSON Wb Encryption (JVE) May 2015

and
{"al g":"AL28KW ,
“kid"itT,
"enc": " Al28CBC- HS256",
"jku":"https://server. exanpl e. com keys. j wks"}
A.4.5. Additional Authenticated Data

Let the Additional Authenticated Data encrypti on parameter be
ASCI | (BASE64URL(UTF8(JWE Protected Header))). This value is:

[101, 121, 74, 108, 98, 109, 77, 105, 79, 105, 74, 66, 77, 84, 73,
52, 81, 48, 74, 68, 76, 85, 104, 84, 77, 106, 85, 50, 73, 110, 48]

A 4.6. Content Encryption

Perform aut henti cated encryption on the plaintext with the

AES 128 CBC HVAC SHA 256 al gorithmusing the CEK as the encryption
key, the JWE Initialization Vector, and the Additional Authenticated
Dat a val ue above. The steps for doing this using the values from
Appendi x A. 3 are detailed in Appendix B. The resulting ciphertext
is:

[40, 57, 83, 181, 119, 33, 133, 148, 198, 185, 243, 24, 152, 230, 6,
75, 129, 223, 127, 19, 210, 82, 183, 230, 168, 33, 215, 104, 143,
112, 56, 102]

The resulting Authentication Tag val ue is:

[51, 63, 149, 60, 252, 148, 225, 25, 92, 185, 139, 245, 35, 2, 47,
207]

Encoding this JWE Ci phertext as BASE64URL(JWE Ci phertext) gives this
val ue:

KDl Tt XchhZTGuf MYmOYGS4Hf f x PSUr f ngCHXal 9wOGY

Encodi ng this JWE Authentication Tag as BASE64URL(JWE Aut henti cation
Tag) gives this val ue:

Mz- VPPyUARl cuYvllwi vzw

Jones & Hil debrand St andards Track [Page 46]

RFC 7516 JSON Wb Encryption (JVE) May 2015

A 4.7. Conplete JWE JSON Serialization Representation

The conplete JWE JSON Serialization for these values is as foll ows
(with line breaks within values for display purposes only):

{

"protected":

"eyJl borM QG JBMTI 4QQJDLURTM U2I nO",
“unprot ected":

{"jku":"https://server.exanpl e. com keys. jwks"},
"recipients":|

{"header":

{"al g":"RSA1_5","kid":"2011- 04- 29"},
"“encrypted _key":

" UChl OguC71 uEvf _NPVaXsGwLOmwc1Gyql | KOK1nN94nHPol t GRhWhw7 Zx0-
KFmMLNINn8LE9XShH59 i 8J0PH5ZZy Nf Gy 2x GdULU7sHNF6Gp2vPLgNZ__ del Kx
GHZ7PcHALUz0OegEl - 8E66] X2E4zyJKx- YxzZI | t RzC5hl Ri r b6Y5C _p- ko3
YvkkysZl FNPccxRU7qvelWYPxgbb2Yw8kZga2r MAF 5ng8Ct vzl V7el pr CouPh
cCdZ6XDP0_F8r kXds2vE4X- ncO MBhAYHH 29NXOntKi RaDO- D- | j QTP- cFPg
WCp6X- nZZd9OHBv - B3oVWh2ThgmScgXMRAgp_A"},

{"header":
{"al g":"AL28KW , "kid":"7"},
"encrypted_key":
"6KB707dMBYTI gHt Lvt gWBnKwboJWBof 91 oci zkDTHzBC21 | r TLoOQ'}],
vt
" AxY8DCt Dad shd j b3RozQ',
“ci phertext":
" KDl Tt XchhZTGuf MYmOYGS4Hf f x PSUr f ngCHXal 9wOGY"
"tag":
"Mez- VPPyU4RI cuYvliw vzw!'
}

A.5. Exanple JWE Using Flattened JWE JSON Seri alization
This section contains an exanmple using the flattened JWE JSON
Serialization syntax. This exanple denonstrates the capability for
encrypting the plaintext to a single recipient in a flattened JSON

structure.

The values in this exanple are the sane as those for the second
reci pient of the previous exanple in Appendi x A 4.

Jones & Hil debrand St andards Track [Page 47]

RFC 7516 JSON Wb Encryption (JVE) May 2015

The conplete JWE JSON Serialization for these values is as follows
(with line breaks within values for display purposes only):

"protected":
"eyJl bmM O JBMII 4Q0JDLURTM U2I nO",
“unprot ected":
{"jku":"https://server.exanpl e. conl keys. jwks"},
"header":
{"al g":"AL28KW, "kid":" 7"},
"encrypted_key":
"6KB707dMBYTI gHt Lvt gWBnKwboJWBof 9l oci zkDTHzBC21 | r TLoOQ"',
vt
" AxY8DCt DaQ@ sbd j b3RozZQ',
“ci phertext":
" KDl Tt XchhZTGuf MYmOYGS4Hf f x PSUr f mgCHXal 9wOGY" ,
"tag":
"Mez- VPPyU4RI cuYvliwl vzw!'
}

Appendi x B. Exanple AES 128 CBC HVAC SHA 256 Computation

Thi s exanpl e shows the steps in the AES 128 CBC HMAC SHA 256

aut henti cated encryption conputation using the values fromthe

exanpl e in Appendi x A 3. As described where this algorithmis
defined in Sections 5.2 and 5.2.3 of JWA, the AES CBC HVAC SHA2
famly of algorithns are inplemented using Advanced Encryption
Standard (AES) in C pher Bl ock Chaining (CBC) nbpde with Public-Key
Crypt ography Standards (PKCS) #7 padding to performthe encryption
and an HVAC SHA-2 function to performthe integrity calculation -- in
this case, HVAC SHA- 256.

B.1. Extract MAC _KEY and ENC KEY from Key

The 256 bit AES 128 CBC HMAC SHA 256 key K used in this example
(using JSON array notation) is:

[4, 211, 31, 197, 84, 157, 252, 254, 11, 100, 157, 250, 63, 170, 106,
206, 107, 124, 212, 45, 111, 107, 9, 219, 200, 177, 0, 240, 143, 156,
44, 207]

Use the first 128 bits of this key as the HVAC SHA- 256 key NMAC KEY,
whi ch is:

[4, 211, 31, 197, 84, 157, 252, 254, 11, 100, 157, 250, 63, 170, 106,
206]

Jones & Hil debrand St andards Track [Page 48]

RFC 7516 JSON Wb Encryption (JVE) May 2015

Use the last 128 bits of this key as the AES-CBC key ENC KEY, which
is:

[107, 124, 212, 45, 111, 107, 9, 219, 200, 177, O, 240, 143, 156, 44,
207]

Note that the MAC key conmes before the encryption key in the input
key K; this is in the opposite order of the algorithmnanes in the
identifiers "AES 128 _CBC HMAC SHA 256" and " A128CBC- HS256" .

B.2. Encrypt Plaintext to Create C phertext

Encrypt the plaintext with AES in CBC npde usi ng PKCS #7 paddi ng
using the ENC KEY above. The plaintext in this exanmple is:

[76, 105, 118, 101, 32, 108, 111, 110, 103, 32, 97, 110, 100, 32,
112, 114, 111, 115, 112, 101, 114, 46]

The encryption result is as follows, which is the ciphertext output:
[40, 57, 83, 181, 119, 33, 133, 148, 198, 185, 243, 24, 152, 230, 6,
75, 129, 223, 127, 19, 210, 82, 183, 230, 168, 33, 215, 104, 143,
112, 56, 102]

B.3. 64-Bit Big-Endi an Representation of AAD Length
The Additional Authenticated Data (AAD) in this exanmple is:
[101, 121, 74, 104, 98, 71, 99, 105, 79, 105, 74, 66, 77, 84, 73, 52,
83, 49, 99, 105, 76, 67, 74, 108, 98, 109, 77, 105, 79, 105, 74, 66,
77, 84, 73, 52, 81, 48, 74, 68, 76, 85, 104, 84, 77, 106, 85, 50, 73,
110, 48]
This AAD is 51-bytes long, which is 408-bits long. The octet string
AL, which is the nunber of bits in AAD expressed as a big-endi an
64-bit unsigned integer is:
[0, O, O, O, O, O, 1, 152]

B.4. Initialization Vector Val ue

The Initialization Vector value used in this exanple is:

[3, 22, 60, 12, 43, 67, 104, 105, 108, 108, 105, 99, 111, 116, 104,
101]

Jones & Hil debrand St andards Track [Page 49]

RFC 7516 JSON Wb Encryption (JVE) May 2015

B.5. Create Input to HVAC Conputation

Concatenate the AAD, the Initialization Vector, the ciphertext, and
the AL value. The result of this concatenation is:

[101, 121, 74, 104, 98, 71, 99, 105, 79, 105, 74, 66, 77, 84, 73, 52,
83, 49, 99, 105, 76, 67, 74, 108, 98, 109, 77, 105, 79, 105, 74, 66,
77, 84, 73, 52, 81, 48, 74, 68, 76, 85, 104, 84, 77, 106, 85, 50, 73,
110, 48, 3, 22, 60, 12, 43, 67, 104, 105, 108, 108, 105, 99, 111

116, 104, 101, 40, 57, 83, 181, 119, 33, 133, 148, 198, 185, 243, 24,
152, 230, 6, 75, 129, 223, 127, 19, 210, 82, 183, 230, 168, 33, 215,
104, 143, 112, 56, 102, 0, 0, O, O, 0, O, 1, 152]

B. 6. Conpute HVAC Val ue

Conput e the HMAC SHA-256 of the concatenated val ue above. This
result Mis:

[83, 73, 191, 98, 104, 205, 211, 128, 201, 189, 199, 133, 32, 38,
194, 85, 9, 84, 229, 201, 219, 135, 44, 252, 145, 102, 179, 140, 105,
86, 229, 116]

B.7. Truncate HVAC Value to Create Authentication Tag

Use the first half (128 bits) of the HVAC output Mas the
Aut hentication Tag output T. This truncated val ue is:

[83, 73, 191, 98, 104, 205, 211, 128, 201, 189, 199, 133, 32, 38,
194, 85]

Acknowl edgenent s

Solutions for encrypting JSON content were al so explored by "JSON

Si npl e Encryption"” [JSE] and "JavaScript Message Security Format"
[JSMS], both of which significantly influenced this docunment. This
docunent attenpts to explicitly reuse as nany of the rel evant
concepts from XM. Encryption 1.1 [WBC. REC- xm enc-corel-20130411] and
RFC 5652 [RFC5652] as possible, while utilizing sinple, conpact JSON
based data structures.

Speci al thanks are due to John Bradley, Eric Rescorla, and Nat

Saki mura for the discussions that hel ped informthe content of this
specification; to Eric Rescorla and Joe Hildebrand for allow ng the
reuse of text from[JSMS] in this docunent; and to Eric Rescorla for
co-authoring many drafts of this specification

Thanks to Axel Nennker, Emmanuel Raviart, Brian Canpbell, and Edmund
Jay for validating the exanples in this specification

Jones & Hil debrand St andards Track [Page 50]

RFC 7516 JSON Wb Encryption (JVE) May 2015

This specification is the work of the JOSE working group, which

i ncl udes dozens of active and dedi cated participants. |In particular,
the follow ng individuals contributed ideas, feedback, and wording
that influenced this specification:

Ri chard Barnes, John Bradley, Brian Canpbell, Alissa Cooper, Breno de
Medei ros, Stephen Farrell, Dick Hardt, Jeff Hodges, Russ Housl ey,
Ednmund Jay, Scott Kelly, Stephen Kent, Barry Lei ba, James Manger,
Matt MIler, Kathleen Mriarty, Tony Nadalin, Hideki Nara, Axel
Nennker, Ray Pol k, Emmanuel Raviart, Eric Rescorla, Pete Resnick, Nat
Saki nura, Jim Schaad, Hannes Tschofeni g, and Sean Turner.

Ji m Schaad and Karen O Donoghue chaired the JOSE worki ng group and

Sean Turner, Stephen Farrell, and Kathleen Mriarty served as

Security Area Directors during the creation of this specification.
Aut hors’ Addresses

M chael B. Jones
M crosof t

EMai | : nbj @ri crosoft.com
URI : http://self-issued.infol/
Joe Hil debrand

Ci sco Systens, Inc.

EMai |l : j hil debr @i sco. com

Jones & Hil debrand St andards Track [Page 51]

