
Internet Engineering Task Force (IETF) V. Gurbani, Ed.
Request for Comments: 7339 V. Hilt
Category: Standards Track Bell Labs, Alcatel-Lucent
ISSN: 2070-1721 H. Schulzrinne
 Columbia University
 September 2014

 Session Initiation Protocol (SIP) Overload Control

Abstract

 Overload occurs in Session Initiation Protocol (SIP) networks when
 SIP servers have insufficient resources to handle all the SIP
 messages they receive. Even though the SIP protocol provides a
 limited overload control mechanism through its 503 (Service
 Unavailable) response code, SIP servers are still vulnerable to
 overload. This document defines the behavior of SIP servers involved
 in overload control and also specifies a loss-based overload scheme
 for SIP.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc7339.

Gurbani, et al. Standards Track [Page 1]

RFC 7339 Overload Control September 2014

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Gurbani, et al. Standards Track [Page 2]

RFC 7339 Overload Control September 2014

Table of Contents

 1. Introduction ..4
 2. Terminology ...5
 3. Overview of Operations ..6
 4. Via Header Parameters for Overload Control6
 4.1. The "oc" Parameter ...6
 4.2. The "oc-algo" Parameter7
 4.3. The "oc-validity" Parameter8
 4.4. The "oc-seq" Parameter8
 5. General Behavior ..9
 5.1. Determining Support for Overload Control10
 5.2. Creating and Updating the Overload Control Parameters10
 5.3. Determining the "oc" Parameter Value12
 5.4. Processing the Overload Control Parameters12
 5.5. Using the Overload Control Parameter Values13
 5.6. Forwarding the Overload Control Parameters14
 5.7. Terminating Overload Control14
 5.8. Stabilizing Overload Algorithm Selection15
 5.9. Self-Limiting ...15
 5.10. Responding to an Overload Indication16
 5.10.1. Message Prioritization at the Hop before
 the Overloaded Server16
 5.10.2. Rejecting Requests at an Overloaded Server17
 5.11. 100 Trying Provisional Response and Overload
 Control Parameters17
 6. Example ..18
 7. The Loss-Based Overload Control Scheme19
 7.1. Special Parameter Values for Loss-Based Overload Control ..19
 7.2. Default Algorithm for Loss-Based Overload Control20
 8. Relationship with Other IETF SIP Load Control Efforts23
 9. Syntax ...24
 10. Design Considerations ...24
 10.1. SIP Mechanism ..24
 10.1.1. SIP Response Header24
 10.1.2. SIP Event Package25
 10.2. Backwards Compatibility26
 11. Security Considerations27
 12. IANA Considerations ...29
 13. References ..29
 13.1. Normative References29
 13.2. Informative References30
 Appendix A. Acknowledgements31
 Appendix B. RFC 5390 Requirements31

Gurbani, et al. Standards Track [Page 3]

RFC 7339 Overload Control September 2014

1. Introduction

 As with any network element, a Session Initiation Protocol (SIP)
 [RFC3261] server can suffer from overload when the number of SIP
 messages it receives exceeds the number of messages it can process.
 Overload can pose a serious problem for a network of SIP servers.
 During periods of overload, the throughput of a network of SIP
 servers can be significantly degraded. In fact, overload may lead to
 a situation where the retransmissions of dropped SIP messages may
 overwhelm the capacity of the network. This is often called
 "congestion collapse".

 Overload is said to occur if a SIP server does not have sufficient
 resources to process all incoming SIP messages. These resources may
 include CPU processing capacity, memory, input/output, or disk
 resources.

 For overload control, this document only addresses failure cases
 where SIP servers are unable to process all SIP requests due to
 resource constraints. There are other cases where a SIP server can
 successfully process incoming requests but has to reject them due to
 failure conditions unrelated to the SIP server being overloaded. For
 example, a Public Switched Telephone Network (PSTN) gateway that runs
 out of trunks but still has plenty of capacity to process SIP
 messages should reject incoming INVITEs using a 488 (Not Acceptable
 Here) response [RFC4412]. Similarly, a SIP registrar that has lost
 connectivity to its registration database but is still capable of
 processing SIP requests should reject REGISTER requests with a 500
 (Server Error) response [RFC3261]. Overload control does not apply
 to these cases, and SIP provides appropriate response codes for them.

 The SIP protocol provides a limited mechanism for overload control
 through its 503 (Service Unavailable) response code. However, this
 mechanism cannot prevent overload of a SIP server, and it cannot
 prevent congestion collapse. In fact, the use of the 503 (Service
 Unavailable) response code may cause traffic to oscillate and shift
 between SIP servers, thereby worsening an overload condition. A
 detailed discussion of the SIP overload problem, the problems with
 the 503 (Service Unavailable) response code, and the requirements for
 a SIP overload control mechanism can be found in [RFC5390].

 This document defines the protocol for communicating overload
 information between SIP servers and clients so that clients can
 reduce the volume of traffic sent to overloaded servers, avoiding
 congestion collapse and increasing useful throughput. Section 4
 describes the Via header parameters used for this communication. The

Gurbani, et al. Standards Track [Page 4]

RFC 7339 Overload Control September 2014

 general behavior of SIP servers and clients involved in overload
 control is described in Section 5. In addition, Section 7 specifies
 a loss-based overload control scheme.

 This document specifies the loss-based overload control scheme
 (Section 7), which is mandatory to implement for this specification.
 In addition, this document allows other overload control schemes to
 be supported as well. To do so effectively, the expectations and
 primitive protocol parameters common to all classes of overload
 control schemes are specified in this document.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 In this document, the terms "SIP client" and "SIP server" are used in
 their generic forms. Thus, a "SIP client" could refer to the client
 transaction state machine in a SIP proxy, or it could refer to a user
 agent client (UAC). Similarly, a "SIP server" could be a user agent
 server (UAS) or the server transaction state machine in a proxy.
 Various permutations of this are also possible, for instance, SIP
 clients and servers could also be part of back-to-back user agents
 (B2BUAs).

 However, irrespective of the context these terms are used in (i.e.,
 proxy, B2BUA, UAS, UAC), "SIP client" applies to any SIP entity that
 provides overload control to traffic destined downstream. Similarly,
 "SIP server" applies to any SIP entity that is experiencing overload
 and would like its upstream neighbor to throttle incoming traffic.

 Unless otherwise specified, all SIP entities described in this
 document are assumed to support this specification.

 The normative statements in this specification as they apply to SIP
 clients and SIP servers assume that both the SIP clients and SIP
 servers support this specification. If, for instance, only a SIP
 client supports this specification and not the SIP server, then the
 normative statements in this specification pertinent to the behavior
 of a SIP server do not apply to the server that does not support this
 specification.

Gurbani, et al. Standards Track [Page 5]

RFC 7339 Overload Control September 2014

3. Overview of Operations

 This section provides an overview of how the overload control
 mechanism operates by introducing the overload control parameters.
 Section 4 provides more details and normative behavior on the
 parameters listed below.

 Because overload control is performed hop-by-hop, the Via header
 parameter is attractive since it allows two adjacent SIP entities to
 indicate support for, and exchange information associated with,
 overload control [RFC6357]. Additional advantages of this choice are
 discussed in Section 10.1.1. An alternative mechanism using SIP
 event packages was also considered, and the characteristics of that
 choice are further outlined in Section 10.1.2.

 This document defines four new parameters for the SIP Via header for
 overload control. These parameters provide a mechanism for conveying
 overload control information between adjacent SIP entities. The "oc"
 parameter is used by a SIP server to indicate a reduction in the
 number of requests arriving at the server. The "oc-algo" parameter
 contains a token or a list of tokens corresponding to the class of
 overload control algorithms supported by the client. The server
 chooses one algorithm from this list. The "oc-validity" parameter
 establishes a time limit for which overload control is in effect, and
 the "oc-seq" parameter aids in sequencing the responses at the
 client. These parameters are discussed in detail in the next
 section.

4. Via Header Parameters for Overload Control

 The four Via header parameters are introduced below. Further context
 about how to interpret these under various conditions is provided in
 Section 5.

4.1. The "oc" Parameter

 This parameter is inserted by the SIP client and updated by the SIP
 server.

 A SIP client MUST add an "oc" parameter to the topmost Via header it
 inserts into every SIP request. This provides an indication to
 downstream neighbors that the client supports overload control.
 There MUST NOT be a value associated with the parameter (the value
 will be added by the server).

 The downstream server MUST add a value to the "oc" parameter in the
 response going upstream to a client that included the "oc" parameter
 in the request. Inclusion of a value to the parameter represents two

Gurbani, et al. Standards Track [Page 6]

RFC 7339 Overload Control September 2014

 things. First, upon the first contact (see Section 5.1), addition of
 a value by the server to this parameter indicates (to the client)
 that the downstream server supports overload control as defined in
 this document. Second, if overload control is active, then it
 indicates the level of control to be applied.

 When a SIP client receives a response with the value in the "oc"
 parameter filled in, it MUST reduce, as indicated by the "oc" and
 "oc-algo" parameters, the number of requests going downstream to the
 SIP server from which it received the response (see Section 5.10 for
 pertinent discussion on traffic reduction).

4.2. The "oc-algo" Parameter

 This parameter is inserted by the SIP client and updated by the SIP
 server.

 A SIP client MUST add an "oc-algo" parameter to the topmost Via
 header it inserts into every SIP request, with a default value of
 "loss".

 This parameter contains names of one or more classes of overload
 control algorithms. A SIP client MUST support the loss-based
 overload control scheme and MUST insert at least the token "loss" as
 one of the "oc-algo" parameter values. In addition, the SIP client
 MAY insert other tokens, separated by a comma, in the "oc-algo"
 parameter if it supports other overload control schemes such as a
 rate-based scheme [RATE-CONTROL]. Each element in the comma-
 separated list corresponds to the class of overload control
 algorithms supported by the SIP client. When more than one class of
 overload control algorithms is present in the "oc-algo" parameter,
 the client may indicate algorithm preference by ordering the list in
 a decreasing order of preference. However, the client cannot assume
 that the server will pick the most preferred algorithm.

 When a downstream SIP server receives a request with multiple
 overload control algorithms specified in the "oc-algo" parameter
 (optionally sorted by decreasing order of preference), it chooses one
 algorithm from the list and MUST return the single selected algorithm
 to the client.

 Once the SIP server has chosen a mutually agreeable class of overload
 control algorithms and communicated it to the client, the selection
 stays in effect until the algorithm is changed by the server.
 Furthermore, the client MUST continue to include all the supported
 algorithms in subsequent requests; the server MUST respond with the
 agreed-to algorithm until the algorithm is changed by the server.

Gurbani, et al. Standards Track [Page 7]

RFC 7339 Overload Control September 2014

 The selection SHOULD stay the same for a non-trivial duration of time
 to allow the overload control algorithm to stabilize its behavior
 (see Section 5.8).

 The "oc-algo" parameter does not define the exact algorithm to be
 used for traffic reduction; rather, the intent is to use any
 algorithm from a specific class of algorithms that affect traffic
 reduction similarly. For example, the reference algorithm in
 Section 7.2 can be used as a loss-based algorithm, or it can be
 substituted by any other loss-based algorithm that results in
 equivalent traffic reduction.

4.3. The "oc-validity" Parameter

 This parameter MAY be inserted by the SIP server in a response; it
 MUST NOT be inserted by the SIP client in a request.

 This parameter contains a value that indicates an interval of time
 (measured in milliseconds) that the load reduction specified in the
 value of the "oc" parameter should be in effect. The default value
 of the "oc-validity" parameter is 500 (milliseconds). If the client
 receives a response with the "oc" and "oc-algo" parameters suitably
 filled in, but no "oc-validity" parameter, the SIP client should
 behave as if it had received "oc-validity=500".

 A value of 0 in the "oc-validity" parameter is reserved to denote the
 event that the server wishes to stop overload control or to indicate
 that it supports overload control but is not currently requesting any
 reduction in traffic (see Section 5.7).

 A non-zero value for the "oc-validity" parameter MUST only be present
 in conjunction with an "oc" parameter. A SIP client MUST discard a
 non-zero value of the "oc-validity" parameter if the client receives
 it in a response without the corresponding "oc" parameter being
 present as well.

 After the value specified in the "oc-validity" parameter expires and
 until the SIP client receives an updated set of overload control
 parameters from the SIP server, overload control is not in effect
 between the client and the downstream SIP server.

4.4. The "oc-seq" Parameter

 This parameter MUST be inserted by the SIP server in a response; it
 MUST NOT be inserted by the SIP client in a request.

Gurbani, et al. Standards Track [Page 8]

RFC 7339 Overload Control September 2014

 This parameter contains an unsigned integer value that indicates the
 sequence number associated with the "oc" parameter. This sequence
 number is used to differentiate two "oc" parameter values generated
 by an overload control algorithm at two different instants in time.
 "oc" parameter values generated by an overload control algorithm at
 time t and t+1 MUST have an increasing value in the "oc-seq"
 parameter. This allows the upstream SIP client to properly collate
 out-of-order responses.

 Note: A timestamp can be used as a value of the "oc-seq"
 parameter.

 If the value contained in the "oc-seq" parameter overflows during the
 period in which the load reduction is in effect, then the "oc-seq"
 parameter MUST be reset to the current timestamp or an appropriate
 base value.

 Note: A client implementation can recognize that an overflow has
 occurred when it receives an "oc-seq" parameter whose value is
 significantly less than several previous values. (Note that an
 "oc-seq" parameter whose value does not deviate significantly from
 the last several previous values is symptomatic of a tardy packet.
 However, overflow will cause the "oc-seq" parameter value to be
 significantly less than the last several values.) If an overflow
 is detected, then the client should use the overload parameters in
 the new message, even though the sequence number is lower. The
 client should also reset any internal state to reflect the
 overflow so that future messages (following the overflow) will be
 accepted.

5. General Behavior

 When forwarding a SIP request, a SIP client uses the SIP procedures
 of [RFC3263] to determine the next-hop SIP server. The procedures of
 [RFC3263] take a SIP URI as input, extract the domain portion of that
 URI for use as a lookup key, query the Domain Name Service (DNS) to
 obtain an ordered set of one or more IP addresses with a port number
 and transport corresponding to each IP address in this set (the
 "Expected Output").

 After selecting a specific SIP server from the Expected Output, a SIP
 client determines whether overload controls are currently active with
 that server. If overload controls are currently active (and the "oc-
 validity" period has not yet expired), the client applies the
 relevant algorithm to determine whether or not to send the SIP
 request to the server. If overload controls are not currently active
 with this server (which will be the case if this is the initial
 contact with the server, the last response from this server had

Gurbani, et al. Standards Track [Page 9]

RFC 7339 Overload Control September 2014

 "oc-validity=0", or the time period indicated by the "oc-validity"
 parameter has expired), the SIP client sends the SIP message to the
 server without invoking any overload control algorithm.

5.1. Determining Support for Overload Control

 If a client determines that this is the first contact with a server,
 the client MUST insert the "oc" parameter without any value and MUST
 insert the "oc-algo" parameter with a list of algorithms it supports.
 This list MUST include "loss" and MAY include other algorithm names
 approved by IANA and described in corresponding documents. The
 client transmits the request to the chosen server.

 If a server receives a SIP request containing the "oc" and "oc-algo"
 parameters, the server MUST determine if it has already selected the
 overload control algorithm class with this client. If it has, the
 server SHOULD use the previously selected algorithm class in its
 response to the message. If the server determines that the message
 is from a new client or a client the server has not heard from in a
 long time, the server MUST choose one algorithm from the list of
 algorithms in the "oc-algo" parameter. It MUST put the chosen
 algorithm as the sole parameter value in the "oc-algo" parameter of
 the response it sends to the client. In addition, if the server is
 currently not in an overload condition, it MUST set the value of the
 "oc" parameter to be 0 and MAY insert an "oc-validity=0" parameter in
 the response to further qualify the value in the "oc" parameter. If
 the server is currently overloaded, it MUST follow the procedures in
 Section 5.2.

 Note: A client that supports the rate-based overload control
 scheme [RATE-CONTROL] will consider "oc=0" as an indication not to
 send any requests downstream at all. Thus, when the server
 inserts "oc-validity=0" as well, it is indicating that it does
 support overload control, but it is not under overload mode right
 now (see Section 5.7).

5.2. Creating and Updating the Overload Control Parameters

 A SIP server provides overload control feedback to its upstream
 clients by providing a value for the "oc" parameter to the topmost
 Via header field of a SIP response, that is, the Via header added by
 the client before it sent the request to the server.

 Since the topmost Via header of a response will be removed by an
 upstream client after processing it, overload control feedback
 contained in the "oc" parameter will not travel beyond the upstream

Gurbani, et al. Standards Track [Page 10]

RFC 7339 Overload Control September 2014

 SIP client. A Via header parameter therefore provides hop-by-hop
 semantics for overload control feedback (see [RFC6357]) even if the
 next-hop neighbor does not support this specification.

 The "oc" parameter can be used in all response types, including
 provisional, success, and failure responses (please see Section 5.11
 for special consideration on transporting overload control parameters
 in a 100 Trying response). A SIP server can update the "oc"
 parameter in a response, asking the client to increase or decrease
 the number of requests destined to the server or to stop performing
 overload control altogether.

 A SIP server that has updated the "oc" parameter SHOULD also add a
 "oc-validity" parameter. The "oc-validity" parameter defines the
 time in milliseconds during which the overload control feedback
 specified in the "oc" parameter is valid. The default value of the
 "oc-validity" parameter is 500 (milliseconds).

 When a SIP server retransmits a response, it SHOULD use the "oc" and
 "oc-validity" parameter values consistent with the overload state at
 the time the retransmitted response was sent. This implies that the
 values in the "oc" and "oc-validity" parameters may be different than
 the ones used in previous retransmissions of the response. Due to
 the fact that responses sent over UDP may be subject to delays in the
 network and arrive out of order, the "oc-seq" parameter aids in
 detecting a stale "oc" parameter value.

 Implementations that are capable of updating the "oc" and "oc-
 validity" parameter values during retransmissions MUST insert the
 "oc-seq" parameter. The value of this parameter MUST be a set of
 numbers drawn from an increasing sequence.

 Implementations that are not capable of updating the "oc" and "oc-
 validity" parameter values during retransmissions -- or
 implementations that do not want to do so because they will have to
 regenerate the message to be retransmitted -- MUST still insert a
 "oc-seq" parameter in the first response associated with a
 transaction; however, they do not have to update the value in
 subsequent retransmissions.

 The "oc-validity" and "oc-seq" Via header parameters are only defined
 in SIP responses and MUST NOT be used in SIP requests. These
 parameters are only useful to the upstream neighbor of a SIP server
 (i.e., the entity that is sending requests to the SIP server) since
 the client is the entity that can offload traffic by redirecting or
 rejecting new requests. If requests are forwarded in both directions
 between two SIP servers (i.e., the roles of upstream/downstream

Gurbani, et al. Standards Track [Page 11]

RFC 7339 Overload Control September 2014

 neighbors change), there are also responses flowing in both
 directions. Thus, both SIP servers can exchange overload
 information.

 This specification provides a good overload control mechanism that
 can protect a SIP server from overload. However, if a SIP server
 wants to limit advertisements of overload control capability for
 privacy reasons, it might decide to perform overload control only for
 requests that are received on a secure transport, such as Transport
 Layer Security (TLS). Indicating support for overload control on a
 request received on an untrusted link can leak privacy in the form of
 capabilities supported by the server. To limit the knowledge that
 the server supports overload control, a server can adopt a policy of
 inserting overload control parameters in only those requests received
 over trusted links such that these parameters are only visible to
 trusted neighbors.

5.3. Determining the "oc" Parameter Value

 The value of the "oc" parameter is determined by the overloaded
 server using any pertinent information at its disposal. The only
 constraint imposed by this document is that the server control
 algorithm MUST produce a value for the "oc" parameter that it expects
 the receiving SIP clients to apply to all downstream SIP requests
 (dialogue forming as well as in-dialogue) to this SIP server. Beyond
 this stipulation, the process by which an overloaded server
 determines the value of the "oc" parameter is considered out of the
 scope of this document.

 Note: This stipulation is required so that both the client and
 server have a common view of which messages the overload control
 applies to. With this stipulation in place, the client can
 prioritize messages as discussed in Section 5.10.1.

 As an example, a value of "oc=10" when the loss-based algorithm is
 used implies that 10% of the total number of SIP requests (dialogue
 forming as well as in-dialogue) are subject to reduction at the
 client. Analogously, a value of "oc=10" when the rate-based
 algorithm [RATE-CONTROL] is used indicates that the client should
 send SIP requests at a rate of 10 SIP requests or fewer per second.

5.4. Processing the Overload Control Parameters

 A SIP client SHOULD remove the "oc", "oc-validity", and "oc-seq"
 parameters from all Via headers of a response received, except for
 the topmost Via header. This prevents overload control parameters
 that were accidentally or maliciously inserted into Via headers by a
 downstream SIP server from traveling upstream.

Gurbani, et al. Standards Track [Page 12]

RFC 7339 Overload Control September 2014

 The scope of overload control applies to unique combinations of IP
 and port values. A SIP client maintains the overload control values
 received (along with the address and port number of the SIP servers
 from which they were received) for the duration specified in the "oc-
 validity" parameter or the default duration. Each time a SIP client
 receives a response with an overload control parameter from a
 downstream SIP server, it compares the "oc-seq" value extracted from
 the Via header with the "oc-seq" value stored for this server. If
 these values match, the response does not update the overload control
 parameters related to this server, and the client continues to
 provide overload control as previously negotiated. If the "oc-seq"
 value extracted from the Via header is larger than the stored value,
 the client updates the stored values by copying the new values of the
 "oc", "oc-algo", and "oc-seq" parameters from the Via header to the
 stored values. Upon such an update of the overload control
 parameters, the client restarts the validity period of the new
 overload control parameters. The overload control parameters now
 remain in effect until the validity period expires or the parameters
 are updated in a new response. Stored overload control parameters
 MUST be reset to default values once the validity period has expired
 (see Section 5.7 for the detailed steps on terminating overload
 control).

5.5. Using the Overload Control Parameter Values

 A SIP client MUST honor overload control values it receives from
 downstream neighbors. The SIP client MUST NOT forward more requests
 to a SIP server than allowed by the current "oc" and "oc-algo"
 parameter values from that particular downstream server.

 When forwarding a SIP request, a SIP client uses the SIP procedures
 of [RFC3263] to determine the next-hop SIP server. The procedures of
 [RFC3263] take a SIP URI as input, extract the domain portion of that
 URI for use as a lookup key, query the DNS to obtain an ordered set
 of one or more IP addresses with a port number and transport
 corresponding to each IP address in this set (the Expected Output).

 After selecting a specific SIP server from the Expected Output, the
 SIP client determines if it already has overload control parameter
 values for the server chosen from the Expected Output. If the SIP
 client has a non-expired "oc" parameter value for the server chosen
 from the Expected Output, then this chosen server is operating in
 overload control mode. Thus, the SIP client determines if it can or
 cannot forward the current request to the SIP server based on the
 "oc" and "oc-algo" parameters and any relevant local policy.

Gurbani, et al. Standards Track [Page 13]

RFC 7339 Overload Control September 2014

 The particular algorithm used to determine whether or not to forward
 a particular SIP request is a matter of local policy and may take
 into account a variety of prioritization factors. However, this
 local policy SHOULD transmit the same number of SIP requests as the
 sample algorithm defined by the overload control scheme being used.
 (See Section 7.2 for the default loss-based overload control
 algorithm.)

5.6. Forwarding the Overload Control Parameters

 Overload control is defined in a hop-by-hop manner. Therefore,
 forwarding the contents of the overload control parameters is
 generally NOT RECOMMENDED and should only be performed if permitted
 by the configuration of SIP servers. This means that a SIP proxy
 SHOULD strip the overload control parameters inserted by the client
 before proxying the request further downstream. Of course, when the
 proxy acts as a client and proxies the request downstream, it is free
 to add overload control parameters pertinent to itself in the Via
 header it inserted in the request.

5.7. Terminating Overload Control

 A SIP client removes overload control if one of the following events
 occur:

 1. The "oc-validity" period previously received by the client from
 this server (or the default value of 500 ms if the server did not
 previously specify an "oc-validity" parameter) expires.

 2. The client is explicitly told by the server to stop performing
 overload control using the "oc-validity=0" parameter.

 A SIP server can decide to terminate overload control by explicitly
 signaling the client. To do so, the SIP server MUST set the value of
 the "oc-validity" parameter to 0. The SIP server MUST increment the
 value of "oc-seq" and SHOULD set the value of the "oc" parameter to
 0.

 Note that the loss-based overload control scheme (Section 7) can
 effectively stop overload control by setting the value of the "oc"
 parameter to 0. However, the rate-based scheme [RATE-CONTROL]
 needs an additional piece of information in the form of "oc-
 validity=0".

 When the client receives a response with a higher "oc-seq" number
 than the one it most recently processed, it checks the "oc-validity"
 parameter. If the value of the "oc-validity" parameter is 0, this
 indicates to the client that overload control of messages destined to

Gurbani, et al. Standards Track [Page 14]

RFC 7339 Overload Control September 2014

 the server is no longer necessary and the traffic can flow without
 any reduction. Furthermore, when the value of the "oc-validity"
 parameter is 0, the client SHOULD disregard the value in the "oc"
 parameter.

5.8. Stabilizing Overload Algorithm Selection

 Realities of deployments of SIP necessitate that the overload control
 algorithm may be changed upon a system reboot or a software upgrade.
 However, frequent changes of the overload control algorithm must be
 avoided. Frequent changes of the overload control algorithm will not
 benefit the client or the server as such flapping does not allow the
 chosen algorithm to stabilize. An algorithm change, when desired, is
 simply accomplished by the SIP server choosing a new algorithm from
 the list in the client’s "oc-algo" parameter and sending it back to
 the client in a response.

 The client associates a specific algorithm with each server it sends
 traffic to, and when the server changes the algorithm, the client
 must change its behavior accordingly.

 Once the server selects a specific overload control algorithm for a
 given client, the algorithm SHOULD NOT change the algorithm
 associated with that client for at least 3600 seconds (1 hour). This
 period may involve one or more cycles of overload control being in
 effect and then being stopped depending on the traffic and resources
 at the server.

 Note: One way to accomplish this involves the server saving the
 time of the last algorithm change in a lookup table, indexed by
 the client’s network identifiers. The server only changes the
 "oc-algo" parameter when the time since the last change has
 surpassed 3600 seconds.

5.9. Self-Limiting

 In some cases, a SIP client may not receive a response from a server
 after sending a request. RFC 3261 [RFC3261] states:

 Note: When a timeout error is received from the transaction layer,
 it MUST be treated as if a 408 (Request Timeout) status code has
 been received. If a fatal transport error is reported by the
 transport layer ..., the condition MUST be treated as a 503
 (Service Unavailable) status code.

 In the event of repeated timeouts or fatal transport errors, the SIP
 client MUST stop sending requests to this server. The SIP client
 SHOULD periodically probe if the downstream server is alive using any

Gurbani, et al. Standards Track [Page 15]

RFC 7339 Overload Control September 2014

 mechanism at its disposal. Clients should be conservative in their
 probing (e.g., using an exponential back-off) so that their liveness
 probes do not exacerbate an overload situation. Once a SIP client
 has successfully received a normal response for a request sent to the
 downstream server, the SIP client can resume sending SIP requests.
 It should, of course, honor any overload control parameters it may
 receive in the initial, or later, responses.

5.10. Responding to an Overload Indication

 A SIP client can receive overload control feedback indicating that it
 needs to reduce the traffic it sends to its downstream server. The
 client can accomplish this task by sending some of the requests that
 would have gone to the overloaded element to a different destination.

 It needs to ensure, however, that this destination is not in overload
 and is capable of processing the extra load. A client can also
 buffer requests in the hope that the overload condition will resolve
 quickly and the requests can still be forwarded in time. In many
 cases, however, it will need to reject these requests with a "503
 (Service Unavailable)" response without the Retry-After header.

5.10.1. Message Prioritization at the Hop before the Overloaded Server

 During an overload condition, a SIP client needs to prioritize
 requests and select those requests that need to be rejected or
 redirected. This selection is largely a matter of local policy. It
 is expected that a SIP client will follow local policy as long as the
 result in reduction of traffic is consistent with the overload
 algorithm in effect at that node. Accordingly, the normative
 behavior in the next three paragraphs should be interpreted with the
 understanding that the SIP client will aim to preserve local policy
 to the fullest extent possible.

 A SIP client SHOULD honor the local policy for prioritizing SIP
 requests such as policies based on message type, e.g., INVITEs versus
 requests associated with existing sessions.

 A SIP client SHOULD honor the local policy for prioritizing SIP
 requests based on the content of the Resource-Priority header (RPH)
 [RFC4412]. Specific (namespace.value) RPH contents may indicate
 high-priority requests that should be preserved as much as possible
 during overload. The RPH contents can also indicate a low-priority
 request that is eligible to be dropped during times of overload.

 A SIP client SHOULD honor the local policy for prioritizing SIP
 requests relating to emergency calls as identified by the SOS URN
 [RFC5031] indicating an emergency request. This policy ensures that

Gurbani, et al. Standards Track [Page 16]

RFC 7339 Overload Control September 2014

 when a server is overloaded and non-emergency calls outnumber
 emergency calls in the traffic arriving at the client, the few
 emergency calls will be given preference. If, on the other hand, the
 server is overloaded and the majority of calls arriving at the client
 are emergency in nature, then no amount of message prioritization
 will ensure the delivery of all emergency calls if the client is to
 reduce the amount of traffic as requested by the server.

 A local policy can be expected to combine both the SIP request type
 and the prioritization markings, and it SHOULD be honored when
 overload conditions prevail.

5.10.2. Rejecting Requests at an Overloaded Server

 If the upstream SIP client to the overloaded server does not support
 overload control, it will continue to direct requests to the
 overloaded server. Thus, for the non-participating client, the
 overloaded server must bear the cost of rejecting some requests from
 the client as well as the cost of processing the non-rejected
 requests to completion. It would be fair to devote the same amount
 of processing at the overloaded server to the combination of
 rejection and processing from a non-participating client as the
 overloaded server would devote to processing requests from a
 participating client. This is to ensure that SIP clients that do not
 support this specification don’t receive an unfair advantage over
 those that do.

 A SIP server that is in overload and has started to throttle incoming
 traffic MUST reject some requests from non-participating clients with
 a 503 (Service Unavailable) response without the Retry-After header.

5.11. 100 Trying Provisional Response and Overload Control Parameters

 The overload control information sent from a SIP server to a client
 is transported in the responses. While implementations can insert
 overload control information in any response, special attention
 should be accorded to overload control information transported in a
 100 Trying response.

 Traditionally, the 100 Trying response has been used in SIP to quench
 retransmissions. In some implementations, the 100 Trying message may
 not be generated by the transaction user (TU) nor consumed by the TU.
 In these implementations, the 100 Trying response is generated at the
 transaction layer and sent to the upstream SIP client. At the
 receiving SIP client, the 100 Trying is consumed at the transaction
 layer by inhibiting the retransmission of the corresponding request.
 Consequently, implementations that insert overload control
 information in the 100 Trying cannot assume that the upstream SIP

Gurbani, et al. Standards Track [Page 17]

RFC 7339 Overload Control September 2014

 client passed the overload control information in the 100 Trying to
 their corresponding TU. For this reason, implementations that insert
 overload control information in the 100 Trying MUST re-insert the
 same (or updated) overload control information in the first non-100
 Trying response being sent to the upstream SIP client.

6. Example

 Consider a SIP client, P1, which is sending requests to another
 downstream SIP server, P2. The following snippets of SIP messages
 demonstrate how the overload control parameters work.

 INVITE sips:user@example.com SIP/2.0
 Via: SIP/2.0/TLS p1.example.net;
 branch=z9hG4bK2d4790.1;oc;oc-algo="loss,A"
 ...

 SIP/2.0 100 Trying
 Via: SIP/2.0/TLS p1.example.net;
 branch=z9hG4bK2d4790.1;received=192.0.2.111;
 oc=0;oc-algo="loss";oc-validity=0
 ...

 In the messages above, the first line is sent by P1 to P2. This line
 is a SIP request; because P1 supports overload control, it inserts
 the "oc" parameter in the topmost Via header that it created. P1
 supports two overload control algorithms: "loss" and an algorithm
 called "A".

 The second line -- a SIP response -- shows the topmost Via header
 amended by P2 according to this specification and sent to P1.
 Because P2 also supports overload control and chooses the loss-based
 scheme, it sends "loss" back to P1 in the "oc-algo" parameter. It
 also sets the value of the "oc" and "oc-validity" parameters to 0
 because it is not currently requesting overload control activation.

 Had P2 not supported overload control, it would have left the "oc"
 and "oc-algo" parameters unchanged, thus allowing the client to know
 that it did not support overload control.

Gurbani, et al. Standards Track [Page 18]

RFC 7339 Overload Control September 2014

 At some later time, P2 starts to experience overload. It sends the
 following SIP message indicating that P1 should decrease the messages
 arriving to P2 by 20% for 0.5 seconds.

 SIP/2.0 180 Ringing
 Via: SIP/2.0/TLS p1.example.net;
 branch=z9hG4bK2d4790.3;received=192.0.2.111;
 oc=20;oc-algo="loss";oc-validity=500;
 oc-seq=1282321615.782
 ...
 After some time, the overload condition at P2 subsides. It then
 changes the parameter values in the response it sends to P1 to allow
 P1 to send all messages destined to P2.

 SIP/2.0 183 Queued
 Via: SIP/2.0/TLS p1.example.net;
 branch=z9hG4bK2d4790.4;received=192.0.2.111;
 oc=0;oc-algo="loss";oc-validity=0;oc-seq=1282321892.439
 ...

7. The Loss-Based Overload Control Scheme

 Under a loss-based approach, a SIP server asks an upstream neighbor
 to reduce the number of requests it would normally forward to this
 server by a certain percentage. For example, a SIP server can ask an
 upstream neighbor to reduce the number of requests this neighbor
 would normally send by 10%. The upstream neighbor then redirects or
 rejects 10% of the traffic originally destined for that server.

 This section specifies the semantics of the overload control
 parameters associated with the loss-based overload control scheme.
 The general behavior of SIP clients and servers is specified in
 Section 5 and is applicable to SIP clients and servers that implement
 loss-based overload control.

7.1. Special Parameter Values for Loss-Based Overload Control

 The loss-based overload control scheme is identified using the token
 "loss". This token appears in the "oc-algo" parameter list sent by
 the SIP client.

 Upon entering the overload state, a SIP server that has selected the
 loss-based algorithm will assign a value to the "oc" parameter. This
 value MUST be in the range of [0, 100], inclusive. This value
 indicates to the client the percentage by which the client is to
 reduce the number of requests being forwarded to the overloaded
 server. The SIP client may use any algorithm that reduces the
 traffic it sends to the overloaded server by the amount indicated.

Gurbani, et al. Standards Track [Page 19]

RFC 7339 Overload Control September 2014

 Such an algorithm should honor the message prioritization discussion
 in Section 5.10.1. While a particular algorithm is not subject to
 standardization, for completeness, a default algorithm for loss-based
 overload control is provided in Section 7.2.

7.2. Default Algorithm for Loss-Based Overload Control

 This section describes a default algorithm that a SIP client can use
 to throttle SIP traffic going downstream by the percentage loss value
 specified in the "oc" parameter.

 The client maintains two categories of requests. The first category
 will include requests that are candidates for reduction, and the
 second category will include requests that are not subject to
 reduction except when all messages in the first category have been
 rejected and further reduction is still needed. Section 5.10.1
 contains directives on identifying messages for inclusion in the
 second category. The remaining messages are allocated to the first
 category.

 Under overload condition, the client converts the value of the "oc"
 parameter to a value that it applies to requests in the first
 category. As a simple example, if "oc=10" and 40% of the requests
 should be included in the first category, then:

 10 / 40 * 100 = 25

 Or, 25% of the requests in the first category can be reduced to get
 an overall reduction of 10%. The client uses random discard to
 achieve the 25% reduction of messages in the first category.
 Messages in the second category proceed downstream unscathed. To
 affect the 25% reduction rate from the first category, the client
 draws a random number between 1 and 100 for the request picked from
 the first category. If the random number is less than or equal to
 the converted value of the "oc" parameter, the request is not
 forwarded; otherwise, the request is forwarded.

Gurbani, et al. Standards Track [Page 20]

RFC 7339 Overload Control September 2014

 A reference algorithm is shown below.

cat1 := 80.0 // Category 1 -- Subject to reduction
cat2 := 100.0 - cat1 // Category 2 -- Under normal operations,
// only subject to reduction after category 1 is exhausted.
// Note that the above ratio is simply a reasonable default.
// The actual values will change through periodic sampling
// as the traffic mix changes over time.

while (true) {
 // We’re modeling message processing as a single work
 // queue that contains both incoming and outgoing messages.
 sip_msg := get_next_message_from_work_queue()

 update_mix(cat1, cat2) // See Note below

 switch (sip_msg.type) {

 case outbound request:
 destination := get_next_hop(sip_msg)
 oc_context := get_oc_context(destination)

 if (oc_context == null) {
 send_to_network(sip_msg) // Process it normally by
 // sending the request to the next hop since this
 // particular destination is not subject to overload.
 }
 else {
 // Determine if server wants to enter in overload or is in
 // overload.
 in_oc := extract_in_oc(oc_context)
 oc_value := extract_oc(oc_context)
 oc_validity := extract_oc_validity(oc_context)

 if (in_oc == false or oc_validity is not in effect) {
 send_to_network(sip_msg) // Process it normally by sending
 // the request to the next hop since this particular
 // destination is not subject to overload. Optionally,
 // clear the oc context for this server (not shown).
 }
 else { // Begin performing overload control.
 r := random()
 drop_msg := false

 category := assign_msg_to_category(sip_msg)

 pct_to_reduce_cat1 = oc_value / cat1 * 100

Gurbani, et al. Standards Track [Page 21]

RFC 7339 Overload Control September 2014

 if (oc_value <= cat1) { // Reduce all msgs from category 1
 if (r <= pct_to_reduce_cat1 && category == cat1) {
 drop_msg := true
 }
 }
 else { // oc_value > category 1. Reduce 100% of msgs from
 // category 1 and remaining from category 2.
 pct_to_reduce_cat2 = (oc_value - cat1) / cat2 * 100
 if (category == cat1) {
 drop_msg := true
 }
 else {
 if (r <= pct_to_reduce_cat2) {
 drop_msg := true;
 }
 }
 }

 if (drop_msg == false) {
 send_to_network(sip_msg) // Process it normally by
 // sending the request to the next hop.
 }
 else {
 // Do not send request downstream; handle it locally by
 // generating response (if a proxy) or treating it as
 // an error (if a user agent).
 }

 } // End perform overload control.
 }

 end case // outbound request

 case outbound response:
 if (we are in overload) {
 add_overload_parameters(sip_msg)
 }
 send_to_network(sip_msg)

 end case // outbound response

 case inbound response:

 if (sip_msg has oc parameter values) {
 create_or_update_oc_context() // For the specific server
 // that sent the response, create or update the oc context,
 // i.e., extract the values of the oc-related parameters
 // and store them for later use.

Gurbani, et al. Standards Track [Page 22]

RFC 7339 Overload Control September 2014

 }
 process_msg(sip_msg)

 end case // inbound response
 case inbound request:

 if (we are not in overload) {
 process_msg(sip_msg)
 }
 else { // We are in overload.
 if (sip_msg has oc parameters) { // Upstream client supports
 process_msg(sip_msg) // oc; only sends important requests.
 }
 else { // Upstream client does not support oc
 if (local_policy(sip_msg) says process message) {
 process_msg(sip_msg)
 }
 else {
 send_response(sip_msg, 503)
 }
 }
 }
 end case // inbound request
 }
}

 Note: A simple way to sample the traffic mix for category 1 and
 category 2 is to associate a counter with each category of message.
 Periodically (every 5-10 seconds), get the value of the counters, and
 calculate the ratio of category 1 messages to category 2 messages
 since the last calculation.

 Example: In the last 5 seconds, a total of 500 requests arrived at
 the queue. 450 out of the 500 were messages subject to reduction,
 and 50 out of 500 were classified as requests not subject to
 reduction. Based on this ratio, cat1 := 90 and cat2 := 10, so a
 90/10 mix will be used in overload calculations.

8. Relationship with Other IETF SIP Load Control Efforts

 The overload control mechanism described in this document is reactive
 in nature, and apart from the message prioritization directives
 listed in Section 5.10.1, the mechanisms described in this document
 will not discriminate requests based on user identity, filtering
 action, and arrival time. SIP networks that require pro-active
 overload control mechanisms can upload user-level load control
 filters as described in [RFC7200]. Local policy will also dictate
 the precedence of different overload control mechanisms applied to

Gurbani, et al. Standards Track [Page 23]

RFC 7339 Overload Control September 2014

 the traffic. Specifically, in a scenario where load control filters
 are installed by signaling neighbors [RFC7200] and the same traffic
 can also be throttled using the overload control mechanism, local
 policy will dictate which of these schemes shall be given precedence.
 Interactions between the two schemes are out of the scope of this
 document.

9. Syntax

 This specification extends the existing definition of the Via header
 field parameters of [RFC3261]. The ABNF [RFC5234] syntax is as
 follows:

 via-params =/ oc / oc-validity / oc-seq / oc-algo
 oc = "oc" [EQUAL oc-num]
 oc-num = 1*DIGIT
 oc-validity = "oc-validity" [EQUAL delta-ms]
 oc-seq = "oc-seq" EQUAL 1*12DIGIT "." 1*5DIGIT
 oc-algo = "oc-algo" EQUAL DQUOTE algo-list *(COMMA algo-list)
 DQUOTE
 algo-list = "loss" / *(other-algo)
 other-algo = %x41-5A / %x61-7A / %x30-39
 delta-ms = 1*DIGIT

10. Design Considerations

 This section discusses specific design considerations for the
 mechanism described in this document. General design considerations
 for SIP overload control can be found in [RFC6357].

10.1. SIP Mechanism

 A SIP mechanism is needed to convey overload feedback from the
 receiving to the sending SIP entity. A number of different
 alternatives exist to implement such a mechanism.

10.1.1. SIP Response Header

 Overload control information can be transmitted using a new Via
 header field parameter for overload control. A SIP server can add
 this header parameter to the responses it is sending upstream to
 provide overload control feedback to its upstream neighbors. This
 approach has the following characteristics:

 o A Via header parameter is light-weight and creates very little
 overhead. It does not require the transmission of additional
 messages for overload control and does not increase traffic or
 processing burdens in an overload situation.

Gurbani, et al. Standards Track [Page 24]

RFC 7339 Overload Control September 2014

 o Overload control status can frequently be reported to upstream
 neighbors since it is a part of a SIP response. This enables the
 use of this mechanism in scenarios where the overload status needs
 to be adjusted frequently. It also enables the use of overload
 control mechanisms that use regular feedback, such as window-based
 overload control.

 o With a Via header parameter, overload control status is inherent
 in SIP signaling and is automatically conveyed to all relevant
 upstream neighbors, i.e., neighbors that are currently
 contributing traffic. There is no need for a SIP server to
 specifically track and manage the set of current upstream or
 downstream neighbors with which it should exchange overload
 feedback.

 o Overload status is not conveyed to inactive senders. This avoids
 the transmission of overload feedback to inactive senders, which
 do not contribute traffic. If an inactive sender starts to
 transmit while the receiver is in overload, it will receive
 overload feedback in the first response and can adjust the amount
 of traffic forwarded accordingly.

 o A SIP server can limit the distribution of overload control
 information by only inserting it into responses to known upstream
 neighbors. A SIP server can use transport-level authentication
 (e.g., via TLS) with its upstream neighbors.

10.1.2. SIP Event Package

 Overload control information can also be conveyed from a receiver to
 a sender using a new event package. Such an event package enables a
 sending entity to subscribe to the overload status of its downstream
 neighbors and receive notifications of overload control status
 changes in NOTIFY requests. This approach has the following
 characteristics:

 o Overload control information is conveyed decoupled from SIP
 signaling. It enables an overload control manager, which is a
 separate entity, to monitor the load on other servers and provide
 overload control feedback to all SIP servers that have set up
 subscriptions with the controller.

 o With an event package, a receiver can send updates to senders that
 are currently inactive. Inactive senders will receive a
 notification about the overload and can refrain from sending
 traffic to this neighbor until the overload condition is resolved.

Gurbani, et al. Standards Track [Page 25]

RFC 7339 Overload Control September 2014

 The receiver can also notify all potential senders once they are
 permitted to send traffic again. However, these notifications do
 generate additional traffic, which adds to the overall load.

 o A SIP entity needs to set up and maintain overload control
 subscriptions with all upstream and downstream neighbors. A new
 subscription needs to be set up before/while a request is
 transmitted to a new downstream neighbor. Servers can be
 configured to subscribe at boot time. However, this would require
 additional protection to avoid the avalanche restart problem for
 overload control. Subscriptions need to be terminated when they
 are not needed any more, which can be done, for example, using a
 timeout mechanism.

 o A receiver needs to send NOTIFY messages to all subscribed
 upstream neighbors in a timely manner when the control algorithm
 requires a change in the control variable (e.g., when a SIP server
 is in an overload condition). This includes active as well as
 inactive neighbors. These NOTIFYs add to the amount of traffic
 that needs to be processed. To ensure that these requests will
 not be dropped due to overload, a priority mechanism needs to be
 implemented in all servers these requests will pass through.

 o As overload feedback is sent to all senders in separate messages,
 this mechanism is not suitable when frequent overload control
 feedback is needed.

 o A SIP server can limit the set of senders that can receive
 overload control information by authenticating subscriptions to
 this event package.

 o This approach requires each proxy to implement user agent
 functionality (UAS and UAC) to manage the subscriptions.

10.2. Backwards Compatibility

 A new overload control mechanism needs to be backwards compatible so
 that it can be gradually introduced into a network and function
 properly if only a fraction of the servers support it.

 Hop-by-hop overload control (see [RFC6357]) has the advantage that it
 does not require that all SIP entities in a network support it. It
 can be used effectively between two adjacent SIP servers if both
 servers support overload control and does not depend on the support
 from any other server or user agent. The more SIP servers in a
 network support hop-by-hop overload control, the better protected the
 network is against occurrences of overload.

Gurbani, et al. Standards Track [Page 26]

RFC 7339 Overload Control September 2014

 A SIP server may have multiple upstream neighbors from which only
 some may support overload control. If a server would simply use this
 overload control mechanism, only those that support it would reduce
 traffic. Others would keep sending at the full rate and benefit from
 the throttling by the servers that support overload control. In
 other words, upstream neighbors that do not support overload control
 would be better off than those that do.

 A SIP server should therefore follow the behavior outlined in
 Section 5.10.2 to handle clients that do not support overload
 control.

11. Security Considerations

 Overload control mechanisms can be used by an attacker to conduct a
 denial-of-service attack on a SIP entity if the attacker can pretend
 that the SIP entity is overloaded. When such a forged overload
 indication is received by an upstream SIP client, it will stop
 sending traffic to the victim. Thus, the victim is subject to a
 denial-of-service attack.

 To better understand the threat model, consider the following
 diagram:

 Pa ------- ------ Pb
 \ /
 : ------ +-------- P1 ------+------ :
 / L1 L2 \
 : ------- ------ :

 -----> Downstream (requests)
 <----- Upstream (responses)

 Here, requests travel downstream from the left-hand side, through
 Proxy P1, towards the right-hand side; responses travel upstream from
 the right-hand side, through P1, towards the left-hand side. Proxies
 Pa, Pb, and P1 support overload control. L1 and L2 are labels for
 the links connecting P1 to the upstream clients and downstream
 servers.

 If an attacker is able to modify traffic between Pa and P1 on link
 L1, it can cause a denial-of-service attack on P1 by having Pa not
 send any traffic to P1. Such an attack can proceed by the attacker
 modifying the response from P1 to Pa such that Pa’s Via header is
 changed to indicate that all requests destined towards P1 should be
 dropped. Conversely, the attacker can simply remove any "oc", "oc-
 validity", and "oc-seq" markings added by P1 in a response to Pa. In

Gurbani, et al. Standards Track [Page 27]

RFC 7339 Overload Control September 2014

 such a case, the attacker will force P1 into overload by denying
 request quenching at Pa even though Pa is capable of performing
 overload control.

 Similarly, if an attacker is able to modify traffic between P1 and Pb
 on link L2, it can change the Via header associated with P1 in a
 response from Pb to P1 such that all subsequent requests destined
 towards Pb from P1 are dropped. In essence, the attacker mounts a
 denial-of-service attack on Pb by indicating false overload control.
 Note that it is immaterial whether Pb supports overload control or
 not; the attack will succeed as long as the attacker is able to
 control L2. Conversely, an attacker can suppress a genuine overload
 condition at Pb by simply removing any "oc", "oc-validity", and "oc-
 seq" markings added by Pb in a response to P1. In such a case, the
 attacker will force P1 into sending requests to Pb even under
 overload conditions because P1 would not be aware that Pb supports
 overload control.

 Attacks that indicate false overload control are best mitigated by
 using TLS in conjunction with applying BCP 38 [RFC2827]. Attacks
 that are mounted to suppress genuine overload conditions can be
 similarly avoided by using TLS on the connection. Generally, TCP or
 WebSockets [RFC6455] in conjunction with BCP 38 makes it more
 difficult for an attacker to insert or modify messages but may still
 prove inadequate against an adversary that controls links L1 and L2.
 TLS provides the best protection from an attacker with access to the
 network links.

 Another way to conduct an attack is to send a message containing a
 high overload feedback value through a proxy that does not support
 this extension. If this feedback is added to the second Via header
 (or all Via headers), it will reach the next upstream proxy. If the
 attacker can make the recipient believe that the overload status was
 created by its direct downstream neighbor (and not by the attacker
 further downstream), the recipient stops sending traffic to the
 victim. A precondition for this attack is that the victim proxy does
 not support this extension since it would not pass through overload
 control feedback otherwise.

 A malicious SIP entity could gain an advantage by pretending to
 support this specification but never reducing the amount of traffic
 it forwards to the downstream neighbor. If its downstream neighbor
 receives traffic from multiple sources that correctly implement
 overload control, the malicious SIP entity would benefit since all
 other sources to its downstream neighbor would reduce load.

Gurbani, et al. Standards Track [Page 28]

RFC 7339 Overload Control September 2014

 Note: The solution to this problem depends on the overload control
 method. With rate-based, window-based, and other similar overload
 control algorithms that promise to produce no more than a
 specified number of requests per unit time, the overloaded server
 can regulate the traffic arriving to it. However, when using
 loss-based overload control, such policing is not always obvious
 since the load forwarded depends on the load received by the
 client.

 To prevent such attacks, servers should monitor client behavior to
 determine whether they are complying with overload control policies.
 If a client is not conforming to such policies, then the server
 should treat it as a non-supporting client (see Section 5.10.2).

 Finally, a distributed denial-of-service (DDoS) attack could cause an
 honest server to start signaling an overload condition. Such a DDoS
 attack could be mounted without controlling the communications links
 since the attack simply depends on the attacker injecting a large
 volume of packets on the communication links. If the honest server
 attacked by a DDoS attack has a long "oc-validity" interval and the
 attacker can guess this interval, the attacker can keep the server
 overloaded by synchronizing the DDoS traffic with the validity
 period. While such an attack may be relatively easy to spot,
 mechanisms for combating it are outside the scope of this document
 and, of course, since attackers can invent new variations, the
 appropriate mechanisms are likely to change over time.

12. IANA Considerations

 This specification defines four new Via header parameters as detailed
 below in the "Header Field Parameter and Parameter Values" sub-
 registry as per the registry created by [RFC3968]. The required
 information is:

 Header Field Parameter Name Predefined Values Reference
 __
 Via oc Yes [RFC7339]
 Via oc-validity Yes [RFC7339]
 Via oc-seq Yes [RFC7339]
 Via oc-algo Yes [RFC7339]

13. References

13.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

Gurbani, et al. Standards Track [Page 29]

RFC 7339 Overload Control September 2014

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 June 2002.

 [RFC3263] Rosenberg, J. and H. Schulzrinne, "Session Initiation
 Protocol (SIP): Locating SIP Servers", RFC 3263, June
 2002.

 [RFC3968] Camarillo, G., "The Internet Assigned Number Authority
 (IANA) Header Field Parameter Registry for the Session
 Initiation Protocol (SIP)", BCP 98, RFC 3968, December
 2004.

 [RFC4412] Schulzrinne, H. and J. Polk, "Communications Resource
 Priority for the Session Initiation Protocol (SIP)", RFC
 4412, February 2006.

 [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008.

13.2. Informative References

 [RATE-CONTROL]
 Noel, E. and P. Williams, "Session Initiation Protocol
 (SIP) Rate Control", Work in Progress, July 2014.

 [RFC2827] Ferguson, P. and D. Senie, "Network Ingress Filtering:
 Defeating Denial of Service Attacks which employ IP Source
 Address Spoofing", BCP 38, RFC 2827, May 2000.

 [RFC5031] Schulzrinne, H., "A Uniform Resource Name (URN) for
 Emergency and Other Well-Known Services", RFC 5031,
 January 2008.

 [RFC5390] Rosenberg, J., "Requirements for Management of Overload in
 the Session Initiation Protocol", RFC 5390, December 2008.

 [RFC6357] Hilt, V., Noel, E., Shen, C., and A. Abdelal, "Design
 Considerations for Session Initiation Protocol (SIP)
 Overload Control", RFC 6357, August 2011.

 [RFC6455] Fette, I. and A. Melnikov, "The WebSocket Protocol", RFC
 6455, December 2011.

 [RFC7200] Shen, C., Schulzrinne, H., and A. Koike, "A Session
 Initiation Protocol (SIP) Load-Control Event Package", RFC
 7200, April 2014.

Gurbani, et al. Standards Track [Page 30]

RFC 7339 Overload Control September 2014

Appendix A. Acknowledgements

 The authors acknowledge the contributions of Bruno Chatras, Keith
 Drage, Janet Gunn, Rich Terpstra, Daryl Malas, Eric Noel, R.
 Parthasarathi, Antoine Roly, Jonathan Rosenberg, Charles Shen, Rahul
 Srivastava, Padma Valluri, Shaun Bharrat, Paul Kyzivat, and Jeroen
 Van Bemmel to this document.

 Adam Roach and Eric McMurry helped flesh out the different cases for
 handling SIP messages described in the algorithm in Section 7.2.
 Janet Gunn reviewed the algorithm and suggested changes that led to
 simpler processing for the case where "oc_value > cat1".

 Richard Barnes provided invaluable comments as a part of the Area
 Director review of the document.

Appendix B. RFC 5390 Requirements

 Table 1 provides a summary of how this specification fulfills the
 requirements of [RFC5390]. A more detailed view on how each
 requirements is fulfilled is provided after the table.

Gurbani, et al. Standards Track [Page 31]

RFC 7339 Overload Control September 2014

 +-------------+-------------------+
 | Requirement | Meets requirement |
 +-------------+-------------------+
 | REQ 1 | Yes |
 | REQ 2 | Yes |
 | REQ 3 | Partially |
 | REQ 4 | Yes |
 | REQ 5 | Partially |
 | REQ 6 | Not applicable |
 | REQ 7 | Yes |
 | REQ 8 | Partially |
 | REQ 9 | Yes |
 | REQ 10 | Yes |
 | REQ 11 | Yes |
 | REQ 12 | Yes |
 | REQ 13 | Yes |
 | REQ 14 | Yes |
 | REQ 15 | Yes |
 | REQ 16 | Yes |
 | REQ 17 | Partially |
 | REQ 18 | Yes |
 | REQ 19 | Yes |
 | REQ 20 | Yes |
 | REQ 21 | Yes |
 | REQ 22 | Yes |
 | REQ 23 | Yes |
 +-------------+-------------------+

 Table 1: Summary of Meeting Requirements in RFC 5390

 REQ 1: The overload mechanism shall strive to maintain the overall
 useful throughput (taking into consideration the quality-of-service
 needs of the using applications) of a SIP server at reasonable
 levels, even when the incoming load on the network is far in excess
 of its capacity. The overall throughput under load is the ultimate
 measure of the value of an overload control mechanism.

 Meets REQ 1: Yes. The overload control mechanism allows an
 overloaded SIP server to maintain a reasonable level of throughput
 as it enters into congestion mode by requesting the upstream
 clients to reduce traffic destined downstream.

 REQ 2: When a single network element fails, goes into overload, or
 suffers from reduced processing capacity, the mechanism should strive
 to limit the impact of this on other elements in the network. This
 helps to prevent a small-scale failure from becoming a widespread
 outage.

Gurbani, et al. Standards Track [Page 32]

RFC 7339 Overload Control September 2014

 Meets REQ 2: Yes. When a SIP server enters overload mode, it will
 request the upstream clients to throttle the traffic destined to
 it. As a consequence of this, the overloaded SIP server will
 itself generate proportionally less downstream traffic, thereby
 limiting the impact on other elements in the network.

 REQ 3: The mechanism should seek to minimize the amount of
 configuration required in order to work. For example, it is better
 to avoid needing to configure a server with its SIP message
 throughput, as these kinds of quantities are hard to determine.

 Meets REQ 3: Partially. On the server side, the overload
 condition is determined monitoring "S" (cf., Section 4 of
 [RFC6357]) and reporting a load feedback "F" as a value to the
 "oc" parameter. On the client side, a throttle "T" is applied to
 requests going downstream based on "F". This specification does
 not prescribe any value for "S" nor a particular value for "F".
 The "oc-algo" parameter allows for automatic convergence to a
 particular class of overload control algorithm. There are
 suggested default values for the "oc-validity" parameter.

 REQ 4: The mechanism must be capable of dealing with elements that do
 not support it so that a network can consist of a mix of elements
 that do and don’t support it. In other words, the mechanism should
 not work only in environments where all elements support it. It is
 reasonable to assume that it works better in such environments, of
 course. Ideally, there should be incremental improvements in overall
 network throughput as increasing numbers of elements in the network
 support the mechanism.

 Meets REQ 4: Yes. The mechanism is designed to reduce congestion
 when a pair of communicating entities support it. If a downstream
 overloaded SIP server does not respond to a request in time, a SIP
 client will attempt to reduce traffic destined towards the non-
 responsive server as outlined in Section 5.9.

 REQ 5: The mechanism should not assume that it will only be deployed
 in environments with completely trusted elements. It should seek to
 operate as effectively as possible in environments where other
 elements are malicious; this includes preventing malicious elements
 from obtaining more than a fair share of service.

 Meets REQ 5: Partially. Since overload control information is
 shared between a pair of communicating entities, a confidential
 and authenticated channel can be used for this communication.
 However, if such a channel is not available, then the security
 ramifications outlined in Section 11 apply.

Gurbani, et al. Standards Track [Page 33]

RFC 7339 Overload Control September 2014

 REQ 6: When overload is signaled by means of a specific message, the
 message must clearly indicate that it is being sent because of
 overload, as opposed to other, non-overload-based failure conditions.
 This requirement is meant to avoid some of the problems that have
 arisen from the reuse of the 503 response code for multiple purposes.
 Of course, overload is also signaled by lack of response to requests.
 This requirement applies only to explicit overload signals.

 Meets REQ 6: Not applicable. Overload control information is
 signaled as part of the Via header and not in a new header.

 REQ 7: The mechanism shall provide a way for an element to throttle
 the amount of traffic it receives from an upstream element. This
 throttling shall be graded so that it is not "all or nothing" as with
 the current 503 mechanism. This recognizes the fact that overload is
 not a binary state and that there are degrees of overload.

 Meets REQ 7: Yes. Please see Sections 5.5 and 5.10.

 REQ 8: The mechanism shall ensure that, when a request was not
 processed successfully due to overload (or failure) of a downstream
 element, the request will not be retried on another element that is
 also overloaded or whose status is unknown. This requirement derives
 from REQ 1.

 Meets REQ 8: Partially. A SIP client that has overload
 information from multiple downstream servers will not retry the
 request on another element. However, if a SIP client does not
 know the overload status of a downstream server, it may send the
 request to that server.

 REQ 9: That a request has been rejected from an overloaded element
 shall not unduly restrict the ability of that request to be submitted
 to and processed by an element that is not overloaded. This
 requirement derives from REQ 1.

 Meets REQ 9: Yes. A SIP client conformant to this specification
 will send the request to a different element.

 REQ 10: The mechanism should support servers that receive requests
 from a large number of different upstream elements, where the set of
 upstream elements is not enumerable.

 Meets REQ 10: Yes. There are no constraints on the number of
 upstream clients.

Gurbani, et al. Standards Track [Page 34]

RFC 7339 Overload Control September 2014

 REQ 11: The mechanism should support servers that receive requests
 from a finite set of upstream elements, where the set of upstream
 elements is enumerable.

 Meets REQ 11: Yes. There are no constraints on the number of
 upstream clients.

 REQ 12: The mechanism should work between servers in different
 domains.

 Meets REQ 12: Yes. There are no inherent limitations on using
 overload control between domains. However, interconnections
 points that engage in overload control between domains will have
 to populate and maintain the overload control parameters as
 requests cross domains.

 REQ 13: The mechanism must not dictate a specific algorithm for
 prioritizing the processing of work within a proxy during times of
 overload. It must permit a proxy to prioritize requests based on any
 local policy so that certain ones (such as a call for emergency
 services or a call with a specific value of the Resource-Priority
 header field [RFC4412]) are given preferential treatment, such as not
 being dropped, being given additional retransmission, or being
 processed ahead of others.

 Meets REQ 13: Yes. Please see Section 5.10.

 REQ 14: The mechanism should provide unambiguous directions to
 clients on when they should retry a request and when they should not.
 This especially applies to TCP connection establishment and SIP
 registrations in order to mitigate against an avalanche restart.

 Meets REQ 14: Yes. Section 5.9 provides normative behavior on
 when to retry a request after repeated timeouts and fatal
 transport errors resulting from communications with a non-
 responsive downstream SIP server.

 REQ 15: In cases where a network element fails, is so overloaded that
 it cannot process messages, or cannot communicate due to a network
 failure or network partition, it will not be able to provide explicit
 indications of the nature of the failure or its levels of congestion.
 The mechanism must properly function in these cases.

 Meets REQ 15: Yes. Section 5.9 provides normative behavior on
 when to retry a request after repeated timeouts and fatal
 transport errors resulting from communications with a non-
 responsive downstream SIP server.

Gurbani, et al. Standards Track [Page 35]

RFC 7339 Overload Control September 2014

 REQ 16: The mechanism should attempt to minimize the overhead of the
 overload control messaging.

 Meets REQ 16: Yes. Overload control messages are sent in the
 topmost Via header, which is always processed by the SIP elements.

 REQ 17: The overload mechanism must not provide an avenue for
 malicious attack, including DoS and DDoS attacks.

 Meets REQ 17: Partially. Since overload control information is
 shared between a pair of communicating entities, a confidential
 and authenticated channel can be used for this communication.
 However, if such a channel is not available, then the security
 ramifications outlined in Section 11 apply.

 REQ 18: The overload mechanism should be unambiguous about whether a
 load indication applies to a specific IP address, host, or URI so
 that an upstream element can determine the load of the entity to
 which a request is to be sent.

 Meets REQ 18: Yes. Please see discussion in Section 5.5.

 REQ 19: The specification for the overload mechanism should give
 guidance on which message types might be desirable to process over
 others during times of overload, based on SIP-specific
 considerations. For example, it may be more beneficial to process a
 SUBSCRIBE refresh with Expires of zero than a SUBSCRIBE refresh with
 a non-zero expiration (since the former reduces the overall amount of
 load on the element) or to process re-INVITEs over new INVITEs.

 Meets REQ 19: Yes. Please see Section 5.10.

 REQ 20: In a mixed environment of elements that do and do not
 implement the overload mechanism, no disproportionate benefit shall
 accrue to the users or operators of the elements that do not
 implement the mechanism.

 Meets REQ 20: Yes. An element that does not implement overload
 control does not receive any measure of extra benefit.

 REQ 21: The overload mechanism should ensure that the system remains
 stable. When the offered load drops from above the overall capacity
 of the network to below the overall capacity, the throughput should
 stabilize and become equal to the offered load.

 Meets REQ 21: Yes. The overload control mechanism described in
 this document ensures the stability of the system.

Gurbani, et al. Standards Track [Page 36]

RFC 7339 Overload Control September 2014

 REQ 22: It must be possible to disable the reporting of load
 information towards upstream targets based on the identity of those
 targets. This allows a domain administrator who considers the load
 of their elements to be sensitive information to restrict access to
 that information. Of course, in such cases, there is no expectation
 that the overload mechanism itself will help prevent overload from
 that upstream target.

 Meets REQ 22: Yes. An operator of a SIP server can configure the
 SIP server to only report overload control information for
 requests received over a confidential channel, for example.
 However, note that this requirement is in conflict with REQ 3 as
 it introduces a modicum of extra configuration.

 REQ 23: It must be possible for the overload mechanism to work in
 cases where there is a load balancer in front of a farm of proxies.

 Meets REQ 23: Yes. Depending on the type of load balancer, this
 requirement is met. A load balancer fronting a farm of SIP
 proxies could be a SIP-aware load balancer or one that is not SIP-
 aware. If the load balancer is SIP-aware, it can make conscious
 decisions on throttling outgoing traffic towards the individual
 server in the farm based on the overload control parameters
 returned by the server. On the other hand, if the load balancer
 is not SIP-aware, then there are other strategies to perform
 overload control. Section 6 of [RFC6357] documents some of these
 strategies in more detail (see discussion related to Figure 3(a)
 of that document).

Gurbani, et al. Standards Track [Page 37]

RFC 7339 Overload Control September 2014

Authors’ Addresses

 Vijay K. Gurbani (editor)
 Bell Labs, Alcatel-Lucent
 1960 Lucent Lane, Rm 9C-533
 Naperville, IL 60563
 USA

 EMail: vkg@bell-labs.com

 Volker Hilt
 Bell Labs, Alcatel-Lucent
 Lorenzstrasse 10
 70435 Stuttgart
 Germany

 EMail: volker.hilt@bell-labs.com

 Henning Schulzrinne
 Columbia University/Department of Computer Science
 450 Computer Science Building
 New York, NY 10027
 USA

 Phone: +1 212 939 7004
 EMail: hgs@cs.columbia.edu
 URI: http://www.cs.columbia.edu

Gurbani, et al. Standards Track [Page 38]

