I nt ernet Engi neering Task Force (1 ETF) B. Li nowski

Request for Comments: 6095 TCS/ Noki a Si erens Net wor ks
Cat egory: Experi ment al M Ersue
| SSN: 2070-1721 Noki a Si enens Networ ks
S. Kuryla

360 Treasury Systens

March 2011

Ext endi ng YANG wi th Language Abstractions
Abst r act

YANG -- the Network Configuration Protocol (NETCONF) Data Mddeling
Language -- supports nodeling of a tree of data el ements that
represent the configuration and runtinme status of a particul ar
network el ement managed via NETCONF. This menp suggests enhanci ng
YANG wi th suppl enmentary nodeling features and | anguage abstractions
with the aimto inprove the nodel extensibility and reuse.

Status of This Meno

Thi s docunent is not an Internet Standards Track specification; it is
publ i shed for exam nation, experinental inplenmentation, and
eval uati on.

Thi s docunent defines an Experinmental Protocol for the Internet
conmunity. This docunent is a product of the Internet Engi neering
Task Force (IETF). It represents the consensus of the | ETF
comunity. It has received public review and has been approved for
publication by the Internet Engineering Steering Goup (IESG. Not
all documents approved by the | ESG are a candi date for any |evel of
I nternet Standard; see Section 2 of RFC 5741.

I nformati on about the current status of this docunment, any errata,

and how to provide feedback on it may be obtained at
http://ww. rfc-editor.org/info/rfc6095.

Li nowski, et al. Experi nment al [Page 1]

RFC 6095 YANG Language Abstractions March 2011

Copyri ght Notice

Copyright (c) 2011 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

Thi s docunent is subject to BCP 78 and the I ETF Trust’'s Lega
Provisions Relating to | ETF Docunents

(http://trustee.ietf.org/license-info)

publication of this docunment. Please review these docunents
carefully, as they describe your rights and restrictions with

to this docunent.

in effect on the date of

r espect

Code Conponents extracted fromthis docunment nust

include Sinplified BSD License text as described in Section 4.e of

the Trust Lega

described in the Sinplified BSD License.

Tabl e of Contents

1

PR RRR

@FDTJQ’W:bFUPJF‘Q*‘F‘U‘PF”P’E

NESESESISISESESESESENYSIN

I ntroduction .

Key Words

Mot i vation . .
Model i ng Inprovenents mnth Language Abstractlons .
Desi gn Approach -

Model i ng Resource Nbdels mnth YANG -

1. Exanple of a Physical Network Resource Nbde

5

. 5.

nplex Types
Definition
conpl ex-type ExtenS|0n Statenent
i nst ance Extension Statenent
i nstance-|i st Extension Statement
ext ends Extension Statenent
abstract Extension Statenent
XM. Encoding Rul es .
Type Encodi ng Rul es .
Ext ensi on and Feature Def|n|t|on Nbdule

.10. Exanpl e Mddel for Conpl ex Types

.11. NETCONF Payl oad Exanple . . .
.12. Update Rul es for Modul es UBlng Conplex Types .
.13. Using Conpl ex Types

2.13.1. Overriding Conpl ex Type Data hbdes .
2.13.2. Augnenting Complex Types
2.13.3. Controlling the Use of Cbnplex Types .
Typed Instance ldentifier

.1. Definition
.2. instance-type ExtenS|on Statenent
.3. Typed Instance ldentifier Exanple

| ANA Consi derations
Security Considerations

Li nowski, et al. Experi ment a

2. Modeling Ent|ty M B Entries as PhyS|caI Resour ces

Provi sions and are provided without warranty as

RFC 6095 YANG Language Abstractions March 2011

6. Acknow edgenents ... 32

7. References, 32

7.1. Nornmtive References 32

7.2. Informative References 32
Appendi x A. YANG Mbdul es for Physical Network Resource Mde

and Hardware Entities Model 34

Appendi x B. Exanpl e YANG Modul e for the | PFI X PSAMP Model 40

B.1. Modeling Inprovenents for the |IPFI X/ PSAMP Model with

B.2. | PFI X/ PSAMP Model with Conpl ex Types and Typed

Conpl ex Types and Typed Instance ldentifiers 40

I nstance ldentifiers 41

1. Introduction

YANG -- the NETCONF Data Model i ng Language [RFC6020] -- supports
nodeling of a tree of data elements that represent the configuration
and runtinme status of a particular network el enent managed vi a
NETCONF. This docunent defines extensions for the nodeling | anguage
YANG as new | anguage statenments, which introduce |anguage

1

1

1

2.

abstractions to inprove the nodel extensibility and reuse. The
docunent reports from nodeling experience in the tel ecomunication
i ndustry and gi ves nodel exanples from an actual network nanagenent
systemto highlight the value of proposed | anguage extensions,
especially class inheritance and recursiveness. The |anguage
extensions defined in this docunent have been inplenented with two
open source tools. These tools have been used to validate the node
exanpl es through the docunment. |If this experimental specification
results in successful usage, it is possible that the |Ianguage

ext ensi ons defined herein could be updated to incorporate

i npl enent ati on and depl oynment experience, then pursued on the

St andards Track, possibly as part of a future version of YANG

Key Words

The key words "MJST", "MJST NOT", "REQU RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "NOT RECOMVENDED', "MAY", and
"OPTIONAL" in this docunent are to be interpreted as described in BCP
14, [RFC2119].

Mot i vati on

Fol | owi ng are non-exhaustive notivation exanpl es highlighting usage
scenarios for |anguage abstractions.

o Many systens today have a Managenent |Information Base (M B) that
in effect is organized as a tree build of recursively nested
cont ai ner nodes. For exanple, the physical resources in the
ENTI TY-M B conceptually forma contai nment tree. The index

Li nowski, et al. Experi ment al [Page 3]

RFC 6095 YANG Language Abstractions March 2011

ent Physi cal Contai nedln points to the containing entity in a flat

list. The ability to represent nested, recursive data structures
of arbitrary depth woul d enabl e the representation of the primary
cont ai nnent hi erarchy of physical entities as a node tree in the

server MB and in the NETCONF payl oad.

o A mmnager scanning the network in order to update the state of an
i nventory nmanagenent system m ght be only interested in data
structures that represent a specific type of hardware. Such a
manager woul d then | ook for entities that are of this specific
type, including those that are an extension or specialization of
this type. To support this use case, it is helpful to bear the
corresponding type information within the data structures, which
describe the network el ement hardware.

o A systemthat is nmanaging network el ements is concerned, e.g.
wi th managed objects of type "plug-in nmodul es” that have a nane, a
version, and an activation state. |In this context, it is usefu
to define the "plug-in nodul e" as a concept that is supposed to be
further detailed and extended by additional concrete node
elements. |In order to realize such a system it is worthwhile to
nodel abstract entities, which enable reuse and ease concrete
refinements of that abstract entity in a second step.

0o As particular network el enents have specific types of conponents
that need to be nanaged (OS i nages, plug-in nodul es, equipnent,
etc.), it should be possible to define concrete types, which
descri be the managed object precisely. By using type-safe
ext ensi ons of basic concepts, a systemin the nanager role can
safely and explicitly determine that e.g., the "equipnent" is
actually of type "network card".

o Currently, different SDOs are working on the harnonization of
their management information nodels. Oten, a nodel nmapping or
transformati on between systens becomes necessary. The
har noni zati on of the nodels is done e.g., by mapping of the two
nodel s on the object level or integrating an object hierarchy into
an existing informati on nmodel. On the one hand, extending YANG
wi th | anguage abstractions can sinplify the adoption of |IETF
resource nodels by other SDOs and facilitate the alignment with
ot her SDOs’ resource nmodels (e.g., TMForumSID [SID V8]). On the
ot her hand, the proposed YANG extensions can enable the
utilization of the YANG nodeling | anguage in other SDOs, which
usual | y nodel conpl ex managenent systens in a top-down manner and
use high-level |anguage features frequently.

Li nowski, et al. Experi ment al [Page 4]

RFC 6095 YANG Language Abstractions March 2011

This meno specifies additional nodeling features for the YANG

| anguage in the area of structured nodel abstractions, typed
references, as well as recursive data structures, and it discusses
how t hese new features can inprove the nodeling capabilities of YANG

Section 1.5.1 contains a physical resource nodel that deals with sone
of the nodeling challenges illustrated above. Section 1.5.2 gives an
exanpl e that uses the base classes defined in the physical resource
nodel and derives a nodel for physical entities defined in the Entity
M B.

1.3. Modeling Inprovenents with Language Abstractions

As an enhancenent to YANG 1.0, conplex types and typed instance
identifiers provide different technical inprovenents on the nodeling
| evel :

o0 In case the nodel of a systemthat should be managed wi th NETCONF
nmakes use of inheritance, conplex types enable an al nbst one-to-
one mappi ng between the classes in the original nmodel and the YANG
nodul e.

o Typed instance identifiers allow representing associati ons between
the concepts in a type-safe way to prevent type errors caused by
referring to data nodes of inconpatible types. This avoids
referring to a particular location in the MB. Referring to a
particular location in the MB is not nmandated by the donain
nodel .

o Conmplex types allow defining conplete, self-contained type

definitions. It is not necessary to explicitly add a key
statenment to lists, which use a grouping that defines the data
nodes.

o Complex types sinmplify concept refinement by extending a base
conpl ex type and nmake it superfluous to represent concept
refi nements with workarounds such as huge choice-statenents with
conpl ex branches.

o Abstract conplex types ensure correct usage of abstract concepts
by enforcing the refinenent of a cormon set of properties before
i nstantiation.

o Complex types allow defining recursive structures. This enables

representing conplex structures of arbitrary depth by nesting
i nstances of basic conplex types that may contain thensel ves.

Li nowski, et al. Experi ment al [Page 5]

RFC 6095 YANG Language Abstractions March 2011

o Complex types avoid introducing netadata types (e.g., type code
enuner ations) and netadata leafs (e.g., leafs containing a type
code) to indicate which concrete type of object is actually
represented by a generic container in the MB. This also avoids
explicitly ruling out illegal use of subtype-specific properties
in generic containers.

o Complex type instances include the type information in the NETCONF
payl oad. This allows determining the actual type of an instance
during the NETCONF payl oad parsing and avoi ds the use in the node
of additional |eafs, which provide the type information as
content.

o Conmplex types may be declared explicitly as optional features,
whi ch is not possible when the actual type of an entity
represented by a generic container is indicated with a type code
enumer at i on.

Appendi x B, "Exanple YANG Mddul e for the | PFI X PSAMP Model ", lists
technical inprovenents for nodeling with conplex types and typed
instance identifiers and exenplifies the usage of the proposed YANG
ext ensi ons based on the IP Flow Information Export (IPFIX) / Packet
Sanpl i ng (PSAMP) configuration nodel in [|PFI XCONF].

1.4. Design Approach

The proposed additional features for YANG in this neno are designed
to reuse existing YANG statenments whenever possible. Additiona
semantics is expressed by an extension that is supposed to be used as
a substatement of an existing statenent.

The proposed features don't change the semantics of nodels that is
valid with respect to the YANG specification [RFC6020].

1.5. Modeling Resource Mddels wi th YANG

1.5.1. Exanple of a Physical Network Resource Mde
The di agram bel ow depicts a portion of an information nodel for
manageabl e network resources used in an actual network managenent
system
Not e: The referenced nodel (UDM Unified Data Model) is based on key
resource nodeling concepts from[SID V8] and is conpliant with
sel ected parts of SID Resource Abstract Business Entities domain

[UDM .

Li nowski, et al. Experi ment al [Page 6]

RFC 6095 YANG Language Abstractions March 2011

The class diagramin Figure 1 and the correspondi ng YANG nodul e
excerpt focus on basic resource ("Resource" and the distinction

bet ween | ogi cal and physi cal resources) and hardware abstractions
("Hardware", "Equiprment", and "Equi pnentHol der"). C ass attributes
were onmtted to achi eve decent readability.

Li nowski, et al. Experi ment al [Page 7]

RFC 6095 YANG Language Abstractions March 2011
Fomme oo +
| Resour ce
S +
/\ /\
| |
| B +
| | Logical Resource
| Fom e +
I+ -------- +
| | Physi cal | e +
' -| Resour ce| <| - +- | Physi cal Li nk
e | +----meee- - +
| | 0..* physi cal Li nk
| | equi pnent
| | Hol der
| | 0..*
| | SREEEEE +
| | 0..* hardware | |
| +-------- + Fom e + R +
' - | Har dwar e| <| - +- | ManagedHar dwar e| <| - +- | EqQui prent | <>- - +
e + R R + | | Holder |0..1
<> | | +--------- +
0..1| | | <>
| | | | 0..* equi prent
| | | | Hol der
| | |
| | | | 0..* equi pnent
| | |
| | | | equi prent
| | . 0..*
| | I IR +
| | | | |
| | | e + o
| | '- | Equi pment | <>- -+
| | L +0..1
| | conposi t eEqui pnent
N +
| ' - | Physi cal Connector|----+0..* source
B e R + | Physi ca
physi cal Connector 0..* | | Connect or
A L

Li nowski, et al

0..* targetPhysi cal Connect or

Figure 1. Physical Network Resource Mde

Experi ment al [Page 8]

RFC 6095 YANG Language Abstractions March 2011

Since this nodel is an abstraction of network-el enent-specific MB
topol ogies, nodeling it with YANG creates sonme chall enges. Sone of
these chal l enges and how they can be addressed with conplex types are
expl ai ned bel ow

o

Model i ng of abstract concepts: Casses |ike "Resource" represent
concepts that primarily serve as a base class for derived cl asses.
Wth conpl ex types, such an abstract concept could be represented
by an abstract conplex type (see "conpl ex-type extension
statenment" and "abstract extension statenent").

Class Inheritance: Information nodels for conpl ex managenent
donmai ns often use class inheritance to create specialized classes
i ke "Physical Connector" froma nore generic base class (here,
"Hardware"), which itself might inherit from another base cl ass
("Physi cal Resource"), etc. Conplex types allow creating enhanced
versions of an existing (abstract or concrete) base type via an
ext ensi on (see "extends extension statenent").

Recursive containment: In order to specify containment

hi erarchi es, nodels frequently contain different aggregation
associ ations, in which the target (contained elenent) is either
the containing class itself or a base class of the containing
class. In the nodel above, the recursive containment of

"Equi prrent Hol der" is an exanple of such a relationship (see the
description for the "conpl ex-type Equi prent Hol der" in the exanple
nodel "udntore" bel ow).

Conpl ex types support such a contai nnent by using a conpl ex type
(or one of its ancestor types) as the type of an instance or
instance list that is part of its definition (see "instance(-list)
extensi on statenent").

Ref erence rel ati onshi ps: A key requirement on | arge nodels for
networ k domains with many rel ated managed objects is the ability
to define inter-class associations that represent essentia

rel ati onshi ps between instances of such a class. For exanple, the
rel ati onshi p between "Physical Li nk" and "Hardware" tells which
physical link is connecting which hardware resources. It is

i mportant to notice that this kind of relationship does not
mandat e any particular |ocation of the two connected hardware
instances in any M B nodule. Such contai nnent-agnostic

rel ati onships can be represented by a typed instance identifier
that enbodi es one direction of such an association (see Section 3,
"Typed Instance ldentifier").

Li nowski, et al. Experi ment al [Page 9]

RFC 6095 YANG Language Abstractions March 2011

The YANG nopdul e excerpt bel ow shows how the chal | enges |isted above
can be addressed by the Conpl ex Types extension (nodule inport prefix
"ct:"). The conplete YANG nodul e for the physical resource nodel in
Figure 1 can be found in Appendix A, "YANG Mdul es for Physica

Net wor k Resource Mbdel and Hardware Entities Model "

Not e: The YANG ext ensions proposed in this docunent have been
i mpl enented as the open source tools "Pyang Extension for Conpl ex
Types" [Pyang-ct], [Pyang], and "Libsm Extension for Conplex Types"
[Libsmi]. Al nodel examples in the docunent have been vali dated
with the tools Pyang-ct and Libsm.

<CODE BEG NS>

nodul e udntore {

nanespace "http://exanpl e. conf udntore”;
prefix "udni;

i mport ietf-conplex-types {prefix "ct"; }
/1 Basic conplex types..
ct: conpl ex-type Physical Resource {

ct: ext ends Resource;
ct:abstract true;

...
| eaf serial Nunber {
type string;

description Manuf acturer-all ocated part number’ as
defined in SID, e.g., the part nunber of a fiber |ink
cable.";

ct:conpl ex-type Hardware {
ct: ext ends Physi cal Resource;
ct:abstract true;
...
| eaf -1i st physical Li nk {
type instance-identifier {ct:instance-type Physical Link;}
}

ct:instance-list contai nedHardware {
ct:instance-type Hardware;

ct:instance-list physical Connector {
ct:instance-type Physical Connector;

Li nowski, et al. Experi ment al [Page 10]

RFC 6095 YANG Language Abstractions March 2011

ct: compl ex-type Physi cal Li nk {
ct: extends Physi cal Resource;
...
| eaf-1ist hardware {
type instance-identifier {ct:instance-type Hardware;}
}

ct:conpl ex-type ManagedHar dware {
ct: ext ends Hardware;
ct:abstract true;
/1

ct: conpl ex-type Physi cal Connector {
ct: extends Hardwar e;
| eaf location {type string;}
...
| eaf -1 i st sourcePhysi cal Connector ({
type instance-identifier {ct:instance-type Physical Connector;}

| eaf -1i st targetPhysical Connector ({
type instance-identifier {ct:instance-type Physical Connector;}

ct:conpl ex-type Equi prment {
ct: ext ends ManagedHar dwar e;
/1
ct:instance-list equipnent {
ct:instance-type Equipnent;

ct: compl ex-type Equi prent Hol der {
ct: ext ends ManagedHar dwar e;
description "In the SID V8 definition, this is a class based on
the M 3100 specification. A base class that represents physica
objects that are both manageable as well as able to host,
hol d, or contain other physical objects. Exanples of physica

Li nowski, et al. Experi ment al [Page 11]

RFC 6095 YANG Language Abstractions March 2011

objects that can be represented by instances of this object
cl ass are Racks, Chassis, Cards, and Slots.
A piece of equipnent with the primary purpose of containing
ot her equi prent.";
| eaf vendor Nane {type string;}
/1
ct:instance-list equipnent {
ct:instance-type Equipnent;
}
ct:instance-list equiprmentHol der {
ct:instance-type Equi prent Hol der

}
}
11
}
<CODE ENDS>

1.5.2. Modeling Entity MB Entries as Physical Resources

The physical resource nodul e descri bed above can now be used to nodel
physical entities as defined in the Entity MB [RFC4133]. For each
physical entity class listed in the "Physical C ass" enuneration, a
conplex type is defined. Each of these conplex types extends the

nost specific complex type already available in the physical resource

nodul e. For exanple, the type "HWbdul e" extends the conplex type
"Equi prrent" as a hardware nmodul e. Physical entity properties that
shoul d be included in a physical entity conplex type are comnbined in
a grouping, which is then used in each conplex type definition of an
entity.

Thi s approach has follow ng benefits:
o The definition of the conplex types for hardware entities becones

conpact as many of the features can be reused fromthe basic
conpl ex type definition.

0o Physical entities are nodeled in a consistent manner as predefined

concepts are extended.
o Entity-MB-specific attributes as well as vendor-specific

attributes can be added wi thout having to define separate
ext ensi on data nodes.

Li nowski, et al. Experi ment al [Page 12]

RFC 6095 YANG Language Abstractions March 2011

Modul e udncore : Mdul e hardware-entities
equi prent
Hol der
0..*
R, +
| |
B + - +
| ManagedHar dwar e| <| - +- | EqQui prent | <>- - +
R + | | Holder]0..1 Fo-e-- - +
| | <|--------- +--| Chassi s|
R + | R, +
<> o
|0..* equipnment = | A--------- +
| Hol der ' --| Cont ai ner
S +

0..* equi prent

|

|

|

| equi pnent
| *

|

|

0.
R +
I I
Fom e e oo - + | :

- | Equi prent | <>- -+ : oo +
| |<l--------- +- - | WWbdul e]
e me oo + R R +

conposi t eEqui pnent o
| e '
| - - | Backpl ane
R +

Figure 2: Hardware Entities Mde

Bel ow i s an excerpt of the correspondi ng YANG nodul e usi ng conpl ex
types to nmodel hardware entities. The conplete YANG nodule for the
Hardware Entities nodel in Figure 2 can be found in Appendi x A "YANG
Modul es for Physical Network Resource Mddel and Hardware Entities
Model ".

Li nowski, et al. Experi ment al [Page 13]

RFC 6095 YANG Language Abstractions March 2011

<CODE BEG NS>

nodul e hardware-entities {

nanespace "http://exanpl e.com hardware-entities";
prefix "hwe";

i mport ietf-yang-types {prefix "yt";}
i mport ietf-conplex-types {prefix "ct";}
i mport udntore {prefix "uc";}

groupi ng Physi cal EntityProperties {
...
| eaf nfgDate {type yang:date-and-tinme; }
leaf-list uris {type string; }

/1 Physical entities representing equi prment

ct:compl ex-type HWbdul e {
ct: extends uc: Equi prent ;
description "Conpl ex type representing nodule entries
(ent Physi cal C ass = nodul e(9)) in entPhysical Tabl e";
uses Physical EntityProperties;

/1
/1 Physical entities representing equipnent hol ders

ct:compl ex-type Chassis {
ct: extends uc: Equi prent Hol der;
description "Conpl ex type representing chassis entries
(ent Physi cal T ass = chassis(3)) in entPhysical Table";
uses Physical EntityProperties;

}
/1
}
<CODE ENDS>

Li nowski, et al. Experi ment al [Page 14]

RFC 6095 YANG Language Abstractions March 2011

2.

2.

2.

1

2.

Conpl ex Types
Definition

YANG type concept is currently restricted to sinple types, e.g.
restrictions of primtive types, enunerations, or union of sinple

types.

Conpl ex types are types with a rich internal structure, which may be
conposed of substatenents defined in Table 1 (e.g., lists, |leafs,
contai ners, choices). A new conplex type may extend an existing
conplex type. This allows providing type-safe extensions to existing
YANG nodel s as i nstances of the new type.

Conpl ex types have the foll owi ng characteristics:

o Introduction of new types, as a nanmed, formal description of a
concrete manageabl e resource as well as abstract concepts.

o Types can be extended, i.e., new types can be defined by
speci al i zi ng exi sting types and addi ng new features. |nstances of
such an extended type can be used wherever instances of the base
type nmay appear.

o The type information is made part of the NETCONF payl oad in case a
derived type substitutes a base type. This enables easy and
efficient consunption of payload el enents representing conpl ex
type instances.

conpl ex-type Extension Statenent
The extension statenent "conplex-type" is introduced; it accepts an

arbitrary nunmber of statenents that define node trees, amobng ot her
conmon YANG st atenents ("YANG Statenents”, Section 7 of [RFC6020]).

Li nowski, et al. Experi ment al [Page 15]

RFC 6095 YANG Language Abstractions March 2011

| abstract | 1 |
| anyxm | n |
| choi ce | n
| cont ai ner | n
| description | 1
| ct:instance | n
| ct:instance-list | n
| ct: ext ends | 1
gr oupi ng	n
if-feature	.n
key	1
	eaf
	eaf -1i st
list	n
must	n
or der ed- by	n
ref erence	1
refine	n
st at us	1
typedef	n
uses	n

Table 1: conpl ex-type' s Substatenents

Conpl ex type definitions nay appear at every place where a grouping
may be defined. That includes the nodul e, subnodul e, rpc, input,
out put, notification, container, and |list statenents.

Conpl ex type nanes popul ate a distinct nanespace. As with YANG
groupings, it is possible to define a conplex type and a data node
(e.g., leaf, list, instance statenents) with the sane nane in the
sanme scope. All conplex type nanes defined within a parent node or
at the top level of the nodule or its subnodul es share the sane type
identifier nanespace. This namespace is scoped to the parent node or
nodul e.

A compl ex type MAY have an instance key. An instance key is either
defined with the "key" statenent as part of the conplex type or is
inherited fromthe base conplex type. It is not allowed to define an
additional key if the base conplex type or one of its ancestors

al ready defines a key.

Conpl ex type definitions do not create nodes in the schema tree.

Li nowski, et al. Experi ment al [Page 16]

RFC 6095 YANG Language Abstractions March 2011

2.3. instance Extension Statenment

The "instance" extension statenent is used to instantiate a conpl ex
type by creating a subtree in the nanagenent infornmation node tree.
The instance statement takes one argunment that is the identifier of
the conplex type instance. It is followed by a block of
subst at ement s.

The type of the instance is specified with the mandatory "ct:

i nstance-type" substatenent. The type of an instance MJUST be a
conpl ex type. Conmon YANG statenments nmay be used as substatenents of
the "instance" statenment. An instance is optional by default. To
nmake an instance mandatory, "nmandatory true" has to be applied as a
subst at ement .

| description |
| config |
| ct:instance-type

| if-feature |
| mandat ory

| must |
| ref erence

| st at us |
| when |
| anyxm |
| choi ce |
| cont ai ner |
| ct:instance

| ct:instance-list |
| | eaf |
| | eaf -1i st |
| list |

Tabl e 2: instance’'s Substatements

The "instance" and "instance-list" extension statements (see

Section 2.4, "instance-list Extension Statenent”) are simlar to the
existing "leaf" and "leaf-list" statenments, with the exception that
the content is conposed of subordinate el enents according to the

i nstanti ated conpl ex type.

It is also possible to add additional data nodes by using the

corresponding leaf, leaf-list, list, and choice-statenents, etc., as
subst atements of the instance declaration. This is an in-place

Li nowski, et al. Experi ment al [Page 17]

RFC 6095

YANG Language Abstractions

March 2011

augnent ati on of the used conplex type confined to a conplex type

instantiation (see also Section 2.13,

details on augnenting conpl ex types).

2.4. instance-list Extension Statenent

The "instance-list"

ext ensi on st at emrent

"Usi ng Conpl ex Types", for

is used to instantiate a

conpl ex type by defining a sequence of subtrees in the managenent
i nformati on node tree.

takes one argument that

i nst ances. It

is followed by a block of substatenents.

In addition, the "instance-list"

st at enent

is the identifier of the complex type

The type of the instance is specified with the mandatory "ct:
i nstance-type" substatement. |In addition, it can be defined how

often an instance may appear

el enents" and

In anal ogy to the "instance" statenent,
"list"

[ist"”

Li nowski ,

, "choice",

in the schema tree by using the "mn-

"max- el ements" substatenments. Conmon YANG st atenents
may be used as substatenents of the "instance-list" statenent.

YANG subst atenents |ike
"leaf", etc., MAY be used to augnment the "instance-

el ements at the root level with additional data nodes.

et al.

ct:i

m

ct:i

Tabl e 3:

description

if-feature
max- el ement s

or der ed- by

ct:instance

config
nst ance-type

n-el ements
nmust

|

|

|

|

|

|

|

|

ref erence |
st at us |
when |
anyxm |
choi ce |
cont ai ner |
|

|

|

|

|

nst ance-1i st
| eaf

| eaf -1i st
| i st

instance-1list’s Substatenents

Experi ment al

[Page 18]

RFC 6095 YANG Language Abstractions March 2011

In case the instance |ist represents configuration data, the used
conpl ex type of an instance MJST have an instance key.

I nstances as well as instance |lists may appear as argunments of the
"devi ate" statenent.

2.5. extends Extension Statenent

A conpl ex type MAY extend exactly one existing base conplex type by
usi ng the "extends" extension statement. The keyword "extends" MAY
occur as a substatenent of the "compl ex-type" extension statenent.
The argurment of the "conpl ex-type" extension statement refers to the
base conplex type via its nane. |In case a conplex type represents
configuration data (the default), it MJST have a key; otherwi se, it
MAY have a key. A key is either defined with the "key" statenment as
part of the conplex type or is inherited fromthe base conpl ex type.

R S +
| substatenment | cardinality |
. . +
| description | 0..1
| reference | 0..1
| st at us | 0..1
R S +

Tabl e 4: extends’ Substatenents
2.6. abstract Extension Statenent

Conpl ex types may be declared to be abstract by using the "abstract™
extension statenent. An abstract conplex type cannot be
instantiated, neaning it cannot appear as the nobst specific type of
an instance in the NETCONF payl oad. |n case an abstract type extends
a base type, the base conplex type MIST be al so abstract. By
defaul t, conplex types are not abstract.

The abstract conplex type serves only as a base type for derived
concrete conpl ex types and cannot be used as a type for an instance
in the NETCONF payl oad.

The "abstract" extension statenent takes a single string argunent,

which is either "true" or "false". |In case a "conplex-type"
statenment does not contain an "abstract" statement as a substatenent,
the default is "false". The "abstract" statenent does not support

any subst at enents.

Li nowski, et al. Experi ment al [Page 19]

RFC 6095 YANG Language Abstractions March 2011

2.7. XM Encodi ng Rul es

An "instance" node is encoded as an XM. el enent, where an "instance-
list" node is encoded as a series of XML elenents. The correspondi ng
XM el ement nanes are the "instance" and "instance-list" identifiers,
respectively, and they use the same XM. nanespace as the nodul e.

I nstance child nodes are encoded as subel ements of the instance XM
el ement. Subel ements representing child nodes defined in the sane
conpl ex type may appear in any order. However, child nodes of an

ext endi ng conpl ex type follow the child nodes of the extended conpl ex
type. As such, the XM. encoding of lists is simlar to the encodi ng
of containers and lists in YANG

I nst ance key nodes are encoded as subel enents of the instance XM
el ement. Instance key nodes nust appear in the same order as they
are defined within the "key" statement of the correspondi ng conpl ex
type definition and precede all other nodes defined in the sane
conplex type. That is, if key nodes are defined in an extendi ng
conpl ex type, XM elenents representing key data precede all other
XM. el ements representing child nodes. On the other hand, XM

el ements representing key data follow the XM. el enents representing
dat a nodes of the base type.

The type of the actual conplex type instance is encoded in a type

el enent, which is put in front of all instance child el enents,
i ncludi ng key nodes, as described in Section 2.8 ("Type Encodi ng
Rul es").

The proposed XM. encoding rules conformto the YANG XM. encodi ng
rules in [RFC6020]. Conpared to YANG enabling key definitions in
derived hierarchies is a new feature introduced with the conpl ex
types extension. As a new | anguage feature, conplex types al so

i ntroduce a new payl oad entry for the instance type identifier

Based on our inplenentation experience, the proposed XM. encodi ng
rul es support consistent mappi ng of YANG nodels with conplex types to
an XML schema using XM. conpl ex types.

2.8. Type Encodi ng Rul es

In order to encode the type of an instance in the NETCONF payl oad,
XM. el ements naned "type" bel onging to the XM. nanespace
"urn:ietf:paranms: xm :ns:yang:ietf-conpl ex-type-instance" are added to
the serialized formof instance and instance-list nodes in the

payl oad. The suggested nanespace prefix is "cti". The "cti:type"
XML el ements are inserted before the serialized formof all menbers
that have been declared in the correspondi ng conplex type definition

Li nowski, et al. Experi ment al [Page 20]

RFC 6095 YANG Language Abstractions March 2011

The "cti:type" elenent is inserted for each type in the extension
chain to the actual type of the instance (nost specific last). Each
type nane includes its correspondi ng nanespace.

The type of a conplex type instance MJST be encoded in the reply to
NETCONF <get > and <get-confi g> operations, and in the payload of a
NETCONF <edit-config> operation if the operation is "create" or

"replace". The type of the instance MJUST al so be specified in case
<copy-config> is used to export a configuration to a resource
addressed with an URI. The type of the instance has to be specified

in user-defined renpte procedure calls (RPCs).

The type of the instance MAY be specified in case the operation is
"merge" (either because this is explicitly specified or no operation
attribute is provided).

In case the node already exists in the target configuration and the
type attribute (type of a conplex type instance) is specified but
differs fromthe data in the target, an <rpc-error> elenent is
returned with an <error-app-tag> val ue of "wong-conplex-type". In
case no such elenment is present in the target configuration but the
type attribute is mssing in the configuration data, an <rpc-error>
element is returned with an <error-tag> value of "mssing-attribute".

The type MJUST NOT be specified in case the operation is "delete".
2.9. Extension and Feature Definition Mdule

The nodul e bel ow contains all YANG extension definitions for conplex
types and typed instance identifiers. |In addition, a "conplex-type"
feature is defined, which my be used to provide conditional or
alternative nodeling, depending on the support status of conplex
types in a NETCONF server. A NETCONF server that supports the
nodel i ng features for conmplex types and the XM. encodi ng for conpl ex
types as defined in this docunent MJUST advertise this as a feature.
This is done by including the feature nane "conpl ex-types" in the
feature paraneter list as part of the NETCONF <hel | o> nessage as
described in Section 5.6.4 in [RFC6020].

<CODE BEG NS> file "ietf-conpl ex-types@011-03-15. yang"
nodul e ietf-conpl ex-types {

nanespace "urn:ietf:paranms: xm:ns:yang:ietf-conpl ex-types";
prefix "ct";

or gani zati on

Li nowski, et al. Experi ment al [Page 21]

RFC 6095 YANG Language Abstractions March 2011

"NETMOD WG';

cont act
"Editor: Bernd Linowski
<ber nd. | i nowski . ext @sn. conp
Editor: Mehnet Ersue
<nmehnet . er sue@sn. conp
Editor: Siarhei Kuryla
<s. kuryl a@nuil . com";

description
"YANG ext ensi ons for conplex types and typed instance
identifiers.

Copyright (c) 2011 | ETF Trust and the persons identified as
authors of the code. Al rights reserved.

Redi stribution and use in source and binary forns, with or

wi thout nodification, is permtted pursuant to, and subject
to the license ternms contained in, the Sinplified BSD License
set forth in Section 4.c of the |ETF Trust’s Legal Provisions
Rel ating to | ETF Docunents
(http://trustee.ietf.org/license-info).

This version of this YANG nodule is part of RFC 6095; see
the RFC itself for full legal notices.";

revi sion 2011-03-15 {
description "lnitial revision."”;
}

ext ensi on conpl ex-type {
description "Defines a conplex-type.";
reference "Section 2.2, conpl ex-type Extension Statenent”;
argunent type-identifier {
yi n-el enent true
}

ext ensi on extends {
description "Defines the base type of a conplex-type.";
reference "Section 2.5, extends Extension Statenent”;
argunent base-type-identifier {
yi n-el emrent true;
}

Li nowski, et al. Experi ment al [Page 22]

RFC 6095 YANG Language Abstractions March 2011

ext ensi on abstract {
description "Makes the conpl ex-type abstract.";
reference "Section 2.6, abstract Extension Statenent";
argument st at us;

ext ensi on instance {
description "Declares an instance of the given
conpl ex type.";
reference "Section 2.3, instance Extension Statenent";
argunent ct-instance-identifier {
yi n-el enent true
}

}

ext ension instance-list {
description "Declares a list of instances of the given
conpl ex type";
reference "Section 2.4, instance-list Extension Statenent";
argunent ct-instance-identifier {
yi n-el emrent true;
}

}

ext ensi on instance-type {
description "Tells to which type instance the instance
identifier refers.”;
reference "Section 3.2, instance-type Extension Statenent";
argunent target-type-identifier {
yi n-el enent true
}

feature compl ex-types {
description "Indicates that the server supports
conpl ex types and instance identifiers.";

<CODE ENDS>

Li nowski, et al. Experi ment al [Page 23]

RFC 6095 YANG Language Abstractions March 2011

2.10. Example Model for Conplex Types

The exanpl e nodel bel ow shows how conpl ex types can be used to
represent physical equipment in a vendor-independent, abstract way.

It reuses the conplex types defined in the physical resource nodel in
Section 1.5.1.

<CODE BEG NS>
nmodul e hw {

nanespace "http://exanpl e. conl hw'
prefix "hw'

i mport ietf-conplex-types {prefix "ct"; }
i mport udnctore {prefix "uc"; }

/1 Hol der types

ct:compl ex-type Slot {
ct: extends uc: Equi prrent Hol der ;
| eaf sl otNumber { type uintl1l6; config false; }
1.

}

ct:conpl ex-type Chassis {
ct: extends uc: Equi prrent Hol der ;
| eaf nunmber Of ChassisSlots { type uint32; config false; }
/1

}
/1 Equi pnent types
ct:compl ex-type Card {
ct: extends uc: Equi prent ;

| eaf position { type uint32; nandatory true; }
| eaf slotsRequired {type unit32; }

}

/1 Root El enent
ct:instance hardware { type uc: ManagedHardware; }

} /1 hw nodul e

<CODE ENDS>

Li nowski, et al. Experi ment al [Page 24]

RFC 6095 YANG Language Abstractions March 2011

2.11. NETCONF Payl oad Exanpl e

Fol | owi ng exanpl e shows the payload of a reply to a NETCONF <get >
conmand. The actual type of managed hardware instances is indicated
with the "cti:type" elenments as required by the type encoding rul es.
The contai nnent hierarchy in the NETCONF XM. payl oad reflects the
contai nnent hi erarchy of hardware instances. This nakes filtering
based on the contai nment hierarchy possible wi thout having to dea
with values of leafs of type leafref that represent the tree
structure in a flattened hierarchy.

<har dwar e>
<cti:type>uc: Basi cQbject</cti:type>
<di sti ngui shedName>/ R- T31/ CH 2</ di st i ngui shedNane>
<gl obal 1 d>6278279001</ gl obal | d>
<cti:type>uc: Resource</cti:type>
<cti:type>uc: Physi cal Resource</cti:type>
<ot herldentifier>Rack R322-1</otherldentifier>
<seri al Nunmber >R- US- 3276279a</ seri al Nunber >
<cti:type>uc: Hardware</cti:type>
<cti:type>uc: ManagedHar dware</cti:type>
<cti:type>hw Equi prent Hol der</cti:type>
<equi prent Hol der >
<cti:type>uc: Basi cQbject</cti:type>
<di sti ngui shedNane>/ R- T31/ CH 2/ SL- 1</ di st i ngui shedNane>
<gl obal 1 d>548872003</ gl obal | d>
<cti:type>uc: Resource</cti:type>
<cti:type>uc: Physi cal Resource</cti:type>
<ot herldentifier>CU Sl ot</otherldentifier>
<seri al Nunber >T- K4733890x45</ seri al Nunmber >
<cti:type>uc: Hardware</cti:type>
<cti:type>uc: ManagedHar dwar e</cti:type>
<cti:type>uc: Equi pnent Hol der</cti:type>
<equi prent >
<cti:type>uc: Basi cbject</cti:type>
<di sti ngui shedNane>/ R- T31/ CH 2/ SL- 1/ C- 3</ di st i ngui shedNane>
<gl obal 1 d>89772001</ gl obal | d>
<cti:type>uc: Resource</cti:type>
<cti:type>uc: Physi cal Resource</cti:type>
<ot herldentifier>ATM 45252</ ot herl dentifier>
<seri al Nunber >A- 778911- b</ seri al Nunber >
<cti:type>uc: Hardware</cti:type>
<cti:type>uc: ManagedHar dwar e</cti:type>
<cti:type>uc: Equi pment</cti:type>
<instal l ed>true</install ed>
<ver si on>A2</ ver si on>
<r edundancy>1</r edundancy>
<cti:type>hw Card</cti:type>

Li nowski, et al. Experi ment al [Page 25]

RFC 6095 YANG Language Abstractions March 2011

2.

2.

2.

<usedSl| ot s>1</ usedS| ot s>

</ equi pnent >

<cti:type>hw Slot</cti:type>

<sl| ot Nunber >1</ sl ot Nunber >
</ equi pnent Hol der >
<cti:type>hw Chassis</cti:type>
<numnber O Chassi sSl ot s>6</ nunber O Chassi sS| ot s>
/1

</hardmé}é>

12. Update Rules for Mddul es Using Conpl ex Types

In addition to the nodul e update rules specified in Section 10 in
[RFC6020], nodul es that define conplex types, instances of conplex
types, and typed instance identifiers nmust obey follow ng rules:

o New conpl ex types MAY be added.

o A new conpl ex type MAY extend an existing conplex type.

0 New data definition statements MAY be added to a conplex type only
if:
* they are not mandatory or
* they are not conditionally dependent on a new feature (i.e.

they do not have an "if-feature" statement that refers to a new
feature).

o The type referred to by the instance-type statenent nmay be changed
to a type that derives fromthe original type only if the origina
type does not represent configuration data.

13. Using Conpl ex Types

Al'l data nodes defined inside a conplex type reside in the conpl ex
type nanmespace, which is their parent node nanespace.

13.1. Overriding Conplex Type Data Nodes

It is not allowed to override a data node inherited froma base type.
That is, it is an error if a type "base" with a |eaf naned "foo" is
ext ended by anot her conplex type ("derived") with a | eaf naned "foo"
in the same nodule. 1In case they are derived in different nodul es,
there are two distinct "foo" nodes that are nmapped to the XM
nanespaces of the nodul e, where the conplex types are specified.

Li nowski, et al. Experi ment al [Page 26]

RFC 6095 YANG Language Abstractions March 2011

A conpl ex type that extends a basic conplex type may use the "refine"
statenent in order to inprove an inherited data node. The target
node identifier must be qualified by the nodule prefix to indicate
clearly which inherited node is refined.

The foll owi ng refinenments can be done:

o A leaf or choice node nmay have a default value, or a new default
value if it already had one.

o Any node may have a different "description" or "reference" string.

o A leaf, anyxnl, or choice node may have a "nmandatory true"
statenment. However, it is not allowed to change from "mandatory
true" to "mandatory fal se".

o Aleaf, leaf-list, list, container, or anyxml node may have
addi ti onal "nust" expressions.

o Alist, leaf-list, instance, or instance-list node nay have a
"mn-el ements" statenent, if the base type does not have one or
does not have one with a value that is greater than the m ni mm
val ue of the base type.

o Alist, leaf-list, instance, or instance-list node nay have a
"max-el ements" statenent, if the base type does not have one or
does not have one with a value that is smaller than the maxi mum
val ue of the base type.

It is not allowed to refine conpl ex-type nodes inside "instance" or
"instance-list" statenents.

2.13.2. Augnenting Conpl ex Types

Augnenting conplex types is only allowed if a complex type is
instantiated in an "instance" or "instance-list" statement. This
confines the effect of the augnentation to the location in the schema
tree where the augnentation is done. The argunent of the "augment"
statement MUST be in the descendant form (as defined by the rule
"descendant - schema- nodei d" in Section 12 in [RFC6020]).

Li nowski, et al. Experi ment al [Page 27]

RFC 6095 YANG Language Abstractions March 2011

ct:conmpl ex-type Chassis {

ct: ext ends Equi prrent Hol der;

cont ai ner chassislinfo {
config fal se
| eaf nunberOFSlots { type uintl6; }
| eaf occupiedSlots { type uintl6; }
| eaf height {type unitl6;}
| eaf width {type unitl6;}

}
}
ct:instance-list chassis {
type Chassis;
augnment "chassi sl nfo" {
| eaf nodelld { type string; }
}
}
When augnenting a conplex type, only the "container", "leaf", "list",
"leaf-list", "choice", "instance", "instance-list", and "if-feature"

statenments may be used within the "augnent" statement. The nodes
added by the augnentati on MJST NOT be nandatory nodes. One or many
"augnent" statenments may not cause the creation of nultiple nodes
with the sane nane fromthe sanme nanmespace in the target node

To achi eve | ess-conpl ex nodeling, this docunment proposes the
augrment ati on of conplex type instances wthout recursion.

2.13.3. Controlling the Use of Conplex Types

A server mght not want to support all conplex types defined in a

supported nodule. This issue can be addressed with YANG features as
fol | ows:

0 Features are defined that are used inside complex type definitions
(by using "if-feature" as a substatenent) to nake them opti onal
In this case, such conplex types may only be instantiated if the

feature is supported (advertised as a capability in the NETCONF
<hel | 0> message).

o The "deviation" statenment nmay be applied to node trees, which are

created by "instance" and "instance-list" statements. |In this
case, only the substatenent "deviate not-supported" is allowed.

Li nowski, et al. Experi ment al [Page 28]

RFC 6095 YANG Language Abstractions March 2011

o It is not allowed to apply the "deviation" statenent to node tree
el ements that may occur because of the recursive use of a conpl ex
type. Oher forns of deviations ("deviate add", "deviate
repl ace", "deviate delete") are NOT supported inside node trees
spanned by "instance" or "instance-list".

As conpl ex type definitions do not contribute by thenselves to the
data node tree, data node declarations inside conplex types cannot be
the target of deviations.

In the exanple below, client applications are informed that the |eaf
"occupi edSlots" is not supported in the top-level chassis. However,
if a chassis contains another chassis, the contained chassis my
support the leaf that reports the nunber of occupied slots.

devi ation "/chassi s/ chassi sSpec/ occupi edSl ot s" {
devi at e not - support ed;
}

3. Typed Instance ldentifier
3.1. Definition

Typed instance identifier relationships are an addition to the

rel ationship types already defined in YANG where the | eafref
relationship is location dependent, and the instance-identifier does
not specify to which type of instances the identifier points.

A typed instance identifier represents a reference to an instance of
a conplex type without being restricted to a particular location in
the containnent tree. This is done by using the extension statenent
"instance-type" as a substatenent of the existing "type instance
identifier" statement.

Typed instance identifiers allowreferring to instances of conpl ex
types that nmay be | ocated anywhere in the schema tree. The "type"
statenment plays the role of a restriction that nust be fulfilled by
the target node, which is referred to with the instance identifier
The target node MUST be of a particular conplex type, either the type
itself or any type that extends this conplex type.

3.2. instance-type Extension Statenent
The "instance-type" extension statenent specifies the conplex type of
the instance to which the instance-identifier refers. The referred

instance may al so instantiate any conplex type that extends the
speci fied compl ex type.

Li nowski, et al. Experi ment al [Page 29]

RFC 6095 YANG Language Abstractions March 2011

The instance conplex type is identified by the single nane argunent.
The referred conpl ex type MUST have a key. This extension statenent
MUST be used as a substatenent of the "type instance-identifier"
statement. The "instance-type" extension statement does not support
any subst at enents.

3.3. Typed Instance ldentifier Exanple

In the exampl e below, a physical |ink connects an arbitrary number of
physi cal ports. Here, typed instance identifiers are used to denote
whi ch "Physical Port" instances (anywhere in the data tree) are
connected by a "Physical Li nk".

/1 Extended version of type Card
ct:conmpl ex-type Card {
ct: ext ends Equi prent;
| eaf usedSlot { type uintl6; nmandatory true; }
ct:instance-list port {
type Physi cal Port;

ct: compl ex-type Physical Port {
ct: ext ends ManagedHar dwar e;
| eaf portNunber { type int32; mandatory true; }

ct: compl ex-type Physi cal Li nk {
ct: ext ends ManagedHar dwar e;
| eaf nedia { type string; }
| eaf -1i st connectedPort ({
type instance-identifier {
ct:instance-type Physical Port;

}
m n-el ements 2;
}
}
Bel ow i s the XML encodi ng of an el ement named "link" of type

"Physi cal Li nk":

Li nowski, et al. Experi ment al [Page 30]

RFC 6095 YANG Language Abstractions March 2011

<link>
<obj ect | d>FTCL- 771</ obj ect | d>
<medi a>Fi ber </ medi a>
<connect edPor t >/ hw. har dwar e[obj ect 1 d=" R- 11"]
[hw. equi prrent [obj ect | d=" AT22’]/ hw. port [objectld=" P12’]
</ connect edPort >
<connect edPor t >/ hw: har dwar e[obj ect | d=" R- 42]
/ hw:. equi prent [obj ect | d=" AT30’]/ hw: port[objectld="P3']
</ connect edPort >
<seri al Nunber >F- 7786828</ seri al Nunber >
<comonNanme>Fi bCon 7</ comonNane>
</link>

4. | ANA Consi der ati ons

Thi s docunent registers two URIs in the |ETF XM. registry. |ANA
regi stered the following URI's, according to [RFC3688]:

URI: urn:ietf:parans:xm:ns:yang:ietf-conplex-types
URI: urn:ietf:parans:xm:ns:yang:ietf-conpl ex-type-instance

Regi strant Cont act :
Bernd Li nowski (bernd.!|inowski.ext@sn.con
Mehmet Ersue (nehnet. ersue@sn. com
Si arhei Kuryla (s.kuryla@mail.con
XML: N A, the requested URIs are XM. namespaces.
Thi s docunent registers one nmodul e nane in the "YANG Mbdul e Names"
registry, defined in [RFC6020].
nane: ietf-conpl ex-types
nanespace: urn:ietf:paranms:xm:ns:yang:ietf-conplex-types
prefix: ct
RFC. 6095
5. Security Considerations
The YANG nodul e "conpl ex-types” in this neno defines YANG extensions
for conplex types and typed instance identifiers as new | anguage

statenents.

Conpl ex types and typed instance identifiers thenselves do not have
any security inpact on the Internet.

Li nowski, et al. Experi ment al [Page 31]

RFC 6095

YANG Language Abstractions March 2011

The security considerations described throughout [RFC6020] apply here

as wel | .

6. Acknow edgenents

The authors would like to thank to Martin Bjorklund, Balazs Lengyel,
Ger hard Muenz, Dan Rommscanu, Juergen Schoenwael der, and Martin
Storch for their valuable review and commrents on different versions
of the documnent.

7. References

7.1. Normative References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi renment Level s", BCP 14, RFC 2119, March 1997.

[RFC3688] Mealling, M, "The | ETF XM. Registry", BCP 81, RFC 3688,
January 2004.

[RFC6020] Bjorklund, M, "YANG - A Data Mdeling Language for the
Net wor k Configuration Protocol (NETCONF)", RFC 6020,
Cct ober 2010.

7.2. Informative References

[1 PFI XCONF]
Muenz, G, Claise, B., and P. Aitken, "Configuration Data
Model for | PFIX and PSAMP', Wirk in Progress, March 2011

[Li bsm] Kuryla, S., "Libsm Extension for Conplex Types",
April 2010, <http://ww.ibr.cs.tu-bs.de/svn/libsm >,

[Pyang] Bj orkl und, M, "An extensible YANG val i dator and converter
in python", Cctober 2010,
<htt p:// code. googl e. com p/ pyang/ >.

[Pyang-ct]
Kuryla, S., "Conplex type extension for an extensible YANG
val i dator and converter in python", April 2010,
<http://code. googl e. com p/ pyang-ct/ >.

[RFC4133] Bierman, A and K. MO oghrie, "Entity MB (Version 3)",

RFC 4133, August 2005.

Li nowski, et al. Experi ment al [Page 32]

RFC 6095

[SI D V8]

[UDM

YANG Language Abstractions March 2011

Tel eManagenent Forum "@GB922, Information Franmework (SID)
Solution Suite, Release 8.0", July 2008, <http://

www. t nf or um or g/ Docurent s| nf or mat i on/

GB922I nf or mat i onFr amewor k/ 35499/ article. htm >,

NSN, "Unified Data Mddel SID Conpliance Statenment”,
May 2010, <http://ww.tnforum org/InfornmationFranmework/
Noki aSi enensNet wor ks/ 8815/ hone. ht m >.

Li nowski, et al. Experi ment al [Page 33]

RFC 6095 YANG Language Abstractions March 2011

Appendi x A, YANG Modul es for Physical Network Resource Mddel and
Hardware Entiti es Mde

YANG nodul e for the ’'Physical Network Resource Mdel’
<CODE BEG NS>
nodul e udnctore {

nanespace "http://exanpl e. com udntore"
prefix "udni;

i mport ietf-yang-types {prefix "yang";}
i mport ietf-conplex-types {prefix "ct";}

ct:compl ex-type Basi cbj ect {
ct:abstract true;
key "di stingui shedNane";
| eaf globalld {type int64;}
| eaf distinguishedNane {type string; mandatory true;}

ct:conpl ex-type ManagedObj ect {
ct: extends Basi cbj ect;
ct:abstract true;
| eaf instance {type string;}
| eaf objectState {type int32;}
| eaf release {type string;}

ct:conpl ex-type Resource {
ct: ext ends ManagedObj ect ;
ct:abstract true;
| eaf usageState {type intl6;}
| eaf nanagenent Met hodSupported {type string;}
| eaf nmanagenent Met hodCurrent {type string;}
| eaf managementInfo {type string;}
| eaf managemnent Dormai n {type string;}
| eaf version {type string;}
| eaf entityldentification {type string;}
| eaf description {type string;}
| eaf rootEntityType {type string;}

Li nowski, et al. Experi ment al [Page 34]

RFC 6095

ct:

ct:

ct:

ct:

Li nowski ,

YANG Language Abstractions

conpl ex-type Logi cal Resource {

ct: extends Resource;

ct:abstract true;

leaf IrStatus {type int32;}

| eaf serviceState {type int32;}

| eaf isOperational {type bool ean;}

conpl ex-type Physi cal Resource {

ct: extends Resource;

ct:abstract true;

| eaf manufactureDate {type string;}
| eaf otherldentifier {type string;}
| eaf powerState {type int32;}

| eaf serial Nunber {type string;}

| eaf versionNunmber {type string;}

conpl ex-type Hardware {

ct: ext ends Physi cal Resource;

ct:abstract true;

| eaf width {type string;}

| eaf height {type string;}

| eaf depth {type string;}

| eaf neasurenmentUnits {type int32;}

| eaf weight {type string;}

| eaf weightUnits {type int32;}

| eaf -1i st physical Link {
type instance-identifier {

ct:instance-type Physi cal Link

}

}

ct:instance-list containedHardware {
ct:instance-type Hardware;
}

ct:instance-list physical Connector {
ct:instance-type Physical Connector;
}

conpl ex-type Physi cal Li nk {

ct: ext ends Physi cal Resource;

| eaf isWreless {type bool ean;}

| eaf currentlLength {type string;}
| eaf nmaximunlength {type string;}

et al. Experi ment al

March 2011

[Page 35]

RFC 6095 YANG Language Abstractions March 2011

| eaf nedi aType {type int32;}
| eaf-1ist hardware {
type instance-identifier {
ct:instance-type Hardware;
}

}

ct: conpl ex-type ManagedHar dware {
ct: extends Hardware;
| eaf additionalinfo {type string;}
| eaf physical Al ar mReporti ngEnabl ed {type bool ean;}
| eaf pyhsical Al arnttatus {type int32;}
| eaf coolingRequirements {type string;}
| eaf hardwar ePurpose {type string;}
| eaf isPhysical Container {type bool ean;}

ct: conpl ex-type AuxiliaryConponent {
ct: ext ends ManagedHar dwar e;
ct:abstract true;

ct: conpl ex-type Physical Port {
ct: ext ends ManagedHar dwar e;
| eaf portNumber {type int32;}
| eaf dupl exMode {type int32;}
| eaf ifType {type int32;}
| eaf vendor PortNarme {type string;}

ct: conpl ex-type Physi cal Connector {

ct: extends Hardware;

| eaf location {type string;}

| eaf cabl eType {type int32;}

| eaf gender {type int32;}

| eaf inUse {type bool ean;}

| eaf pinDescription {type string;}

| eaf typeOf Connector {type int32;}

| eaf -1 i st sourcePhysi cal Connector ({
type instance-identifier {

ct:instance-type Physical Connector;

}

}

Li nowski, et al. Experi ment al [Page 36]

RFC 6095 YANG Language Abstractions March 2011

| eaf -1i st targetPhysical Connector ({
type instance-identifier {
ct:instance-type Physical Connector;
}

}

ct:conpl ex-type Equi pment {

ct: ext ends ManagedHar dwar e;

| eaf install Status {type int32;}

| eaf expect edEqui pnent Type {type string;}

| eaf install edEqui pnent Type {type string;}

| eaf install edVersion {type string;}

| eaf redundancy {type int32;}

| eaf vendor Nane {type string;}

| eaf dateOf Last Service {type yang: date-and-time;}

| eaf interchangeability {type string;}

| eaf identificationCode {type string;}

ct:instance-list equipnent {
ct:instance-type Equipnent;

}

ct: conpl ex-type Equi prent Hol der {
ct: ext ends ManagedHar dwar e;
| eaf vendor Nane {type string;}
| eaf | ocationNane {type string;}
| eaf dateCf Last Service {type yang: date-and-tine;}
| eaf part Nunmber {type string;}
| eaf availabilityStatus {type intl6;}
| eaf nanmeFronPl anni ngSystem {type string;}
| eaf nodel Number {type string;}
| eaf accept abl eEqui prent Li st {type string;}
| eaf isSolitaryHol der {type bool ean;}
| eaf hol der Status {type int16;}
| eaf interchangeability {type string;}
| eaf equi pnent Hol der Speci fi cType {type string; }
| eaf position {type string;}
| eaf at om cConpositeType {type intl6;}
| eaf uni quePhysical {type bool ean;}
| eaf physical Description {type string;}
| eaf serviceApproach {type string;}
| eaf nountingOptions {type int32;}
| eaf cabl eManagenent Strategy {type string;}
| eaf isSecureHol der {type bool ean;}
ct:instance-list equipnent {

Li nowski, et al. Experi ment al [Page 37]

RFC 6095

YANG Language Abstractions

ct:instance-type Equipnent;

}

ct:instance-list equiprentHol der {
ct:instance-type Equi prent Hol der

}
}

11

ther resource conplex types ...

}
<CODE ENDS>

YANG nodul e for the 'Hardware Entities Mbdel’

<CODE BEG NS>

nodul e hardware-entities {

nanespace "http://exanpl e.com : hardware-entities";
prefix "hwe";

i mport
i mport

i etf-yang-types {prefix "yang";}
ietf-conplex-types {prefix "ct";}

i mport udntore {prefix "uc";}

groupi ng Physi cal EntityProperties

| eaf
| eaf
| eaf
| eaf

| eaf
| eaf
| eaf
| eaf
| eaf
| eaf

firmvareRev {type string
sof twareRev {type string;
serial Num {type string; }

{
har dwar eRev {type string; }
}
}

nf gNane {type string; }

nodel Name {type string; }

alias {type string; }

sset | D{type string; }

i sSFRU {type bool ean; }

nfgDate {type yang: date-and-tinme; }

leaf-list uris {type string; }

/1 Physical entities representing equi prment

ct:compl ex-type Mdul e {
ct: extends uc: Equi prent ;
description "Conpl ex type representing nodule entries

Li nowski, et al. Experi ment a

March 2011

[Page 38]

RFC 6095 YANG Language Abstractions March 2011

(ent Physi cal Cl ass = nodul e(9)) in entPhysical Tabl e";
uses Physical EntityProperties;

ct:conpl ex-type Backpl ane {
ct: extends uc: Equi prent ;
description "Conpl ex type representing backpl ane entries
(ent Physi cal O ass = backpl ane(4)) in entPhysical Tabl e";
uses Physical EntityProperties;

/1 Physical entities representing auxiliary hardware conponents

ct: conpl ex-type Power Supply {
ct:extends uc: AuxiliaryConponent;
description "Conpl ex type representing power supply entries
(ent Physi cal C ass = power Suppl y(6)) in entPhysical Tabl e";
uses Physical EntityProperties;

ct:compl ex-type Fan {
ct:extends uc: AuxiliaryConponent;
description "Conpl ex type representing fan entries
(ent Physi cal Class = fan(7)) in entPhysical Table";
uses Physical EntityProperties;

ct:compl ex-type Sensor {
ct:extends uc: AuxiliaryConponent;
description "Conpl ex type representing sensor entries
(ent Physi cal C ass = sensor(8)) in entPhysical Table";
uses Physical EntityProperties;

/1 Physical entities representing equipnent hol ders

ct:conpl ex-type Chassis {
ct: extends uc: Equi prrent Hol der ;
description "Conpl ex type representing chassis entries
(ent Physi cal O ass = chassis(3)) in entPhysical Table";
uses Physical EntityProperties;

ct:conpl ex-type Contai ner {
ct: extends uc: Equi prrent Hol der ;
description "Conpl ex type representing container entries

Li nowski, et al. Experi ment al [Page 39]

RFC 6095 YANG Language Abstractions March 2011

(ent Physi cal C ass = container(5)) in entPhysical Table";
uses Physical EntityProperties;

ct:compl ex-type Stack {
ct: extends uc: Equi prent Hol der;
description "Conpl ex type representing stack entries
(ent Physi cal C ass = stack(11)) in entPhysical Tabl e";
uses Physical EntityProperties;

/1 Qther kinds of physical entities

ct:compl ex-type Port {
ct: extends uc: Physi cal Port;
description "Conplex type representing port entries
(ent Physi cal C ass = port(10)) in entPhysical Tabl e";
uses Physical EntityProperties;

ct:compl ex-type CPU {
ct: extends uc: Hardwar e;
description "Conpl ex type representing cpu entries
(ent Physi cal T ass = cpu(12)) in entPhysical Tabl e";
uses Physical EntityProperties;

}
<CODE ENDS>
Appendi x B. Exanpl e YANG Modul e for the | PFI X/ PSAMP Mode

B.1. Modeling Inprovenents for the | PFI X/ PSAMP Mbdel with Conpl ex Types
and Typed Instance ldentifiers

The nodul e below is a variation of the | PFI X PSAMP configuration
nodel , which uses conplex types and typed instance identifiers to
nodel the concept outlined in [|PFI XCONF].

VWhen | ooki ng at the YANG nodul e with conplex types and typed instance
identifiers, various technical inprovenents on the nodeling | eve
becone apparent.

o There is alnobst a one-to-one mappi ng between the donai n concepts
i ntroduced in I PFI X and the conplex types in the YANG nodul e.

Li nowski, et al. Experi ment al [Page 40]

RFC 6095 YANG Language Abstractions March 2011

B. 2.

Al'l associ ati ons between the concepts (besides contai nnent) are
represented with typed identifiers. That avoids having to refer
to a particular location in the tree. Referring to a particular
inthe tree is not mandated by the origi nal nodel

It is superfluous to represent concept refinenent (class

i nheritance in the original nodel) with contai nment in the form of
quite big choice-statenents with conpl ex branches. |nstead,
concept refinement is realized by conplex types extending a base

conpl ex type

It is unnecessary to introduce netadata identities and | eafs
(e.g., "identity cacheMbde" and "l eaf cacheMbde" in "grouping
cacheParaneters") that just serve the purpose of indicating which
concrete subtype of a generic type (nodel ed as groupi ng, which
contains the union of all features of all subtypes) is actually
represented in the MB.

Ruling out illegal use of subtype-specific properties (e.g., "leaf
maxFl ows") by using "when" statenments that refer to a subtype

di scrimnator is not necessary (e.g., when "../cacheMde !=
"imrediate’ ") .

Defining properties like the configuration status wherever a so
call ed "paraneter grouping"” is used is not necessary. |nstead,
those definitions can be put inside the conplex type definition
itself.

Separating the declaration of the key fromthe rel ated data nodes
definitions in a grouping (see use of "grouping
sel ector Paranmeters") can be avoi ded.

Conpl ex types may be declared as optional features. |f the type
is indicated with an identity (e.g., "identity imediate"), this
is not possible, since "if-feature"” is not allowed as a

subst aterment of "identity".

| PFI X/ PSAMP Model with Conpl ex Types and Typed | nstance
Identifiers

<CODE BEG NS>
nodul e ct-i pfix-psanp-exanmpl e {

nanespace "http://exanpl e. com ns/ ct-i pfi x- psanp-exanpl e";
prefix ipfix;

i mport ietf-yang-types { prefix yang; }
import ietf-inet-types { prefix inet; }
i mport ietf-conplex-types {prefix "ct"; }

Li nowski, et al. Experi ment al [Page 41]

RFC 6095 YANG Language Abstractions March 2011

description "Exanpl e | PFl X/ PSAMP Configuration Data Mde
with conpl ex types and typed instance identifiers";

revi sion 2011-03-15 {
description "The YANG Mydul e (’ YANG Modul e of the | PFI X/ PSAVP

Configuration Data Moddel’) in [IPFI XCONF] nodel ed with
conpl ex types and typed instance identifiers.
Di sclainmer: This exanple nodel illustrates the use of the
| anguage extensions defined in this docunent and does not
claimto be an exact reproduction of the original YANG
nodel referred above. The original description texts have
been shortened to increase the readability of the nodel
exanple.";

/***

* Features

***/

feature exporter {
description "If supported, the Mnitoring Device can be used as
an Exporter. Exporting Processes can be configured.";

}

feature collector {
description "If supported, the Mnitoring Device can be used as
a Collector. Collecting Processes can be configured.";

}

feature neter {
description "If supported, Cbservation Points, Selection
Processes, and Caches can be configured.";

}

f eature psanpSanpCount Based {
description "If supported, the Mnitoring Device supports
count - based Sampling...";

}

feature psanpSanpTi neBased {
description "If supported, the Mnitoring Device supports
ti me-based Sanpling...";
}

feature psanpSanpRandQut OF N {
description "If supported, the Mnitoring Device supports
random n-out - of -N Sanpling...";

Li nowski, et al. Experi ment al [Page 42]

RFC 6095 YANG Language Abstractions March 2011

feature psanpSanmpUni Prob {
description "If supported, the Mnitoring Device supports
uni form probabilistic Sanpling...";

}

feature psanpFilterMatch {
description "If supported, the Mnitoring Device supports
property match Filtering...";

feature psanpFilterHash {
description "If supported, the Mnitoring Device supports
hash-based Filtering...";

}

f eature cacheMdel medi ate {
description "If supported, the Mnitoring Device supports
Cache Mbde 'imediate’ .";
}

feature cacheMdeTi neout {
description "If supported, the Mnitoring Device supports
Cache Mbde 'tineout’.";

}

feature cacheMbdeNat ural {
description "If supported, the Mnitoring Device supports
Cache Mode ’'natural’.";

}

f eat ure cacheMbdePer manent {
description "If supported, the Mnitoring Device supports

Cache Mode ' pernanent’.";
}

feature udpTransport {
description "If supported, the Mnitoring Device supports UDP
as transport protocol.";

}

feature tcpTransport {
description "If supported, the Mnitoring Device supports TCP
as transport protocol.";

}

feature fil eReader ({
description "If supported, the Mnitoring Device supports the
configuration of Collecting Processes as File Readers.";

Li nowski, et al. Experi ment al [Page 43]

RFC 6095 YANG Language Abstractions March 2011

}

feature fileWiter {
description "If supported, the Mnitoring Device supports the
configuration of Exporting Processes as File Witers.";

}

/***

" L
I dentities
***/

[*** Hash function identities ***/
identity hashFunction {
description "Base identity for all hash functions...";

}
identity BOB {
base "hashFunction";
description "BOB hash function”;
reference "RFC 5475, Section 6.2.4.1.";
}
identity IPSX {
base "hashFunction";
description "I1PSX hash function";
reference "RFC 5475, Section 6.2.4.1.";

}

identity CRC {
base "hashFunction";
description "CRC hash function”;
reference "RFC 5475, Section 6.2.4.1.";

}

[*** Export node identities ***/
identity exportMde {
description "Base identity for different usages of export
destinati ons configured for an Exporting Process...";

identity parallel {
base "export Mde";
description "Parallel export of Data Records to al
destinations configured for the Exporting Process.";

identity | oadBal anci ng {
base "export Mde";
descripti on "Load-bal anci ng between the different
destinations...";

}
identity fallback {
base "export Mde";

Li nowski, et al. Experi ment al [Page 44]

RFC 6095 YANG Language Abstractions March 2011

description "Export to the primary destination...";

}

[*** (Options type identities ***/
identity optionsType {
description "Base identity for report types exported
with options...";

identity meteringStatistics {
base "optionsType";
description "Metering Process Statistics.";
reference "RFC 5101, Section 4.1.";
}
identity nmeteringReliability {
base "optionsType";
description "Metering Process Reliability Statistics.";
reference "RFC 5101, Section 4.2.";

identity exportingReliability {
base "optionsType";
description "Exporting Process Reliability
Statistics.";
reference "RFC 5101, Section 4.3.";
}
identity flowKeys {
base "optionsType";
description "Fl ow Keys.";
reference "RFC 5101, Section 4.4.";

identity sel ecti onSequence {
base "optionsType";
description "Sel ection Sequence and Sel ector Reports.";
reference "RFC 5476, Sections 6.5.1 and 6.5.2.";

}

identity selectionStatistics {
base "optionsType";
description "Sel ection Sequence Statistics Report.";
reference "RFC 5476, Sections 6.5.3.";

identity accuracy {
base "optionsType";
description "Accuracy Report.";
reference "RFC 5476, Section 6.5.4.";

identity reduci ngRedundancy {
base "optionsType";
description "Enables the utilization of Options Tenplates to
reduce redundancy in the exported Data Records.";

Li nowski, et al. Experi ment al [Page 45]

RFC 6095 YANG Language Abstractions March 2011

reference "RFC 5473.";
}
identity extendedTypel nformation {
base "optionsType";
description "Export of extended type information for
enterprise-specific Information El ements used in the
exported Tenpl ates.";
reference "RFC 5610.";

}

/***

* Type definitions

***/

typedef naneType {
type string {
length "1..max";
pattern "\ S(.*\S)?";
}

description "Type for 'nane’ leafs...";

}

typedef direction {
type enuneration {
enum i ngress {
description "This value is used for monitoring incom ng
packets.";
}
enum egress {
description "This value is used for nonitoring outgoing
packets.";

enum bot h {
description "This value is used for monitoring i ncom ng and
out goi ng packets.";
}
}

description "Direction of packets going through an interface or
linecard.";

}

typedef transport SessionStatus {
type enuneration {
enum i nactive {
description "This value MJST be used for...";

enum active {
description "This value MJST be used for...";

Li nowski, et al. Experi ment al [Page 46]

RFC 6095 YANG Language Abstractions March 2011

}

enum unknown {
description "This value MJST be used if the status...";
}
}
description "Status of a Transport Session.";

reference "RFC 5815, Section 8 (ipfixTransportSessionStatus).";
}

/***

* Conpl ex types

***/

ct:conpl ex-type Ohservati onPoint {
description "Qbservation Point";
key narme;
| eaf name {
type nanmeType
description "Key of an observation point.";
}

| eaf observationPointld {
type uint32;
config fal se
description "Qobservation Point ID...";
reference "RFC 5102, Section 5.1.10.";

| eaf observati onDomainld {
type uint32;
mandat ory true
description "The Observation Domain |ID associates...";
reference "RFC 5101. ";

choi ce OPLocation {
mandat ory true;
description "Location of the Cbservation Point.";
| eaf iflndex {
type uint32;
description "lIndex of an interface...";
reference "RFC 2863.";

}
| eaf ifName {
type string;
description "Nane of an interface...";
reference "RFC 2863.";
}
| eaf entPhysical | ndex {
type uint32;
description "lIndex of a linecard...";

Li nowski, et al. Experi ment al [Page 47]

RFC 6095 YANG Language Abstractions

reference "RFC 4133.";
}
| eaf ent Physi cal Nane {
type string;
description "Nane of a linecard...";
reference "RFC 4133.";

}

| eaf direction {
type direction;
defaul t bot h;
description "Direction of packets....";

}

| eaf-1ist selectionProcess {

March 2011

type instance-identifier { ct:instance-type Sel ecti onProcess; }
description "Selection Processes in this |ist process packets

in parallel."”;

}
}

ct:conpl ex-type Selector {
ct:abstract true;
description "Abstract selector”;
key nane;
| eaf nane {
type nanmeType
description "Key of a selector”;

| eaf packet sCbserved {
type yang: count er 64;
config fal se
description "The number of packets observed ...";
reference "RFC 5815, Section 8
(i pfixSel ecti onProcessSt at sPacket sGbserved).";

}

| eaf packet sDropped {
type yang: count er 64;
config fal se

description "The total nunber of packets discarded ..

reference "RFC 5815, Section 8
(i pfixSel ecti onProcessSt at sPacket sDropped) . ";

| eaf selectorDiscontinuityTinme {
type yang: date-and-ti ne;
config fal se

description "Tinmestanp of the nobst recent occasion at which

one or nore of the Selector counters suffered a
di scontinuity...";

Li nowski, et al. Experi ment a

[Page 48]

RFC 6095 YANG Language Abstractions March 2011

reference "RFC 5815, Section 8
(i pfixSel ectionProcessStatsDi scontinuityTine).";
}

}

ct:conpl ex-type Sel ect All Sel ector {
ct:extends Sel ector;
description "Method that selects all packets.";

}

ct:compl ex-type SanpCount BasedSel ect or {
i f-feature psanpSanpCount Based
ct:extends Sel ector;
description "Sel ector applying systematic count-based
packet sanmpling to the packet stream";
reference "RFC 5475, Section 5.1;
RFC 5476, Section 6.5.2.1.";
| eaf packetlnterval {
type uint32;
units packets;
mandat ory true
description "The nunmber of packets that are consecutively
sampl ed between gaps of | ength packet Space.
Thi s paraneter corresponds to the Information El enent
sanpl i ngPacket I nterval .";
reference "RFC 5477, Section 8.2.2.";
}
| eaf packet Space {
type uint32;
units packets;
mandatory true
description "The nunmber of unsanpl ed packets between two
sanmpling intervals.
Thi s paraneter corresponds to the Information El enment
sampl i ngPacket Space. ";
reference "RFC 5477, Section 8.2.3.";

}
}

ct:compl ex-type SanpTi meBasedSel ector {

i f-feature psanmpSanpTi meBased

ct:extends Sel ector;

description "Sel ector applying systematic tine-based
packet sanmpling to the packet stream";

reference "RFC 5475, Section 5.1;
RFC 5476, Section 6.5.2.2.";

| eaf tinmelnterval {
type uint 32;

Li nowski, et al. Experi ment al [Page 49]

RFC 6095 YANG Language Abstractions March 2011

units m croseconds;
mandat ory true
description "The tine interval in microseconds during
which all arriving packets are sanpl ed between gaps
of length tineSpace.
Thi s paraneter corresponds to the Information El enent
sanpl i ngTi nel nterval . ";
reference "RFC 5477, Section 8.2.4.";
}
| eaf tinmeSpace {
type uint32;
units m croseconds;
nmandatory true
description "The tine interval in mcroseconds during
whi ch no packets are sanpl ed between two sanpling
intervals specified by timelnterval.
Thi s paraneter corresponds to the Information El enent
sanpl i ngTi nel nterval . ";
reference "RFC 5477, Section 8.2.5.";

}
}

ct:compl ex-type SanpRandCut Of NSel ect or {
i f-feature psanpSanpRandQut O N;
ct:extends Sel ector;
description "This container contains the configuration
paraneters of a Sel ector applying n-out-of-N packet
sampling to the packet stream";
reference "RFC 5475, Section 5.2.1;
RFC 5476, Section 6.5.2.3.";
| eaf size {
type uint 32;
units packets;
mandat ory true;
description "The nunber of elenents taken fromthe parent
popul ati on.
Thi s paraneter corresponds to the Information El enent
sanpl i ngSi ze. ";
reference "RFC 5477, Section 8.2.6.";

| eaf popul ation {

type uint 32;

units packets;

mandat ory true

description "The nunber of elenents in the parent
popul ati on.
Thi s paraneter corresponds to the Information El enent
sanpl i ngPopul ation.";

Li nowski, et al. Experi ment al [Page 50]

RFC 6095 YANG Language Abstractions March 2011

reference "RFC 5477, Section 8.2.7.";

}
}

ct:compl ex-type SampUni ProbSel ector {
i f-feature psanpSanpUni Prob;
ct:extends Sel ector;
description "Sel ector applying uniformprobabilistic
packet sanpling (with equal probability per packet) to the
packet stream";
reference "RFC 5475, Section 5.2.2.1;
RFC 5476, Section 6.5.2.4.";
| eaf probability {
type deci mal 64 {
fraction-digits 18;
range "0..1";

mandat ory true

description "Probability that a packet is sanpled,
expressed as a value between 0 and 1. The probability
is equal for every packet.
Thi s paraneter corresponds to the Information El enment
sampl i ngProbability.";

reference "RFC 5477, Section 8.2.8.";

}

ct:compl ex-type FilterMtchSel ector ({

i f-feature psanpFilterMatch;

ct:extends Sel ector;

description "This contai ner contains the configuration
paraneters of a Sel ector applying property match filtering
to the packet stream";

reference "RFC 5475, Section 6.1;
RFC 5476, Section 6.5.2.5.";

choi ce naneOrld {
mandatory true
description "The field to be matched is specified by

either the name or the ID of the Information

El ement . ";
| eaf ieName {
type string;

description "Nane of the Information El enent.";

}
leaf ield {
type uint16 {
range "1..32767" {
description "Valid range of Infornation El enent

Li nowski, et al. Experi ment al [Page 51]

RFC 6095 YANG Language Abstractions March 2011

identifiers.";
ref erence "RFC 5102, Section 4."

}
}
description "ID of the Information El enent.";
}
| eaf ieEnterpriseNunber {
type uint 32;

description "If present, ... "

| eaf val ue {
type string;
mandat ory true
description "Matching value of the Information El enment.";
}
}

ct:compl ex-type FilterHashSel ector {

i f-feature psanpFilterHash;

ct:extends Sel ector;

description "This container contains the configuration
paranmeters of a Sel ector applying hash-based filtering
to the packet stream";

reference "RFC 5475, Section 6. 2;
RFC 5476, Section 6.5.2.6.";

| eaf hashFunction {
type identityref {

base "hashFunction";

}

default BOB

description "Hash function to be applied. According to
RFC 5475, Section 6.2.4.1, BOB hash function nust be
used in order to be conpliant with PSAMP.";

}
| eaf ipPayl oadOf fset {
type uint 64;
units octets;
default O;
description "IP payload offset ... ";
reference "RFC 5477, Section 8.3.2.";
}
| eaf i pPayl oadSi ze {
type uint 64;
units octets;
default 8;
description "Nunber of |IP payload bytes ... ™
reference "RFC 5477, Section 8.3.3.";

Li nowski, et al. Experi ment al [Page 52]

RFC 6095 YANG Language Abstractions March 2011

}
| eaf di gestQutput {
type bool ean;
default false;
description "If true, the output ... ";
reference "RFC 5477, Section 8.3.8.";

leaf initializerValue {
type uint 64;
description "lInitializer value to the hash function
If not configured by the user, the Monitoring Device
arbitrarily chooses an initializer value.";
reference "RFC 5477, Section 8.3.9.";

list selectedRange {

key narme;

m n-el enents 1;

description "List of hash function return ranges for
whi ch packets are selected.";

| eaf nane {
type naneType
description "Key of this list.";

leaf mn {
type uint 64;
description "Begi nning of the hash function’s sel ected
range.
Thi s paraneter corresponds to the Information El enment
hashSel ect edRangeM n. ";
reference "RFC 5477, Section 8.3.6.";
}
| eaf max {
type uint 64;
description "End of the hash function’s sel ected range.
Thi s paraneter corresponds to the Information El enent
hashSel ect edRangeMax. ";
reference "RFC 5477, Section 8.3.7.";

}
}
}

ct:conpl ex-type Cache {
ct:abstract true;
description "Cache of a Moumnitoring Device.";
key nane;
| eaf name {
type nameType
description "Key of a cache"

Li nowski, et al. Experi ment al [Page 53]

RFC 6095 YANG Language Abstractions March 2011

| eaf -1i st exportingProcess {
type leafref { path "/ipfix/exportingProcess/nane"; }
description "Records are exported by all Exporting Processes
inthe list.";
}

description "Configuration and state paraneters of a Cache.";
cont ai ner cachelLayout {
description "Cache Layout.";
list cacheField {
key narme;
m n-el ements 1;
description "List of fields in the Cache Layout.";
| eaf nane {
type nanmeType
description "Key of this list.";
}
choi ce naneOrld {
mandatory true
description "Nane or ID of the Infornation El enent.";
reference "RFC 5102.";
| eaf ieName {
type string;
description "Nane of the Information El enent.";

}
leaf ield {
type uintl16 {
range "1..32767" {
description "Valid range of Information El enent
identifiers.";
reference "RFC 5102, Section 4.";
}
}
description "I D of the Information El enent.";

}

| eaf ielLength {
type uint 16;
units octets;
description "Length of the field ... ";
reference "RFC 5101, Section 6.2; RFC 5102.";
}
| eaf ieEnterpriseNunber {
type uint 32;
description "If present, the Information El ement is
enterprise-specific. ... ";
reference "RFC 5101; RFC 5102.";

}

Li nowski, et al. Experi ment al [Page 54]

RFC 6095 YANG Language Abstractions March 2011

| eaf isFl owKey {

when "(../../../cacheMbde != "inmedi ate’)
and
((count(../ieEnterpriseNunber) = 0)
or

(../lieEnterpriseNunber != 29305))" {

description "This paraneter is not avail able
for Reverse Information El enments (which have
enterprise nunber 29305) or if the Cache Mde
is 'inmrediate .";

}
type enpty;
description "If present, this is a flow key.";

}
}
}

| eaf dataRecords {
type yang: count er 64;
units "Data Records";
config fal se
description "The nunmber of Data Records generated ... "
reference "RFC 5815, Section 8
(i pfixMeteringProcessCacheDat aRecords).";

| eaf cacheDi scontinuityTinme {
type yang: date-and-ti ne;
config fal se
description "Tinestanp of the ... ";
reference "RFC 5815, Section 8
(i pfixMeteringProcessCacheDi scontinuityTinme).";

ct:compl ex-type | mredi at eCache {
i f-feature cacheMdel medi at e
ct: extends Cache;

}

ct: compl ex-type Nonl nmedi at eCache {

ct:abstract true;

ct: extends Cache;

| eaf nmaxFl ows {
type uint 32;
units flows;
description "This paraneter configures the nmaxi mum nunber of

Flows in the Cache ... ";

Li nowski, et al. Experi ment al [Page 55]

RFC 6095 YANG Language Abstractions March 2011

| eaf activeFl ows {

type yang: gauge32;

units flows;

config fal se

description "The nunmber of Flows currently active in this
Cache.";

reference "RFC 5815, Section 8
(i pfixMeteringProcessCacheActiveFl ows).";

| eaf unusedCacheEntries {

type yang: gauge32;

units flows;

config fal se

description "The nunmber of unused Cache entries in this
Cache. ";

reference "RFC 5815, Section 8
(i pfixMeteringProcessCacheUnusedCacheEntries).";

}

ct: conpl ex-type NonPer manent Cache {
ct:abstract true;
ct: ext ends Nonl nmedi at eCache;
| eaf activeTi meout {
type uint32;
units mlliseconds;
description "This paraneter configures the time in
mlliseconds after which ... ";

}
| eaf inactiveTi neout ({
type uint32;
units mlliseconds;
description "This paranmeter configures the time in
mlliseconds after which ... ";

}
}

ct: conpl ex-type Natural Cache {
i f-feature cacheModeNat ur al
ct : ext ends NonPer manent Cache;

}

ct: conpl ex-type Ti meout Cache {
i f-feature cacheMdeTi neout ;
ct : ext ends NonPer manent Cache;

}

ct:conpl ex-type Permanent Cache {

Li nowski, et al. Experi ment al [Page 56]

RFC 6095 YANG Language Abstractions March 2011

i f-feature cacheMbdePer manent;
ct: ext ends Nonl nmedi at eCache;
| eaf exportlnterval {
type uint32;
units mlliseconds;
description "This paraneter configures the interval for
peri odi cal export of Flow Records in mlliseconds.
If not configured by the user, the Mnitoring Device sets
this parameter.”;

}

ct:conpl ex-type ExportDestination {
ct:abstract true;
description "Abstract export destination.";
key narme;
| eaf name {
type nanmeType
description "Key of an export destination.";
}
}

ct:compl ex-type | pDestination {
ct:abstract true;
ct:extends ExportDestination
description "IP export destination.";
 eaf ipfixVersion {
type uint 16;
default 10;
description "IPFI X version nunber.";
}
| eaf destinationPort {
type inet:port-nunber;
description "If not configured by the user, the Mnitoring
Devi ce uses the default port nunber for IPFI X which is
4739 without Transport Layer Security, and 4740 if Transport
Layer Security is activated.";
}
choi ce i ndexOr Name {
description "lIndex or name of the interface ... "
reference "RFC 2863.";
| eaf iflndex {

type uint32;
description "lIndex of an interface as stored in the ifTable
of IFFMB.";

ref erence "RFC 2863.";

}
| eaf ifName {

Li nowski, et al. Experi ment al [Page 57]

RFC 6095 YANG Language Abstractions March 2011

type string;
description "Nane of an interface as stored in the ifTable
of IFFMB.";
reference "RFC 2863.";
}
}
| eaf sendBufferSize {
type uint 32;
units bytes;
description "Size of the socket send buffer.
If not configured by the user, this paraneter is set by
the Monitoring Device.";
}
leaf rateLimt {
type uint32;

units "bytes per second";
descri ption "Maxi mum nunber of bytes per second ... "
reference "RFC 5476, Section 6.3";

}

cont ai ner transportLayerSecurity {
presence "If transportlLayerSecurity is present, DILS is
enabled if the transport protocol is SCTP or UDP, and TLS
is enabled if the transport protocol is TCP.";
description "Transport Layer Security configuration.";
uses transportlLayer SecurityParamneters;
}
cont ai ner transport Session {
config fal se
description "State paranmeters of the Transport Session
directed to the given destination.";
uses transport Sessi onPar aneters;

}

ct:compl ex-type SctpExporter {
ct:extends | pDestination;
description "SCTP exporter.";
| eaf -1i st sourcel PAddress {
type inet:ip-address;
description "List of source |IP addresses used ... "
reference "RFC 4960, Section 6.4
(Mul ti-Honmed SCTP Endpoints).";

| eaf -1i st destinationl PAddress {
type inet:ip-address;
m n-el enents 1;
description "One or nultiple I P addresses ... "
reference "RFC 4960, Section 6.4

Li nowski, et al. Experi ment al [Page 58]

RFC 6095 YANG Language Abstractions March 2011

(Mul ti-Honmed SCTP Endpoints)."

}

leaf tinmedReliability {
type uint32;
units mlliseconds;
default O;

description "Lifetime in mlliseconds ... "
reference "RFC 3758; RFC 4960.";
}
}

ct:conpl ex-type UdpExporter {
ct:extends | pDestination;
i f-feature udpTransport;
description "UDP paraneters.";
| eaf sourcel PAddress {
type inet:ip-address;
description "Source | P address used by the Exporting

Process ...";
}
| eaf destinationl PAddress {
type inet:ip-address;
mandat ory true
description "I P address of the Collection Process to which
| PFI X Messages are sent."

| eaf nmaxPacket Si ze {
type uint 16;
units octets;
description "This paraneter specifies the nmaxi mum si ze of
| P packets ... ";

| eaf tenpl ateRefreshTi meout {

type uint32;

units seconds;

default 600;

description "Sets tine after which Tenplates are resent in the
UDP Transport Session. ... ";

reference "RFC 5101, Section 10 3.6, RFC 5815, Sectlon 8
(i pfixTransport Sessi onTenpl at eRef reshTi neout) .

| eaf optionsTenpl at eRefreshTi meout {
type uint32;
units seconds;
defaul t 600;
description "Sets tine after which Options Tenplates are
resent in the UDP Transport Session. ... ";
reference "RFC 5101, Section 10.3.6; RFC 5815 Section 8

Li nowski, et al. Experi ment al [Page 59]

RFC 6095 YANG Language Abstractions March 2011

(i pfixTransport Sessi onOpti onsTenpl at eRefreshTi neout) . ";

| eaf tenpl at eRefreshPacket {
type uint32;
units "I PFI X Messages”;
description "Sets nunber of |IPFIX Messages after which
Tenpl ates are resent in the UDP Transport Session. ... ";
reference "RFC 5101, Section 10.3.6; RFC 5815, Section 8
(i pfixTransport Sessi onTenpl at eRef reshPacket).";

| eaf optionsTenpl at eRef reshPacket {
type uint 32;
units "I PFI X Messages";
description "Sets nunmber of |PFI X Messages after which
Options Tenpl ates are resent in the UDP Transport Session
protocol ";
reference "RFC 5101, Section 10.3.6; RFC 5815, Section 8

(i pfixTransport Sessi onOpti onsTenpl at eRef reshPacket) . ";

ct:compl ex-type TcpExporter ({
ct:extends | pDestination;
if-feature tcpTransport;
description "TCP exporter";
| eaf sourcel PAddress {
type inet:ip-address;
description "Source |P address used by the Exporting
Process...";

| eaf destinationl PAddress {
type inet:ip-address;
mandat ory true
description "I P address of the Collection Process to which
| PFI X Messages are sent.";
}

}

ct:complex-type FileWiter {

ct: extends ExportDestination;
if-feature fileWiter;
description "File Witer.";
| eaf ipfixVersion {

type uint 16;

default 10;

description "I PFlI X version numnber.

}
leaf file {

Li nowski, et al. Experi ment al [Page 60]

RFC 6095 YANG Language Abstractions March 2011

type inet:uri;
mandat ory true
description "URl specifying the location of the file.";

}
| eaf bytes {
type yang: count er 64;
units octets;
config fal se
description "The nunber of bytes witten by the File
Witer...";
}

| eaf nessages {
type yang: count er 64;
units "I PFI X Messages";
config fal se
description "The number of |PFI X Messages witten by the File
Witer. ... ";

| eaf di scardedMessages {
type yang: count er 64;
units "I PFI X Messages";
config fal se
description "The nunmber of |PFI X Messages that could not be
witten by the File Witer ... ";

| eaf records {
type yang: count er 64;
units "Data Records";
config fal se
description "The nunber of Data Records witten by the File
Witer. ... ";

| eaf tenplates {
type yang: count er 32;
units "Tenpl at es”;
config fal se
description "The nunmber of Tenpl ate Records (excl uding
Options Tenpl ate Records) witten by the File Witer.

| eaf optionsTenpl ates {
type yang: counter 32;
units "Options Tenpl ates”;
config fal se
description "The number of Options Tenplate Records witten
by the File Witer. ... ";

leaf fileWiterDiscontinuityTinme {

Li nowski, et al. Experi ment al [Page 61]

RFC 6095 YANG Language Abstractions March 2011

type yang: date-and-ti ne;

config fal se

description "Tinestanp of the nbst recent occasion at which
one or nore File Witer counters suffered a discontinuity.

}
list tenplate {

config fal se

description "This list contains the Tenplates and Options
Templ ates that have been witten by the File Reader. ... ";

uses tenpl at ePar anet ers;

}
}

ct:conpl ex-type ExportingProcess {

if-feature exporter;
description "Exporting Process of the Mnitoring Device.";
key nane;
| eaf nane {

type nanmeType

description "Key of this list.";
}
| eaf export Mde {

type identityref {

base "export Mde";

default parallel;
description "This paranmeter determ nes to which configured
destination(s) the incom ng Data Records are exported."”;
}

ct:instance-list destination {
ct:instance-type ExportDestination
m n-el enents 1;
description "Export destinations.";
}
list options {
key nane;
description "List of options reported by the Exporting
Process. ",
| eaf name {
type nameType
description "Key of this list.";

| eaf optionsType {
type identityref {
base "optionsType";

mandat ory true

Li nowski, et al. Experi ment al [Page 62]

RFC 6095 YANG Language Abstractions March 2011

description "Type of the exported options data.";

}

| eaf optionsTi meout {
type uint32;
units mlliseconds;
description "Tine interval for periodic export of the options

data. ... ";
}
}
}

ct:conpl ex-type Col |l ecti ngProcess {
description "A Collecting Process.";
key nane;
| eaf nanme {
type nanmeType
description "Key of a collecing process.”;
}
ct:instance-list sctpCollector {
ct:instance-type SctpCollector;
description "List of SCTP receivers (sockets) on which the
Col I ecting Process receives | PFI X Messages."”;
}

ct:instance-list udpCollector {
i f-feature udpTransport;
ct:instance-type UdpCol | ector;
description "List of UDP receivers (sockets) on which the
Col I ecting Process receives | PFI X Messages."”;
}

ct:instance-list tcpCollector {
if-feature tcpTransport;
ct:instance-type TcpColl ector;
description "List of TCP receivers (sockets) on which the
Col I ecting Process receives | PFI X Messages."”;
}
ct:instance-list fileReader {
if-feature fil eReader;
ct:instance-type Fil eReader

description "List of File Readers from which the Collecting
Process reads | PFl X Messages. ";

| eaf -1ist exportingProcess {
type instance-identifier { ct:instance-type ExportingProcess; }
description "Export of received records w thout any
nodi fi cati ons. Records are processed by all Exporting
Processes in the list.";

Li nowski, et al. Experi ment al [Page 63]

RFC 6095 YANG Language Abstractions March 2011

ct:conmpl ex-type Coll ector {
ct:abstract true;
description "Abstract collector."”;
key narme;
| eaf name {
type nanmeType
description "Key of collectors”;

}
}

ct:compl ex-type | pCollector {
ct:abstract true;
ct:extends Col |l ector;
description "Collector for IP transport protocols.";
| eaf |ocal Port {
type inet: port-nunber;

description "If not configured, the Mnitoring Device uses the

default port nunber for IPFIX, which is 4739 without
Transport Layer Security, and 4740 if Transport Layer
Security is activated.";

}

cont ai ner transportlLayerSecurity {

presence "If transportlLayerSecurity is present, DILS is enabl ed
if the transport protocol is SCTP or UDP, and TLS is enabl ed

if the transport protocol is TCP.";
description "Transport Layer Security configuration.";
uses transportLayer SecurityParaneters;
}
[ist transport Session {
config fal se
description "This list contains the currently established
Transport Sessions term nating at the given socket.";
uses transport Sessi onPar aneters;

}
}

ct:conmpl ex-type SctpColl ector {
ct:extends | pCollector;
description "Collector listening on an SCTP socket";
| eaf-1ist |ocall PAddress {
type inet:ip-address;
description "List of local |IP addresses ... ";
reference "RFC 4960, Section 6.4
(Mul'ti-Homed SCTP Endpoints).";
}

}
ct:conmpl ex-type UdpCol | ector {

Li nowski, et al. Experi ment al [Page 64]

RFC 6095 YANG Language Abstractions March 2011

ct:extends | pCollector;
description "Paraneters of a listening UDP socket at a
Col l ecting Process.";
| eaf-1ist |ocall PAddress {
type inet:ip-address;
description "List of |local |P addresses on which the Collecting
Process listens for |PFI X Messages.";

}
| eaf tenplateLifeTime {
type uint32;
units seconds;
defaul t 1800;
description "Sets the lifetine of Tenplates for all UDP
Transport Sessions ... ";
reference "RFC 5101, Section 10.3.7; RFC 5815, Section 8
(i pfixTransport Sessi onTenpl at eRef reshTi meout) . ";

| eaf optionsTenpl ateLifeTine {
type uint32;
units seconds;
defaul t 1800;
description "Sets the lifetinme of Options Tenplates for al
UDP Transport Sessions terminating at this UDP socket.

refé}en&e "RFC 5101, Section 10.3.7; RFC 5815, Section 8
(i pfixTransport Sessi onOpti onsTenpl at eRef reshTi neout) . ";

| eaf tenplatelLifePacket {
type uint32;
units "I PFI X Messages";
description "If this paraneter is configured, Tenplates
defined in a UDP Transport Session beconme invalid if ..."
reference "RFC 5101, Section 10.3.7; RFC 5815, Section 8
(i pfixTransport Sessi onTenpl at eRef reshPacket).";

| eaf optionsTenpl at eLi f ePacket {

type uint32;

units "I PFI X Messages";

description "If this paranmeter is configured, Options
Tenmpl ates defined in a UDP Transport Session becomne
invalid if ...";

reference "RFC 5101, Section 10.3.7; RFC 5815, Section 8
(i pfixTransport Sessi onOpti onsTenpl at eRef reshPacket) . ";

}

ct:compl ex-type TcpCol |l ector {
ct:extends | pCollector;

Li nowski, et al. Experi ment al [Page 65]

RFC 6095 YANG Language Abstractions March 2011

description "Collector listening on a TCP socket.";
| eaf-1ist |ocallPAddress {
type inet:ip-address;
description "List of |ocal |IP addresses on which the Collecting
Process listens for |PFI X Messages.";
}

}

ct:compl ex-type Fil eReader {
ct:extends Collector;
description "File Reading collector.";
leaf file {
type inet:uri;
mandat ory true
description "URl specifying the location of the file.";
}
| eaf bytes {
type yang: count er 64;
units octets;
config fal se
description "The nunber of bytes read by the File Reader
}
| eaf nessages {
type yang: count er 64;
units "I PFI X Messages";
config fal se
description "The number of |PFI X Messages read by the File
Reader. ... ";

| eaf records {
type yang: count er 64;
units "Data Records"”;
config fal se
description "The nunber of Data Records read by the File
Reader. ... ";

| eaf tenplates {
type yang: count er 32;
units "Tenpl at es”;
config fal se
description "The nunmber of Tenpl ate Records (excl uding
Options Tenpl ate Records) read by the File Reader. ...";

| eaf optionsTenpl ates {
type yang: count er 32;
units "Options Tenpl ates”;
config fal se

Li nowski, et al. Experi ment al [Page 66]

RFC 6095 YANG Language Abstractions March 2011

description "The nunmber of Options Tenpl ate Records read by
the File Reader. ... ";

| eaf fileReaderDi scontinuityTime {
type yang: date-and-ti ne;
config fal se
description "Tinestanp of the npbst recent occasion ... ";

}
list tenplate {
config fal se
description "This list contains the Tenplates and Options
Tenpl ates that have been read by the File Reader
Wthdrawn or invalidated (Options) Tenplates MJST be renoved
fromthis list.";
uses tenpl at ePar anet ers;
}
}

ct:compl ex-type Sel ectionProcess {
description "Sel ection Process"”;
key nane;
| eaf name {
type nameType
description "Key of a selection process.";
}
ct:instance-list selector {
ct:instance-type Sel ector;
m n-el enents 1;
or der ed- by user;
description "List of Selectors that define the action of the
Sel ection Process on a single packet. The Selectors are
serially invoked in the sane order as they appear in this
list.";
}
list selectionSequence {
config fal se
description "This list contains the Sel ection Sequence |Ds
whi ch are assigned by the Mnitoring Device ... ";
reference "RFC 5476.";
| eaf observati onDomainld {
type uint32;
description "Qoservation Domain ID for which the
Sel ection Sequence IDis assigned.";

| eaf sel ecti onSequenceld {
type uint 64;
description "Sel ection Sequence ID used in the Sel ection
Sequence (Statistics) Report Interpretation.”;

Li nowski, et al. Experi ment al [Page 67]

RFC 6095 YANG Language Abstractions March 2011

}
}
| eaf cache {
type instance-identifier { ct:instance-type Cache; }
description "Cache which receives the output of the
Sel ection Process.";

}
}

/***

* & oupi ngs

***/

groupi ng transportLayer SecurityParaneters {
description "Transport |ayer security paranmeters.";
leaf-1ist local CertificationAuthorityDN {
type string;
description "D stingui shed nanes of certification authorities
whose certificates nay be used to identify the |oca
endpoi nt.";

}
| eaf -1ist |ocal SubjectDN {
type string;
description "D stingui shed nanes that nay be used in the
certificates to identify the | ocal endpoint.";

}
| eaf -1ist | ocal Subject FQDN {
type inet:domi n- nane;
description "Fully qualified domain nanes that may be used to
inthe certificates to identify the |ocal endpoint.";
}
leaf-1ist renpteCertificati onAuthorityDN {
type string;
description "Distingui shed names of certification authorities
whose certificates are accepted to authorize renote
endpoi nts. ";

| eaf -1ist renoteSubject DN {
type string;
description "D stingui shed names that are accepted in
certificates to authorize renpte endpoints.”;
}
| eaf -1i st renoteSubject FQDN {
type inet: domai n- nane;
description "Fully qualified domain nanes that are accepted in
certificates to authorize rennte endpoints.”;

Li nowski, et al. Experi ment al [Page 68]

RFC 6095 YANG Language Abstractions March 2011

groupi ng tenplateParanEters {
description "State paraneters of a Tenplate used by an Exporting
Process or received by a Collecting Process ... ";
reference "RFC 5101; RFC 5815, Section 8 (|pf|xTeanateEntry,
i pfi xTenpl ateDefinitionEntry, ipfixTenplateStatsEntry)"”
| eaf observati onDomainld {
type uint32;
description "The ID of the Cbservation Donain for which this
Tenpl ate is defined.";
reference "RFC 5815, Section 8
(i pfixTenpl at eCbservati onDomai nld)."

}
| eaf tenplateld {
type uintl1l6 {
range "256..65535" {
description "Valid range of Tenplate Ids."
reference "RFC 5101";

}

}
description "This nunber indicates the Tenplate Id in the I PFIX

message. ";
reference "RFC 5815, Section 8 (ipfixTenplateld)."

| eaf setld {
type uint 16;
description "This number indicates the Set Id of the Tenpl ate.

reference "RFC 5815, Section 8 (ipfixTenplateSetld)."
}
| eaf accessTine {

type yang: date-and-ti ne;

description "Used for Exporting Processes, ...

reference "RFC 5815, Section 8 (|pfleeanateAccessTlnE)
}
| eaf tenpl ateDat aRecords {

type yang: count er 64;

description "The nunmber of transmitted or received Data

Records ... ";
reference "RFC 5815 Section 8 (ipfixTenpl at eDat aRecords).

| eaf tenplateDi scontinuityTime {
type yang: date-and-ti ne;
description "Tinmestanp of the nbst recent occasion at which
the counter tenpl ateDataRecords suffered a discontinuity.
reference "RFC 5815, Section 8
(i pfixTenpl at eDi scontinuityTime)."

Li nowski, et al. Experi ment al [Page 69]

RFC 6095 YANG Language Abstractions March 2011

list field {
description "This list contains the (Options) Tenplate
fields of which the (Options) Tenplate is defined.

leaf ield {
type uint16 {
range "1..32767" {
description "Valid range of Infornation El enent
identifiers.";
reference "RFC 5102, Section 4.";
}
}
description "This paraneter indicates the Infornmation
El erent |Id of the field.";

reference "RFC 5815, Section 8 (ipfixTenplateDefinitionleld);
RFC 5102.";

}
| eaf ielLength {
type uint 16;
units octets;
description "This paraneter indicates the length of the
Informati on El enent of the field.";
reference "RFC 5815, Section 8
(i pfixTenpl ateDefinitionlelLength); RFC 5102.";

| eaf ieEnterpriseNunber {
type uint 32;
description "This paraneter indicates the | ANA enterprise
nunber of the authority ... ";
reference "RFC 5815, Section 8

(i pfixTenpl at eDefiniti onEnterpriseNunber).";

}
| eaf isFl owKey {
when "../../setld = 2" {
description "This paranmeter is available for non-Options
Tenplates (Set Idis 2).";
}
type enpty;
description "If present, this is a Flow Key field.";
reference "RFC 5815, Section 8
(i pfixTenpl at eDefinitionFl ags).";

| eaf isScope {
when "../../setld = 3" {
description "This paraneter is available for Options
Templ ates (Set 1d is 3).";
}
type enpty;

Li nowski, et al. Experi ment al [Page 70]

RFC 6095 YANG Language Abstractions March 2011

description "If present, this is a scope field.";
reference "RFC 5815, Section 8
(i pfixTenpl at eDefi nitionFl ags).";

}
}

groupi ng transport Sessi onParaneters {
description "State paraneters of a Transport Session ... ";
reference "RFC 5101; RFC 5815, Section 8
(i pfixTransport Sessi onEntry,
i pfi xTransport Sessi onStatsEntry)";
| eaf ipfixVersion {
type uint 16;
description "Used for Exporting Processes, this paraneter
contai ns the version nunber of the IPFIX protocol ... ";
reference "RFC 5815, Section 8

(i pfixTransport Sessi onl pfi xVersion).";

| eaf sourceAddress {
type inet:ip-address;
description "The source address of the Exporter of the
| PFI X Transport Session... ";
reference "RFC 5815, Section 8
(i pfixTransport Sessi onSour ceAddr essType,
i pfi xTransport Sessi onSour ceAddr ess) . ";
}
| eaf destinationAddress {
type inet:ip-address;
description "The destination address of the Collector of
the I PFI X Transport Session... ";
reference "RFC 5815, Section 8
(i pfixTransport Sessi onDesti nati onAddr essType,
i pfi xTransport Sessi onDesti nati onAddress).";
}
| eaf sourcePort ({
type inet:port-nunber;
description "The transport protocol port nunber of the
Exporter of the IPFIX Transport Session.";
reference "RFC 5815, Section 8
(i pfixTransport Sessi onSourcePort).";

| eaf destinationPort ({
type inet: port-nunber
description "The transport protocol port nunber of the
Col l ector of the IPFI X Transport Session... ";
reference "RFC 5815, Section 8

(i pfixTransport Sessi onDesti nationPort).";

Li nowski, et al. Experi ment al [Page 71]

RFC 6095 YANG Language Abstractions March 2011

}
| eaf sctpAssocld {
type uint 32;
description "The association id used for the SCTP session
bet ween the Exporter and the Collector ... ";
reference "RFC 5815, Section 8
(i pfixTransport Sessi onSct pAssocl d),
RFC 3871";
}
| eaf status {
type transport Sessi onSt at us;
description "Status of the Transport Session.";
reference "RFC 5815, Section 8 (ipfixTransport SessionStatus).";

| eaf rate {
type yang: gauge32;
units "bytes per second";
description "The nunber of bytes per second transmtted by the
Exporting Process or received by the Collecting Process.
This paraneter is updated every second.";
reference "RFC 5815, Section 8 (ipfixTransport SessionRate).";

}
| eaf bytes {
type yang: count er 64;
units bytes;
description "The nunmber of bytes transmtted by the
Exporting Process or received by the Collecting
Process ... ";
ref erence "RFC 5815, Section 8 (ipfixTransport Sessi onBytes).";
}
| eaf nessages {
type yang: count er 64;
units "I PFI X Messages";
description "The number of nmessages transnmitted by the
Exporting Process or received by the Collecting Process... ";
reference "RFC 5815, Section 8
(i pfixTransport Sessi onMessages).";

| eaf di scardedMessages {

type yang: count er 64;

units "I PFI X Messages”;

description "Used for Exporting Processes, this paraneter
i ndi cates the nunber of messages that could not be
sent ...";

reference "RFC 5815, Section 8
(i pfixTransport Sessi onDi scar dedMessages) . ";

| eaf records {

Li nowski, et al. Experi ment al [Page 72]

RFC 6095 YANG Language Abstractions March 2011

type yang: count er 64;
units "Data Records";
description "The nunber of Data Records transmitted ... ";
reference "RFC 5815, Section 8
(i pfixTransport Sessi onRecords).";

| eaf tenplates {
type yang: count er 32;
units "Tenpl at es”;
description "The number of Tenplates transmitted by the
Exporting Process or received by the Collecting Process.

refé}en&e "RFC 5815, Section 8
(i pfixTransport Sessi onTenpl ates).";

| eaf optionsTenpl ates {
type yang: count er 32;
units "Options Tenpl ates”;
description "The nurmber of Option Tenplates transmtted by the
Exporting Process or received by the Collecting Process...";
reference "RFC 5815, Section 8
(i pfixTransport Sessi onOpti onsTenpl ates).";

| eaf transportSessionStartTime {
type yang: date-and-ti ne;
description "Tinestanp of the start of the given Transport

Session... ";

| eaf transport SessionDi scontinuityTine {
type yang: date-and-ti ne;
description "Tinmestanp of the nbst recent occasion at which
one or nore of the Transport Session counters suffered a
di scontinuity... ";
reference "RFC 5815, Section 8
(i pfixTransport Sessi onDi scontinuityTinme).";

list tenplate {
description "This list contains the Tenplates and Options
Tenpl ates that are transmtted by the Exporting Process
or received by the Collecting Process.
Wthdrawn or invalidated (Options) Tenpl ates MJST be renoved
fromthis list.";
uses tenpl at ePar anet ers;
}
}

/***

* Mai n contai ner

Li nowski, et al. Experi ment al [Page 73]

RFC 6095 YANG Language Abstractions March 2011

***/

container ipfix {
description "Top-level node of the |IPFI X/ PSAMP configuration
dat a nmodel . ";
ct:instance-list collectingProcess {
if-feature collector;
ct:instance-type Coll ectingProcess;

}

ct:instance-list observationPoint {
if-feature neter;
ct:instance-type ObservationPoint;

}

ct:instance-list selectionProcess {
if-feature neter;
ct:instance-type Sel ectionProcess;

}

ct:instance-list cache {
if-feature neter;
description "Cache of the Monitoring Device.";
ct:instance-type Cache;

}

ct:instance-list exportingProcess {
if-feature exporter;
description "Exporting Process of the Mnitoring Device.";
ct:instance-type ExportingProcess;

}

}
<CODE ENDS>

Li nowski, et al. Experi ment al [Page 74]

RFC 6095 YANG Language Abstractions March 2011

Aut hors’ Addr esses

Ber nd Li nowski

TCS/ Noki a Si emrens Net wor ks
Heltorfer Strasse 1
Duessel dorf 40472

Cer many

EMai | : bernd. | inowski.ext @sn.com

Mehnet Ersue

Noki a Si enens Net wor ks
St.-Martin-Strasse 76
Muni ch 81541

Ger many

EMai | : nmehnet . er sue@sn. com
Si arhei Kuryl a

360 Treasury Systens
Gruenebur gweg 16-18
Frankfurt am Main 60322
Cer many

EMai | : s. kuryl a@mail . com

Li nowski, et al. Experi ment al [Page 75]

