
Internet Engineering Task Force (IETF) J. Urpalainen
Request for Comments: 5875 Nokia
Category: Standards Track D. Willis, Ed.
ISSN: 2070-1721 Softarmor Systems LLC
 May 2010

An Extensible Markup Language (XML) Configuration Access Protocol (XCAP)
 Diff Event Package

Abstract

 This document describes an "xcap-diff" SIP (Session Initiation
 Protocol) event package for the SIP Event Notification Framework,
 which clients can use to receive notifications of changes to
 Extensible Markup Language (XML) Configuration Access Protocol (XCAP)
 resources. The initial synchronization information exchange and
 document updates are based on the XCAP Diff format.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc5875.

Copyright Notice

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Urpalainen & Willis Standards Track [Page 1]

RFC 5875 XCAP Diff Event May 2010

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

 1. Introduction . 3
 2. Terminology . 4
 3. Definitions . 4
 4. XCAP Diff Event Package 4
 4.1. Overview of Operation with Basic Requirements 4
 4.2. Event Package Name . 5
 4.3. ’diff-processing’ Event Package Parameter 5
 4.4. SUBSCRIBE Bodies . 6
 4.5. Subscription Duration 8
 4.6. NOTIFY Bodies . 8
 4.7. Notifier Generation of NOTIFY Requests 8
 4.8. Subscriber Processing of NOTIFY Requests 11
 4.9. Handling of Forked Requests 13
 4.10. Rate of Notifications 13
 4.11. State Agents . 13
 5. An Initial Example NOTIFY Document 13
 6. IANA Considerations . 14
 7. Security Considerations 15
 8. Acknowledgments . 15
 9. References . 16
 9.1. Normative References 16
 9.2. Informative References 17
 Appendix A. Informative Examples 18
 A.1. Initial Documents on an XCAP Server 18
 A.2. An Initial Subscription 18
 A.3. A Document Addition into a Collection 19
 A.4. A Series of XCAP Component Modifications 20
 A.5. An XCAP Component Subscription 23
 A.6. A Conditional Subscription 26

Urpalainen & Willis Standards Track [Page 2]

RFC 5875 XCAP Diff Event May 2010

1. Introduction

 The SIP events framework [RFC3265] describes subscription and
 notification conventions for the Session Initiation Protocol (SIP)
 [RFC3261]. The Extensible Markup Language (XML)
 [W3C.REC-xml-20060816] Configuration Access Protocol (XCAP) [RFC4825]
 allows a client to read, write, and modify XML-formatted application
 usage data stored on an XCAP server.

 While XCAP allows authorized users or devices to modify the same XML
 document, XCAP does not provide an effective mechanism (beyond
 polling) to keep resources synchronized between a server and a
 client. This memo defines an "xcap-diff" event package that,
 together with the SIP event notification framework [RFC3265] and the
 XCAP diff format [RFC5874], allows a user to subscribe to changes in
 an XML document, and to receive notifications whenever the XML
 document changes.

 There are three basic features that this event package enables:

 First, a client can subscribe to a list of XCAP documents’ URLs in a
 collection located on an XCAP server. This allows a subscriber to
 compare server resources with its local resources using the URLs and
 the strong entity tag (ETag) values of XCAP documents, which are
 shown in the XCAP diff format, and to synchronize them.

 Second, this event package can signal a change in those documents in
 one of three ways. The first mode only indicates the event type and
 does not include document contents, so the subscriber uses HTTP
 [RFC2616] to retrieve the updated document. The second mode includes
 document content changes in notification messages, using the XML-
 Patch-Ops [RFC5261] format with minimal notification size. The third
 mode also includes document content changes in notification messages
 with the same XML-Patch-Ops format, but is more verbose, and shows
 the full HTTP version history.

 Third, the client can subscribe to specific XML elements or
 attributes (XCAP components) showing their existing contents in the
 resulting XCAP diff format notification messages. If the requested
 component does not exist but is later created, the notifier sends a
 notification with the component’s content. The notifier also sends
 notifications when the subscribed XCAP components are removed, for
 example, after a successful HTTP DELETE request.

Urpalainen & Willis Standards Track [Page 3]

RFC 5875 XCAP Diff Event May 2010

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119, BCP 14
 [RFC2119] and indicate requirement levels for compliant
 implementations.

3. Definitions

 The following terms are used in this document:

 XCAP component: An XML element or an attribute, which can be
 updated, removed, or retrieved with XCAP.

 Aggregating: An XCAP client can update only a single XCAP component
 at a time using HTTP. However, a notifier may be able to
 aggregate a series of these modifications into a single
 notification using XML-Patch-Ops semantics encoded in the XCAP
 diff format.

 This document reuses terminology mostly defined in XCAP [RFC4825] and
 some in WebDAV [RFC4918].

4. XCAP Diff Event Package

4.1. Overview of Operation with Basic Requirements

 To receive "xcap-diff" event package features, the subscriber
 indicates its interest in certain resources by including a URI list
 in the subscription body to the notifier. Each URL in this list MUST
 be an HTTP URL that identifies a collection, an XCAP document, or an
 XCAP component. Collection URLs MUST have a trailing forward slash
 "/", following the conventions of WebDAV [RFC4918]. A collection
 selection includes all documents in that collection and recursively
 all documents in sub-collections. The URL of an XCAP component
 consists of the document URL with the XCAP Node Selector added.
 Although the XCAP Node Selector allows all in-scope namespaces of an
 element to be requested, the client MUST NOT subscribe to namespaces.

 The notifier MUST support XCAP component subscriptions. The notifier
 sends the first notification in response to the subscription, and
 this first notification MUST contain the URLs of the documents and
 XCAP component contents that are part of the subscription. The
 subsequent notifications MAY contain patches to these documents. The
 subscriber can specify how the notifier will signal the changes of
 documents by using the ’diff-processing’ event package parameter,
 covered in Section 4.3. Note that the existence of the "diff-

Urpalainen & Willis Standards Track [Page 4]

RFC 5875 XCAP Diff Event May 2010

 processing" parameter or its value has no influence on XCAP component
 subscriptions.

4.2. Event Package Name

 The name of this event package is "xcap-diff". As specified in
 [RFC3265], this value appears in the Event header field present in
 SUBSCRIBE and NOTIFY requests.

4.3. ’diff-processing’ Event Package Parameter

 With the aid of the optional "diff-processing" Event header field
 parameter, the subscriber indicates a preference as to how the
 notifier SHOULD indicate change notifications of documents. The
 possible values are "no-patching", "xcap-patching", and "aggregate".
 All three modes provide information that allows the subscriber to
 synchronize its local cache, but only the "xcap-patching" mode
 provides intermediate states of the version history. The notifier
 SHOULD use the indicated mode if it understands it (as doing so
 optimizes network traffic within the capabilities of the receiver).

 The "no-patching" value means that the notifier indicates only the
 document and the event type (creation, modification, and removal)
 in the notification. The notification does not necessarily
 indicate the full HTTP ETag change history. Notifiers MUST
 support the "no-patching" mode as a base-line for
 interoperability. The other, more complex modes are optional.

 The "xcap-patching" value means that the notifier includes all
 updated XCAP component contents and entity tag (ETag) changes made
 by XCAP clients (via HTTP). The client receives the full (HTTP)
 ETag change history of a document.

 The "aggregate" value means that the notifier MAY aggregate
 several individual XCAP component updates into a single XCAP diff
 <document> element. The policy for determining whether or not to
 apply aggregation or to determine how many updates to aggregate is
 locally determined.

 The notifier SHOULD support the "xcap-patching" and "aggregate"
 modes, and thus implement XML-Patch-Ops [RFC5261] diff-generation,
 because this can greatly reduce the required number of
 notifications and overall transmissions.

Urpalainen & Willis Standards Track [Page 5]

RFC 5875 XCAP Diff Event May 2010

 If the subscription does not contain the "diff-processing" header
 field parameter, the notifier MUST default to the "no-patching" mode.

 Note: To see the difference between "xcap-patching" and
 "aggregate" modes, consider a document that has versions "a", "b",
 and "c" with corresponding ETag values "1", "2", and "3". The
 "xcap-patching" mode will include first the change from version
 "a" to "b" with the versions’ corresponding "1" and "2" ETags and
 then the change from version "b" to "c" with their "2" and "3"
 ETags. The "aggregate" mode optimizes the change and indicates
 only a single aggregated change from "a" to "c" with the old "1"
 and new "3" ETags. If these changes are closely related, that is,
 the same element has been updated many times, the bandwidth
 savings are larger.

 This "diff-processing" parameter is a subscriber hint to the
 notifier. The notifier may respond using a simpler mode, but not a
 more complex one. Notifier selection of a mode is covered in
 Section 4.7. During re-subscriptions, the subscriber MAY change the
 diff-processing parameter.

 The formal grammar [RFC5234] of the "diff-processing" parameter is:

 diff-processing = "diff-processing" EQUAL (
 "no-patching" /
 "xcap-patching" /
 "aggregate" /
 token)

 where EQUAL and token are defined in RFC 3261 [RFC3261].

4.4. SUBSCRIBE Bodies

 The URI list is described by the XCAP resource list format [RFC4826],
 and is included as a body of the initial SUBSCRIBE request. Only a
 simple subset of that format is required, a flat list of XCAP request
 URIs. The "uri" attribute of the <entry> element contains these URI
 values. The subscriber MUST NOT use hierarchical lists or <entry-
 ref> references, etc. (though in the future, semantics may be
 expanded thanks to the functionality in the resource list format).
 In subsequent SUBSCRIBE requests, such as those used for refreshing
 the expiration timer, the subscribed URI list MAY change, in which
 case the notifier MUST use the new list.

 The SUBSCRIBE request MAY contain an Accept header field. If no such
 header field is present, it has a default value of "application/
 xcap-diff+xml". If the header field is present, it MUST include
 "application/xcap-diff+xml", and MAY include any other types.

Urpalainen & Willis Standards Track [Page 6]

RFC 5875 XCAP Diff Event May 2010

 The SUBSCRIBE request MAY contain the Suppress-If-Match header field
 [RFC5839], which directs the notifier to suppress either the body of
 a subsequent notification or the entire notification if the ETag
 value matches.

 If the SUBSCRIBE body contains elements or attributes that the
 notifier doesn’t understand, the notifier MUST ignore them.

 Subscribers need to appropriately populate the Request-URI of the
 SUBSCRIBE request, typically set to the URI of the notifier. This
 document does not constrain that URI. It is assumed that the
 subscriber is provisioned with or has learned the URI of the notifier
 of this event package.

 The XCAP server will usually be co-located with the SIP notifier, so
 the subscriber MAY use relative XCAP Request-URIs. Because relative
 Request-URIs are allowed, the notifier MUST know how to resolve these
 against the correct XCAP Root URI value.

 Figure 1 shows a SUBSCRIBE request and body covering several XCAP
 resources: a "resource-list" document, a specific element (XCAP
 component) in a "rls-services" document, and a collection in "pidf-
 manipulation" application usage. The "Content-Type" header of this
 SUBSCRIBE request is "application/resource-lists+xml".

 SUBSCRIBE sip:tests@xcap.example.com SIP/2.0
 ...
 Accept: application/xcap-diff+xml
 Event: xcap-diff; diff-processing=aggregate
 Content-Type: application/resource-lists+xml
 Content-Length: [XXX]
 Expires: 4200

 <?xml version="1.0" encoding="UTF-8"?>
 <resource-lists xmlns="urn:ietf:params:xml:ns:resource-lists">
 <list>
 <entry uri="resource-lists/users/sip:joe@example.com/index"/>
 <entry uri="rls-services/users/sip:joe@example.com/index/
 ˜˜/*/service%5b@uri=’sip:marketing@example.com’%5d"/>
 <entry uri="pidf-manipulation/"/>
 </list>
 </resource-lists>

 Figure 1: Example subscription body

 When subscribing to XCAP components, namespace prefixes of XCAP Node
 Selectors MUST be properly resolved to namespace URIs. Section 6.4
 of RFC 4825 [RFC4825] describes the conventions when using prefixes

Urpalainen & Willis Standards Track [Page 7]

RFC 5875 XCAP Diff Event May 2010

 in XCAP Node Selectors. If only XCAP Default Document Namespace is
 used, just like in the previous example (where a <service> element is
 selected), the query component of the "uri" value is not required.

4.5. Subscription Duration

 The default expiration time for subscriptions within this package is
 3600 seconds. As per RFC 3265 [RFC3265], the subscriber MAY specify
 an alternative expiration timer in the Expires header field.

4.6. NOTIFY Bodies

 The format of the NOTIFY message body either is the default of
 "application/xcap-diff+xml" or is a format listed in the Accept
 header field of the SUBSCRIBE.

 In this event package, notification messages contain an XCAP diff
 document [RFC5874].

 The XCAP diff format [RFC5874] can include the subscribed XCAP
 component contents. For documents, the format can also include
 corresponding URIs, ETag values, and patching instructions from
 version "a" to "b". Removal events (of documents, elements, or
 attributes) can be identified too. Except for collection selections,
 the "sel" selector values of the XCAP diff format MUST be octet-by-
 octet equivalent to the relevant "uri" parameter values of the
 <entry> element of the "resource-list" document.

 With XCAP component subscriptions, XCAP Node Selectors can contain
 namespace prefixes. A notifier MUST then resolve these prefixes to
 namespace URIs according to RFC 4825 [RFC4825] conventions. In other
 words, notifiers MUST be aware of XCAP Default Document Namespaces
 for Application Usages when they locate unprefixed qualified XCAP
 elements. Note that the namespace resolving rules of Patch operation
 elements <add>, <replace>, and <remove> are described in Section
 4.2.1 of [RFC5261].

4.7. Notifier Generation of NOTIFY Requests

 During the initial subscription, or if the URI list changes in
 SUBSCRIBE refresh requests, the notifier MUST resolve the requested
 XCAP resources and their privileges. If there are superfluous
 resource selections in the requested URI list, the notifier SHOULD
 NOT provide overlapping similar responses for these resources. A
 resource for which an authenticated user does not have a read
 privilege MUST NOT be included in the XCAP diff format. Note that an
 XCAP component that could not be located with XCAP semantics does not
 produce an error. Instead, the request remains in a "pending" state,

Urpalainen & Willis Standards Track [Page 8]

RFC 5875 XCAP Diff Event May 2010

 that is, waiting for this resource to be created (or read access
 granted if XCAP Application Usages utilize dynamic access control
 lists). Subscriptions to collections have a similar property: once a
 new document is created into the subscribed collection, the creation
 of a new resource is signaled with the next NOTIFY request.

 After the notifier knows the list of authorized XCAP resources, it
 generates the first NOTIFY, which contains URI references to all
 subscribed, existing documents for which the subscriber has read
 privileges, and typically XCAP component(s) of existing content.

 After sending the initial notification, the notifier selects a diff-
 processing mode for reporting changes. If the subscriber suggested a
 mode in the "diff-processing" parameter of the SUBSCRIBE, the
 notifier MAY use that requested mode or MAY fall back to a simpler
 operational mode, but the notifier MUST NOT use a more complex mode
 than the one chosen by the subscriber. From least to most complex,
 the order of the modes is the following: "no-patching", "xcap-
 patching", "aggregate". Thus, the notifier may respond to an
 "aggregate" request using any mode, but cannot reply to an "xcap-
 patching" subscription using the "aggregate" mode. Naturally, the
 notifier MUST handle a "no-patching" request with the "no-patching"
 mode.

 In all modes, the notifier MUST maintain the chronological order of
 XCAP changes. If several changes to a given resource are presented
 in a single notification, the chronological update order MUST be
 preserved in the XML document order of the notification body.
 Chronological order is preserved to simplify the required subscriber
 implementation logic.

 While the "aggregate" mode uses bandwidth most efficiently, it
 introduces other challenges. The initial synchronization might fail
 with rapidly changing resources, because the "aggregate" mode
 messages might not include the full version history of a document and
 the base XCAP protocol does not support version history retrievals of
 documents. When new documents are created in subscribed collections
 and the notifier is aggregating patches, the same issue can occur.
 In a corner case (such as when the XML prolog changes), the notifier
 may not be able to provide patches with the XML-Patch-Ops [RFC5261]
 semantics.

 If the notifier has to temporarily disable diff generation and send
 only the URI references of some changed documents to the subscriber,
 it MUST continue with the "xcap-patching" mode afterwards for these
 resources, if the initial subscription also started with the "xcap-
 patching" mode.

Urpalainen & Willis Standards Track [Page 9]

RFC 5875 XCAP Diff Event May 2010

 Note: The diff-generation may be disabled when the NOTIFY body
 becomes impractically large or an intermediate error has happened.
 As the subscriber loses track of the patching operations, it must
 refresh to a "known good" state by downloading current documents.
 Once it has done so, it can re-subscribe, for example, with the
 "aggregate" mode.

 In the "aggregate" mode, the notifier chooses how long to wait for
 multiple patches to combine and how this combination is done.

 In the "xcap-patching" mode, the notifier MAY try to optimize the
 diff-generation, for example, by eliminating redundant information
 since some XCAP clients will probably not have completely optimized
 their HTTP PUT request.

 Note: It is straightforward to change the XCAP client’s change
 requests: PUT and DELETE (sent via HTTP) to use XML-Patch-Ops
 semantics. While XCAP does not support patching of all XML node
 types -- for example, namespace declarations cannot be added
 separately -- efficient utilization of XML-Patch-Ops can sometimes
 significantly reduce the bandwidth requirements at the expense of
 extra processing.

 After the notifier has reported the existence of an XCAP component,
 it MUST also report its removal consistently. For example, the
 removal of the parent element of the subscribed element requires the
 same signaling since the subscribed element ceases to exist. To
 signal the removal of an XCAP component, the notifier sets the
 Boolean "exist" attribute value of the <element> or <attribute>
 elements to false. Even with rapidly changing resources, the
 notifier MUST signal only the latest state: e.g., whether or not the
 XCAP component exists.

 When the notifier receives a re-subscription, it MUST re-send the
 current full XML diff content unless the subscriber has requested a
 conditional subscription [RFC5839] by using the header field
 Suppress-If-Match: [ETag value]. With a conditional re-subscription,
 the notifier MUST also inspect the subscription body when determining
 the current subscription state. Since the subscription is based on a
 list of XCAP request URIs, it is RECOMMENDED that the notifier does
 not consider the order of these URIs when determining the equivalence
 to "stored" previous states. If a match to the previous state is not
 found, the NOTIFY message MUST contain the full XML diff state
 (similar to the initial notification). The notifiers SHOULD
 implement the conditional subscription handling with this event
 package.

Urpalainen & Willis Standards Track [Page 10]

RFC 5875 XCAP Diff Event May 2010

 During re-subscriptions, the subscriber may change the value of the
 diff-processing parameter. The value change influences only
 subsequent notifications, not the notification (if generated)
 followed immediately after the (re-)SUBSCRIBE request.

 Event packages like this require reliable transfer of NOTIFY
 messages. This means that all messages MUST successfully be
 transferred or the document will become out of sync, and then patches
 will most likely fail (or worse, have unintended consequences). This
 "xcap-diff" event package requires, similar to Partial-PIDF-Notify
 RFC 5263 [RFC5263], that a notifier MUST NOT send a new NOTIFY
 request to the same dialog unless a successful 200-response has been
 received for the last sent NOTIFY request. If the NOTIFY request
 fails due to a timeout, the notifier MUST remove the subscription.

 Note: This requirement ensures that out-of-order events will not
 happen or that the dialog will terminate after non-resolvable
 NOTIFY request failures. In addition, some of the probable NOTIFY
 error responses (for example, 401, 407, 413) can possibly be
 handled gracefully without tearing down the dialog.

 If, for example, the subscriber has selected too many elements to
 which to subscribe, such that the notification body would be
 impractically large (that is, an intermediate NOTIFY failure), the
 notifier MAY discard the <element> element content. The existence of
 elements is then indicated with an empty <element> element, and the
 content is not shown for those resources. In other words, the
 <element> element does not have a child element that would show the
 subscribed "full" element content.

4.8. Subscriber Processing of NOTIFY Requests

 The first NOTIFY request will usually contain references to HTTP
 resources including their strong ETag values. If the subscriber does
 not have similar locally cached versions, it will typically start an
 unconditional HTTP GET request for those resources. During this HTTP
 retrieval time, the subscriber MAY also receive patches to these
 documents if it has requested them and if the documents are changing
 rapidly. It can happen that the version retrieved by HTTP is not the
 same than what is indicated in the initial notification. A
 subscriber can then chain the modification list for each document,
 and locate the position where the previous ETag value is equal to
 that retrieved via HTTP. If an ETag match is not found from the
 first change, a subscriber MUST omit all changes up to the point
 where it is the same. From that change onwards, the subscriber
 applies all reported patches. If the version received via HTTP is
 newer than any received via the notifications, the subscriber may not
 find an equivalent match of an ETag value from the chain of patches.

Urpalainen & Willis Standards Track [Page 11]

RFC 5875 XCAP Diff Event May 2010

 This can happen since notifications are reported after HTTP changes
 and preferably at some minimum intervals. Also, document removals
 can be reported in notifications and/or HTTP retrievals may fail
 because of unexisting resources (rapidly changing). In any case, the
 subscriber can re-fetch the possible out-of-sync document, wait for
 subsequent notifications or refresh the subscription (with "xcap-
 patching"), and repeat the described "sync" algorithm until a "full"
 sync is achieved.

 If the notifier aggregates patches, the previous modification list
 may not contain the ETag value retrieved by HTTP simply because of
 aggregation optimizations. A similar out-of-sync cycle can happen
 when new (subscribed) documents are created that change rapidly. To
 avoid such difficulties, the subscriber MAY start the subscription
 with the "xcap-patching" mode, and then refresh the subscription with
 the "aggregate" mode after the initial sync is achieved. Naturally,
 the subscriber can revert back to the "xcap-patching" mode from
 "aggregate" at any time and vice versa.

 If the subscriber has received a "full" sync and it has detected that
 some of the resources are being served with the "xcap-patching" mode
 while others are in the "aggregate" mode, it SHOULD refresh the
 subscription to the "aggregate" mode.

 The notifier MAY at any time temporarily use the "no-patching" mode
 for some resources so that the subscriber receives only URI
 references of modifications. When the notifier is acting in this
 mode, several cycles MAY be needed before an initial "full" sync is
 achieved. As the notifier MAY change modes in the middle of a
 dialog, the subscriber is always responsible for taking appropriate
 actions. Also, as the last resort, the subscriber MAY always disable
 the usage of diff-processing by setting the "diff-processing"
 parameter to "no-patching".

 If a diff format cannot be applied due to patch processing and/or
 programming errors (for a list, see Section 5.1 of [RFC5261]), the
 subscriber SHOULD refresh the subscription and disable patching by
 setting the "diff-processing" parameter to "no-patching". The
 subscriber SHOULD NOT reply with a non-200 response since the
 notifier cannot make corrections.

 During unconditional re-subscriptions, the subscriber MUST stamp the
 received state of all previous resources as stale. However, if a
 conditional [RFC5839] re-subscription is successful, the subscriber
 MUST preserve the current state of resources unless the subscribed
 URI list has changed. That is, the subscriber MUST fetch the
 resource’s state, for example, from some local cache.

Urpalainen & Willis Standards Track [Page 12]

RFC 5875 XCAP Diff Event May 2010

4.9. Handling of Forked Requests

 This specification allows only a single dialog to be constructed from
 an initial SUBSCRIBE request. If the subscriber receives forked
 responses to a SUBSCRIBE, the subscriber MUST apply the procedures in
 Section 4.4.9 of RFC 3265 [RFC3265] for handling non-allowed forked
 requests.

4.10. Rate of Notifications

 Notifiers of an "xcap-diff" event package SHOULD NOT generate
 notifications for a single subscription at a rate of more than once
 every five seconds.

4.11. State Agents

 State agents play no role in this package.

5. An Initial Example NOTIFY Document

 Figure 2 shows an example initial XCAP diff format document provided
 by the first NOTIFY request to the SUBSCRIBE example in Figure 1.
 The following is an example Event header field for this SUBSCRIBE
 request:

 Event: xcap-diff; diff-processing=aggregate

 The subscriber requests that the notifier "aggregate" XCAP component
 updates and anticipates that the subsequent notifications will
 contain aggregated patches to these documents.

Urpalainen & Willis Standards Track [Page 13]

RFC 5875 XCAP Diff Event May 2010

 <?xml version="1.0" encoding="UTF-8"?>
 <d:xcap-diff xmlns:d="urn:ietf:params:xml:ns:xcap-diff"
 xmlns:s="urn:ietf:params:xml:ns:rls-services"
 xcap-root="http://xcap.example.com/root/">

 <d:document new-etag="7ahggs"
 sel="resource-lists/users/sip:joe@example.com/index"/>

 <d:document new-etag="30376adf"
 sel="pidf-manipulation/users/sip:joe@example.com/index"/>

 <d:element sel="rls-services/users/sip:joe@example.com/index/
 ˜˜/*/service%5b@uri=’sip:marketing@example.com’%5d"
 xmlns:rl="urn:ietf:params:xml:ns:resource-lists"
 ><s:service uri="sip:marketing@example.com">
 <s:list name="marketing">
 <rl:entry uri="sip:joe@example.com"/>
 <rl:entry uri="sip:sudhir@example.com"/>
 </s:list>
 <s:packages>
 <s:package>presence</s:package>
 </s:packages>
 </s:service></d:element>

 </d:xcap-diff>

 Figure 2: An example initial XCAP diff format document

 Note that the resource-list "index" document included only the new
 ETag value, as the document existed during the subscription time. In
 the "pidf-manipulation" collection, there is only a single document
 for which the user has read privileges. The <service> element exists
 within the rls-services "index" document and its content is shown.
 Note also that the <service> element was located using the Default
 Document Namespace (no prefix in XCAP Node Selector value) although
 it has an "s" prefix in the source document.

6. IANA Considerations

 IANA has added a new event package to the SIP Event Types Namespace
 registry as follows:

 Package Name Type Contact Reference
 ------------- -------- ------- ---------
 xcap-diff package IETF Real-time Applications [RFC5875]
 <rai@ietf.org>

Urpalainen & Willis Standards Track [Page 14]

RFC 5875 XCAP Diff Event May 2010

7. Security Considerations

 This document defines a new SIP event package for the SIP event
 notification framework specified in RFC 3265 [RFC3265]. As such, all
 the security considerations of RFC 3265 apply. The configuration
 data can contain sensitive information, and both the client and the
 server need to authenticate each other. The notifiers MUST
 authenticate the "xcap-diff" event package subscriber using the
 normal SIP authentication mechanisms, for example, Digest as defined
 in Section 22 of RFC 3261 [RFC3261]. The notifiers MUST be aware of
 XCAP User Identifiers (XUI) and how to map the authenticated SIP
 identities unambiguously with XUIs.

 Since XCAP [RFC4825] provides a basic authorization policy for
 resources and since notifications contain content similar to XCAP
 resources, the security considerations of XCAP also apply. The
 notifiers MUST obey the XCAP authorization rules when signalling
 resource changes. In practice, this means following the read
 privilege rules of XCAP resources.

 Denial-of-service attacks against notifiers deserve special mention.
 The following can cause denial of service due to intensive
 processing: subscriptions to a long list of URIs, "pending"
 subscriptions to non-existent documents or XCAP components, and diff-
 generation algorithms that try to optimize the required bandwidth
 usage to extremes.

 The mechanism used for conveying xcap-diff event information MUST
 ensure integrity and SHOULD ensure confidentially of the information.
 An end-to-end SIP encryption mechanism, such as S/MIME described in
 Section 26.2.4 of RFC 3261 [RFC3261], SHOULD be used. If that is not
 available, it is RECOMMENDED that TLS [RFC5246] be used between
 elements to provide hop-by-hop authentication and encryption
 mechanisms described in Sections 26.2.2 ("SIPS URI Scheme") and
 26.3.2.2 ("Interdomain Requests") of RFC 3261 [RFC3261].

8. Acknowledgments

 The author would like to thank Jonathan Rosenberg for his valuable
 comments and for providing the initial event package, and Aki Niemi,
 Pekka Pessi, Miguel Garcia, Pavel Dostal, Krisztian Kiss, Anders
 Lindgren, Sofie Lassborn, Keith Drage, Stephen Hinton, Byron Campen,
 Avshalom Houri, Ben Campbell, Paul Kyzivat, Spencer Dawkins, Pasi
 Eronen, and Chris Newman for their valuable comments. Lisa Dusseault
 critiqued the document during IESG review, raising numerous issues
 that resulted in improved document quality. Further, technical
 writer A. Jean Mahoney devoted countless hours to integrating Lisa’s
 comments and cleaning up the technical English usage.

Urpalainen & Willis Standards Track [Page 15]

RFC 5875 XCAP Diff Event May 2010

9. References

9.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 June 2002.

 [RFC3265] Roach, A., "Session Initiation Protocol (SIP)-Specific
 Event Notification", RFC 3265, June 2002.

 [RFC4825] Rosenberg, J., "The Extensible Markup Language (XML)
 Configuration Access Protocol (XCAP)", RFC 4825, May 2007.

 [RFC4826] Rosenberg, J., "Extensible Markup Language (XML) Formats
 for Representing Resource Lists", RFC 4826, May 2007.

 [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC5261] Urpalainen, J., "An Extensible Markup Language (XML) Patch
 Operations Framework Utilizing XML Path Language (XPath)
 Selectors", RFC 5261, September 2008.

 [RFC5839] Niemi, A. and D. Willis, "An Extension to Session
 Initiation Protocol (SIP) Events for Conditional Event
 Notification", RFC 5839, May 2010.

 [RFC5874] Rosenberg, J. and J. Urpalainen, "An Extensible Markup
 Language (XML) Document Format for Indicating a Change in
 XML Configuration Access Protocol (XCAP) Resources",
 RFC 5874, May 2010.

Urpalainen & Willis Standards Track [Page 16]

RFC 5875 XCAP Diff Event May 2010

9.2. Informative References

 [RFC4918] Dusseault, L., "HTTP Extensions for Web
 Distributed Authoring and Versioning
 (WebDAV)", RFC 4918, June 2007.

 [RFC5263] Lonnfors, M., Costa-Requena, J., Leppanen,
 E., and H. Khartabil, "Session Initiation
 Protocol (SIP) Extension for Partial
 Notification of Presence Information",
 RFC 5263, September 2008.

 [W3C.REC-xml-20060816] Paoli, J., Bray, T., Yergeau, F., Maler, E.,
 and C. Sperberg-McQueen, "Extensible Markup
 Language (XML) 1.0 (Fourth Edition)", World
 Wide Web Consortium FirstEdition REC-xml-
 20060816, August 2006,
 <http://www.w3.org/TR/2006/REC-xml-20060816>.

Urpalainen & Willis Standards Track [Page 17]

RFC 5875 XCAP Diff Event May 2010

Appendix A. Informative Examples

 These examples illustrate the basic features of the xcap-diff event
 package. Only the relevant header fields are shown. Note also that
 the SIP request URIs of these examples don’t correspond to reality.

A.1. Initial Documents on an XCAP Server

 The following documents exist on an XCAP server (xcap.example.com)
 with an imaginary "tests" application usage (there’s no Default
 Document Namespace defined in this imaginary application usage).

 http://xcap.example.com/tests/users/sip:joe@example.com/index:

 <?xml version="1.0" encoding="UTF-8"?>
 <doc>
 <note>This is a sample document</note>
 </doc>

 and then

 http://xcap.example.com/tests/users/sip:john@example.com/index:

 <?xml version="1.0" encoding="UTF-8"?>
 <doc>
 <note>This is another sample document</note>
 </doc>

A.2. An Initial Subscription

 The following demonstrates the listing of collection contents and it
 shows only resources where the user has read privileges. The user
 Joe, whose XUI is "sip:joe@example.com", sends an initial
 subscription:

 SUBSCRIBE sip:tests@xcap.example.com SIP/2.0
 ...
 Accept: application/xcap-diff+xml
 Event: xcap-diff; diff-processing=aggregate
 Content-Type: application/resource-lists+xml
 Content-Length: [XXX]

 <?xml version="1.0" encoding="UTF-8"?>
 <resource-lists xmlns="urn:ietf:params:xml:ns:resource-lists">
 <list>
 <entry uri="tests/users/sip:joe@example.com/"/>
 </list>
 </resource-lists>

Urpalainen & Willis Standards Track [Page 18]

RFC 5875 XCAP Diff Event May 2010

 In addition to the 200 (OK) response, the notifier sends the first
 NOTIFY:

 NOTIFY sip:joe@userhost.example.com SIP/2.0
 ...
 Event: xcap-diff
 Content-Type: application/xcap-diff+xml
 Content-Length: [XXX]

 <?xml version="1.0" encoding="UTF-8"?>
 <xcap-diff xmlns="urn:ietf:params:xml:ns:xcap-diff"
 xcap-root="http://xcap.example.com/">

 <document new-etag="7ahggs"
 sel="tests/users/sip:joe@example.com/index"/>

 </xcap-diff>

 The subscriber learns that the document on this "tests" application
 usage is equivalent to its locally cached version, so it does not
 act. If the local version had been different, the subscriber would
 most likely re-fetch the document.

 If the subscriber had requested the "tests/users/" collection, the
 notification body would have been the same since Joe has no read
 privileges to John’s resources (XCAP default behavior).

 If the Expires header field had a value "0", the request would be
 similar to the PROPFIND method of WebDAV. The syntax and responses
 differ, however.

A.3. A Document Addition into a Collection

 Let’s say that Joe adds a new document to his collection, using
 either the same client or another client running on a different
 device. He does an HTTP PUT to his application usage collection:

 PUT /tests/users/sip:joe@example.com/another_document HTTP/1.1
 Host: xcap.example.com

 Content-Type: application/xml
 Content-Length: [XXX]

 <?xml version="1.0" encoding="UTF-8"?>
 <doc>
 <note>This is another sample document</note>
 </doc>

Urpalainen & Willis Standards Track [Page 19]

RFC 5875 XCAP Diff Event May 2010

 This HTTP PUT request results in the XCAP client receiving a strong
 HTTP ETag "terteer" for this new document.

 Then the subscriber receives a notification afterwards:

 NOTIFY sip:joe@userhost.example.com SIP/2.0
 ...
 Event: xcap-diff
 Content-Type: application/xcap-diff+xml
 Content-Length: [XXX]

 <?xml version="1.0" encoding="UTF-8"?>
 <xcap-diff xmlns="urn:ietf:params:xml:ns:xcap-diff"
 xcap-root="http://xcap.example.com/">

 <document new-etag="terteer"
 sel="tests/users/sip:joe@example.com/another_document"/>

 </xcap-diff>

 Note that the result is "additive"; it doesn’t indicate the already
 indicated "index" document. Only the initial (or refreshed)
 notification contains all document URI references.

 If Joe’s client both modifies the documents and refreshes the
 subscriptions, it would typically ignore this notification, since its
 modifications had caused the notification. If the client that
 received this NOTIFY hadn’t submitted the document change, it would
 probably fetch this new document.

 If Joe’s client refreshes the subscription with the same request body
 as in the initial subscription, the result will include these two
 documents: "index" and "another_document" with their ETags.

A.4. A Series of XCAP Component Modifications

 Now Joe’s client uses its XCAP patching capability by doing the
 following:

 PUT /tests/users/sip:joe@example.com/index/˜˜/doc/foo HTTP/1.1
 Host: xcap.example.com

 Content-Type: application/xcap-el+xml
 Content-Length: [XXX]

 <foo>this is a new element</foo>

Urpalainen & Willis Standards Track [Page 20]

RFC 5875 XCAP Diff Event May 2010

 Since the insertion of the element is successful, Joe’s client
 receives the new HTTP ETag "fgherhryt3" of the updated "index"
 document.

 Immediately thereafter, Joe’s client issues another HTTP request
 (this request could even be pipe-lined):

 PUT /tests/users/sip:joe@example.com/index/˜˜/doc/bar HTTP/1.1
 Host: xcap.example.com

 Content-Type: application/xcap-el+xml
 Content-Length: [XXX]

 <bar>this is a bar element
 </bar>

 The reported new HTTP ETag of "index" is now "dgdgdfgrrr".

 And Joe’s client issues yet another HTTP request:

 PUT /tests/users/sip:joe@example.com/index/˜˜/doc/foobar HTTP/1.1
 Host: xcap.example.com

 Content-Type: application/xcap-el+xml
 Content-Length: [XXX]

 <foobar>this is a foobar element</foobar>

 The reported new ETag of "index" is now "63hjjsll".

 After awhile, Joe’s client receives a notification with an embedded
 patch since it has requested "aggregate" diff-processing and the
 notifier is capable of producing them:

 NOTIFY sip:joe@userhost.example.com SIP/2.0
 ...
 Event: xcap-diff
 Content-Type: application/xcap-diff+xml
 Content-Length: [XXX]

 <?xml version="1.0" encoding="UTF-8"?>
 <d:xcap-diff xmlns:d="urn:ietf:params:xml:ns:xcap-diff"
 xcap-root="http://xcap.example.com/">

 <d:document previous-etag="7ahggs3"
 sel="tests/users/sip:joe@example.com/index"
 new-etag="63hjjsll">
 <d:add sel="*"

Urpalainen & Willis Standards Track [Page 21]

RFC 5875 XCAP Diff Event May 2010

 ><foo>this is a new element</foo><bar>this is a bar element
 </bar><foobar>this is a foobar element</foobar></d:add>
 </d:document>

 </d:xcap-diff>

 Joe’s client applies this patch to the locally cached "index"
 document, detects the ETag update, and stores the last ETag value.
 Note how several XCAP component modifications were aggregated.

 Note also that, if Joe’s client did not have a locally cached version
 of the reference document, it would have needed to do an HTTP GET
 request after the initial notification. If the ETag of the received
 resource by HTTP did not match either the previous or new ETag of
 this aggregated patch, an out-of-sync condition would be probable.
 This issue is not typical, but it can happen. To resolve the issue,
 the client could re-fetch the "index" document and/or wait for
 subsequent notifications to detect a match. A better and simpler way
 to avoid the issue is to refresh the subscription with the "xcap-
 patching" mode and later refresh with the "aggregate" mode.

 Alternatively, if the notifier’s operational mode been "xcap-
 patching", the NOTIFY could have been the following:

 NOTIFY sip:joe@userhost.example.com SIP/2.0
 ...
 Event: xcap-diff
 Content-Type: application/xcap-diff+xml
 Content-Length: [XXX]

 <?xml version="1.0" encoding="UTF-8"?>
 <d:xcap-diff xmlns:d="urn:ietf:params:xml:ns:xcap-diff"
 xcap-root="http://xcap.example.com/">

 <d:document previous-etag="7ahggs"
 sel="tests/users/sip:joe@example.com/index"
 new-etag="fgherhryt3">
 <d:add sel="*"
 ><foo>this is a new element</foo></d:add></d:document>

 <d:document previous-etag="fgherhryt3"
 sel="tests/users/sip:joe@example.com/index"
 new-etag="dgdgdfgrrr">
 <d:add sel="*"
 ><bar>this is a bar element
 </bar></d:add></d:document>

 <d:document previous-etag="dgdgdfgrrr"

Urpalainen & Willis Standards Track [Page 22]

RFC 5875 XCAP Diff Event May 2010

 sel="tests/users/sip:joe@example.com/index"
 new-etag="63hjjsll">
 <d:add sel="*"
 ><foobar>this is a foobar element</foobar></d:add></d:document>

 </d:xcap-diff>

 If the client had to re-fetch the "index" document after the initial
 notification, it could have skipped some or all of these patches,
 depending on whether the HTTP ETag matched some of these ETags in the
 chain of patches. If the HTTP ETag did not match and the received
 HTTP version is a newer version indicated in later notification(s),
 the sync may then be achieved since the notifier provided the full
 change history in the "xcap-patching" mode.

 Last, the notifier could (temporarily) fall back to the "no-patching"
 mode, which allows the notifier to keep the dialog alive when there
 are too many updates:

 NOTIFY sip:joe@userhost.example.com SIP/2.0
 ...
 Event: xcap-diff
 Content-Type: application/xcap-diff+xml
 Content-Length: [XXX]

 <?xml version="1.0" encoding="UTF-8"?>
 <xcap-diff xmlns="urn:ietf:params:xml:ns:xcap-diff"
 xcap-root="http://xcap.example.com/">

 <document previous-etag="7ahggs3"
 sel="tests/users/sip:joe@example.com/index"
 new-etag="63hjjsll"/>

 </xcap-diff>

 At any time, the notifier may fall back to the "no-patching" mode for
 some or all of the subscribed documents.

A.5. An XCAP Component Subscription

 The user Joe sends an initial subscription for the "id" attribute of
 a <doc> element. The "index" document exists, but the <doc> root
 element does not contain the "id" attribute at the time of the
 subscription.

Urpalainen & Willis Standards Track [Page 23]

RFC 5875 XCAP Diff Event May 2010

 SUBSCRIBE sip:tests@xcap.example.com SIP/2.0
 ...
 Accept: application/xcap-diff+xml
 Event: xcap-diff
 Content-Type: application/resource-lists+xml
 Content-Length: [XXX]

 <?xml version="1.0" encoding="UTF-8"?>
 <resource-lists xmlns="urn:ietf:params:xml:ns:resource-lists">
 <list>
 <entry uri="tests/users/sip:joe@example.com/index/˜˜/doc/@id"/>
 </list>
 </resource-lists>

 The first NOTIFY looks like the following since there is nothing to
 indicate:

 NOTIFY sip:joe@userhost.example.com SIP/2.0
 ...
 Event: xcap-diff
 Content-Type: application/xcap-diff+xml
 Content-Length: [XXX]

 <?xml version="1.0" encoding="UTF-8"?>
 <xcap-diff xmlns="urn:ietf:params:xml:ns:xcap-diff"
 xcap-root="http://xcap.example.com/"/>

 Note that if the "index" document hadn’t existed, the first NOTIFY
 request would have been the same. The XCAP diff document format
 doesn’t indicate reasons for non-existing resources.

 Afterwards, Joe’s client updates the whole document root element
 including the attribute "id" (not a typical XCAP operation or a
 preferred one, just an illustration here):

 PUT /tests/users/sip:joe@example.com/index/˜˜/doc HTTP/1.1
 Host: xcap.example.com

 Content-Type: application/xcap-el+xml
 Content-Length: [XXX]

 <doc id="bar">This is a new root element</doc>

 The new HTTP ETag of the "index" document is now "dwawrrtyy".

Urpalainen & Willis Standards Track [Page 24]

RFC 5875 XCAP Diff Event May 2010

 Then Joe’s client gets a notification:

 NOTIFY sip:joe@userhost.example.com SIP/2.0
 ...
 Event: xcap-diff
 Content-Type: application/xcap-diff+xml
 Content-Length: [XXX]

 <?xml version="1.0" encoding="UTF-8"?>
 <xcap-diff xmlns="urn:ietf:params:xml:ns:xcap-diff"
 xcap-root="http://xcap.example.com/">

 <attribute sel="tests/users/sip:joe@example.com/index/˜˜/doc/@id"
 >bar</attribute>

 </xcap-diff>

 Note that the HTTP ETag value of the new document is not shown, as it
 is irrelevant for this use-case.

 Then Joe’s client removes the "id" attribute:

 DELETE /tests/users/sip:joe@example.com/index/˜˜/doc/@id HTTP/1.1
 Host: xcap.example.com

 Content-Length: 0

 And the subscriber gets a notification:

 NOTIFY sip:joe@userhost.example.com SIP/2.0
 ...
 Event: xcap-diff
 Content-Type: application/xcap-diff+xml
 Content-Length: [XXX]

 <?xml version="1.0" encoding="UTF-8"?>
 <xcap-diff xmlns="urn:ietf:params:xml:ns:xcap-diff"
 xcap-root="http://xcap.example.com/">

 <attribute sel="tests/users/sip:joe@example.com/index/˜˜/doc/@id"
 exists="0"/>

 </xcap-diff>

 The notification indicates that the subscribed attribute was removed
 from the document. Naturally, attributes are "removed" if the
 element where they belong is removed, for example, by an HTTP DELETE

Urpalainen & Willis Standards Track [Page 25]

RFC 5875 XCAP Diff Event May 2010

 request. The component selections indicate only the existence of
 attributes or elements.

A.6. A Conditional Subscription

 The last example is a conditional subscription where a full refresh
 can be avoided when there are no changes in resources. Joe’s client
 sends an initial subscription:

 SUBSCRIBE sip:tests@xcap.example.com SIP/2.0
 ...
 Accept: application/xcap-diff+xml
 Event: xcap-diff; diff-processing=xcap-patching
 Content-Type: application/resource-lists+xml
 Content-Length: [XXX]

 <?xml version="1.0" encoding="UTF-8"?>
 <resource-lists xmlns="urn:ietf:params:xml:ns:resource-lists">
 <list>
 <entry uri="tests/users/sip:joe@example.com/"/>
 </list>
 </resource-lists>

 Since there are now two documents in the repository, the first NOTIFY
 looks like the following:

 NOTIFY sip:joe@userhost.example.com SIP/2.0
 ...
 Event: xcap-diff
 SIP-ETag: xggfefe54
 Content-Type: application/xcap-diff+xml
 Content-Length: [XXX]

 <?xml version="1.0" encoding="UTF-8"?>
 <xcap-diff xmlns="urn:ietf:params:xml:ns:xcap-diff"
 xcap-root="http://xcap.example.com/">

 <document new-etag="63hjjsll"
 sel="tests/users/sip:joe@example.com/index"/>

 <document new-etag="terteer"
 sel="tests/users/sip:joe@example.com/another_document"/>

 </xcap-diff>

 Note that the NOTIFY request contains the SIP-ETag "xggfefe54". This
 SIP-ETag is placed in the Suppress-If-Match header field of the
 conditional subscription. The "diff-processing" mode also is changed

Urpalainen & Willis Standards Track [Page 26]

RFC 5875 XCAP Diff Event May 2010

 (or is requested to change):

 SUBSCRIBE sip:tests@xcap.example.com SIP/2.0
 ...
 Suppress-If-Match: xggfefe54
 Accept: application/xcap-diff+xml
 Event: xcap-diff; diff-processing=aggregate
 Content-Type: application/resource-lists+xml
 Content-Length: [XXX]

 <?xml version="1.0" encoding="UTF-8"?>
 <resource-lists xmlns="urn:ietf:params:xml:ns:resource-lists">
 <list>
 <entry uri="tests/users/sip:joe@example.com/"/>
 </list>
 </resource-lists>

 If the notifier finds a match to the previous stored state when it
 evaluates this request, it responds with 204 (No Notification). If
 there are no reportable changes as per [RFC5839], NOTIFY request
 generation is suppressed. When the notifier can aggregate several
 modifications, this re-subscription enables the processing of that
 mode thereafter. Indeed, the re-subscription may be quite process-
 intensive, especially when there are a large number of relevant
 reported resources.

Authors’ Addresses

 Jari Urpalainen
 Nokia
 Itamerenkatu 11-13
 Helsinki 00180
 Finland

 Phone: +358 7180 37686
 EMail: jari.urpalainen@nokia.com

 Dean Willis (editor)
 Softarmor Systems LLC
 3100 Independence Pk #311-164
 Plano, TX 75075
 USA

 Phone: +1 214 504 19876
 EMail: dean.willis@softarmor.com

Urpalainen & Willis Standards Track [Page 27]

