Net wor k Wor ki ng G- oup E. Nordmar k
Request for Comments: 5014 Sun M crosystens, Inc.
Cat egory: I nfornmational S. Chakrabarti
Azai re Networks

J. Lagani er

DoCoMb Eur o- Labs

Sept ember 2007

| Pv6 Socket APl for Source Address Sel ection
Status of This Menp

This menmo provides information for the Internet community. It does
not specify an Internet standard of any kind. Distribution of this
menmo is unlimted.

Abst ract

The 1 Pv6 default address sel ection docunment (RFC 3484) describes the
rules for selecting source and destination | Pv6 addresses, and

i ndi cates that applications should be able to reverse the sense of
sone of the address selection rules through some unspecified API.
However, no such socket APl exists in the basic (RFC 3493) or
advanced (RFC 3542) |1Pv6 socket APl docurments. This docunent fills
that gap partially by specifying new socket-1level options for source
address selection and flags for the getaddrinfo() APl to specify
address sel ection based on the source address preference in
accordance with the socket-level options that nodify the default
source address selection algorithm The socket APl described in this
document will be particularly useful for |IPv6 applications that want
to choose between tenporary and public addresses, and for Mbile |Pv6
aware applications that want to use the care-of address for

conmuni cation. It also specifies socket options and flags for
sel ecting Cryptographically Generated Address (CGA) or non-CGA source
addr esses.

Nordmark, et al. | nf or mati onal [Page 1]

RFC 5014 Socket API for Source Address Sel ection Sept ember 2007

Tabl e of Contents

I ntroduction . . 2
Definition O Terns 5
Usage Scenario . 6
Design Alternatives . 6
Addr ess Preference Flags . 7
Additions to the Socket Interface . . 9
Additions to the Protocol - I ndependent hbdenane Translatlon . 10
Application Requirenents . 11
Usage Exanpl e Coe 13
10. Inplenentation Notes . . . 13
11. Mapping to Default Address Selectlon Rules . T)
12. |1 Pv4- Mapped | Pv6 Addresses . . . e e 16
16
19
19
19
20
20
20

CONoORWNE

13. Validating Source Address Preferences
14. Summary of New Definitions .
15. Security Considerations
16. Acknow edgnents
17. References . .
17.1. Nornative References

17.2. Informative References . . Coe e
Appendi x A. Per-Packet Address Select|on Preference 2 |
Appendix B. Intellectual Property Statenent 22

1. Introduction

[RFC3484] specifies the default address selection rules for |Pv6

[RFC2460]. This docunent defines socket APl extensions that allow
applications to override the default choice of source address
selection. It therefore indirectly affects the destination address
sel ection through getaddrinfo(). Privacy considerations [RFC3041]
have introduced "public" and "tenporary" addresses. |Pv6 Mbility

[RFC3775] introduces "hone address" and "care-of address" definitions
in the nobile systens.

The default address selection rules in [RFC3484], in sumary, are
that a public address is preferred over a tenporary address, that a
nobil e | Pv6 hone address is preferred over a care-of address, and
that a larger scope address is preferred over a smaller scope
address. Although it is desirable to have default rules for address
sel ection, an application may want to reverse certain address

sel ection rules for efficiency and other application-specific
reasons.

Currently, |1Pv6 socket API extensions provide nechanisns to choose a
speci fic source address through sinple bind() operation or

| PV6_PKTI NFO socket option [RFC3542]. However, in order to use

bi nd() or | PV6_PKTI NFO socket option, the application itself nust

Nordmark, et al. I nf or mati onal [Page 2]

RFC 5014 Socket API for Source Address Sel ection Sept ember 2007

nmake sure that the source address is appropriate for the destination
address (e.g., with respect to the interface used to send packets to
the destination). The application also needs to verify the

appropri ateness of the source address scope with respect to the
destinati on address and so on. This can be quite conmplex for the
application, since in effect, it needs to inplenent all the default
address selection rules in order to change its preference with
respect to one of the rules.

The nmechani sm presented in this docunment allows the application to
specify attributes of the source addresses it prefers while stil
havi ng the system performthe rest of the address selection rules.
For instance, if an application specifies that it prefers to use a
care-of address over a honme address as the source address and if the
host has two care-of addresses, one public and one tenporary, then
the host would select the public care-of address by follow ng the
default address selection rule for preferring a public over a

t emrpor ary addr ess.

A socket option has been deened useful for this purpose, as it
enabl es an application to specify address selection preferences on a
per-socket basis. It can also provide the flexibility of enabling
and di sabling address sel ection preferences in non-connected (UDP)
sockets. The socket option uses a set of flags for specifying
address sel ection preferences. Since the APl should not assune a
particular inplenmentation nethod of the address sel ecti on [RFC3484]
in the network |ayer or in getaddrinfo(), the correspondi ng set of
flags are also defined for getaddrinfo(), as it depends on the source
address sel ection.

As a result, this docunment introduces several flags for address

sel ection preferences that alter the default address sel ection

[RFC3484] for a nunber of rules. It analyzes the useful ness of
providing APl functionality for different default address selection
rules; it provides APl to alter only those rules that are possibly
used by certain classes of applications. 1In addition, it also
consi ders CGA [RFC3972] and non- CGA sour ce addresses when CGA
addresses are available in the system |In the future, nore source
flags may be added to expand the APl as the needs may ari se.

The approach in this docunment is to allow the application to specify
preferences for address selection and not to be able to specify hard
requi renents. For instance, an application can set a flag to prefer
a tenporary source address, but if no tenporary source addresses are
avai |l abl e at the node, a public address woul d be chosen instead.

Speci fying hard requirenents for address sel ection would be
problematic for several reasons. The major one is that, in the vast

Nordmark, et al. I nf or mati onal [Page 3]

RFC 5014 Socket API for Source Address Sel ection Sept ember 2007

majority of cases, the application would |like to be able to

conmuni cate even if an address with the "optimal’ attributes is not
avai l abl e. For instance, an application that perforns very short,
e.g., UDP, transactional exchanges (e.g., DNS queries), mght prefer
to use a care-of address when running on a mobile host that is away
fromhonme since this provides a short roundtrip tine in nmany cases.
But if the application is running on a nobile host that is at hone,
or running on a host that isn't providing Mbile IPv6, then it
doesn’t make sense for the application to fail due to no care-of
address being available. Also, in particular, when using UDP sockets
and the sendto() or sendnsg() primtives, the use of hard

requi renments woul d have been problematic, since the set of avail able
| P addresses m ght very well have changed from when the application
cal l ed getaddrinfo() until it called sendto() or sendmsg(), which
woul d i ntroduce new failure nodes.

For the few applications that have hard requirements on the
attributes of the I P addresses they use, this docunment defines a
verification function that allows such applications to properly fai
to comuni cate when their address selection requirenments are not net.

Furthernore, the approach is to define two flags for each rule that
can be nodified so that an application can specify its preference for
addresses selected as per the rule, the opposite preference (i.e., an
address selected as per the rule reverted), or choose not to set
either of the flags relating to that rule and |eave it up to the
system default (Section 4). This approach allows different

i mpl enentations to have different systemdefaults, and works with
getaddrinfo() as well as setsockopt(). (For setsockopt, a different
approach coul d have been chosen, but that would still require the
sanme approach for getaddrinfo.)

Note that this document does not directly nmodify the destination
address selection rules described in [RFC3484]. An anal ysis has been
done to see which destination address rules may be altered by the
applications. Rule nunber 4(prefer hone address), 8(prefer smaller
scope), 7(prefer native interfaces) of default address sel ection
docunent [RFC3484] were taken into consideration for destination
address alteration. But as of this witing, there was not enough
practical usage for applications to alter destination address

sel ection rules directly by applying the setsockopt() with a
preferred destination type of address flag. However, this docunent
does not rule out any possibility of adding flags for preferred
destinati on address selection. However, [RFC3484] destination
address selection rules are dependent on source address sel ections,
thus by altering the default source address selection by using the
nmet hods described in this docunment, one indirectly influences the
choice of destination address selection. Hence, this docunent

Nordmark, et al. I nf or mati onal [Page 4]

RFC 5014 Socket API for Source Address Sel ection Sept ember 2007

expl ai ns how getaddrinfo() can be used to select the destination
address while taking the preferred source addresses into
consi deration (Section 11).

Thi s docunent specifies extensions only to the Basic |Pv6 socket API
specified in [RFC3493]. The intent is that this docunent serves as a
nodel for expressing preferences for attributes of |IP addresses that
al so need to be expressible in other networking API, such as those
found in mddl eware systens and the Java environnent. A sinilar

nodel is also applicable for other socket famlies.

2. Definition O Terms

The key words "MJST", "MJST NOT", "REQU RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in [RFC2119].

Addr ess preference flag:
A flag expressing a preference for a particular type of address
(e.g., tenporary, public).

Opposite fl ags:
Each fl ag expressing an address preference has an "opposite flag”
expressing the opposite preference:

* Home address preference flag is the opposite of the care-of
address preference fl ag.

* Tenporary address preference flag is the opposite of the public
address preference flag.

* CGA address preference flag is the opposite of the non- CGA
address preference fl ag.

Contradictory fl ags:
Any conbination of flags including both a flag expressing a given
address preference and a flag expressing the opposite preference
constitutes contradictory flags. Such flags are contradictory by
definition of their usefulness with respect to source address
sel ection. For exanple, consider a set of flags, including both
the hone address preference flag and the care-of address
preference flag. Wen considering source address selection, the
sel ected address can be a honme address, or a care-of address, but
it cannot be both at the sane tinme. Hence, to prefer an address
that is both a hone address and a care-of address is
contradictory.

Nordmark, et al. I nf or mati onal [Page 5]

RFC 5014 Socket API for Source Address Sel ection Sept ember 2007

3.

Usage Scenario

The exanpl es discussed here are limted to applications supporting
Mobile I Pv6, 1 Pv6 Privacy Extensions, and Cryptographically Generated
Addresses. Address sel ection docunent [RFC3484] reconmends that home
addresses should be preferred over care-of address when both are
configured. However, a nobile node nay want to prefer a care-of
address as the source address for a DNS query in the foreign network,
as it normally neans a shorter and local return path conpared to the
route via the nobile node’s home-agent when the query contains a hone
address as the source address. Another exanple is the |IKE
application, which requires a care-of address as its source address
for the initial security association pair with a Home Agent [RFC3775]
whil e the nobil e node boots up at the foreign network and wants to do
the key exchange before a successful hone-registration. Also, a
Mobile | Pv6 aware application may want to toggle between the hone
address and care-of address, depending on its location and state of
the application. It may also want to open different sockets and use
the home address as the source address for one socket and a care- of
address for the others.

In a non-mobil e environment, an application may simlarly prefer to
use a tenporary address as the source address for certain cases. By
default, the source address selection rule selects "public" address
when both are available. For exanple, an application supporting Wb
browser and mail-server may want to use a "tenporary" address for the
fornmer and a "public" address for the mail-server, as a mmil-server
may require a reverse path for DNS records for anti-spamrules.

Simlarly, a node may be configured to use Cryptographically
CGener at ed Addresses [RFC3972] by default, as in Secure Nei ghbor

Di scovery [RFC3971], but an application may prefer not to use it; for
i nstance, fping [FPING, a debugging tool that tests basic
reachability of multiple destinations by sendi ng packets in parall el
These packets may end up initiating neighbor discovery signaling that
uses SEND if used with a CGA source address. SEND perforns sone
cryptographi c operations to prove ownership of the said CGA address.
If the application does not require this feature, it would like to
use a non- CGA address to avoid potentially expensive conputations
performed by SEND. On the other hand, when a node is not configured
for CGA as default, an application may prefer using CGA by setting
the correspondi ng preference.

Design Alternatives
Sone suggested to have per-application flags instead of per-socket

and per-packet flags. However, this design stays with per-socket and
per - packet flags for the follow ng reasons:

Nordmark, et al. I nf or mati onal [Page 6]

RFC 5014 Socket API for Source Address Sel ection Sept ember 2007

o Wiile sone systenms have per-environnent/application flags (such as
environnent variables in Unix systenms) this night not be avail able
in all systenms that inplenent the socket API.

o Wien an application links with sone standard library, that library
m ght use the socket APl while the application is unaware of that
fact. Mechanisnms that woul d provide per-application flags may
affect not only the application itself but also the libraries,
hence, creating risks of unintended consequences.

Instead of the pair of "flag’ and ’opposite flag’ for each rule that
can be nodified, the socket option could have been defined to use a
single "flag’" value for each rule. This would still have all owed
different inplenentations to have different default settings as |ong
as the applications were coded to first retrieve the default setting
(using getsockopt()), and then clear or set the 'flag’ according to
their preferences, and finally set the new value with setsockopt ().

But such an approach woul d not be possible for getaddrinfo() because
all the preferences would need to be expressible in the paraneters
that are passed with a single getaddrinfo() call. Hence, for

consi stency, the 'flag’ and 'opposite flag approach is used for both
get addrinfo() and setsockopt ().

Thus, in this APl docunent, an application has three choices on
source address sel ection:

a) The application wants to use an address with flag X2 Set flag
X; unset opposite/contradictory flags of X if they are set before.

b) The application wants to use an address with 'opposite’ or
contradictory flag of X: Set opposite or contradictory flag of X;
unset flag X, if already set.
c) The application does not care about the presence of flag X and
would Iike to use default: No need to set any address preference
flags through setsockopt() or getaddrinfo(); unset any address
preference flags if they are set before by the sane socket.
5. Address Preference Flags
The following flags are defined to alter or set the default rule of
source address selection rules discussed in default address sel ection
specification [RFC3484].
| PV6_PREFER SRC HOME /* Prefer Hone address as source */

| PV6_PREFER SRC COA /* Prefer Care-of address as source */

Nordmark, et al. I nf or mati onal [Page 7]

RFC 5014 Socket API for Source Address Sel ection Sept ember 2007

| PV6_PREFER SRC TMP /* Prefer Tenporary address as source */

| PV6_PREFER _SRC PUBLIC /* Prefer Public address as source */

| PV6_PREFER SRC CGA /* Prefer CGA address as source */

| PV6_PREFER SRC NONCGA /* Prefer a non- CGA address as source */
These flags can be conbi ned together in a flag-set to express nore
conpl ex address preferences. However, such conbinations can result
in a contradictory flag-set, for exanple:

| PV6_PREFER_SRC PUBLI C | | PV6_PREFER SRC TMP

| PV6_PREFER_SRC HOME | | PV6_PREFER_SRC_COA

| PV6_PREFER_SRC HOME | | PV6_PREFER SRC COA | | PV6_PREFER SRC TMP

| PV6_PREFER _SRC CGA | | PV6_PREFER _SRC_NONCGA

Etc.

Exampl es of valid conbinations of address selection flags are given
bel ow:

| PV6_PREFER SRC HOMVE | | PV6_PREFER SRC PUBLI C

| PV6_PREFER SRC HOME | | PV6_PREFER SRC CGA

| PV6_PREFER SRC COA | | PV6_PREFER_SRC PUBLIC | | PV6_PREFER _SRC_CGA

| PV6_PREFER _SRC HOME | | PV6_PREFER SRC NONCGA
If a flag-set includes a conbination of 'X and 'Y, and if 'Y is
not applicable or available in the system then the sel ected address
has attribute 'X and systemdefault for the attribute 'Y . For
exanpl e, on a systemthat has only public addresses, the valid
conbi nati on of fl ags:

| PV6_PREFER SRC TMP | | PV6_PREFER SRC_HOMVE

woul d result in the sel ected address being a public honme address,
since no tenporary addresses are avail abl e.

Nordmark, et al. I nf or mati onal [Page 8]

RFC 5014 Socket API for Source Address Sel ection Sept ember 2007

6.

Additions to the Socket Interface

The 1 Pv6 Basic Socket API [RFC3493] defines socket options for |Pve6.
To allow applications to influence address sel ecti on nechani sns, this
docunent adds a new socket option at the I PPROTO I PV6 |evel. This
socket option is called | PV6_ADDR PREFERENCES. It can be used with
set sockopt () and getsockopt() calls to set and get the address

sel ection preferences affecting all packets sent via a given socket.
The socket option value (optval) is a 32-bit unsigned integer
argunent. The argument consists of a number of flags where each flag
i ndi cates an address selection preference that nodifies one of the
rules in the default address selection specification

The following flags are defined to alter or set the default rule of
source address selection rules discussed in default address sel ection
specification [RFC3484]. They are defined as a result of including
the <netinet/in.h> header

| PV6_PREFER SRC HOMVE /* Prefer Honme address as source */

| PV6_PREFER SRC COA /* Prefer Care-of address as source */

| PV6_PREFER SRC TMP /* Prefer Tenporary address as source */

| PV6_PREFER SRC PUBLIC /* Prefer Public address as source */

| PV6_PREFER SRC CGA /* Prefer CGA address as source */

| PV6_PREFER SRC NONCGA /* Prefer a non-CGA address as source */
NOTE: No source preference flag for the | ongest matching prefix is
defined here because it is believed to be handled by the policy table
defined in the default address selection specification
VWhen the |1 PV6_ADDR PREFERENCES is successfully set with setsockopt(),
the option value given is used to specify the address preference for
any connection initiation through the socket and all subsequent
packets sent via that socket. |If no option is set, the system
selects a default value as per default address selection algorithmor

by sone ot her equival ent neans.

Setting contradictory flags at the sane tine results in the error
El NVAL.

Nordmark, et al. I nf or mati onal [Page 9]

RFC 5014 Socket API for Source Address Sel ection Sept ember 2007

7.

Additions to the Protocol -1 ndependent Nodenane Transl ati on

Section 8 of the Default Address Selection [RFC3484] docunent

i ndi cates possible inplementation strategies for getaddrinfo()

[RFC3493]. One of them suggests that getaddrinfo() collects
avai | abl e source/destination pairs fromthe network | ayer after being
sorted at the network layer with full know edge of source address

sel ection. Another strategy is to call down to the network layer to
retrieve source address information and then sort the list in the
context of getaddrinfo().

This inplies that getaddrinfo() should be aware of the address
sel ection preferences of the application, since getaddrinfo() is
i ndependent of any socket the application night be using.

Thus, if an application alters the default address selection rules by
usi ng setsockopt() with the | PV6_ADDR PREFERENCES option, the
application should al so use the correspondi ng address sel ection
preference flags with its getaddrinfo() call

For that purpose, the addrinfo data structure defined in Basic |PV6
Socket APl Extension [RFC3493] has been extended wi th an extended
"ai _eflags" flag-set field to provide the designers freedomfrom
adding nore flags as necessary w thout crowding the valuable bit
space in the "ai _flags" flag-set field. The extended addrinfo data
structure is defined as a result of including the <netdb. h> header

struct addrinfo {

int ai_flags; [* input flags */

int ai_famly; /* protocol famly for socket */

i nt ai _socktype; * socket type */

int ai_protocol; * protocol for socket */

sockl en_t ai _addrl en; /* length of socket address */

char *ai _canonnane; /* canoni cal nane for hostname */
struct sockaddr *ai_addr; /* socket address for socket */

struct addrinfo *ai _next; /* pointer to next in list */

int ai_eflags; /* Extended flags for special usage */

b

Note that the additional field for extended flags are added at the
bottom of the addrinfo structure to preserve binary conpatibility of
the new functionality with the old applications that use the existing
addrinfo data structure.

A new flag (Al _EXTFLAGS) is defined for the "ai_flags" flag-set field
of the addrinfo data structure to tell the systemto |look for the

"ai _eflags" extended flag-set field in the addrinfo structure. It is
defined in the <netdb. h> header

Nordmark, et al. I nf or mati onal [Page 10]

RFC 5014 Socket API for Source Address Sel ection Sept ember 2007

Al _EXTFLAGS /* extended fl ag-set present */

If the Al _EXTFLAGS flag is set in "ai _flags" flag-set field of the
addrinfo data structure, then the getaddrinfo() inplenmentation MJST

| ook for the "ai _eflags" values stored in the extended flag-set field
"ai _eflags" of the addrinfo data structure. The flags stored in the
"ai _eflags" field are only nmeaningful if the Al _EXTFLAGS flag is set
inthe "ai _flags" flag-set field of the addrinfo data structure. By
default, Al _EXTFLAGS is not set in the "ai_flags" flag-set field. |If
Al _EXTFLAGS is set in the "ai _flags" flag-set field, and the

"ai _eflags" extended flag-set field is O (zero) or undefined, then

Al _EXTFLAGS is ignored.

The 1 PV6 source address preference values (1 PV6_PREFER SRC *) defined
for the | PV6_ADDR PREFERENCES socket option are al so defined as
address selection preference flags for the "ai _eflags" extended fl ag-
set field of the addrinfo data structure, so that getaddrinfo() can
return matchi ng destinati on addresses corresponding to the source
address preferences expressed by the caller application

Thus, an application passes source address selection hints to
getaddrinfo by setting Al _EXTFLAGS in the "ai _flags" field of the
addrinfo structure, and the correspondi ng address sel ection
preference flags (I PV6_PREFER SRC *) in the "ai _eflags" field.

Currently, Al_EXTFLAGS is defined for the AF_|I NET6 socket protoco
famly only. But its usage should be extendable to other socket
protocol famlies -- such as AF_INET or as appropriate.

If contradictory flags, such as |PV6_PREFER SRC HOVE and

| PV6_PREFER SRC COA, are set in ai_eflags, the getaddrinfo() fails
and return the val ue EAl _BADEXTFLAGS, defined as a result of

i ncl udi ng the <netdb. h> header. This error value MJST be interpreted
into a descriptive text string when passed to the gai_strerror()
function [RFC3493].

8. Application Requirenents

An application should call getsockopt() prior to calling setsockopt()
if the application needs to be able to restore the socket back to the
system default preferences. Note that this is suggested for
portability. An application that does not have this requirenent can
just use getaddrinfo() while specifying its preferences, followed by:

Nordmark, et al. I nf or mati onal [Page 11]

RFC 5014 Socket API for Source Address Sel ection Sept ember 2007

uint32 t flags = | PV6_PREFER SRC TMP

if (setsockopt(s, |PPROTO | PV6, | PV6_ADDR PREFERENCES,
(void *) &flags, sizeof (flags)) == -1) {
perror ("setsockopt |PV6_ADDR REFERENCES") ;
}

An application that needs to be able to restore the default settings
on the socket would instead do this:

uint32_t save_flags, flags;
int optlen = sizeof (save flags);

/* Save the existing | Pv6_ADDR PREFERENCE fl ags now */

if (getsockopt(s, |PPROTO | PV6, |PV6_ADDR PREFERENCES,
(void *) &save flags, &optlen) == -1 {
perror ("getsockopt |PV6_ADDR REFERENCES") ;
}

/* Set the new flags */
flags = | PV6_PREFER SRC TMP;
i f (setsockopt(s, |PPROTO | PV6, |PV6_ADDR PREFERENCES,
(void *) &flags, sizeof (flags)) == -1) {
perror ("setsockopt |PV6_ADDR REFERENCES");
}

Do some work with the socket here

* ok X X *

/
/* Restore the flags */

i f (setsockopt(s, |PPROTO | PV6, |PV6_ADDR PREFERENCES,
(void *) &save flags, sizeof (save flags)) == -1) {
perror("setsockopt |PV6_ADDR REFERENCES") ;
}

Applications should not set contradictory flags at the sanme tine.

In order to allow different inplenentations to do different parts of
address selection in getaddrinfo() and in the protocol stack, this
specification requires that applications set the semantically

equi val ent flags when calling getaddrinfo() and setsockopt(). For
exanple, if the application sets the | PV6_PREFER SRC COA flag, it
MUST use the sane for the "ai _eflag" field of the addrinfo data

Nordmark, et al. I nf or mati onal [Page 12]

RFC 5014 Socket API for Source Address Sel ection Sept ember 2007

structure when calling getaddrinfo(). |If applications are not
setting the semantically equivalent flags, the behavior of the
i mpl enentati on i s undefined.

9. Usage Exampl e
An exanpl e of usage of this APl is given bel ow

struct addrinfo hints, *ai, *aiO0;
ui nt 32_t preferences;

preferences = | PV6_PREFER SRC TMP

hints.ai _flags | = Al _EXTFLAGS;
hints.ai _eflags = preferences; /* Chosen address preference flag */

[* Fill in other hints fields */
getaddrinfo(....,&ints,. &i0..);
/* Loop over all returned addresses and do connect */
for (ai = ai0; ai; ai = ai->ai_next) {

s = socket(ai->ai _famly, ...);

set sockopt (s, | PV6_ADDR PREFERENCES, (void *) &preferences,
si zeof (preferences));

if (connect(s, ai->ai_addr, ai->ai_addrlen) == -1){
close (s);
s = -1;
conti nue;

}

br eak;

}

freeaddrinfo(ai0);
10. Inplenmentation Notes

o Wthin the sanme application, if a specific source address is set
by either bind() or IPV6_PKTINFO socket option, while at the sane
time an address sel ection preference is expressed with the
| PV6_ADDR PREFERENCES socket option, then the source address
setting carried by bind() or IPV6_PKTINFO takes precedence over
the address sel ection setting.

Nordmark, et al. I nf or mati onal [Page 13]

RFC 5014 Socket API for Source Address Sel ection Sept ember 2007

o setsockopt() and getaddrinfo() should silently ignore any address
preference flags that are not supported in the system For
exanpl e, a host that does not inplenent Mbile |IPv6, should not
fail setsockopt() or getaddrinfo() that specify preferences for
hone or care-of addresses. The socket option calls should return
error (-1) and set errno to EI NVAL when contradictory flags val ues
are passed to them

o If an inplenmentation supports both stream and datagram sockets, it
shoul d i nmpl enent the address preference nechani sm APl described in
this document on both types of sockets.

0 An inplenmentation supporting this APl MJST i npl enent both
getaddrinfo() extension flags and socket option flags processing
for portability of applications.

o The following flags are set as default val ues on a system (which
is consistent with [RFC3484] defaults):

| PV6_PREFER_SRC HOVE
| PV6_PREFER SRC PUBLI C
| PV6_PREFER_SRC_CGA
11. Mapping to Default Address Sel ection Rules
This APl defines only those flags that are deemed to be useful by the
applications to alter default address selection rules. Thus, we
di scuss the nmappi ng of each set of flags to the corresponding rule
nunber in the address sel ection docunent [RFC3484].
Source address selection rule #4 (prefer hone address):
| PV6_PREFER SRC HOVE (default)
| PV6_PREFER_SRC_CQA
Source address selection rule #7 (prefer public address):
| PV6_PREFER SRC PUBLI C (default)
| PV6_PREFER_SRC_TMP
At this time, this docunment does not define flags to alter source
address selection rule #2 (prefer appropriate scope for destination)

and destination address selection rule #8 (prefer smaller scope), as
the inplenmenters felt that there were no practical applications that

Nordmark, et al. I nf or mati onal [Page 14]

RFC 5014 Socket API for Source Address Sel ection Sept ember 2007

can take advantage of reverting the scoping rules of |IPv6 default
address selection. Flags altering other destination address

sel ection rules (#4, prefer hone address and #7, prefer native
transport) could have applications, but the problemis that the |oca
system cannot systematically determ ne whether a destination address
is a tunnel address for destination rule #7 (although it can when the
destination address is one of its own, or can be syntactically
recogni zed as a tunnel address, e.g., a 6-to-4 address.) The flags
defined for source address selection rule #4 (prefer home address)
shoul d al so take care of destination address selection rule #4.

Thus, at this point, it was decided not to define flags for these
desti nation rules.

Al so, note that there is no correspondi ng destination address
selection rule for source address selection rule #7 (prefer public
addresses) of default address sel ection docunment [RFC3484]. However,
this APl provides a way for an application to nmake sure that the
source address preference set in setsockopt() is taken into account
by the getaddrinfo() function. Let’s consider an exanple to
understand this scenario. DA and DB are two gl obal destination
addresses and the node has two gl obal source addresses SA and SB
through interface A and B respectively. SA is a tenporary address
while SB is a public address. The application has set

| PV6_PREFER SRC TMP in the setsockopt() flag. The route to DA points
to interface A and the route to DB points to interface B. Thus, when
Al _EXTFLAGS in ai_flags and | PV6_PREFER SRC TWP in ai _efl ags are set,
getaddrinfo() returns DA before DB in the list of destination
addresses and thus, SA will be used to conmunicate with the
destination DA. Simlarly, getaddrinfo() returns DB before DA when
Al _EXTFLAGS and ai _eflags are set to | PV6_PREFER SRC PUBLIC. Thus,
the source address preference is taking effect into destination
address selection as well as source address sel ection by the
getaddrinfo() function.

The foll owi ng nunerical exanple clarifies the above further
| magi ne a host with two addresses:

1234::1:1 public

9876::1:2 tenporary
The destination has the followi ng two addresses:

1234::9: 3

9876::9: 4

Nordmark, et al. I nf or mati onal [Page 15]

RFC 5014 Socket API for Source Address Sel ection Sept ember 2007

12.

13.

By default, getaddrinfo() will return the destination addresses in
the follow ng order:

1234::9: 3
9876::9: 4

because the public source is preferred and 1234 nmatches nore bits
with the public source address. On the other hand, if ai_flags is
set to Al _EXTFLAGS and ai _eflags to | PV6_PREFER SRC TMP, getaddrinfo
will return the addresses in the reverse order since the tenporary
source address will be preferred.

O her source address rules (that are not nentioned here) were also
deermed not applicable for changing its default on a per-application
basi s.

| Pv4- Mapped | Pv6 Addresses

| Pv4- mapped | Pv6 addresses for AF I NET6 sockets are supported in this
APl . In sone cases, the application of |Pv4-nmapped addresses are
limted because the APl attributes are IPv6 specific. For exanple,

| Pv6 tenporary addresses and cryptographically generated addresses
have no I Pv4 counterparts. Thus, the | PV6_PREFER SRC TMP or

| PV6_PREFER SRC CGA are not directly applicable to an | Pv4- mapped

| Pv6 address. However, the |Pv4-nmapped address support may be usefu
for nobile-1Pv4 applications shifting the source address between the
honme address and the care-of address. Thus, the | PV6_PREFER SRC COA
and | PV6_PREFER SRC HOVE are applicable to an | Pv4-nmapped | Pv6
address. At this point, it is not well understood whether this
particul ar APl has any value to | Pv4 addresses or AF_INET fanily of
sockets, but a similar nodel still applies to AF_INET socket famly

i f corresponding address flags are defined.

Val i dati ng Source Address Preferences
Sonetimes an application nay have a requirenent to only use addresses

with some particular attribute, and if no such address is avail abl e,
the application should fail to comunicate instead of comrunicating

using the "wong' address. |In that situation, address selection
preferences do not guarantee that the application requirenents are
net. Instead, the application has to use a new call that binds a

socket to the source address that woul d be selected to comunicate
with a given destination address, according to its preferences, and
then explicitly verify that the chosen address satisfies its

requi rements using a validation function. Such an application would
go through the foll owi ng steps:

Nordmark, et al. I nf or mati onal [Page 16]

RFC 5014 Socket API for Source Address Sel ection Sept ember 2007

The application specifies one or nore | PV6_PREFER SRC * flags and
Al _EXTFLAGS ai _flags with getaddrinfo().

The application specifies the sane | PV6_PREFER SRC * flags with
set sockopt () .

The application calls the stack to select a source address to
conmuni cate with the specified destination address, according to
the expressed address sel ection preferences. This is achieved
with a connect() call, or a bind2addrsel () call as specified

bel ow. The connect () function nust not be used when the
application uses connection-oriented comruni cation (e.g., TCP)
and want to ensure that no single packet (e.g., TCP SYN) is sent
before the application could verify that its requirenents were
fulfilled. Instead, the application nust use the newy

i ntroduced bi nd2addrsel () call, which binds a socket to the
source address that would be selected to conmunicate with a given
destinati on address, according to the application’s preferences.
For datagram oriented comruni cations (e.g., UDP), the connect ()
call can be used since it results in the stack selecting a source
address wi t hout sendi ng any packets.

Retrieve the sel ected source address using the getsockname() API
call.

Verify with the validation function that the retrieved address is
satisfactory as specified below. |If not, abort the
conmuni cation, e.g., by closing the socket.

The binding of the socket to the address that woul d be selected to
conmuni cate with a given destination address, according to the
application preferences, is acconplished via a new binding function
defined for this purpose:

#i ncl ude <netinet/in. h>

i nt bind2addrsel (int s, const struct sockaddr *dstaddr
sockl en_t dstaddrl en);

where s is the socket that source address sel ection preferences have
been expressed by the application, the dstaddr is a non-NULL pointer
to a sockaddr _in6 structure initialized as follows:

o

sin6_addr is a 128-bit | Pv6 destination address with which the
| ocal node wants to comruni cat e;

sin6_famly MJIST be set to AF_I NET6;

Nordmark, et al. I nf or mati onal [Page 17]

RFC 5014 Socket API for Source Address Sel ection Sept ember 2007

0 sin6_scope id MIST be set if the address is |ink-1ocal

and dstaddrlen is the size of the sockaddr structure passed as

ar gument .
The bind2addrsel () call is defined to return the sane values as the
bind() call, i.e., 0 if successful, -1 otherwi se while the gl oba

variable errno is set to indicate the error. The bind2addrsel () cal
fails for the sanme reasons that the bind() call

The verification of tenporary vs. public, home vs. care-of, CGA vs.
not, are perforned by a new validation function defined for this
pur pose:

#i ncl ude <netinet/in.h>

short inet6_is_srcaddr(struct sockaddr _in6 *srcaddr
uint32_t flags);

where the flags contain the specified | PV6_PREFER SRC * source
preference flags, and the srcaddr is a non-NULL pointer to a
sockaddr _in6 structure initialized as foll ows:

O sin6_addr is a 128-bit |IPv6 address of the |ocal node.

o sin6 fam|ly MJUST be set to AF_I NET6.

o sin6_scope_id MIST be set if the address is |ink-1ocal
inet6 is srcaddr() is defined to return three possible values (0, 1

-1): The function returns true (1) when the |IPv6 address corresponds
to a valid address in the node and satisfies the given preference

flags. |If the IPv6 address input value does not correspond to any
address in the node or if the flags are not one of the valid
preference flags, it returns a failure (-1). |If the input address

does not match an address that satisfies the preference flags
i ndi cated, the function returns false (0.)

This function can handle nmultiple valid preference flag conbi nations
as its second parameter, for exanple, |PV6_PREFER SRC CCOA

| PV6_PREFER SRC TMP, which neans that all flags MJST be satisfied for
the result to be true. Contradictory flag values result in a false
return val ue

The function will return true for |PV6_PREFER SRC HOVE even if the

host is not inplenmenting nmobile IPv6, as well as for a nobil e node
that is at hone (i.e., does not have any care-of address).

Nordmark, et al. I nf or mati onal [Page 18]

RFC 5014 Socket API for Source Address Sel ection Sept ember 2007

14.

15.

16.

Sunmary of New Definitions

The following list sumuarizes the constants, structure, and extern
definitions discussed in this nmeno, sorted by header.

<net db. h> Al _EXTFLAGS

<net db. h> | PV6_PREFER_SRC _HOMVE

<net db. h> | PV6_PREFER_SRC_COA

<net db. h> | PV6_PREFER SRC TMP

<net db. h> | PV6_PREFER _SRC PUBLI C

<net db. h> | PV6_PREFER _SRC CGA

<net db. h> | PV6_PREFER_SRC_NONCGA

<net db. h> EAl _BADEXTFLAGS

<net db. h> struct addrinfo{};

<netinet/in.h> | PV6_PREFER _SRC HOVE

<netinet/in.h> | PV6_PREFER_SRC COA

<netinet/in.h> | PV6_PREFER_SRC_TMP

<netinet/in.h> | PV6_PREFER_SRC PUBLI C

<netinet/in.h> |PV6_PREFER SRC CGA

<netinet/in.h> | PV6_PREFER_SRC_NONCGA

<netinet/in.h> short inet6_is_srcaddr(struct sockaddr_in6 *,

uint32_t);

<netinet/in. h> i nt bind2addrsel (int, const struct sockaddr *,

sockl en_t);

Security Consi derations

Thi s docunent conforms to the sane security inplications as specified
in the Basic | Pv6 socket APl [RFC3493] and address sel ection rules

[RFC3484]. Allowing applications to specify a preference for
tenmporary addresses provides per-application (and per-socket) ability
to use the privacy benefits of the tenporary addresses. The setting
of certain address preferences (e.g., not using a CGA address, or not
using a tenporary address) may be restricted to privil eged processes
because of security inplications.

Acknowl edgnent s

The authors like to thank nmenmbers of Mbile-1P and | PV6 working
groups for useful discussion on this topic. Richard Draves and Dave
Thal er suggested that getaddrinfo also needs to be considered al ong
with the new socket option. Gabriel Mntenegro suggested that CGAs
may al so be considered in this docunment. Thanks to Al ain Durand,
Renee Danson, Al per Yegin, Francis Dupont, Keiichi Shim, M chael
Hunt er, Sebastien Roy, Robert Elz, Pekka Savola, Itojun, Ji mBound,
Jeff Boote, Steve Cipolli, Vlad Yasevich, Mka Liljeberg, Ted Hardie,
Vi dya Narayanan, and Lars Eggert for useful discussions and

Nordmark, et al. I nf or mati onal [Page 19]

RFC 5014 Socket API for Source Address Sel ection Sept ember 2007

17.

17.

17.

suggestions. Thanks to Rem Denis-Cournont, Brian Habernan, Brian
Hal ey, Bob G Iligan, Jack McCann, Jim Bound, Jinnmei Tatuya, Suresh
Krishnan, Hilarie O man, Ceoff Houston, Marcel o Bungul o, and Jar
Arkko for the review of this document and suggestions for

i mpr ovenent .

Ref er ences
1. Nornmtive References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi renent Level s", BCP 14, RFC 2119, March 1997.

[RFC3484] Draves, R, "Default Address Selection for I|nternet
Protocol version 6 (IPv6)", RFC 3484, February 2003.

[RFC3493] Glligan, R, Thonson, S., Bound, J., MCann, J., and W
St evens, "Basic Socket Interface Extensions for |Pv6",
RFC 3493, February 2003.

2. Infornmtive References

[FPI NG "Fping - a programto ping hosts in parallel", Online web
site http://ww. fping.com

[RFC2460] Deering, S. and R Hinden, "Internet Protocol, Version 6
(I'Pv6) Specification", RFC 2460, Decenber 1998.

[RFC3041] Narten, T. and R Draves, "Privacy Extensions for
St at el ess Address Autoconfiguration in | Pv6e", RFC 3041,
January 2001.

[RFC3542] Stevens, W, Thomas, M, Nordmark, E., and T. Jinnei,
"Advanced Sockets Application ProgramInterface (API) for
| Pv6", RFC 3542, May 2003.

[RFC3775] Johnson, D., Perkins, C., and J. Arkko, "Mbility Support
in |Pv6", RFC 3775, June 2004.

[RFC3971] Arkko, J., Kempf, J., zill, B., and P. N kander, "SEcure
Nei ghbor Di scovery (SEND)", RFC 3971, March 2005.

[RFC3972] Aura, T., "Cryptographically Generated Addresses (CGA)",
RFC 3972, March 2005.

Nordmark, et al. I nf or mati onal [Page 20]

RFC 5014 Socket API for Source Address Sel ection Sept ember 2007

Appendi x A. Per-Packet Address Sel ection Preference

Thi s docunent di scusses setting source address sel ection preferences
on a per-socket basis with the new | PV6_ADDR PREFERENCES socket
option used in setsockopt(). The docunent does not encourage setting
the source address selection preference on a per-packet basis through
the use of ancillary data objects with sendnsg(), or setsockopt()
wi t h unconnect ed dat agr am socket s.

Per - packet source address selection is expensive, as the systemwl|
have to deternmine the source address indicated by the application
preference before sending each packet, while setsockopt() address
preference on a connected socket makes the sel ection once and uses
that source address for all packets transmitted through that socket
endpoint, as long as the socket option is set.

However, this docunent provides guidelines for those inplenentations
that like to have an option on inplenmenting transmt-side ancillary
dat a object support for altering default source address sel ection
Therefore, if an application chooses to use the per-packet source
address selection, then the inplenentation should process at the

| PPROTO | PV6 | evel (cnsg_level) ancillary data object of type
(cnmsg_type) | PV6_ADDR PREFERENCES contai ning as data (cnsg_data[]) a
32-bit unsigned integer encoding the source address sel ection
preference flags (e.g., |IPV6_PREFER SRC COA | | PV6_PREFER SRC PUBLI C)
in a fashion simlar to the advanced | PV6 Socket APl [RFC3542]. This
address selection preference ancillary data object nay be present
along with other ancillary data objects.

The i npl enentation processing the ancillary data object is
responsi ble for the selection of the preferred source address as
indicated in the ancillary data object. Thus, an application can use
sendnsg() to pass an address selection preference ancillary data
object to the IPv6 layer. The follow ng exanple shows usage of the
ancillary data APl for setting address preferences:

Nordmark, et al. I nf or mati onal [Page 21]

RFC 5014 Socket API for Source Address Sel ection Sept ember 2007

void *extptr;

socklen_t extlen;

struct mnmsghdr nsg;

struct cmsghdr *cnsgptr;
int cnsgl en;

struct sockaddr in6 dest;
uint32_t flags;

extlen = sizeof (fl ags);

cnmsgl en CVBG_SPACE(ext | en);

crsgptr mal | oc(cnsgl en) ;
cnegptr->cnsg | en = CMSG _LEN(ext | en)
cnegptr->cnsg | evel = | PPROTO | PV6;
cnegptr->cneg_type = | PV6_ADDR_PREFERENCES;

ext ptr = CVMSG _DATA(cnsgptr);

flags = | PV6_PREFER SRC _COA;
nmencpy(extptr, &flags, extlen);

meg. nsg_control = cnsgptr;
nmsg. msg_controll en = cnsgl en

/[* finish filling in nsg{} */
nsg. meg_nane = dest;
sendnsg(s, &nmsg, 0);
Thus, when an | PV6_ADDR PREFERENCES ancillary data object is passed
to sendnsg(), the value included in the object is used to specify
address preference for the packet being sent by sendnsg().

Appendi x B. Intellectual Property Statenent
Thi s docunent only defines a source preference flag to choose
Cryptographically Generated Address (CGA) as the source address when
applicable. CGAs are obtai ned using public keys and hashes to prove

address ownership. Several |IPR clains have been nade about such
met hods.

Nordmark, et al. I nf or mati onal [Page 22]

RFC 5014 Socket API for Source Address Sel ection Sept ember 2007

Aut hors’ Addr esses

Eri k Nordmark

Sun M crosystens, Inc.
17 Network Circle
Menl o Par k, CA 94025
USA

EMai | : Eri k. Nor dmar k@un. com

Sam t a Chakrabarti

Azai re Networks

3121 Jay Street, Suite 210
Santa Cl ara, CA 95054

USA

EMai | : samitac2@nmail.com
Jul i en Lagani er

DoCoMb Eur o- Labs

Landsber gerstrasse 312

D- 80687 Muenchen

Cer many

EMai | : julien.| ETF@ apost e. net

Nordmark, et al. I nf or mati onal [Page 23]

RFC 5014 Socket API for Source Address Sel ection Sept ember 2007

Ful | Copyright Statenent
Copyright (C The IETF Trust (2007).

Thi s docunent is subject to the rights, licenses and restrictions
contained in BCP 78, and except as set forth therein, the authors
retain all their rights.

Thi s docunent and the information contained herein are provided on an
"AS | S' basis and THE CONTRI BUTOR, THE ORGANI ZATI ON HE/ SHE REPRESENTS
OR | S SPONSORED BY (I F ANY), THE | NTERNET SOCI ETY, THE | ETF TRUST AND
THE | NTERNET ENG NEERI NG TASK FORCE DI SCLAI M ALL WARRANTI ES, EXPRESS
OR | MPLI ED, | NCLUDI NG BUT NOT LI M TED TO ANY WARRANTY THAT THE USE OF
THE | NFORVATI ON HEREI' N W LL NOT | NFRI NGE ANY RI GHTS OR ANY | MPLI ED
WARRANTI ES OF MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR PURPCSE

Intell ectual Property

The | ETF takes no position regarding the validity or scope of any
Intell ectual Property Rights or other rights that m ght be clained to
pertain to the inplenentation or use of the technol ogy described in
this document or the extent to which any |icense under such rights

m ght or mght not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC docunents can be
found in BCP 78 and BCP 79.

Copi es of IPR disclosures made to the | ETF Secretariat and any
assurances of licenses to be nmade available, or the result of an
attenpt nade to obtain a general |icense or permission for the use of
such proprietary rights by inplenenters or users of this
specification can be obtained fromthe |ETF on-line | PR repository at
http://ww.ietf.org/ipr.

The 1ETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to inpl enent
this standard. Pl ease address the infornation to the |IETF at
ietf-ipr@etf.org.

Nordmark, et al. I nf or mati onal [Page 24]

