Net wor k Wor ki ng Group K. Raeburn
Request for Comments: 3961 MT
Cat egory: Standards Track February 2005

Encryption and Checksum Specifications
for Kerberos 5

Status of This Meno

Thi s docunent specifies an Internet standards track protocol for the
Internet conmunity, and requests discussion and suggestions for

i mprovenents. Please refer to the current edition of the "Internet
O ficial Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this nemo is unlimted.

Copyri ght Notice
Copyright (C The Internet Society (2005).
Abst r act

Thi s docunent describes a framework for defining encryption and
checksum nmechani snms for use with the Kerberos protocol, defining an
abstraction | ayer between the Kerberos protocol and rel ated
protocol s, and the actual nechani sns thensel ves. The document al so
defines several mechanisnms. Some are taken from RFC 1510, nodified
in formto fit this new franmework and occasionally nodified in
content when the old specification was incorrect. New nechani sns are
presented here as well. This docunent does NOT indicate which
nmechani sns may be considered "required to inplenent”

Tabl e of Contents

1. Introduction 2
2. Concepts . 2
3. Encryption Algor|thn1Prof|Ie 4
4. Checksum Al gorithm Profile9
5. Simplified Profile for CBC G phers mnth Key Der|vat|on .. . 10
5.1. A Key Derivation Function10
5.2. Sinplified Profile Paraneters . . oL 12
5.3. Cryptosystem Profile Based on S|npl|f|ed Prof|le .. . 13
5.4. Checksum Profiles Based on Sinplified Profile 16
6. Profiles for Kerberos Encryption and Checksum Algorithms . . 16
6.1. Unkeyed Checksuns . . e I 4
6.2. DES-based Encryption and Checksuanypes .o 18
6.3. Triple-DES Based Encryption and Checksun1Types 28
7. Use of Kerberos Encryption Qutside This Specification 30

Raebur n St andards Track [Page 1]

RFC 3961 Encrypti on and Checksum Speci ficati ons February 2005

8. Assigned Nunbers 31
9. |Inmplenentation Notes 32
10. Security Considerations 33
11. 1 ANA Considerations35
12. Acknow edgenents. 36
A. Test vectors 38

Al n-fold 38

A 2. mt_des_string_to key 39

A 3. DESSDRand DK . 43

A 4. DES3string_to key 44

A5, Mdified CRCG32 44
B. Significant Changes fromRFC 1510 45
Notes 46
Normative References. .47
Informative References. 48
Editor’s Address.04
Ful | Copyright Staterent. .50

1. Introduction

The Kerberos protocols [Kerb] are designed to encrypt nmessages of
arbitrary sizes, using block encryption ciphers or, |ess commonly,
stream encryption ciphers. Encryption is used to prove the
identities of the network entities participating in nessage
exchanges. However, nothing in the Kerberos protocol requires that
any specific encryption algorithmbe used, as long as the algorithm
i ncl udes certain operations.

The foll owi ng sections specify the encryption and checksum nmechani sns
currently defined for Kerberos, as well as a framework for defining
future mechani sms. The encodi ng, chaini ng, paddi ng, and ot her
requirenments for each are described. Appendix A gives test vectors
for several functions.

2. Concepts

Bot h encryption and checksum nmechani sns are profiled in later
sections. Each profile specifies a collection of operations and
attributes that must be defined for a mechanism A Kerberos
encryption or checksum nechani sm specification is not conplete if it
does not define all of these operations and attri butes.

An encryption mechani sm nust provide for confidentiality and
integrity of the original plaintext. (Incorporating a checksum may
permt integrity checking, if the encryption node does not provide an
integrity check itself.) It nust also provide non-malleability

Raebur n St andards Track [Page 2]

RFC 3961 Encrypti on and Checksum Speci ficati ons February 2005

[Bel l are98] [Dol ev91l]. Use of a random confounder prepended to the
pl ai ntext is recommended. It should not be possible to deternmine if
two ci phertexts correspond to the same plaintext without the key.

A checksum nechani sm [1] mnust provide proof of the integrity of the
associ at ed nmessage and nust preserve the confidentiality of the
nessage in case it is not sent in the clear. Finding two plaintexts
with the sane checksum should be infeasible. It is NOT required that
an eavesdropper be unable to determni ne whether two checksunms are for
the sanme message, as the nessages thensel ves woul d presumably be
visible to any such eavesdropper

Due to advances in cryptography, sone cryptographers consider using
the sane key for multiple purposes unwi se. Since keys are used in
perform ng a nunber of different functions in Kerberos, it is
desirable to use different keys for each of these purposes, even
though we start with a single |ong-termor session key.

We do this by enunerating the different uses of keys within Kerberos
and by naking the "usage nunber" an input to the encryption or
checksum nmechani sns; such enuneration is outside the scope of this
docunent. Later sections define sinplified profile tenplates for
encryption and checksum nmechani snms that use a key derivation function
applied to a CBC node (or sinmilar) cipher and a checksum or hash

al gorithm

We di stinguish the "base key" specified by other docunents fromthe
"specific key" for a specific encryption or checksum operation. It
is expected but not required that the specific key be one or nore
separate keys derived fromthe original protocol key and the key
usage nunber. The specific key should not be explicitly referenced
outsi de of this document. The typical |anguage used in other
docunents shoul d be sonething like, "encrypt this octet string using
this key and this usage nunber"; generation of the specific key and
ci pher state (described in the next section) are inplicit. The
creation of a new cipher-state object, or the re-use of one froma
previ ous encryption operation, nay also be explicit.

New protocols defined in terns of the Kerberos encryption and
checksum types should use their own key usage val ues. Key usages are
unsi gned 32-bit integers; zero is not permtted.

Al data is assuned to be in the formof strings of octets or eight-

bit bytes. Environments with other byte sizes will have to emul ate
this behavior in order to get correct results.

Raebur n St andards Track [Page 3]

RFC 3961 Encrypti on and Checksum Speci ficati ons February 2005

Each al gorithmis assigned an encryption type (or "etype") or
checksum type nunber, for algorithmidentification within the
Kerberos protocol. The full list of current type nunber assignnents
is given in section 8.

3. Encryption AlgorithmProfile

An encryption mechani smprofile nust define the follow ng attributes
and operations. The operations nmust be defined as functions in the
mat hemati cal sense. No additional or inplicit inputs (such as

Ker beros princi pal nanes or nessage sequence nunbers) are permtted.

protocol key format
Thi s describes which octet string values represent valid keys.
For encryption nechanisns that don't have perfectly dense key
spaces, this will describe the representation used for encodi ng
keys. It need not describe invalid specific values; all key
generation routines should avoid such val ues.

specific key structure
This is not a protocol format at all, but a description of the
keying material derived fromthe chosen key and used to encrypt or
decrypt data or compute or verify a checksum It may, for
exanpl e, be a single key, a set of keys, or a conbination of the
original key with additional data. The authors recomrend using
one or nore keys derived fromthe original key via one-way key
derivation functions.

requi red checksum nechani sm
This indicates a checksum nechani smthat nust be avail abl e when
this encryption nechanismis used. Since Kerberos has no built in
mechani sm for negotiati ng checksum nechani sns, once an encryption
mechani smis decided, the correspondi ng checksum nmechani sm can be
used.

key-generation seed | ength, K
This is the I ength of the randombitstring needed to generate a
key with the encryption schene’s randomto-key function (described
below). This nust be a fixed value so that various techniques for
produci ng a random bitstring of a given length nay be used with
key generation functions.

key generation functions
Keys nust be generated in a number of cases, fromdifferent types
of inputs. Al function specifications nmust indicate howto
generate keys in the proper wire format and nust avoid generating
keys that significantly conprom se the confidentiality of
encrypted data, if the cryptosystem has such. Entropy from each

Raebur n St andards Track [Page 4]

RFC 3961 Encrypti on and Checksum Speci ficati ons February 2005

source shoul d be preserved as nuch as possible. Many of the

i nputs, although unknown, nay be at |east partly predictable
(e.g., a password string is likely to be entirely in the ASC
subset and of fairly short length in many environments; a sem -
random string may include tine stanps). The benefit of such
predictability to an attacker must be mnim zed.

string-to-key (UTF-8 string, UTF-8 string, opaque)->(protocol-key)
This function generates a key fromtwo UTF-8 strings and an opaque
octet string. One of the strings is usually the principal’s pass
phrase, but generally it is nerely a secret string. The other
string is a "salt" string intended to produce different keys from
the sane password for different users or realns. Although the
strings provided will use UTF-8 encodi ng, no specific version of
Uni code shoul d be assuned; all valid UTF-8 strings should be
allowed. Strings provided in other encodings MIST first be
converted to UTF-8 before applying this function

The third argunent, the octet string, nay be used to pass

mechani smspecific paraneters into this function. Since doing so
i mpl i es know edge of the specific encryption system generating
non- def ault parameter val ues shoul d be an uncomon operation, and
nor mal Kerberos applications should be able to treat this

par amet er bl ock as an opaque object supplied by the Key
Distribution Center or defaulted to some nechani smspecific
constant val ue.

The string-to-key function should be a one-way function so that
conprom sing a user’s key in one real mdoes not conmpromse it in
another, even if the sane password (but a different salt) is used.

randomto-key (bitstring[K])->(protocol-key)
This function generates a key froma randombitstring of a
specific size. Al the bits of the input string are assumed to be
equal ly random even though the entropy present in the random
source may be limted.

key-derivation (protocol-key, integer)->(specific-key)
In this function, the integer input is the key usage val ue, as
descri bed above. An attacker is assumed to know t he usage val ues.
The specific-key output value was described in section 2.

string-to-key paraneter fornat
Thi s describes the fornmat of the block of data that can be passed
to the string-to-key function above to configure additiona
paranmeters for that function. Along with the nechani sm of
encodi ng paramneter val ues, bounds on the all owed paraneters should
al so be described to avoid allowi ng a spoofed KDC to conprom se

Raebur n St andards Track [Page 5]

RFC 3961 Encrypti on and Checksum Speci ficati ons February 2005

the user’s password. |If practical it may be desirable to
construct the encoding so that val ues unacceptably weakeni ng the
resulting key cannot be encoded.

Local security policy mght permt tighter bounds to avoid excess
resource consunption. |If so, the specification should recomended
defaults for these bounds. The description should also outline
possi bl e weaknesses i f bounds checks or other validations are not
applied to a paraneter string received fromthe network.

As nentioned above, this should be consi dered opaque to npst
normal applicati ons.

default string-to-key paranmeters (octet string)
This default value for the "parans" argunent to the string-to-key
function should be used when the application protocol (Kerberos or
ot her) does not explicitly set the parameter value. As indicated
above, in nost cases this paraneter block should be treated as an
opaque obj ect.

ci pher state
Thi s describes any information that can be carried over from one
encryption or decryption operation to the next, for use with a
gi ven specific key. For exanple, a block cipher used in CBC node
may put an initial vector of one block in the cipher state. Oher
encryption nodes may track nonces or other data.

This state nust be non-enpty and nust influence encryption so that
nmessages are decrypted in the same order they were a encrypted, if
the cipher state is carried over fromone encryption to the next.
Di stinguishing out-of-order or m ssing nessages from corrupted
nessages is not required. |If desired, this can be done at a

hi gher |evel by including sequence nunmbers and not "chaining" the
ci pher state between encryption operations.

The ci pher state nmay not be reused in nultiple encryption or
decryption operations. These operations all generate a new ci pher
state that may be used for followi ng operations using the sane key
and operati on.

The contents of the cipher state nmust be treated as opaque outside
of encryption system specifications.

initial cipher state (specific-key, direction)->(state)
This describes the generation of the initial value for the cipher
state if it is not being carried over froma previous encryption

or decryption operation.

Raebur n St andards Track [Page 6]

RFC 3961 Encrypti on and Checksum Speci ficati ons February 2005

This describes any initial state setup needed before encrypting
arbitrary amounts of data with a given specific key. The specific
key and the direction of operations to be performed (encrypt
versus decrypt) nust be the only input needed for this
initialization.

This state should be treated as opaque in any uses outside of an
encryption algorithmdefinition

| MPLEMENTATI ON NOTE: [Kerb1510] was vague on whet her and to what
degree an application protocol could exercise control over the
initial vector used in DES CBC operations. Sonme existing

i npl enentations pernmit setting the initial vector. This franmework
does not provide for application control of the cipher state
(beyond "initialize" and "carry over from previous encryption"),
as the formand content of the initial cipher state can vary

bet ween encryption systems and may not always be a single block of
random dat a.

New Ker beros application protocols should not assune control over
the initial vector, or that one even exists. However, a general -
pur pose i npl enentati on nay wi sh to provide the capability, in case
applications explicitly setting it are encountered.

encrypt (specific-key, state, octet string)->(state, octet string)
This function takes the specific key, cipher state, and a non-
enpty plaintext string as i nput and generates ciphertext and a new
ci pher state as outputs. |If the basic encryption algorithmitself
does not provide for integrity protection (e.g., DES in CBC node),
then some form of verifiable MAC or checksum nust be incl uded.
Sonme random factor such as a confounder shoul d be included so that
an observer cannot know if two messages contain the sane
pl ai ntext, even if the cipher state and specific keys are the
same. The exact length of the plaintext need not be encoded, but
if it is not and if padding is required, the padding nust be added
at the end of the string so that the decrypted version may be
parsed fromthe begi nning.

The specification of the encryption function nust indicate not
only the precise contents of the output octet string, but also the
out put ci pher state. The application protocol may carry the

out put cipher state forward fromone encryption with a given
specific key to another; the effect of this "chaining" nust be
defined [2].

Assum ng that values for the specific key and ci pher state are

correctly-produced, no input octet string may result in an error
i ndi cati on.

Raebur n St andards Track [Page 7]

RFC 3961 Encrypti on and Checksum Speci ficati ons February 2005

decrypt (specific-key, state, octet string)->(state, octet string)
This function takes the specific key, cipher state, and ciphertext
as inputs and verifies the integrity of the supplied ciphertext.
If the ciphertext’'s integrity is intact, this function produces
the plaintext and a new ci pher state as outputs; otherw se, an
error indication nust be returned, and the data di scarded.

The result of the decryption may be |l onger than the origina

pl ai ntext, as, for exanple, when the encryption node adds paddi ng
to reach a nultiple of a block size. |If this is the case, any
extra octets must cone after the decoded plaintext. An
application protocol that needs to know the exact |length of the
nessage nmust encode a length or recogni zabl e "end of nessage"
marker within the plaintext [3].

As with the encryption function, a correct specification for this
function must indicate not only the contents of the output octet
string, but also the resulting cipher state.

pseudo-random (protocol -key, octet-string)->(octet-string)
Thi s pseudo-random functi on shoul d generate an octet string of
some size that is independent of the octet string input. The PRF
out put string should be suitable for use in key generation, even
if the octet string input is public. It should not reveal the
i nput key, even if the output is nade public.

These operations and attributes are all that is required to support
Ker beros and vari ous proposed preauthentication schenes.

For conveni ence of certain application protocols that may w sh to use
the encryption profile, we add the constraint that, for any given

pl ai ntext input size, a nessage size must exist between that given
size and that size plus 65,535 such that the |l ength of the decrypted
versi on of the ciphertext will never have extra octets at the end.

Expressed mathematically, for every nessage length L1, there exists a
nessage size L2 such that

L2 >= L1
L2 < L1 + 65,536
for every message Mwith |M = L2, decrypt(encrypt(M) =M

A docunent defining a new encryption type should al so descri be known
weaknesses or attacks, so that its security may be fairly assessed,
and shoul d include test vectors or other validation procedures for
the operations defined. Specific references to information that is
readi |l y avail able el sewhere are sufficient.

Raebur n St andards Track [Page 8]

RFC 3961 Encrypti on and Checksum Speci ficati ons February 2005

4. Checksum Al gorithm Profile

A checksum nmechani sm profile nust define the following attributes and
operations:

associ ated encryption al gorithn{(s)
This indicates the types of encryption keys this checksum
nmechani sm can be used with.

A keyed checksum mechani sm may have nore than one associ at ed
encryption algorithmif they share the sanme wre-key format,
string-to-key function, default string-to-key-paraneters, and key
derivation function. (This conbination nmeans that, for exanple, a
checksum type, key usage val ue, and password are adequate to get
the specific key used to conpute a checksum)

An unkeyed checksum mechani sm can be used with any encryption
type, as the key is ignored, but its use nust be limted to cases
where the checksumitself is protected, to avoid trivial attacks.

get_mc function
This function generates a MC token for a given specific key (see
section 3) and message (represented as an octet string) that nmay
be used to verify the integrity of the associated nessage. This
function is not required to return the sanme determnistic result
for each use; it need only generate a token that the verify mc
routine can check.

The output of this function will also dictate the size of the
checksum It nmust be no | arger than 65,535 octets.

verify_mc function
G ven a specific key, nessage, and M C token, this function
ascertains whether the nessage integrity has been conprom sed.
For a determnistic get_mc routine, the corresponding verify mc
may sinply generate anot her checksum and conpare the two.

The get _mic and verify mic operations must allow inputs of arbitrary
length; if any padding is needed, the padding schenme mnust be
specified as part of these functions.

These operations and attributes are all that should be required to
support Kerberos and various proposed preauthentication schenes.

As with encryption nmechani sm definition docunents, docunents defining

new checksum nechani sns shoul d i ndi cate validation processes and
known weaknesses.

Raebur n St andards Track [Page 9]

RFC 3961 Encrypti on and Checksum Speci ficati ons February 2005

5.

5.

1

Sinplified Profile for CBC Ci phers with Key Derivation

The profile outlined in sections 3 and 4 describes a | arge nunber of
operations that nmust be defined for encryption and checksum
algorithms to be used with Kerberos. Here we describe a sinpler
profile that can generate both encryption and checksum nechani sm
definitions, filling in uses of key derivation in appropriate places,
providing integrity protection, and defining nmultiple operations for
the cryptosystem profil e based on a snaller set of operations. Not
all of the existing cryptosystens for Kerberos fit into this
simplified profile, but we recormend that future cryptosystens use it
or sonet hing based on it [4].

Not all the operations in the conplete profiles are defined through
this nechanism several nust still be defined for each new al gorithm
pair.

A Key Derivation Function

Rat her than define sone schene by which a "protocol key" is conposed
of a | arge nunmber of encryption keys, we use keys derived froma base
key to perform cryptographic operations. The base key nust be used
only for generating the derived keys, and this derivation nust be
non-invertible and entropy preserving. G ven these restrictions,
conprom se of one derived key does not conprom se others. Attack of
the base key is limted, as it is only used for derivation and is not
exposed to any user data.

To generate a derived key froma base key, we generate a pseudorandom
octet string by using an al gorithm DR, described bel ow, and generate
a key fromthat octet string by using a function dependent on the
encryption algorithm The input |ength needed for that function
which is al so dependent on the encryption algorithm dictates the
length of the string to be generated by the DR al gorithm (the val ue
"k" below). These procedures are based on the key derivation in

[Bl urrent hal 96] .

Derived Key = DK(Base Key, Well-Known Constant)

DK(Key, Constant) = randomt o-key(DR(Key, Constant))

DR(Key, Constant) k-truncat e(E(Key, Constant,

initial-cipher-state))

Here DR is the random octet generation function described bel ow, and
DK is the key-derivation function produced fromit. |In this
construction, E(Key, Plaintext, Ci pherState) is a cipher, Constant is
a wel |l -known constant determ ned by the specific usage of this

Raebur n St andards Track [Page 10]

RFC 3961 Encrypti on and Checksum Speci ficati ons February 2005

function, and k-truncate truncates its argunent by taking the first k
bits. Here, k is the key generation seed | ength needed for the
encryption system

The output of the DR function is a string of bits; the actual key is
produced by applying the cryptosystenis randomto-key operation on
this bitstring.

If the Constant is smaller than the cipher block size of E, then it
nmust be expanded with n-fold() so it can be encrypted. |f the output
of Eis shorter than k bits, it is fed back into the encryption as
many tinmes as necessary. The construct is as follows (where

i ndi cates concatentation):

Kl = E(Key, n-fold(Constant), initial-cipher-state)
K2 = E(Key, K1, initial-cipher-state)

K3 = E(Key, K2, initial-cipher-state)

K4 = ...

DR(Key, Constant) = k-truncate(KL | K2 | K3 | K4 ...)
n-fold is an algorithmthat takes minput bits and "stretches" them
to formn output bits with equal contribution fromeach input bit to
the output, as described in [Blunmenthal 96]:

We first define a primtive called n-folding, which takes a

vari abl e-1 ength input bl ock and produces a fixed-1ength out put
sequence. The intent is to give each input bit approxi mtely
equal weight in determning the value of each output bit. Note
that whenever we need to treat a string of octets as a nunber, the
assuned representation is Big-Endian -- Mst Significant Byte
first.

To n-fold a nunber X, replicate the input value to a |l ength that
is the |l east common multiple of n and the Iength of X Before
each repetition, the input is rotated to the right by 13 bit
positions. The successive n-bit chunks are added together using
1's-conpl enent addition (that is, with end-around carry) to yield
a n-bit result....

Test vectors for n-fold are supplied in appendix A [5].

In this section, n-fold is always used to produce c bits of output,
where ¢ is the cipher block size of E.

The size of the Constant must not be |arger than c, because reducing
the length of the Constant by n-fol ding can cause collisions.

Raebur n St andards Track [Page 11]

RFC 3961 Encrypti on and Checksum Speci ficati ons February 2005

If the size of the Constant is smaller than ¢, then the Constant nust
be n-folded to length ¢c. This string is used as input to E. If the
bl ock size of Eis less than the randomto-key input size, then the
output fromE is taken as input to a second invocation of E. This
process is repeated until the number of bits accunulated is greater
than or equal to the randomto-key input size. Wen enough bits have
been conputed, the first k are taken as the random data used to
create the key with the algorithm dependent randomto-key function

As the derived key is the result of one or nmore encryptions in the
base key, deriving the base key fromthe derived key is equivalent to
determ ning the key froma very snall nunmber of plaintext/ciphertext
pairs. Thus, this construction is as strong as the cryptosystem
itself.

5.2. Simplified Profile Parameters
These are the operations and attributes that nust be defined:

protocol key format
string-to-key function
default string-to-key parameters
key-generation seed |l ength, k
randomt o- key function
As above for the normal encryption nmechani smprofile.

unkeyed hash al gorithm H
This should be a collision-resistant hash algorithmw th fixed-
size output, suitable for use in an HVAC [HVAC]. It nust support
inputs of arbitrary length. Its output nust be at |east the
nessage bl ock size (bel ow).

HVAC out put size, h
This indicates the size of the |eading substring output by the
HVAC function that should be used in transmtted nessages. It
shoul d be at least half the output size of the hash function H
and at least 80 bits; it need not nmatch the output size.

nmessage bl ock size, m
This is the size of the smallest units the cipher can handle in
the mode in which it is being used. Messages will be padded to a
multiple of this size. |If a block cipher is used in a node that

Raebur n St andards Track [Page 12]

RFC 3961 Encrypti on and Checksum Speci ficati ons February 2005

can handl e nmessages that are not nultiples of the cipher block
size, such as CBC node with cipher text stealing (CTS, see [RC5]),
this value woul d be one octet. For traditional CBC npde with
paddi ng, it would be the underlying cipher’s block size.

This value nust be a multiple of eight bits (one octet).

encryption/decryption functions, E and D
These are basic encryption and decryption functions for nessages
of sizes that are multiples of the message block size. No
integrity checking or confounder should be included here. For
i nputs these functions take the IV or simlar data, a protocol -
format key, and an octet string, returning a new |V and oct et
string.

The encryption function is not required to use CBC node but is
assuned to be using something with simlar properties. In
particul ar, prepending a cipher bl ock-size confounder to the
pl ai ntext should alter the entire ciphertext (comparable to
choosing and including a randominitial vector for CBC npbde).

The result of encrypting one cipher block (of size c, above) nust
be deterministic for the random octet generation function DR in
the previous section to work. For best security, it should also
be no larger than c.

ci pher bl ock size, c
This is the block size of the block cipher underlying the
encryption and decryption functions indicated above, used for key
derivation and for the size of the nessage confounder and initia
vector. (If a block cipher is not in use, sone conparable
paraneter should be determined.) It must be at least 5 octets.

This is not actually an independent paraneter; rather, it is a
property of the functions E and D. It is listed here to clarify
the distinction between it and the message bl ock size, m

Al t hough there are still a nunber of properties to specify, they are
fewer and sinpler than in the full profile.

5.3. Cryptosystem Profile Based on Sinplified Profile
The above key derivation function is used to produce three
i nternedi ate keys. One is used for conputing checksuns of

unencrypted data. The other two are used for encrypting and
checksunm ng plaintext to be sent encrypted.

Raebur n St andards Track [Page 13]

RFC 3961 Encrypti on and Checksum Speci ficati ons February 2005

The ciphertext output is the concatenation of the output of the basic
encryption function E and a (possibly truncated) HVAC using the

speci fied hash function H, both applied to the plaintext with a
random conf ounder prefix and sufficient padding to bring it to a

mul tiple of the message bl ock size. Wen the HVAC i s conmputed, the
key is used in the protocol key form

Decryption is perfornmed by renmoving the (partial) HVAC, decrypting
the remai nder, and verifying the HVAC. The cipher state is an
initial vector, initialized to zero.

The substring notation "[1..h]" in the follow ng table should be read
as using 1-based indexing; |eading substrings are used.

Raebur n St andards Track [Page 14]

RFC 3961 Encrypti on and Checksum Speci ficati ons February 2005

Cryptosystemfrom Sinplified Profile

prot ocol key format As given.

specific key structure Three protocol -format keys: { Kc, Ke, Ki }.
key- generati on seed As given.

[engt h

requi red checksum As defined below in section 5.4.

mechani sm

ci pher state Initial vector (usually of length c)
initial cipher state Al bits zero

encryption function conf Random string of length c

pad Shortest string to bring confounder

and plaintext to a length that's a

mul tiple of m

(C1, newlV) = E(Ke, conf | plaintext | pad
ol dstate.ivec)

Hl = HVAC(Ki, conf | plaintext | pad)

ciphertext = Cl1 | HL[1..h]

newst ate.ivec = newV

decryption function (C1, H1) = ciphertext
(P1, newlV) = D(Ke, Cl, oldstate.ivec)
if (HL '= HVAC(Ki, P1)[1..h])
report error
newst ate.ivec = newV

default string-to-key As given.
par ans
pseudo-random functi on tmpl H(octet-string)

t mp2 truncate tnpl to nultiple of m
PRF = E(DK(protocol -key, prfconstant),
tnmp2, initial-cipher-state)

The "prfconstant” used in the PRF operation is the three-octet string
"prfv.

Raebur n St andards Track [Page 15]

RFC 3961 Encrypti on and Checksum Speci ficati ons February 2005

Cryptosystemfrom Sinplified Profile

key generation functions:

string-to-key function As given.

randomt o- key function As given.

key-derivation function The "wel | -known constant” used for the DK
function is the key usage nunber, expressed as

four octets in big-endian order, followed by
one octet indicated bel ow

Kc = DK(base-key, usage | 0x99);
Ke = DK(base-key, usage | OxAA);
Ki = DK(base-key, usage | 0x55);

5.4. Checksum Profiles Based on Sinplified Profile

When an encryption systemis defined with the sinplified profile
given in section 5.2, a checksum al gorithm my be defined for it as
fol |l ows:

Checksum Mechanismfrom Sinplified Profile

associ ated cryptosystem As defined above.

get_mc HVAC(Kc, message)[1l..h]

verify mc get_mc and comnpare
The HVAC function and key Kc are as described in section 5.3.

6. Profiles for Kerberos Encryption and Checksum Al gorithms

These profiles describe the encryption and checksum systens defined
for Kerberos. The astute reader will notice that some of them do not
fulfill all the requirements outlined in previous sections. These
systens are defined for backward conpatibility; newer inplenentations
shoul d (whenever possible) attenpt to utilize encryption systens that
satisfy all the profile requirenents.
The full list of current encryption and checksumtype nunber

assi gnments, including values currently reserved but not defined in
this docunment, is given in section 8.

Raebur n St andards Track [Page 16]

RFC 3961 Encrypti on and Checksum Speci ficati ons February 2005

6.1. Unkeyed Checksuns

These checksum types use no encryption keys and thus can be used in
conbi nati on with any encryption type, but they may only be used with
caution, in limted circunstances where the | ack of a key does not
provide a wi ndow for an attack, preferably as part of an encrypted
nessage [6]. Keyed checksum al gorithns are recommended.

6.1.1. The RSA MD5 Checksum
The RSA-MD5 checksum cal cul ates a checksum by using the RSA MD5
algorithm |[MD5-92]. The algorithmtakes as input an input nessage of

arbitrary Il ength and produces as output a 128-bit (sixteen octet)
checksum

associ ated cryptosystem any
get _mc rsa- mds5(nsg)
verify mc get _m c and comnpare

The rsa-md5 checksum algorithmis assigned a checksumtype nunber of
seven (7).

6.1.2. The RSA MD4 Checksum
The RSA- MD4 checksum cal cul ates a checksum using the RSA MM
algorithm |[MD4-92]. The algorithmtakes as input an input nessage of

arbitrary Il ength and produces as output a 128-bit (sixteen octet)
checksum

associ ated cryptosystem any
get_mc nmd4(nsg)
verify mc get _m c and comnpare

The rsa-nmd4 checksum algorithmis assigned a checksumtype nunber of
two (2).

Raebur n St andards Track [Page 17]

RFC 3961 Encrypti on and Checksum Speci ficati ons February 2005

6.1.3. CRC 32 Checksum

Thi s CRC-32 checksum cal cul ates a checksum based on a cyclic
redundancy check as described in I SO 3309 [CRC] but nodified as
descri bed below. The resulting checksumis four (4) octets in
length. The CRC-32 is neither keyed nor collision-proof; thus, the
use of this checksumis not recomrended. An attacker using a
probabilistic chosen-plaintext attack as described in [S&®2] night be
able to generate an alternative nmessage that satisfies the checksum

The CRC- 32 checksum used in the des-cbc-crc encryption node is
identical to the 32-bit FCS described in 1SO 3309 with two
exceptions: The sumwi th the all-ones polynomal tines x**k is
omtted, and the final renainder is not ones-conplenented. |SO 3309
describes the FCS in terms of bits, whereas this docunment describes
the Kerberos protocol in terms of octets. To clarify the |1SO 3309
definition for the purpose of conmputing the CRC-32 in the des-cbhc-crc
encryption node, the ordering of bits in each octet shall be assuned
to be LSB first. Gven this assunmed ordering of bits within an
octet, the mapping of bits to polynom al coefficients shall be
identical to that specified in | SO 3309.

Test values for this nodified CRC function are included in appendi x
A 5.

associ ated cryptosystem any
get mc crc32(mnsQ)
verify mc get _mc and conpare

The crc32 checksum al gorithmis assigned a checksumtype nunber of
one (1).

6.2. DES-Based Encryption and Checksum Types

These encryption systens encrypt information under the Data
Encrypti on Standard [DES77] by using the cipher block chaini ng node
[DESMBO]. A checksumis conputed as descri bed bel ow and pl aced in
the cksumfield. DES blocks are eight bytes. As a result, the data
to be encrypted (the concatenation of confounder, checksum and
nmessage) must be padded to an eight byte boundary before encryption
The val ues of the padding bytes are unspecifi ed.

Raebur n St andards Track [Page 18]

RFC 3961 Encrypti on and Checksum Speci ficati ons February 2005

Pl ai nt ext and DES ci phertext are encoded as bl ocks of eight octets,
whi ch are concatenated to nake the 64-bit inputs for the DES
algorithms. The first octet supplies the eight nost significant bits
(with the octet’s MSB used as the DES input block’s MSB, etc.), the
second octet the next eight bits, and so on. The eighth octet
supplies the 8 |least significant bits.

Encrypti on under DES using cipher block chaining requires an
additional input in the formof an initialization vector; this vector
is specified below for each encryption system

The DES specifications [DESI81] identify four "weak’ and twelve
"sem -weak’ keys; these keys SHALL NOT be used for encrypting
nessages for use in Kerberos. The "variant keys" generated for the
RSA- MD5- DES, RSA- MD4- DES, and DES- MAC checksum types by an
eXclusive-OR of a DES key with a constant are not checked for this

property.

A DES key is eight octets of data. This consists of 56 bhits of
actual key data, and eight parity bits, one per octet. The key is
encoded as a series of eight octets witten in MSB-first order. The
bits within the key are al so encoded in MSB order. For exanple, if
the encryption key is

(B1,B2,...,B7,P1,B8,...,Bl4, P2, B15, ..., B49, P7,B50, ..., B56, P8), where
B1,B2,...,B56 are the key bits in MSB order, and P1,P2,...,P8 are the
parity bits, the first octet of the key would be B1,B2,...,B7,P1

(with Bl as the nost significant bit). See the [DESMBO] introduction
for reference.

Encrypti on Data Format

The format for the data to be encrypted includes a one-bl ock
confounder, a checksum the encoded plaintext, and any necessary
paddi ng, as described in the follow ng diagram The nmsg-seq field
contains the part of the protocol message to be encrypted.

One generates a random confounder of one block, placing it in
"confounder’; zeros out the 'checksumi field (of |ength appropriate
to exactly hold the checksumto be conputed); adds the necessary
paddi ng; cal cul ates the appropriate checksum over the whol e sequence,
placing the result in 'checksum ; and then encrypts using the
specified encryption type and the appropri ate key.

Raebur n St andards Track [Page 19]

RFC 3961 Encrypti on and Checksum Speci ficati ons February 2005

String or RandomData to Key Transfornmation

To generate a DES key fromtwo UTF-8 text strings (password and
salt), the two strings are concatenated, password first, and the
result is then padded with zero-valued octets to a multiple of eight
octets.

The top bit of each octet (always zero if the password is plain
ASCI |, as was assuned when the original specification was witten) is
di scarded, and the remaining seven bits of each octet forma
bitstring. This is then fan-fol ded and eXclusive-ORed with itself to
produce a 56-bit string. An eight-octet key is formed fromthis
string, each octet using seven bits fromthe bitstring, |eaving the

| east significant bit unassigned. The key is then "corrected" by
correcting the parity on the key, and if the key matches a 'weak’ or
"sem -weak’ key as described in the DES specification, it is
eXclusive-ORed with the constant 0x00000000000000F0. This key is
then used to generate a DES CBC checksumon the initial string with
the salt appended. The result of the CBC checksumis then
"corrected" as described above to formthe result, which is returned
as the key.

For purposes of the string-to-key function, the DES CBC checksumis
cal cul ated by CBC encrypting a string using the key as |V and the
final eight byte block as the checksum

Pseudocode fol |l ows:

renoveMSBi t s(8byt ebl ock) {
/* Treats a 64 bit block as 8 octets and renoves the MSB in
each octet (in big endian node) and concatenates the
result. E. g., the input octet string:
01110000 01100001 11110011 01110011 11110111 01101111
11110010 01100100

results in the output bitstring:
1110000 1100001 1110011 1110011 1110111 1101111
1110010 1100100 */

}

reverse(56bitbl ock) {
/* Treats a 56-bit block as a binary string and reverses it.

E.g., the input string:
1000001 1010100 1001000 1000101 1001110 1000001
0101110 1001101

results in the output string:
1011001 0111010 1000001 0111001 1010001 0001001
0010101 1000001 */

Raebur n St andards Track [Page 20]

RFC 3961

Raeburn

Encrypti on and Checksum Speci ficati ons

add_parity_ bits(56bitblock) {

February 2005

/* Copies a 56-bit block into a 64-bit block, left shifts

content in each octet, and add DES parity bit.
E.g., the input string:

1100000 0001111 0011100 0110100 1000101 1100100

0110110 0010111
results in the output string:

11000001 00011111 00111000 01101000 10001010 11001000

01101101 00101111 */
}

key correction(key) {
fixparity(key);
if (is_weak key(key))
key = key XOR O0xFO;
return(key);

}
mt _des string to key(string,salt) {
odd = 1;
s = string | salt;
tempstring = 0; /* 56-bit string */
pad(s); /* with nulls to 8 byte boundary */
for (8byteblock in s) {
56bitstring = renoveMsBits(8bytebl ock);
if (odd == 0) reverse(56bitstring);
odd = ! odd;
tenmpstring = tenpstring XOR 56bitstring;
}
tenmpkey = key correction(add _parity bits(tenpstring));
key = key_correction(DES- CBC check(s, tenpkey));
return(key);
}

des_string_to_key(string,salt, params) {
if (length(parans) ==
type = 0;
else if (length(parans) == 1)
type = parans[0];
el se
error("invalid parans");
if (type == 0)
mt _des string to key(string,salt);
el se
error("invalid parans");

St andards Track

[Page 21]

RFC 3961 Encrypti on and Checksum Speci ficati ons February 2005

One compn extension is to support the "AFS string-to-key" algorithm
which is not defined here, if the type value above is one (1).

For generation of a key froma randombitstring, we start with a 56-
bit string and, as with the string-to-key operation above, insert
parity bits. |If the result is a weak or sem -weak key, we nodify it
by eXclusive-OR with the constant 0x00000000000000FO0:

des_random to_key(bitstring) {
return key_correction(add_parity_bits(bitstring));
}
6.2.1. DES with M5
The des-cbc-nmd5 encrypti on node encrypts informati on under DES in CBC
node with an all-zero initial vector and with an MD5 checksum
(described in [MD5-92]) computed and placed in the checksum field.
The encryption system paraneters for des-cbc-nd5 are as foll ows:
des-chc-nmd5

prot ocol key format 8 bytes, parity in low bit of each

specific key structure copy of original key

requi red checksum rsa- md5- des
mechani sm
key- generati on seed 8 bytes
l ength
ci pher state 8 bytes (CBC initial vector)
initial cipher state all-zero
encryption function des-cbc(confounder | checksum | msg | pad,
i vec=ol dst at e)
wher e
checksum = md5(conf ounder | 0000. .
| msg | pad)
newstate = | ast bl ock of des-chc output
decryption function decrypt encrypted text and verify checksum
newstate = | ast bl ock of ciphertext

Raebur n St andards Track [Page 22]

RFC 3961 Encrypti on and Checksum Speci ficati ons February 2005

des- cbc- nd5

default string-to-key enpty string
par ans
pseudo-random functi on des- cbc(nmd5(i nput-string), ivec=0)

key generation functions:

string-to-key des_string_to_key
randomt o- key des_randomto_key
key-derivation identity

The des-cbc-nmd5 encryption type is assigned the etype value three

(3).
6.2.2. DES with M4

The des-cbc-nd4 encryption node al so encrypts informati on under DES
in CBC node, with an all-zero initial vector. An MX checksum
(described in [MX-92]) is conputed and placed in the checksum fi el d.

des- cbc- nd4

protocol key format 8 bytes, parity in low bit of each

specific key structure copy of original key

requi red checksum rsa- nd4- des
mechani sm
key- generati on seed 8 bytes
 ength
ci pher state 8 bytes (CBC initial vector)
initial cipher state all-zero
encryption function des- cbc(confounder | checksum| nmsg | pad,
i vec=ol dst at e)
wher e
checksum = nd4(confounder | 0000..
| meg | pad)
newstate = | ast bl ock of des-chc out put

Raebur n St andards Track [Page 23]

RFC 3961 Encrypti on and Checksum Speci ficati ons February 2005

des- cbc- nd4
decryption function decrypt encrypted text and verify checksum
newstate = | ast bl ock of ciphertext

default string-to-key enpty string
par ans

pseudo-random functi on des- cbc(md5(i nput-string), ivec=0)

key generation functions:

string-to-key des_string_to_key
randomt o- key copy input, then fix parity bits
key-derivation identity

Not e that des-cbc-nd4 uses nd5, not nd4, in the PRF definition

The des-cbc-nd4 encryption algorithmis assigned the etype value two

(2).
6.2.3. DES with CRC

The des-cbc-crc encryption type uses DES in CBC node with the key
used as the initialization vector, with a four-octet CRC based
checksum conmput ed as described in section 6.1.3. Note that this is
not a standard CRC-32 checksum but a slightly nodified one.

des-cbc-crc

prot ocol key format 8 bytes, parity in low bit of each

specific key structure copy of original key

requi red checksum rsa- md5- des

nmechani sm

key- generation seed 8 bytes

l ength

ci pher state 8 bytes (CBC initial vector)

Raebur n St andards Track [Page 24]

RFC 3961 Encrypti on and Checksum Speci ficati ons February 2005

des-chc-crc
initial cipher state copy of original key
encryption function des-cbc(confounder | checksum| msg | pad,
i vec=ol dst at e)
wher e
checksum = crc(confounder | 00000000
| msg | pad)

newstate = | ast bl ock of des-chc out put
decryption function decrypt encrypted text and verify checksum

newstate = | ast bl ock of ciphertext

default string-to-key enpty string
par ans

pseudo-random functi on des- cbc(nmd5(i nput-string), ivec=0)

key generation functions:

string-to-key des_string_to_key
randomt o- key copy input, then fix parity bits
key-derivation identity

The des-cbc-crc encryption algorithmis assigned the etype val ue one

(1).
6.2.4. RSA MD5 Cryptographic Checksum Usi ng DES

The RSA- MD5- DES checksum cal cul ates a keyed col |i si on-proof checksum
by prepending an eight octet confounder before the text, applying the
RSA MD5 checksum al gorithm and encrypting the confounder and the
checksum by using DES in cipher-bl ock-chaining (CBC) node with a
variant of the key, where the variant is conputed by eXcl usive-ORing
the key with the hexadeci mal constant OxFOFOFOFOFOFOFOFO. The
initialization vector should be zero. The resulting checksumis 24
octets | ong.

Raebur n St andards Track [Page 25]

RFC 3961 Encrypti on and Checksum Speci ficati ons February 2005

r sa- nd5- des

associ ated cryptosystem des-cbc-nd5, des-cbc-nd4, des-cbc-crc

get_mc des- cbc(key XOR OxFOFOFOFOFOFOFOFO,
conf | rsa-nmd5(conf | msQ))

verify mc decrypt and verify rsa-nmd5 checksum

The rsa-md5-des checksum al gorithmis assigned a checksumtype numnber
of eight (8).

6.2.5. RSA MM Cryptographi c Checksum Usi ng DES

The RSA- MD4- DES checksum cal cul ates a keyed col |i sion-proof checksum
by prepending an eight octet confounder before the text, applying the
RSA MD4 checksum al gorithm [MD4-92], and encrypting the confounder
and the checksum using DES in cipher-block-chaining (CBC) node with a
variant of the key, where the variant is conmputed by eXcl usive-ORi ng
the key with the constant OxFOFOFOFOFOFOFOFO [7]. The initialization
vector should be zero. The resulting checksumis 24 octets |ong.

r sa- nd4- des

associ ated cryptosystem des-cbc-nd5, des-cbc-nd4, des-cbc-crc

get_mic des-chc(key XOR OxFOFOFOFOFOFOFOFO,
conf | rsa-md4(conf | nsgQ),
i vec=0)

verify mc decrypt and verify rsa-nd4 checksum

The rsa-nmd4-des checksum al gorithmis assigned a checksumtype numnber
of three (3).

6.2.6. RSA MM Cryptographi c Checksum Using DES Alternative

The RSA- MD4- DES- K checksum cal cul ates a keyed col |isi on- proof
checksum by applying the RSA MD4 checksum al gorithm and encrypting
the results by using DES in cipher block chaining (CBC) node with a
DES key as both key and initialization vector. The resulting
checksumis 16 octets long. This checksumis tanper-proof and
believed to be collision-proof. Note that this checksumtype is the
ol d met hod for encodi ng the RSA- MM-DES checksum it is no |onger
reconmended.

Raebur n St andards Track [Page 26]

RFC 3961 Encrypti on and Checksum Speci ficati ons February 2005

rsa- nd4- des-k

associ ated cryptosystem des-cbc-nd5, des-cbc-nd4, des-cbc-crc
get_mc des-cbc(key, md4(nsg), ivec=key)
verify mc decrypt, conmpute checksum and comnpare

The rsa-nmd4-des-k checksum al gorithmis assigned a checksumtype
nunber of six (6).

6.2.7. DES CBC Checksum

The DES- MAC checksumis computed by prependi ng an ei ght octet
confounder to the plaintext, padding with zero-val ued octets if
necessary to bring the length to a multiple of eight octets,
perform ng a DES CBC-npde encryption on the result by using the key
and an initialization vector of zero, taking the last bl ock of the
ci phertext, prepending the sane confounder, and encrypting the pair
by using DES in cipher-block-chaining (CBC) nbde with a variant of
the key, where the variant is conputed by eXclusive-ORing the key
with the constant OxFOFOFOFOFOFOFOFO. The initialization vector
shoul d be zero. The resulting checksumis 128 bits (sixteen octets)
I ong, 64 bits of which are redundant. This checksumis tanper-proof
and col | i si on-proof.

des- mac
associ at ed des- cbc-nmd5, des-cbc-nd4, des-cbc-crc
cryptosystem
get_mic des- cbc(key XOR OxFOFOFOFOFOFOFOFO,
conf | des-mac(key, conf | msg | pad, ivec=0),
i vec=0)
verify mc decrypt, compute DES MAC usi ng confounder, conpare

The des-mac checksum algorithmis assigned a checksumtype nunber of
four (4).

6.2.8. DES CBC Checksum Al ternative

The DES- MAC-K checksumis conputed by performng a DES CBC npde
encryption of the plaintext, with zero-valued padding bytes if
necessary to bring the length to a multiple of eight octets, and by
using the |l ast block of the ciphertext as the checksumvalue. It is
keyed with an encryption key that is also used as the initialization
vector. The resulting checksumis 64 hits (eight octets) long. This

Raebur n St andards Track [Page 27]

RFC 3961 Encrypti on and Checksum Speci ficati ons February 2005

checksumis tanper-proof and collision-proof. Note that this
checksumtype is the old nethod for encoding the DESMAC checksum it
is no | onger recomrended.

associ ated cryptosystem des-cbc-nd5, des-cbc-nd4, des-cbc-crc
get_mc des-mac(key, msg | pad, ivec=key)
verify mc conput e MAC and compare

The des-mac-k checksum al gorithmis assigned a checksum type nunber
of five (5).

6.3. Triple-DES Based Encryption and Checksum Types

This encryption and checksumtype pair is based on the Triple DES
cryptosystemin Quter-CBC node and on the HVAC SHA1 nessage
aut hentication al gorithm

A Triple DES key is the concatenation of three DES keys as descri bed
above for des-cbc-md5. A Triple DES key is generated from random
data by creating three DES keys from separate sequences of random
dat a.

Encrypted data using this type nust be generated as described in
section 5.3. If the length of the input data is not a multiple of
the bl ock size, zero-valued octets must be used to pad the plaintext
to the next eight-octet boundary. The confounder nust be eight
random octets (one bl ock).

The sinplified profile for Triple DES, with key derivation as defined
in section 5, is as foll ows:

des3-chc- hmac- shal- kd, hmac-shal-des3-kd

protocol key format 24 bytes, parity in | ow
bit of each

key- generati on seed 21 bytes
| ength

Raebur n St andards Track [Page 28]

RFC 3961 Encrypti on and Checksum Speci ficati ons February 2005

des3-chc- hmac- shal- kd, hmac-shal-des3-kd

hash function SHA- 1
HVAC out put si ze 160 bits
nessage bl ock size 8 bytes

default string-to-key enpty string

par ans

encryption and triple-DES encrypt and

decryption functions decrypt, in outer-CBC
node (ci pher bl ock size
8 octets)

key generation functions:

randomt o- key DES3randomt o- key (see
bel ow)

string-to-key DES3stri ng-to-key (see
bel ow)

The des3-chc-hnac-shal-kd encryption type is assigned the val ue
sixteen (16). The hmac-shal-des3-kd checksum al gorithmis assigned a
checksum type nunber of twelve (12).

6.3.1. Triple DES Key Production (randomto-key, string-to-key)

The 168 bits of random key data are converted to a protocol key val ue
as follows. First, the 168 bits are divided into three groups of 56
bits, which are expanded individually into 64 bits as foll ows:

DES3r andom t o- key:

1 2 3 4 5 6 7
9 10 11 12 13 14 15
17 18 19 20 21 22 23
25 26 27 28 29 30 31
33 34 35 36 37 38 39
41 42 43 44 45 46 47
49 50 51 52 53 54 55
56 48 40 32 24 16 8

T TTTTTTTDO

The "p" bits are parity bits conputed over the data bits. The out put
of the three expansions, each corrected to avoid "weak" and "sem -
weak" keys as in section 6.2, are concatenated to formthe protoco
key val ue.

Raebur n St andards Track [Page 29]

RFC 3961 Encrypti on and Checksum Speci ficati ons February 2005

The string-to-key function is used to transform UTF-8 passwords into
DES3 keys. The DES3 string-to-key function relies on the "N-fold"
al gorithm and DK function, described in section 5.

The n-fold algorithmis applied to the password string concatenated
with a salt value. For 3-key triple DES, the operation will involve
a 168-fold of the input password string, to generate an internediate
key, fromwhich the user’'s long-termkey will be derived with the DK
function. The DES3 string-to-key function is shown here in
pseudocode:

DES3stri ng-to-key(passwordString, salt, parans)
if (parans != enptyString)
error("invalid parans");
s = passwordString + salt
tmpKey = randomt o- key(168-fol d(s))
key = DK (tnpKey, KerberosConstant)

Weak key checking is perfornmed in the randomto-key and DK
operations. The KerberosConstant value is the byte string {Ox6b 0x65
0x72 0x62 0x65 0x72 Ox6f 0x73}. These values correspond to the ASCI
encodi ng for the string "kerberos".

7. Use of Kerberos Encryption Qutside This Specification

Several Kerberos-based application protocols and preauthentication
systens have been designed and depl oyed that perform encryption and
nmessage integrity checks in various ways. Although in sone cases
there may be good reason for specifying these protocols in terns of
specific encryption or checksumal gorithns, we anticipate that in
nmany cases this will not be true, and nore generic approaches

i ndependent of particular algorithms will be desirable. Rather than
have each protocol designer reinvent schemes for protecting data,
using multiple keys, etc., we have attenpted to present in this
section a general framework that should be sufficient not only for
the Kerberos protocol itself but also for nmany preauthentication
systens and application protocols, while trying to avoid sone of the
assunptions that can work their way into such protocol designs.

Sone probl ematic assunptions we’ve seen (and sometines made) include
the following: a randombitstring is always valid as a key (not true
for DES keys with parity); the basic bl ock encryption chaining node
provides no integrity checking, or can easily be separated from such
checking (not true for nmany nodes in devel opment that do both

simul taneously); a checksumfor a nessage always results in the sanme
value (not true if a confounder is incorporated); an initial vector
is used (rmay not be true if a block cipher in CBC node is not in
use).

Raebur n St andards Track [Page 30]

RFC 3961 Encrypti on and Checksum Speci ficati ons February 2005

Al t hough such assunptions the may hold for any given set of
encryption and checksum al gorithms, they nay not be true of the next
algorithms to be defined, |eaving the application protocol unable to
make use of those algorithns w thout updates to its specification

The Kerberos protocol uses only the attributes and operations
described in sections 3 and 4. Preauthentication systens and
application protocols making use of Kerberos are encouraged to use
themas well. The specific key and string-to-key paraneters should
generally be treated as opaque. Although the string-to-key
paranmeters are nmani pul ated as an octet string, the representation for
the specific key structure is inplenentation defined; it may not even
be a single object.

We don’t recomrend doing so, but some application protocols will
undoubt edly continue to use the key data directly, even if only in
some of the currently existing protocol specifications. An

i npl enentation intended to support general Kerberos applications nmay
therefore need to nmake the key data available, as well as the
attributes and operations described in sections 3 and 4 [8].

8. Assigned Nunbers

The foll owi ng encryption-type nunbers are al ready assigned or
reserved for use in Kerberos and rel ated protocols.

encryption type et ype section or coment
des-cbc-crc 1 6.2.3
des-chc- nd4 2 6.2.2
des-chc- md5 3 6.2.1

[reserved] 4

des3- cbc- md5 5

[reserved] 6

des3-chc-shal 7

dsaW t hSHALl- CnsQ D 9 (pkinit)

nd5W t hRSAEncr ypti on- CnsQ D 10 (pkinit)

shalW t hRSAEncrypti on- CrsQ D 11 (pkinit)
rc2CBC- EnvO D 12 (pkinit)
rsaEncrypti on- EnvQ D 13 (pkinit from PKCS#1 v1.5)
r saES- QAEP- ENV- O D 14 (pkinit from PKCS#1 v2.0)
des- ede3-cbc- Env-O D 15 (pkinit)

des3- cbc- shal- kd 16 6.3
aes128-cts- hmac-shal- 96 17 [KRB5- AES]
aes256- ct s- hmac- shal- 96 18 [KRB5- AES]

rc4- hmac 23 (M crosoft)

rc4- hmac- exp 24 (M crosoft)
subkey- keymat eri al 65 (opaque; Packet Cabl e)

Raebur n St andards Track [Page 31]

RFC 3961 Encrypti on and Checksum Speci ficati ons February 2005

(The "des3-cbc-shal" assignnment is a deprecated version using no key
derivation. It should not be confused wi th des3-cbc-shal-kd.)

Several nunbers have been reserved for use in encryption systens not
defined here. Encryption-type nunbers have unfortunately been
over | oaded on occasion in Kerberos-related protocols, so sone of the
reserved nunbers do not and will not correspond to encryption systens
fitting the profile presented here.

The foll owi ng checksumtype nunbers are assigned or reserved. As
with encryption-type nunbers, sone overl oadi ng of checksum nunbers
has occurred.

Checksum type sunt ype checksum section or
val ue si ze reference
CRC32 1 4 6.1.3
rsa- nu4 2 16 6.1.2
r sa- nd4- des 3 24 6.2.5
des- nmac 4 16 6.2.7
des- mac- k 5 8 6.2.8
r sa- nd4- des-k 6 16 6.2.6
rsa- mi5 7 16 6.1.1
r sa- nd5- des 8 24 6.2.4
rsa- nd5-des3 9 24 ??
shal (unkeyed) 10 20 ??
hmac- shal- des3- kd 12 20 6.3
hmac- shal- des3 13 20 ??
shal (unkeyed) 14 20 ??
hrmac- shal- 96- aes128 15 20 [KRB5- AES]
hmac- shal- 96- aes256 16 20 [KRB5- AES]
[reserved] 0x8003 ? [GSS- KRB5]

Encrypti on and checksumtype nunbers are signed 32-bit values. Zero
is invalid, and negative nunbers are reserved for |ocal use. Al
st andardi zed val ues nust be positive.

9. Inplenmentation Notes

The "interface" described here is the mniml information that nust
be defined to make a cryptosystem useful within Kerberos in an

i nteroperabl e fashion. The use of functional notation used in sone
places is not an attenpt to define an APl for cryptographic
functionality within Kerberos. Actual inplenmentations providing
clean APIs will probably nmake additional information available, that
could be derived froma specification witten to the framework given
here. For exanple, an application designer may wish to determ ne the
| argest nunber of bytes that can be encrypted without overflow ng a

Raebur n St andards Track [Page 32]

RFC 3961 Encrypti on and Checksum Speci ficati ons February 2005

10.

certain size output buffer or conversely, the nmaxi num nunber of bytes
that m ght be obtained by decrypting a ciphertext nessage of a given
size. (In fact, an inplenmentation of the GSS-APlI Kerberos mechani sm
[GSS-KRB5] will require sone of these.)

The presence of a nechanismin this docunent should not be taken to
indicate that it rmust be inplenmented for conpliance with any
specification; required nechanisns will be specified el sewhere.

| ndeed, some of the nechani sns descri bed here for backward
conpatibility are now considered rather weak for protecting critica
dat a.

Security Considerations

Recent years have brought so many advancenents in |arge-scale attacks
capability against DES that it is no |onger considered a strong
encryption mechanism Triple-DES is generally preferred in its

pl ace, despite its poorer performance. See [ESP-DES] for a summary
of some of the potential attacks and [EFF-DES] for a detailed

di scussion of the inplenentation of particular attacks. However,

nost Kerberos inplementations still have DES as their prinmary

i nt eroperabl e encryption type.

DES has four 'weak’ keys and twel ve 'seni -weak’ keys, and the use of
si ngl e-DES here avoids them However, DES al so has 48 ' possi bl y-
weak’ keys [Schneier96] (note that the tables in many editions of the
reference contains errors) that are not avoi ded.

DES weak keys have the property that E1(EL(P)) = P (where E1 denotes
encryption of a single block with key 1). DES seni-weak keys, or
"dual " keys, are pairs of keys with the property that E1(P) = D2(P)
and thus E2(E1(P)) = P. Because of the use of CBC nbde and the

| eadi ng random conf ounder, however, these properties are unlikely to
present a security problem

Many of the choices concerning when to perform weak-key corrections
relate nore to conpatibility with existing inplenmentations than to
any risk anal ysis.

Al t hough checks are al so done for the component DES keys in a
triple-DES key, the nature of the weak keys make it extrenely
unlikely that they will weaken the triple-DES encryption. It is only
slightly nore likely than having the middle of the three sub-keys

mat ch one of the other two, which effectively converts the encryption
to single-DES - a case we nake no effort to avoid.

Raebur n St andards Track [Page 33]

RFC 3961 Encrypti on and Checksum Speci ficati ons February 2005

The true CRC-32 checksumis not collision-proof; an attacker could
use a probabilistic chosen-plaintext attack to generate a valid
nmessage even if a confounder is used [S@2]. The use of collision-
proof checksuns is of course recomended for environnents where such
attacks represent a significant threat. The "sinplifications" (read
bugs) introduced when CRC-32 was inplenmented for Kerberos cause

| eadi ng zeros effectively to be ignored, so nessages differing only
in leading zero bits will have the same checksum

[HVAC] and [I PSEC- HMAC] di scuss weaknesses of the HVAC al gorithm
Unli ke [I1 PSEC-HVAC], the triple-DES specification here does not use
the suggested truncation of the HVAC output. As pointed out in

[PSEC-HVAC], SHA-1 was not devel oped for use as a keyed hash
function, which is a criterion of HVAC. [HMAC- TEST] contains test
vectors for HWMAC SHA- 1.

The mit_des_string to_key function was originally constructed with
the assunption that all input would be ASCIIl; it ignores the top bit
of each input byte. Folding with XORis also not an especially good
m xi ng mechani sm for preserving randommess.

The n-fold function used in the string-to-key operation for des3-
cbc- hmac- shal- kd was designed to cause each bit of input to
contribute equally to the output. It was not designed to maxi mze or
equal |y distribute randomess in the input, and conceivably
randommess may be lost in cases of partially structured input. This
shoul d only be an issue for highly structured passwords, however.

[RFC1851] discusses the relative strength of triple-DES encryption
The rel atively slow speed of triple-DES encryption nay al so be an
i ssue for sone applications.

[Bel ovi n91] suggests that anal yses of encryption schenmes include a
nodel of an attacker capable of submitting known plaintexts to be
encrypted with an unknown key, as well as be able to perform many
types of operations on known protocol nessages. Recent experiences
with the chosen-pl ai ntext attacks on Kerberos version 4 bear out the
val ue of this suggestion.

The use of unkeyed encrypted checksums, such as those used in the
singl e- DES cryptosystens specified in [Kerbl510], allows for cut-
and- paste attacks, especially if a confounder is not used. 1In
addi ti on, unkeyed encrypted checksuns are vul nerable to chosen-

pl ai ntext attacks: An attacker with access to an encryption oracle
can easily encrypt the required unkeyed checksum along with the

Raebur n St andards Track [Page 34]

RFC 3961 Encrypti on and Checksum Speci ficati ons February 2005

11.

chosen plaintext. [Bellovin99] These weaknesses, conbined with a
conmon i npl enent ati on design choi ce descri bed below, allow for a
cross-protocol attack fromversion 4 to version 5.

The use of a random confounder is an inportant nmeans to prevent an
attacker from making effective use of protocol exchanges as an
encryption oracle. In Kerberos version 4, the encryption of constant
pl ai ntext to constant ciphertext makes an effective encryption oracle
for an attacker. The use of random confounders in [Kerbl1510]
frustrates this sort of chosen-plaintext attack

Using the sanme key for nmultiple purposes can enable or increase the
scope of chosen-plaintext attacks. Sone software that inplenents
both versions 4 and 5 of the Kerberos protocol uses the same keys for
both versions. This enables the encryption oracle of version 4 to be
used to attack version 5. Mulnerabilities to attacks such as this
cross-protocol attack make it unwise to use a key for nultiple

pur poses.

Thi s docunent, |ike the Kerberos protocol, does not address limiting
the ambunt of data a key may be used with to a quantity based on the
robust ness of the algorithmor size of the key. It is assumed that
any defined al gorithns and key sizes will be strong enough to support
very |large anounts of data, or they will be deprecated once
significant attacks are known.

Thi s docunent al so places no bounds on the anmount of data that can be
handl ed in various operations. To avoid denial of service attacks,

i mpl enentations will probably seek to restrict nessage sizes at some
hi gher | evel.

| ANA Consi der ati ons

Two registries for numeric val ues have been created: Kerberos
Encrypti on Type Nunbers and Kerberos Checksum Type Nunbers. These
are signed values ranging from-2147483648 to 2147483647. Positive
val ues shoul d be assigned only for algorithns specified in accordance
with this specification for use with Kerberos or rel ated protocol s.
Negative values are for private use; |ocal and experinmental

al gorithms should use these values. Zero is reserved and may not be
assi gned.

Positive encryption- and checksumtype nunbers nay be assigned
followi ng either of two policies described in [BCP26].

St andards-track specifications may be assigned val ues under the
St andards Action policy.

Raebur n St andards Track [Page 35]

RFC 3961 Encrypti on and Checksum Speci ficati ons February 2005

12.

Specifications in non-standards track RFCs nay be assigned val ues
after Expert Review. A non-|1ETF specification may be assigned val ues
by publishing an Informational or standards-track RFC referencing the
external specification; that specification nust be public and
published in sone permanent record, nuch like the IETF RFCs. It is
hi ghly desirable, though not required, that the full specification be
publ i shed as an | ETF RFC.

Smal | er encryption type val ues should be used for |ETF standards-
track nmechani sms, and much hi gher values (16777216 and above) for
ot her mechani sms. (Rationale: In the Kerberos ASN. 1 encodi ng,
smal | er nunbers encode to snaller octet sequences, so this favors
standards-track nmechanisns with slightly smaller nmessages.) Aside
fromthat guideline, |ANA may choose nunbers as it sees fit.

Internet-Draft specifications should not include values for
encryption- and checksumtype nunmbers. |Instead, they should indicate
that val ues woul d be assigned by | ANA when the docunent is approved
as an RFC. For devel opnment and interoperability testing, values in
the private-use range (negative values) nay be used but should not be
included in the draft specification

Each regi stered val ue shoul d have an associ ated uni que reference
nane. The lists given in section 8 were used to create the initia
registry; they include reservations for specifications in progress in
parallel with this docunent, and certain other values believed to

al ready be in use.

Acknowl edgenent s

Thi s docunent is an extension of the encryption specification
included in [Kerb1510] by B. difford Neuman and John Kohl, and nuch
of the text of the background, concepts, and DES specifications is
drawn directly fromthat documnent.

The abstract framework presented in this docunent was put together by
Jeff Altman, Sam Hartman, Jeff Hutzel man, Ciff Neuman, Ken Raeburn
and Tom Yu, and the details were refined several tinmes based on
comrents from John Brezak and ot hers.

Marc Horowitz wote the original specification of triple-DES and key
derivation in a pair of Internet-Drafts (under the names draft-
horowi t z- key-deri vation and draft-horowtz-kerb-key-derivation) that
were later folded into a draft revision of [Kerbl510], from which
this docunent was |ater split off.

Raebur n St andards Track [Page 36]

RFC 3961 Encrypti on and Checksum Speci ficati ons February 2005

Tom Yu provided the text describing the nodifications to the standard
CRC al gorithm as Kerberos inplenmentations actually use it, and sone
of the text in the Security Considerations section

Mroslav Jurisic provided information for one of the UTF-8 test cases
for the string-to-key functions.

Marcus Watts noticed sone errors in earlier versions and pointed out
that the sinplified profile could easily be nodified to support
ci pher text stealing nodes.

Si non Josefsson contributed sone clarifications to the DES "CBC
checksuni and string-to-key and weak key descriptions, and sone test
vect ors.

Si non Josefsson, Louis LeVay, and others al so caught sonme errors in
earlier versions of this docunent.

Raebur n St andards Track [Page 37]

RFC 3961 Encrypti on and Checksum Speci ficati ons February 2005

A

A 1.

Test Vectors

This section provides test vectors for various functions defined or
described in this document. For convenience, nost inputs are ASCl
strings, though some UTF-8 sanples are provided for string-to-key
functions. Keys and other binary data are specified as hexadeci nal
strings.

n-fold

The n-fold function is defined in section 5.1. As noted there, the
sanpl e vector in the original paper defining the algorithm appears to
be incorrect. Here are sone test cases provided by Marc Horowitz and
Si non Josef sson:

64-fol d("012345") =
64-f ol d(303132333435) = be072631276b1955

56-f ol d("password") =
56-f ol d(70617373776f 7264) = 78a07b6caf 85f a

64-f ol d("Rough Consensus, and Runni ng Code") =
64-f ol d(526f 75676820436f 6e73656e7375732c20616e642052756¢e
6e696e6720436f 6465) = bb6ed30870b7f 0e0

168-fol d("password") =
168-fol d(70617373776f 7264) =
59e4a8ca7c0385c3c37b3f 6d2000247cb6ebbd5b3e

192-f ol d(" MASSACHVSETTS | NSTI TVTE OF TECHNOLOGY")

192-f ol d(4d41535341434856534554545320494e5354495456544520
4f 4620544543484e4f 4¢c4f 4759) =
db3b0d8f 0b061e603282b308a50841229ad798f ab9540c1b

168-fold("Q') =

168-fol d(51) =
518a54a2 15a8452a 518a54a2 15a8452a
518a54a2 15

168-fol d("ba")

168-fol d(6261)
f b25d531 ae897449 9f 52f d92 ea9857c4
ba24cf 29 7e

Here are some additional values corresponding to fol ded val ues of the
string "kerberos"; the 64-bit formis used in the des3 string-to-key
(section 6.3.1).

Raebur n St andards Track [Page 38]

RFC 3961

Not
out

A 2.

64-fol d("kerberos") =
6b657262 65726f 73
128-fol d("kerberos") =
6b657262 65726f 73 7b9b5b2b 93132b93
168-fol d("kerberos") =
8372c236 344e5f 15 50cd0747 el5d62ca
7aba3bce a4
256-f ol d("kerberos") =
6b657262 65726f 73 7b9b5b2b 93132b93
5c9bdcda d95c¢9899 c4caedde e6d6caed

Encrypti on and Checksum Speci ficati ons

February 2005

e that the initial octets exactly match the input string when the

put length is a multiple of the input |ength.

mt_des_string to_key

The function mt_des _string_to_key is defined in section 6.2. W
present here several test values, with sone of the internediate

results.
characters.

The fourth test denonstrates the use of UTF-8 with three
The last two tests are specifically constructed so as to

trigger the weak-key fixups for the intermedi ate key produced by
fan-fol ding; we have no test cases that cause such fixups for the
final key.

UTF-8 encodi ngs used in test vector:

eszett U+00DF C3 9F
c-acute U+0107 4 87

Test vector:
salt: "ATHENA. M T
passwor d: "passwor d"

fan-fold resul t:
i nternedi ate key:

DES key:
salt: " VWH TEHOUSE
passwor d: " pot at oe"

fan-fold result:
i nternedi ate key:
DES key:

sal t: " EXAMPLE. COVp
password: g-clef (U+101
fan-fold result:
i nternedi ate key:

Raeburn

s-caron U+0161 C5 Al
g-cl ef U+1011E FO 9D 84 9E

. EDUr aebur n"
415448454e412e4d49542e4544557261656275726e
70617373776f 7264
c01e38688ac86¢c2e
cl1f 38688ac86d2f
cbc22f ae235298e3

GOvdanny"

5748495445484f 5553452e474f 5664616e6e79
706f 7461746f 65

a028944ee63c0416

al29944f e63d0416

df 3d32a74f d92a01

iani st" 4558414D504C452E434F4D7069616E697374
1E) f 09d849e

3c4a262c18f ab090

3d4a262c19f bb091

St andards Track [Page 39]

RFC 3961 Encrypti on and Checksum Speci ficati ons February 2005

DES key: 4f f b26bab0cd9413
salt: "ATHENA. M T. EDUJuri" + s-caron(W0161) + "i" + c-acute(U+0107)
415448454e412e4d49542e4544554a757269c5a169c487
passwor d: eszett (U+O0DF)
c39f
fan-fol d resul t: b8f 6c40e305af c9e
i ntermedi ate key: b9f 7c40e315bf d9e
DES key: 62c81a5232b5e69d
sal t: " AAAAAAAA 4141414141414141
passwor d: "11119999" 3131313139393939
fan-fold result: e0e0e0eOf Of Of Of O
i nternedi ate key: e0e0e0eOf 1f 1f 101
DES key: 984054d0f 1a73e31
sal t: " FFFFAAAA" 4646464641414141
passwor d: " NNNN6666" 4e4e4e4e36363636
fan-fold result: leleleleOe0OeOe0e
i ntermedi ate key: 1f 1f 1f 1f OeOeOef e
DES key: c4bf 6b25adf 7a4f 8

This trace provided by Sinon Josefsson shows the internediate
processi ng stages of one of the test inputs:

string_to_key (des-cbc-nd5, string, salt)
;; string:

; ‘password’ (length 8 bytes)

; 70 61 73 73 77 6f 72 64

;; salt:

; “ATHENA. M T. EDUr aeburn’ (Il ength 21 bytes)

; 41 54 48 45 4e 41 2e 4d 49 54 2e 45 44 55 72 61

; 65 62 75 72 6e

ng_to_key (string, salt)

7, String:

;; ‘password (length 8 bytes)

7, 70 61 73 73 77 6f 72 64

7, Salt:

des_str

‘ ATHENA. M T. EDUr aeburn’ (length 21 bytes)
41 54 48 45 4e 41 2e 4d 49 54 2e 45 44 55 72 61
;; 65 62 75 72 6e
odd = 1;
s = string | salt;
tempstring = 0; /* 56-bit string */
pad(s); /* with nulls to 8 byte boundary */
;; S = pad(string|salt):
;; ‘ passwor dATHENA. M T. EDUr aebur n\ x00\ x00\ x00’
i (length 32 bytes)

Raebur n St andards Track [Page 40]

RFC 3961 Encrypti on and Checksum Speci ficati ons February 2005

7, 70 61 73 73 77 6f 72 64 41 54 48 45 4e 41 2e 4d
;; 49 54 2e 45 44 55 72 61 65 62 75 72 6e 00 00 00
(8byteb|ock ins) {
; loop iteration O
; 8bytebl ock:
; ‘password’ (length 8 bytes)
7, 70 61 73 73 77 6f 72 64
;; 01110000 01100001 01110011 01110011 01110111 01101111
; 01110010 01100100
[

r

56bitstring = renmoveMsBit s(8bytebl ock);
;; bB6bitstring
;; 1110000 1100001 1110011 1110011 1110111 1101111
;; 1110010 1100100

if (odd == 0) reverse(56bitstring); ;. odd=1

odd = ! odd

tenmpstring = tenpstring XOR 56bitstring;

;; tenmpstring
;; 1110000 1100001 1110011 1110011 1110111 1101111
;; 1110010 1100100

(8byteb|ock ins) {
; loop iteration 1
; 8bytebl ock:
; "ATHENA. M (|l ength 8 bytes)
7y 41 54 48 45 4e 41 2e 4d
;; 01000001 01010100 01001000 01000101 01001110 01000001
; 00101110 01001101
ing = renpoveMSBi t s(8byt ebl ock) ;
;; HB6bitstring
;; 1000001 1010100 1001000 1000101 1001110 1000001
;7 0101110 1001101
if (odd == 0) reverse(56bitstring); ;; odd=0
reverse(56bitstring)
;; b6bitstring after reverse
;; 1011001 0111010 1000001 0111001 1010001 0001001
;3 0010101 1000001
odd = ! odd
tenmpstring = tenpstring XOR 56bitstring
; tenmpstring
; 0101001 1011011 0110010 1001010 0100110 1100110
; 1100111 0100101

r

56bi t st

(8byteb|ock ins) {
;; loop iteration 2
;; 8byt ebl ock:
;; ‘I T.EDUra’ (length 8 bytes)
;7 49 54 2e 45 44 55 72 61
;; 01001001 01010100 00101110 01000101 01000100 01010101

Raebur n St andards Track [Page 41]

RFC 3961

Encrypti on and Checksum Speci ficati ons February 2005

; 01110010 01100001

56bitstring = renoveMsBit s(8bytebl ock);

if (odd
odd = !
tempstri

; 56bitstring

;; 1001001 1010100 0101110 1000101 1000100 1010101
;; 1110010 1100001

== 0) reverse(56bitstring); ;; odd=1
odd

ng = tenpstring XOR 56bitstring;

; tenmpstring

;; 1100000 0001111 0011100 0001111 1100010 0110011
;; 0010101 1000100

for (8byteblock in s) {

if (odd

56bi t St r

loop iteration 3
8byt ebl ock:
* ebur n\ x00\ x00\ x00" (Il ength 8 bytes)

01100101 01100010 01110101 01110010 011011120 00000000
00000000 00000000

ng = renoveMSBit s(8byt ebl ock);

; B56bitstring

'; 65 62 75 72 6e 00 00 00
|

;; 1100101 1100010 1110101 1110010 1101110 0000000

; 0000000 0000000
== 0) reverse(56bitstring); ;; odd=0

reverse(56bitstring)

odd = I
tenmpstri

; B6bitstring after reverse
; 0000000 0000000 0000000 0111011 0100111 1010111

;; 0100011 1010011

odd
ng = tenpstring XOR 56bitstring;

;; tenpstring
;; 1100000 0001111 0011100 0110100 1000101 1100100
;; 0110110 0010111

for (8byteblock in s) {
}

t empkey

;; for loop term nated

= key_correction(add_parity_bits(tenpstring));
; tempkey
“\xc1\ x1f 8h\ x8a\ xc8m x2f’ (length 8 bytes)

11000001 00011111 00111000 01101000 10001010 11001000
01101101 00101111

'; cl 1f 38 68 8a c8 6d 2f

key = key_correction(DES- CBC check(s,tenpkey));

Raeburn

;; key
;o "\ xcb\ xc2\ x2f \ xae\ x23R\ x98\ xe3" (length 8 bytes)

St andards Track [Page 42]

RFC 3961

A. 3. DES3 DR

Encrypti on and Checksum Speci ficati ons February 2005

;. cb c2 2f ae 23 52 98 e3
: 11001011 11000010 00101111 10101110 00100011 01010010
;10011000 11100011

; string_to_key key:
;S\ xcb\ xc2\ x2f\ xae\ x23R\ x98\ xe3’ (|l ength 8 bytes)
; cb c2 2f ae 23 52 98 e3

and DK

These tests show t he derived-random and derived-key val ues for the
des3- hmac- shal- kd encryption schene, using the DR and DK functions
defined in section 6.3.1. The input keys were randonly generated,;
the usage values are fromthis specification

key:
usage:
DR:
DK:

key:
usage:
DR:
DK:

key:
usage:
DR:
DK:

key:
usage:
DR:
DK:

key:
usage:
DR:
DK:

key:
usage:
DR:
DK:

key:

usage:
DR:

Raeburn

dce06bl1f 64c857a11c3db57¢51899b2cc1791008ce973b92
0000000155
935079d14490a75¢c3093c4a6e8c3b049c71e6ee705
925179d04591a79b5d3192c4a7e9c289b049c71f 6ee604cd

5e13d31c70ef 765746578531ch51c15bf 11ca82c97cee9df 2
00000001aa

9f 58e5a047d894101c469845d67ae3c5249ed812f 2
9e58e5a146d9942a101c469845d67a20e3c4259ed913f 207

98e6f d8a04a4b6859b75a176540b9752bad3ecd610a252bc
0000000155

12ff £ 90c773f 956d13f c2ca0d0840349dbd39908eb

13f ef 80d763e94ec6d13f d2cald085070249dad39808eabf

622aec25a2f e2cad7094680b7c64940280084cla7cec92b5
00000001aa

f 8debf 05b097e7dc0603686aca35d91f d9a5516a70

f 8df bf 04b097e6d9dc0702686bcb3489d91f d9a4516b703e

d3f 8298cchb166438dch9b93ee5a7629286a491f 838f 802f b
6b65726265726f 73 (" ker beros")
2270db565d2a3d64cf bf dc5305d4f 778a6de42d9da
2370da575d2a3da864cebf dc5204d56df 779a7df 43d9da43

c1081649ada74362e6a1459d01df d30d67c2234c940704da
0000000155

348056ec98f cc517171d2b4d7a9493af 482d999175
348057ec98f dc48016161c2a4c7a943e92ae492¢989175f 7

5d154af 238f 46713155719d55e2f 1f 790dd661f 279a7917¢c

00000001aa
aB8818bc367dadache9a6c84627f b60c294b01215e5

St andards Track [Page 43]

RFC 3961 Encrypti on and Checksum Speci ficati ons February 2005

DK: a8808ac267dada3dche9a7c84626f bc761c294b01315e5cl
key: 798562e049852f 57dc8c343bal7f 2cald97394ef c8adc443
usage: 0000000155

DR: c813f 88b3be2b2f 75424ce9175f bc8483b88c8713a

DK: c813f 88a3be3b334f 75425ce9175f be3c8493b89¢c8703b49
key: 26dce334b545292f 2f eab9a8701a89a4b99ehb9942cecd016
usage: 00000001aa

DR: f 58ef c6f 83f 93e55e695f d252cf 8f e59f 7d5ba37ec

DK: f 48f f d6e83f 83e7354e694f d252cf 83bf e58f 7d5ba37ec5d

A 4. DES3string_to_key

These are the keys generated for some of the above input strings for
triple-DES with key derivation as defined in section 6.3.1.

salt: " ATHENA. M T. EDUr aebur n"
passwd: " password"
key: 850bb51358548cd05e86768c313e3bf ef 7511937dcf 72c3e
salt: "VWH TEHOUSE. GOvdanny"
passwd: " pot at oe"
key: df cd233dd0a43204ea6dc437f b15e061b02979c1f 74f 377a
salt: " EXAMPLE. COVbuckar oo"
passwd: "penny"
key: 6d2f cdf 2d6f bbc3ddcadb5da5710a23489b0d3b69d5d9d4a
salt: "ATHENA. M T. EDWuri " + s-caron(U+0161) + "i"
+ c-acut e(U+0107)
passwd: eszett (U+00DF)
key: 16d5a40elce3bach61b9dce00470324c831973a7b952f eb0
salt: " EXAMPLE. COWi ani st "
passwd: g-cl ef (U+1011E)
key: 85763726585dbclccebec43elf 751f 07f 1c4cbb098f 40b19

A.5. Modified CRGC 32

Bel ow are nodi fi ed- CRC32 val ues for various ASCl

Only the printable ASCI1 characters are checksumred, wit

style trailing zero-val ued octet.

sequence of output bytes as used in Kerberos are shown.
val ues are separated here to enphasi ze that they are octet val ues and
not 32-bit nunbers, which will be the nbst convenient fo

mani pul ation in sone inplenentations.

Raeburn

St andards Track

and octet strings.

hout a C

The 32-bit nodified CRC and the

(The octet

rmfor

The bit and byte order used

[Page 44]

RFC 3961 Encrypti on and Checksum Speci ficati ons February 2005

internally for such a nunber is irrelevant; the octet sequence
generated is what is inportant.)

nod-crc-32("foo") = 33 bc 32 73
nmod- crc-32("test0123456789") = d6 88 3e b8
nmod- cr c- 32(" MASSACHVSETTS | NSTI TVTE OF TECHNOLOGY") = f7 80 41 e3
nmod- cr c- 32(8000) = 4b 98 83 3b
nod- crc-32(0008) = 32 88 db Oe
nod- crc- 32(0080) = 20 83 b8 ed

nod- crc-32(80) = 20 83 b8 ed
nod- cr c- 32(80000000) 3b b6 59 ed
nod- cr c- 32(00000001) 96 30 07 77

B. Significant Changes from RFC 1510

The encrypti on and checksum mechani sm profiles are new. The old
specification defined a few operations for various nechani sns but
didn’t outline what abstract properties should be required of new
nechani sns, or how to ensure that a nechanismspecification is
conpl ete enough for interoperability between inplenentations. The
new profiles differ fromthe old specification in a few ways:

Sone message definitions in [Kerbl510] could be read as pernmitting
the initial vector to be specified by the application; the text
was too vague. It is explicitly not permtted in this
specification. Sonme encryption algorithns nay not use
initialization vectors, so relying on chosen, secret
initialization vectors for security is unwise. Also, the
prepended confounder in the existing algorithms is roughly

equi valent to a per-nessage initialization vector that is reveal ed
in encrypted form However, carrying state across from one
encryption to another is explicitly permtted through the opaque
“ci pher state" object.

The use of key derivation is new.

Several new nethods are introduced, including generation of a key
in wire-protocol format fromrandominput data

The neans for influencing the string-to-key algorithmare laid out
nore clearly.

Tri pl e- DES support is new.
The pseudo-random function i s new.

The des-cbc-crc, DES string-to-key and CRC descriptions have been
updated to align themw th existing inplenentations.

Raebur n St andards Track [Page 45]

RFC 3961 Encrypti on and Checksum Speci ficati ons February 2005

[Ker b1510] did not indicate what character set or encoding m ght be
used for pass phrases and salts.

In [Kerbl1510], key types, encryption algorithns, and checksum
algorithms were only | oosely associ ated, and the associ ati on was not
wel | described. |In this specification, key types and encryption

al gorithnms have a one-to-one correspondence, and associ ati ons between
encryption and checksum al gorithms are described so that checksumns
can be conputed given negotiated keys, w thout requiring further
negoti ati on for checksum types.

Not es

[1] Al'though Message Authenticati on Code (MAC) or Message Integrity
Check (M C) would be nore appropriate terns for many of the uses
in this docunment, we continue to use the term checksum for
hi storical reasons.

[2] Extending CBC nbde across nmessages woul d be one obvi ous exanpl e
of this chaining. Another might be the use of counter node, with
a counter randonmly initialized and attached to the ciphertext; a
second message could continue increnenting the counter when
chai ning the ci pher state, thus avoiding having to transm't
anot her counter value. However, this chaining is only useful for
uni nterrupted, ordered sequences of nessages.

[3] In the case of Kerberos, the encrypted objects will generally be
ASN. 1 DER encodi ngs, which contain indications of their length in
the first few octets.

[4] As of the time of this witing, new nodes of operation have been
proposed, sone of which may permit encryption and integrity
protection simultaneously. After sone of these proposals have
been subjected to adequate analysis, we may wish to formulate a
new sinmplified profile based on one of them

[5] It should be noted that the sanple vector in appendix B.2 of the
origi nal paper appears to be incorrect. Two independent
i mpl enentations fromthe specification (one in C by Marc
Horowi tz, and another in Scheme by Bill Somrerfeld) agree on a
value different fromthat in [Blunenthal 96].

[6] For exanmple, in MT s inplenentation of [Kerbl510], the rsa-nd5
unkeyed checksum of application data may be included in an
aut henticator encrypted in a service's key.

[7] Using a variant of the key limts the use of a key to a
particul ar function, separating the functions of generating a

Raebur n St andards Track [Page 46]

RFC 3961 Encrypti on and Checksum Speci ficati ons February 2005

[8]

Nor mat i

checksum from ot her encryption perfornmed using the session key.
The constant OxFOFOFOFOFOFOFOFO was chosen because it naintains
key parity. The properties of DES precluded the use of the

conpl emrent. The same constant is used for simlar purpose in the
Message Integrity Check in the Privacy Enhanced Mail standard.

Per haps one of the nore conmon reasons for directly performng
encryption is direct control over the negotiation and to select a
"sufficiently strong" encryption al gorithm (whatever that means
in the context of a given application). Al though Kerberos
directly provides no direct facility for negotiating encryption
types between the application client and server, there are other
neans to acconplish sinmilar goals (for exanple, requesting only
"strong" session key types fromthe KDC, and assunming that the
type actually returned by the KDC will be understood and
supported by the application server).

ve References

[BCP26] Narten, T. and H Alvestrand, "Guidelines for Witing

[Bel

[Blu

an | ANA Considerations Section in RFCs", BCP 26, RFC
2434, Cctober 1998.

| ar e98] Bell are, M, Desai, A, Pointcheval, D., and P
Rogaway, "Rel ations Anong Notions of Security for
Publ i c- Key Encryption Schenes". Extended abstract
publ i shed in Advances in Cryptol ogy-Crypto 98
Proceedi ngs, Lecture Notes in Computer Science Vol.
1462, H. Krawcyzk ed., Springer-Verlag, 1998.

nent hal 96] Blunenthal, U and S. Bellovin, "A Better Key Schedul e
for DES-Li ke G phers", Proceedi ngs of PRAGOCRYPT ' 96,
1996.

[CRC] I nternational Organization for Standardization, "ISO

I nformati on Processing Systens - Data Conmuni cation -
Hi gh-Level Data Link Control Procedure - Frane
Structure," 1S 3309, 3rd Edition, Cctober 1984.

[DES77] Nati onal Bureau of Standards, U. S. Departnent of

Raeburn

Conmer ce, "Data Encryption Standard," Federa
I nformati on Processing Standards Publication 46,
Washi ngton, DC, 1977.

St andards Track [Page 47]

RFC 3961

[DESI 81]

[DESMBO]

[Dol ev91]

[HVAC]

[KRB5- AES]

[MD4- 92]

[MD5- 92]

[SGO2]

Encrypti on and Checksum Speci ficati ons February 2005

Nati onal Bureau of Standards, U S. Departnent of
Commerce, "CGuidelines for inplenenting and using NBS
Data Encryption Standard," Federal |nformation
Processi ng Standards Publication 74, Wshington, DC,
1981.

Nati onal Bureau of Standards, U S. Departnent of
Conmer ce, "DES Modes of Operation," Federal

I nformati on Processing Standards Publication 81,
Springfield, VA Decenber 1980.

Dol ev, D., Dwork, C., and M Naor, "Non-nalleable
crypt ography", Proceedings of the 23rd Annual
Synposi um on Theory of Conputing, ACM 1991.

Krawczyk, H., Bellare, M, and R Canetti, "HMAC
Keyed- Hashi ng for Message Authentication", RFC 2104,
February 1997.

Raeburn, K., "Advanced Encryption Standard (AES)
Encryption for Kerberos 5", RFC 3962, February 2005.

Rivest, R, "The MD4 Message-Digest Al gorithni, RFC
1320, April 1992.

Rivest, R, "The MD5 Message-Digest Algorithm", RFC
1321, April 1992.

Stubbl ebine, S. and V. D. Gigor, "On Message
Integrity in Cryptographic Protocols," in Proceedi ngs
of the | EEE Synposi um on Research in Security and
Privacy, GCakland, California, May 1992.

I nformati ve References

[Bel | ovi n91]

[Bel I ovi n99]

[EFF- DES]

[ESP- DES]

Raeburn

Bellovin, S© M and M Merrit, "Limtations of the
Ker beros Aut hentication Systenml, in Proceedi ngs of the
Wnter 1991 Usenix Security Conference, January, 1991.

Bellovin, S. M and D. Atkins, private conmuni cations,
1999.

El ectronic Frontier Foundation, "Cracking DES: Secrets
of Encryption Research, Wretap Politics, and Chip
Design", OReilly & Associates, Inc., My 1998.

Madson, C. and N. Doraswany, "The ESP DES- CBC Ci pher
AlgorithmWth Explicit 1V', RFC 2405, Novenber 1998.

St andards Track [Page 48]

RFC 3961 Encrypti on and Checksum Speci ficati ons February 2005

[GSS- KRB5]

[HVAC- TEST]

[| PSEC- HVAC]

[Ker b]

[Ker b1510]

[RCS]

[RFC1851]

[Schnei er 96]

Edi tor’s Address

Kennet h Raeburn
Massachusetts |
77 Massachusett
Canbri dge, MA O

Linn, J., "The Kerberos Version 5 GSS- APl Mechani snf
RFC 1964, June 1996.

Cheng, P. and R denn, "Test Cases for HMAC MD5 and
HVAC- SHA- 1", RFC 2202, Septenber 1997.

Madson, C. and R d enn, "The Use of HVAC- SHA- 1- 96
within ESP and AH', RFC 2404, Novenber 1998.

Neuman, C., Yu, T., Hartman, S., and K. Raeburn, "The
Ker ber os Networ k Authentication Service (V5)", Wrk in
Progress, Septenber 2004.

Kohl, J. and C. Neuman, "The Kerberos Network
Aut hentication Service (V5)", RFC 1510, Septenber
1993.

Baldwin, R and R Rivest, "The RC5, RC5-CBC, RC5-
CBC- Pad, and RC5-CTS Al gorithns", RFC 2040, October
1996.

Karn, P., Metzger, P., and W Sinpson, "The ESP Triple
DES Transform', RFC 1851, Septenber 1995.

Schneier, B., "Applied Cryptography Second Edition",
John Wley & Sons, New York, NY, 1996. |SBN 0-471-
12845-7.

nstitute of Technol ogy
s Avenue
2139

EMai | : raeburn@rit. edu

Raeburn

St andards Track [Page 49]

RFC 3961 Encrypti on and Checksum Speci ficati ons February 2005

Ful | Copyright Statenent
Copyright (C The Internet Society (2005).

Thi s docunent is subject to the rights, licenses and restrictions
contained in BCP 78, and except as set forth therein, the authors
retain all their rights.

Thi s docunent and the information contained herein are provided on an
"AS | S' basis and THE CONTRI BUTOR, THE ORGANI ZATI ON HE/ SHE REPRESENTS
OR | S SPONSORED BY (I F ANY), THE | NTERNET SOCI ETY AND THE | NTERNET
ENG NEERI NG TASK FORCE DI SCLAI M ALL WARRANTI ES, EXPRESS OR | MPLI ED,

| NCLUDI NG BUT NOT LI M TED TO ANY WARRANTY THAT THE USE OF THE

I NFORMATI ON HEREI N W LL NOT | NFRI NGE ANY RI GHTS OR ANY | MPLI ED
WARRANTI ES OF MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR PURPCSE

Intell ectual Property

The | ETF takes no position regarding the validity or scope of any
Intell ectual Property Rights or other rights that m ght be clained to
pertain to the inplenentation or use of the technol ogy described in
this document or the extent to which any |icense under such rights

m ght or mght not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the |ETF' s procedures with respect to rights in | ETF Docunents can
be found in BCP 78 and BCP 79.

Copi es of IPR disclosures made to the | ETF Secretariat and any
assurances of licenses to be nmade available, or the result of an
attenpt nade to obtain a general |icense or permission for the use of
such proprietary rights by inplenenters or users of this
specification can be obtained fromthe |ETF on-line | PR repository at
http://ww.ietf.org/ipr.

The 1ETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to inpl enent
this standard. Pl ease address the information to the IETF at ietf-
ipr@etf.org.

Acknowl edgenent

Funding for the RFC Editor function is currently provided by the
I nternet Society.

Raebur n St andards Track [Page 50]

