Net wor k Wor ki ng Group R Fielding

Request for Comments: 2616 UC Irvine
bsol etes: 2068 J. Cettys

Cat egory: Standards Track Conpag/ VBC
J. C. Mgu

Conpaq

H Frystyk

WBC/MT

L. Masinter

Xer ox

P. Leach

M crosoft

T. Berners-Lee

WBC/MT

June, 1999

Hypertext Transfer Protocol -- HTTP/1.1

Status of thisMemo

This document spedfies an Internet standards tradk protocol for the Internet community, and requests discusson and
suggestions for improvements. Please refer to the aurrent edition of the “Internet Official Protocol Standards’ (STD
1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

Copyright (C) The Internet Society (1999. All Rights Reserved.

Abstract

The Hypertext Transfer Protocol (HTTP) is an application-level protocol for distributed, coll aborative, hypermedia
information systems. It is a generic, stateless protocol which can be used for many tasks beyond its use for
hypertext, such as name servers and distributed oljed management systems, through extension of its request
methods, error codes and healers[47]. A feaure of HTTP isthe typing and negotiation of data representation,
allowing systems to be built i ndependently of the data being transferred.

HTTP has been in use by the World-Wide Web global information initiative since 199Q This pedfication defines
the protocol referred to as“HTTP/1.17, and is an update to RFC 2068[33].

Fielding, et a Standards Tradk [Page 1]

RFC 2616 HTTP/1.1 June, 1999

Table of Contents

HYPERTEXT TRANSFER PROTOCOL --HTTP/L 1. 1
S = LU LS o 1 TS 2o SRS 1
1070]0) Y/ a1 10 A\ Lo { ot TSRS 1
N o1 = o SR 1
TADIE OF CONTENES.....ceiieeieie ettt b e bt bt e st e e e be s be s bt eb e e ae e s e e se et e sbesbesbeeneenee e eneas 2
1 L oo [Tt f o o 7
11 PUIOSE ...ttt e e et s et e s ae e e bt et e e a b e eabeeheesb e e sbe e abeebeeanesanesaeenbeenreaas 7
1.2 REGUITEIMENES ...ttt sttt b e a e ae e e e ee s e e b e sbeeaeeheeneemeeseeabesaesaeeaesneeneeeaneas 7
13 LI 12011 oo | USRS 8
14 OVENAIl OPEIBHION ...ttt sttt ae e e e e se e besbesaeese e e aneeseeabesaeeaeeneeneansees 10

2 Notational Conventionsand GeneriC GramMmMArcoccoeereerereneseseeeereeee e e e e seeeas 11
2.1 Uo7 010= o 8= L 11
2.2 BASIC RUIES ..ottt et et sttt sttt bbbt et sttt ettt 12

3 ProtOCOl Par@mMELEN S........ccueiiieiisie sttt e s ettt e e e se e e s eestestesseese e e entestesteseesaenseeneesaeneenss 13
31 o I V= £ Lo o PSS 13
3.2 Uniform ReSOUICE 1AENtifIErS.......ooue i 14
321 (€11 = IR L= USRS 14
322 011 o JL U1 TSR 14
323 0 I @] 0gT o 7= = o o USSR 15

33 Date/ TIME FOIMMELS ... ettt et e e sb e st ae e e e e seesbesbesaeeneeneeneeneen 15
331 FUIT D@Leeveteeteste ettt sttt sttt sttt st st bese e s e s te e ebestese et e sbeseesesteneesestenensens 15
3.3.2 (DS L= = ol o SR 16

34 (O g o L= S (ST 16
341 [TESS TgTo [0 7= = SR 16

35 (@0]g11< 8O0 o] oo T3S 16
3.6 I = = g Oo o] o TSRS 17
3.6.1 Chunked Transfer COOING...... oottt re e ee e 18

37 L= o = N - TSPV 18
371 Canonicalization and TexXt DEfaUILS..........cooiiiiirieeee e 19
3.7.2 T T 7= o A 1Y 1SS 19

3.8 PrOQUCE TOKENS. ... ettt bttt e e e b e e aeeae e e e eeseesbesbesneeneeneenneneens 20
3.9 QUBIITY WV BIUBS ...ttt et a et et se e b e s be et ehe e e aneeseesbesaeeneeneeneaneees 20
3.10 =g o 0= o[IF=o T USSR 20
311 011 1= o = TSPV 20
3.12 RANGE UNITS ...ttt bttt ettt b e et eae e e e seseesbesbesaeereeneennannans 21

4 L L Y S Vo SRS 21
4.1 Sz o TS IR - T 21
4.2 M ESSAOE HEAEY'Seeeceeeeciesieste ettt et st e e e te s te st e s teeneese e e en e saestestesneerenneenaeeens 21
43 Y= TC = o YRS 22
4.4 MESSAGE LENGLN ...t ne e e e naennen 23
45 General HEAOEr FIEUSoveeiiieeereeee ettt st seene s 23

Fielding, et a Standards Track [Page 2]

RFC 2616 HTTP/1.1 June, 1999

5 =0 [0 1= TSP 24
5.1 L 0 [0 1=S T =P RTRS 24
511 1Y =1 o SRRSO 24
512 REGUESE-URI ...ttt sttt sttt b e b e b e sbeneene s 24

5.2 The Resource ldentified by aREQUESLccocveiiiicecece e 25
5.3 REQUESE HEAAE! FIEIUS.......ecveece et ae st b e sreere e enaennens 26

6 RESDONSE ...ttt h e bbbt e bt e et s et e eae e ehe e e b e et e e a bt eabeeheeeheeeheeebeenaeeeesaneeaes 26
6.1 S (0 I USSR 26
6.1.1 Status Code and ReaSON PhIraSeoociiiiiieeeee e 26

6.2 ReSPONSE HEBAE! FTEIAS. ...ttt e e e e 28

7 1 R 28
7.1 0 A 17 o (= O Y= Lo (PRSI 28
7.2 0101 Y20 =0 o VSRS 29
721 17/ =S 29
722 0101 Y20 = o |1 29

8 LO70] T 0T o (o] =S 29
8.1 PErsiStent CONMNECLIONS........couiiiieieeie ettt ettt be et ae e e e e e seesbesbesaeeseeneeneaneens 29
811 PUIMOSE ...ttt ettt b ettt a e hee s he e s be e sbe e besaeesanesaeesae e beenbeeas 29
8.1.2 OVENAll OPEFBLION ...ttt et be et ae et e e e seesbesaesaesaeeneeneeeaneas 30
8.1.3 PIOXY SBIVEIS... .ottt ettt st b e bttt ea b e eaeeshe e s be e sbeebesaeesanesaeasaeabeenrenas 31
814 Practical CONSIAEIALIONS.........coueeieieieere ettt sttt a et se et e e b ene e e e e es 31

8.2 Message TransmiSSioN REQUITEMENTS.......c..oiiiiieieeieeeeee ettt e e e see st sbe e ae e eneeseens 31
8.21 Persistent Connections and FIOW CONLIOlcccceeiiiiiirineeeee e 31
8.2.2 Monitoring Connections for Error Status MEeSSAgESccvevverueeeerieeiee e 31
8.2.3 Use of the 100 (CONLINUE) SEBEUSverververeereereeeereeieseesteseesiesseseeeesseseeseeseessesneeseeneenseses 32
8.24 Client Behavior if Server Prematurely Closes Connectionccceceoeverenenenenicesienens 33

9 M EEOO DEfINITIONS ...ttt ettt st sttt et sttt bt 33
9.1 Safe and [dempotent MELNOAScccviiieeicesere e 33
9.11 SAE MEINOUS ...ttt 33
9.1.2 (Ko =700 (=01 1Y {0 34

9.2 OPTIONS ...ttt sttt st s bt st e n e b e st e s e e b e s e en e e b e st e ne e b e st eneebeseenenns 34
9.3 L SO 35
94 7 I SRS 35
95 0 151 SRS 35
9.6 U SRS 36
9.7 3 I SRS 36
9.8 TRAGCE ...ttt bRt b bRt bbbt b ettt e st e 37
9.9 CONNECT .ttt sttt sttt sttt b e bbb e b e st e st e ke st e se et e sbeseebesbeseebesbeneebesbeseenesbeneenens 37
10 StAtUS COOE DEFINITIONS ...t et e e st sae e e e e e e eneas 37
101 INFOPMELTONE] 1XX ...ttt ettt e e sb e et ese e e e e e seesbesbesneereeneeneeneens 37
10.11 L0 CONLINMUE. ...ttt etee e e e seestesee et ebe e st esee s eneeseeabessesseaseeneaneeasebeseeseesaeeneeneeneansesen 37
10.1.2 101 SWiItChiNG PrOtOCOIS ... ettt 38

10.2 SUCCESSF UL 2XX ..ttt ettt b e bt e ae e a e e et e seeebesbeeaeeaeeneanseseesbesaeeaeeneeneansees 38
10.2.1 2200 TSR 38
10.2.2 O RO = o TSP 38
10.2.3 L0 A AW o= o[o TSR 38
10.24 203 Non-Authoritative INFOrMatioNcoeeirieiieeere e 39
10.2.5 204 INO COMEENE.....teeteeteete ettt sttt ettt et eaeesaeesbeesbeesbe e abeseesaeesaeesaeanbeanbesnbeeanesaeesaeesaeas 39
10.2.6 205 RESEL COMEENE....e.veuveteeeeestesieeistesteseetestesesteseesesseseesessessesessessesessesseseesessesessessenensessenenses 39
10.2.7 206 Partial CONENMLccovveieiirieieiesieisesieesteseesesee e s e sse e s tessesessesseseesessesessessenensessenenses 39

Fielding, et a Standards Track [Page 3]

RFC 2616 HTTP/1.1 June, 1999
10.3 S o = ot [0 T 3 TSPV 40
10.3.1 300 MUIIPIE CROICES......ceeeceeeteeee ettt sttt st se b e b e e e e eneas 40
10.3.2 301 MovEed PErmManentlycceoeeeeiiee ettt s e s 40
10.3.3 0228 o T 0o SRS 40
10.3.4 TR Y @1 01 SRS 41
10.3.5 304 NOt MOGITIEAvvieeiieeee ettt sae et b ene 41
10.3.6 305 USE PrOXY .. cueetiiieeestiriesestesieseesestesessessesessessessesessessesessassesessensesessensesessessesessessensasessensns 41
10.3.7 TG (000 o) SRS 41
10.3.8 307 TemMPOrary REAITECEcc.eieieeeeeee et e s 42
104 (O I g o] g ST 42
10.4.1 400 BaO REGUESEc.eiviieeisieriett sttt sttt sttt st se et se et st e et ste e tesbe e ebesbe e etesaeneesesbeneens 42
104.2 401 UNBULNOFTIZEA. ...ttt e e s st sbe e sne e e enee e 42
104.3 402 Payment REQUITEM........c.iiiieiieeee ettt e e see st saesaesne e e enee s 42
10.4.4 103 o g 1T o L= o TSRS 42
10.4.5 71072\ Lo o 01U o TR 43
10.4.6 405 Method NOt AHTOWEDccviieieiisieeee ettt st 43
104.7 406 NOt ACCEPLADIE ...t st e e e 43
10.4.8 407 Proxy Authentication REQUITEM..........cooiiiiiiiieieee e e 43
10.4.9 408 REOUESE TIMEOULeeiiiieeiteeteeeeiee e e ettt e e e e besbe st sse e e e eeseesbesbesneenee e eneees 43
10.4.10 209 CONFHCE ..vtitieetiiteseete e sttt sttt ettt sttt se et st seesesbese et e s beseesestesaesesbeseesesteseesestenensens 43
10.4.11 (O o] = TSRS 44
10.4.12 = oo 1 gl = o 1] = o SR 44
10.4.13 412 Precondition Fail€.........c.ooiieee et 44
10.4.14 413 ReqUESt ENtity TOO LaArQE....ccouereerieriereieeieieiereeie et see e e se et e e sae e sne e e e e es 44
10.4.15 414 ReqQUESE-URI TOO LONG ...ttt st s ne e 44
10.4.16 415 UNSUPPOrted MEIA TYPEceeeeerierie ettt sttt et e e e e e 44
10.4.17 416 Requested Range NOt Satisfiable..........coeiiieiieiiee e 44
10.4.18 417 EXPECation FallEd.........ccccoiiieiiieise ettt s 45
10.5 SEIVEL EFTOP SXX .nttiteeteeie ettt sttt ettt st st sae e be e bt e beeabeeaeesaeesbeesbeesaeebeseesaeesaeenbeanbeannenas 45
1051 500 INEEMNEI SEIVEN EITOF ...ttt sttt st e e e e saesae e e e e eneas 45
10.5.2 501 NOt IMPIEMENEEAeeeiieieeeee e s ne s 45
105.3 502 BAO GALEWAYcveeveeeeeeririesietesiesessestees e siessesesseseesestessesessesesessensesessessesessessesessessensns 45
1054 503 Service UNavailable..........ooeiieieee e 45
1055 504 GateWay TIMEOUL.oiuiieieieeeeeeeit ettt e et et esbesaesae e e eeseesaeseesaesaeeneeneeneeneas 45
10.5.6 505 HTTP Version NOt SUPPOIEAccuoiirierierieeieeeie e ee s 45
11 ACCESS AULNENTICALION........eitieetiiie ettt ettt b e s b e b ebesbeneenen 46
12 (@l a10= 0 A\ L= o To LA =11 o] o F USRS 46
121 SErVer-adriven NEQOLIATON.c.oviiereee ettt e e e et e e saeeneeneeneeneas 46
12.2 AQENt-Ariven NEGOLIBLIONc..oiiiieeee et b e s b ene e e e s 47
12.3 Transparent NEGOLIATONco.eieieieeeee ettt se et e e sbe b nesne e e aneees 47
13 (@2 Uot a1 T 0o 11 1 1 I I = SRS 47
13.1.1 CaCNE COMTECINESS. ... vttt sttt st sttt st e et st e e s be st e s e sbe st e st e be st eneebeseeneebeseenennes 48
13.1.2 LAY = 11 o 49
13.1.3 Cache-control MEeChBNISMS.........coiiiie e 49
13.14 EXplicit USer AQENt WaIMiNGScoevererieieieiesieeeseesiestestese e sseseeaessesseseessessessssssssssnseses 49
13.1.5 Exceptions to the Rules and WarningS.........cccceveeeverenesese e seeeeieseesee e s seeseeseenee s 50
13.1.6 Client-controll€d BENAVIONccoirieiiirieirterieese et enes 50
13.2 oL = L0 01, T ISR 50
13.2.1 Server-SpeCified EXPITAtiON........cceveieiese e e et e e e enaeneens 50
13.2.2 [L= U S T e o1 (o o 51
13.2.3 Yo (X @ Lo o] 51
13.24 EXPiration CalCUIAIONS..........ccveiieieriisiese sttt e et er e se e te st sresre e enaeneeneees 52

Fielding, et a

Standards Track [Page 4]

RFC 2616 HTTP/1.1 June, 1999

13.25 Disambiguating EXPiration VAIUESc.coiiiiieeee e 53
13.2.6 Disambiguating MUltiple RESPONSES.oiuiriiieieeeie e 53
13.3 Validation MOE ...ttt be e e e e e e 53
133.1 Last-MOGIfiEd DEESc.coereeeerierieisie ettt sttt s es st te st e sesbeseesesbesaesesbeseesens 54
13.3.2 Entity Tag Cache Validators.........cooiiii e 54
13.3.3 Weak and Strong ValidatorsScoeeeeeeieeeeseeeee e 54
13.34 Rules for When to Use Entity Tags and Last-Modified Dates..........ccccooeveierienicnennennene 56
13.35 Non-validating CoNAitiONAIS.........ccoiiririiieeeee e 57
134 ReSPONSE CaChEADITTLY ... e et ae e e e e e 57
135 Constructing Responses From CaChES.........coouiiiriii et 57
1351 End-to-end and Hop-by-hop HEaders ..o 58
135.2 NON-MOdifiable HEBAEIS.........e e 58
135.3 CombINING HEAOEIS ..ottt sttt et sae e sre e e enseneens 59
1354 CombinNiNg BYtE RANGESecveiueeiieieie ettt sttt se et saesaesae e eneeneens 59
13.6 Caching Negotiated RESPONSES........ciueiuerueeieiereeste ettt e et ee st see e esee e e sbeseeseeseesneeneeneeneas 60
13.7 Shared and NoN-Shared CaChes...........coi i 60
13.8 Errors or Incomplete Response Cache BENAVIOFcc.coieiiiiiiiineeeee e 61
139 Side Effects of GET @nd HEADcccoviiieiseseeti ettt nens 61
13.10 Invalidation After UpdateS or DEIELIONS.........ccoiiieiiirieie e 61
13.11 WIte-THrough MandELOrYcoeiirieieee et s sae e e e e neeneas 61
13.12 CaChe REPIBCEMENE ...ttt e e e e et e et eaeebeeaeene e e eneees 62
13.13 [TS (0 I (TSP 62
14 Header Field DEfINITIONSccciieiieirseene e 62
14.1 o oo | PSSR 62
14.2 Y o= ol g 64
14.3 WA o= ot = 0 o [o 64
14.4 oo o ol =T 0= T PSSR 65
145 ACCEPE-RENGES......ceeeieeie ettt et e e st e steesteeee st e sneesseenseenteeneesneesneenrens 66
14.6 0 OSSR 66
14.7 N | o OO TSR P S 66
14.8 y Y11 o g4z (o SO ST R 66
14.9 CACNE-CONLIOL ...ttt r e 67
149.1 WhaL IS CaChEADIE ..o 68
14.9.2 What May be Stored by Caches..........cccoveieieiicicecee e 69
14.9.3 Modifications of the Basic Expiration MeChaniSM.........ccccevveeeeieeiesene e e seeseenee s 69
149.4 Cache Revalidation and Reload CONrOlS.........ccvriirnreinnreisseenese e 70
1495 NO-Transform DITECHIVE.........ccreriirieeir et 72
14.9.6 Cache COoNtrol EXIENSIONS......c..ciirrireireeeesisreeses st 72
14.10 CONMNECHION ...ttt r e R et ne bt e bt neer e nner et neer s e 72
14.11 (@011t = 00 o [o P 73
14.12 LO0 1= o1l 1= o 0= T TSR 73
14.13 (@011t 1= oo 11 74
14.14 CONLENE-LOCELION ...ttt 74
14.15 L@00] 01 =01 1Y 1 0L SRS 75
14.16 L0001 =1l 0TSSR 75
14.17 (001011 0|l 1Y o RSP PTOPROPROt 77
14.18 [=SSP 77
14.18.1 Clockless Origin Server OPEration.........ccccevereeereeeeseeseseseseseeeeseeseesee e e ssesseesseseeses 78
14.19 [1= o OSSR 78
14.20 L 0o S 78
14.21 T 0 1= 78
14.22 L 0] 0 0 TP 79
14.23 [(01 OSSR 79
14.24 LI (o o TR 80

Fielding, et a Standards Track [Page 5]

RFC 2616 HTTP/1.1 June, 1999
14.25) Y LoTo 1= o oI ot PSSR 80
14.26 IF-NONE-MEECH ... e e e e e e e e e e e e e e e e e eeeeeeeeeeesbaaaans 81
14.27 L1z 14 o TSP RUR 82
14.28 H-UNMOGifi@-SINCE... ..ot eeeer e e e e et e renaan 82
14.29 (IS 1Y o To = o PSSP RPRROPPPIS 83
14.30 (o To7 (7o) o FR SO PUOPUTPRS 83
14.31 = G o 47 o OSSP 83
14.32 L =6 0= D PP P UPUPPPPPPRPRRt 84
14.33 ProXY-AULNENTICAEeeeiiee et eeennnneeees 84
14.34 PrOXY-AULNOTTZETON ...ttt e et e et e e e e e e e e e e e e e e s e anmmneaaaee e 85
14.35 s [0 T PSSP 85

14351 BYIE RANGES. ... ettiiiee ettt ettt e e ettt e e e s smmee e st e e e e e e bbbt ee e e e anne e e nrraeeeeesane 85

14.35.2 RaNQE RELMHEVAl REGUESES........eetieeieeeie ettt ettt a e e e e e e e e 86
14.36 1 (= G PR PRRR 86
14.37 [A | (= USRS 87
14.38 RS A PSSR 87
14.39 LI USSR 87
14.40 1= 1 PSSR 88
1441 Transfer-ENCOINGcooi ittt et e e e e e e e e e eeeeeeeeeeeeeas 88
14.42 L8]0l = o [T PURPTUU R 88
14.43 U 0 1= 0| S USSP RRR 89
14.44 LY YRS RR PR 89
14.45 LY AT USSP 90
14.46 RVAT = T 21 T TP a1
14.47 WWW-AULNENEICAE ... eeeee e e e e e e e e et ns 92

15 SeAUrity CONSIAEIALIONSccee e e et i i i et eeer e e s e e e eess st eereeeeeeeeeeennsreeneeees 92

151 Personal INFOMMALTION.iiiiiiie ettt e et sere e e e e e neeees 92
1511 Abuse of Server Log INformationcocoiiiiiiiiiiiieees e seeeree e e eee e a3
151.2 Transfer of Sensitive INfFOrMationcooiiiiiiii i Q3
151.3 Encoding Sensitive INformation iN URI'S........cuuiiiiiiiiiiiiiic et 93
1514 Privagy Issues Conneded to ACCEIt HEAEIS.......uuviviiiiiiiiiiicie e 94

152 Attadks Based On File and Path NamMES........oovuviiiiiiiiiiceee e 94

153 [N ISR s To To { oV TR PRRR 94

154 Locaion Healers and SPOOiNG...........ooiiiiiiiiiiieeeee e e e ee e e aneeeeeeeeeen a5

155 Content-DiSPOSIEION ISTUESvvvveiieiiiiiiieiee e e ettt e e e e e e e e e e s e s rmmmr e e e e e e e e e e e s e e s e e e sanenee s 95

156 Authenticaion Credentials and 1dle ClIentS............eeeeiiiiiiiiie e 95

157 0= To [O o o1 o Vo U 95
157.1 Denia of Service AttadkS 0N PrOXIES........cuvviiieeiiiiiii et 96

16 ACKNOWIEOGMENTS ...ttt et e ettt e e et e e e e e eaaaaeaeesaaamreeeaaaaaaaaaaaaans 96

17 REFEIBNCES. ...ttt ettt e sttt e e s smne e s ettt e e e e s s nnbne e e e snnes 97

18 F T 1 g To A [0 TS = Q9

19 F Y o] o= o [o = SRR 100
191 Internet Media Type message/http and applicaion/httpcoeeeeeeeeiiiiii i 100
192 Internet Media Type multi part/bytEranges.ccccuvvvriirieiieieeereeeerere e e e e e e seeerereeeeeees 101
193 I 1= = gAY o] o o (o] 1 SR 102
194 Differences Between HTTP Entities and RFC 2045ENtiti €S.........oovvvieeeeeiiiiiiieeceee e 102

194.1 Y Y= £ o] o USRS 102
194.2 Conversion to CanoniCa FOMMcoiiiiiiiiiiee e 103
194.3 ConVversion Of DAt FOMMEESoiuuiiiieei ittt e et e e e e s srbeeeeeeseaee 103
194.4 Introduction of Content-ENCOINGccoeiuriiiiiiiiieeer s e s eeeeseeenreeeeeees 103

Fielding, et a Standards Tradk [Page 6]

RFC 2616 HTTP/1.1 June, 1999

1945 No Content-Transfer-ENCOdING.uuuiiiiiiiiiiii e 103
194.6 Introduction of Transfer-ENCOINGuueieiiiiiiiiiii e, 103
194.7 MHTML and Line Length LimitationSuuuueeeiiiiiiiiiieeeiiiiieieeeee et 104

195 AItiONal FEEUIES........eeiiiiiiitiei ettt ettt ettt e s rmnes e s 104
1951 CoNtENt-DISPOSIIONceeeiieeeeeee et e e eneennes 104

19.6 Compatibility With PreVioUS VEIrSIONSoooiiiiiii ittt eee e 105
196.1 Changes froM HT TP/L.0...ccciiiiii ittt et eme et e e e e sebe s 105
196.2 Compatibility with HTTP/1.0 Persistent CONNEAIONS...........uueeeeeieieiiaiieeeeciiieeeeeeeeenn 105
19.6.3 Changes from RFC 20B8.........ccoiuiiiiiiiiesiieeetiee et e st e e emee s bee e sabe e e e asre e e e seneean 106

20 Full Copyright SEAEMENT........coiiiiciceeeee et re e e eneeneeneas 108
20.1 ACKNOWIEAGEMENTeee e eeee e e e e st e e e e e e e e ennnssreeennnneees 108
21 o Lot SOV RTPTISTPTTN 109

1 Introduction

1.1 Purpose

The Hypertext Transfer Protocol (HTTP) is an application-level protocol for distributed, coll aborative, hypermedia
information systems. HTTP has been in use by the World-Wide Web global information initi ative since 199Q The
first version of HTTP, referred to as HTTP/0.9, was a simple protocol for raw data transfer aadossthe Internet.
HTTP/1.0, as defined by RFC 1945[6], improved the protocol by all owing messages to be in the format of MIME-

li ke messages, containing metainformation about the data transferred and modifiers on the request/response
semantics. However, HTTP/1.0 dees not sufficiently take into consideration the dfeds of hierarchicd proxies,
cading, the need for persistent connedions, or virtual hosts. In additi on, the proliferation of incompletely-
implemented applications cdli ng themselves “HTTP/1.0" has necesdtated a protocol version change in order for two
communicating applicaions to determine eat other’ strue caabiliti es.

This pedficdion defines the protocol referred to as“HTTP/1.1". This protocol includes more stringent
requirements than HTTP/1.0 in order to ensure reli able implementation of its feaures.

Pradicd information systems require more functionality than simple retrieval, including search, front-end update,
and annotation. HT TP al ows an open-ended set of methods and headers that indicate the purpose of arequest [47].
It buil ds on the discipline of reference provided by the Uniform Resource ldentifier (URI) [3], asalocaion (URL)
[4] or name (URN) [20], for indicating the resourceto which a methodisto be gplied. Messges are pased in a
format simil ar to that used by Internet mail [9] as defined by the Multi purpase Internet Mail Extensions (MIME) [7].

HTTPisalso used as a generic protocol for communication between user agents and proxies/gatewaysto other
Internet systems, including those supparted by the SMTP [16], NNTP [13], FTP [18], Gopher [2], and WAIS[10]
protocols. In thisway, HTTP all ows basic hypermedia acceasto resources avail able from diverse goplications.

1.2 Requirements

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL", “SHALL NOT”, “SHOULD", “SHOULD
NOT”, “RECOMMENDED”, “MAY", and “OPTIONAL" in thisdocument are to be interpreted as described in
RFC 2119[34].

An implementation is not compliant if it fail s to satisfy one or more of the MUST or REQUIRED level requirements
for the protocols it implements. An implementation that satisfies all the MUST or REQUIRED level and all the
SHOULD level requirements for its protocolsis sid to be “unconditionally compliant”; one that satisfies al the
MUST level requirements but not all the SHOULD level requirements for its protocolsis said to be “conditi onally
compliant.”

Fielding, et a Standards Tradk [Page 7]

RFC 2616 HTTP/1.1 June, 1999

1.3 Terminology

This pedficdion uses a number of termsto refer to the roles played by participantsin, and ojeds of, the HTTP
communication.

connedion
A transport layer virtual circuit established between two programs for the purpose of communication.

message
The basic unit of HTTP communication, consisting of a structured sequence of octets matching the syntax
defined in sedion 4 and transmitted via the onnedion.

request
An HTTP request message, as defined in sedion 5.

response
An HTTP response message, as defined in sedion 6.

resource
A network data objed or servicethat can be identified by a URI, as defined in sedion 3.2. Resources may be
avail able in multi ple representations (e.g. multi ple languages, data formats, size, and resolutions) or vary in
other ways.

entity
Theinformation transferred as the payload of areguest or response. An entity consists of metainformation in the
form of entity-header fields and content in the form of an entity-body, as described in sedion 7.

representation
An entity included with aresponse that is subjed to content negotiation, as described in sedion 12. There may
exist multi ple representations asociated with a particular response status.

content negotiation
The mecdhanism for seleding the gpropriate representation when servicing a request, as described in sedion 12.
The representation of entities in any response can be negotiated (including error responses).

variant
A resource may have one, or more than one, representation(s) associated with it at any given instant. Each of
these representationsis termed a ‘variant.” Use of the term ‘variant’” does not necessarily imply that the resource
is subjed to content negotiation.

client
A program that establi shes connedions for the purpose of sending requests.

user agent
The dient which initi ates arequest. These ae often browsers, editors, spiders (web-traversing robas), or other
end user toadls.

server
An applicaion program that accepts connedions in order to servicereguests by sending badk responses. Any
given program may be cgable of being both a dient and a server; our use of these terms refers only to therole
being performed by the program for a particular connedion, rather than to the program’s capabiliti esin general.
Likewise, any server may ad as an origin server, proxy, gateway, or tunnel, switching behavior based on the
nature of ead request.

origin server
The server on which agiven resourceresides or isto be aeaed.

Fielding, et a Standards Tradk [Page 8]

RFC 2616 HTTP/1.1 June, 1999

proxy
An intermediary program which ads as both a server and a dient for the purpose of making requests on behalf
of other clients. Requests are serviced internally or by passng them on, with possble trandation, to ather
servers. A proxy MUST implement bath the dient and server requirements of this gpedficaion. A “transparent
proxy” isaproxy that does not modify the request or response beyond what is required for proxy authentication
and identification. A “non-transparent proxy” is a proxy that modifies the request or response in order to provide
some alded serviceto the user agent, such as group annotation services, media type transformation, protocol
reduction, or anonymity filtering. Except where dther transparent or non-transparent behavior is explicitly
stated, the HTTP proxy requirements apply to bah types of proxies.

gateway
A server which ads as an intermediary for some other server. Unlike aproxy, a gateway receves requests as if it
were the origin server for the requested resource the requesting client may not be avarethat it is
communicating with a gateway.

tunrel
Anintermediary program which is ading as a blind relay between two connedions. Once ative, atunrel is not
considered a party to the HT TP communicaion, thoughthe tunrel may have been initiated by an HTTP request.
The tunrel ceasesto exist when both ends of the relayed connedions are dosed.

cade
A program’slocd store of response messages and the subsystem that controls its message storage, retrieval, and
deletion. A cade stores cateable responsesin order to reduce the response time and network bandwidth
consumption on future, equivalent requests. Any client or server may include a cabe, thougha cate canot be
used by a server that isadingasatunrel.

cadeale
A responseis catheableif a cate isall owed to store a ©py of the response message for use in answering
subsequent requests. The rules for determining the cadeability of HTTP responses are defined in sedion 13.
Even if aresourceis catedble, there may be alditional constraints on whether a cate can use the caded copy
for aparticular request.

first-hand
A responseisfirst-hand if it comes diredly and without unrecessary delay from the origin server, perhapsvia

one or more proxies. A response is also first-hand if its validity has just been chedked dredly with the origin
server.

explicit expiration time
Thetime & which the origin server intends that an entity should no longer be returned by a cate without further
validation.

heuristic expiration time
An expiration time assgned by a cate when no explicit expiration timeis avail able.

age
The aye of aresponseisthe time sinceit was sent by, or successully validated with, the origin server.

freshnesslifetime
The length of time between the generation of aresponse and its expiration time.

fresh
A responseisfresh if its age has not yet exceeded its freshnesslifetime.

stale
A responseis galeif its age has passed its freshnesslifetime.

Fielding, et a Standards Tradk [Page 9]

RFC 2616 HTTP/1.1 June, 1999

semanticdly transparent
A cade behavesin a*“semanticdly transparent” manner, with resped to a particular response, when its use
aff eds neither the requesting client nor the origin server, except to improve performance When a cadeis
semanticdly transparent, the dient recaves exadly the same response (except for hop-by-hop healers) that it
would have receved had its request been handled diredly by the origin server.

validator
A protocol element (e.g., an entity tag or a Last-Modified time) that is used to find out whether a cate entry is
an equivalent copy of an entity.

upstrean/downstream
Upstream and downstream describe the flow of a message: all messages flow from upstream to donvnstream.

inbound/outbound
Inbound and outbound refer to the request and response paths for messages. “inbound” means “traveling toward
the origin server”, and “outbound” means “traveling toward the user agent”

1.4 Overall Operation

The HTTP protocol is arequest/response protocol. A client sends arequest to the server in the form of arequest
method, URI, and protocol version, followed by a MIME-like message mntaining request modifiers, client
information, and possble body content over a wnnedion with a server. The server responds with a status line,
including the message’ s protocol version and a successor error code, followed by a MIME-like message mntaining
server information, entity metainformation, and pcsshble entity-body content. The relationship between HTTP and
MIME is described in appendix 19.4.

Most HTTP communication isinitiated by a user agent and consists of arequest to be gplied to aresource on some
origin server. In the simplest case, this may be acomplished via asingle cnnedion (v) between the user agent (UA)
and the origin server (O).

R response chain
A more cmplicated situation occurs when one or more intermediaries are present in the request/response chain.
There aethree ®mmon forms of intermediary: proxy, gateway, and tunrel. A proxy is aforwarding agent, recaving
requests for aURI inits absolute form, rewriting all or part of the message, and forwarding the reformatted request
toward the server identified by the URI. A gateway isareceving agent, ading as alayer above some other server(s)
and, if necessary, trandating the requests to the underlying server’s protocol. A tunnel ads asarelay point between
two connedions without changing the messages; tunnels are used when the communicaion needsto passthroughan
intermediary (such as afirewall) even when the intermediary cannot understand the mntents of the messages.

S L response chain
The figure dove shows threeintermediaries (A, B, and C) between the user agent and origin server. A request or
response message that travels the whole chain will passthroughfour separate wnnedions. Thisdistinctionis
important because some HT TP communication options may apply only to the mnnedion with the nearest, non-
tunrel neighbor, only to the end-points of the chain, or to all connedions alongthe chain. Althoughthe diagramis
linear, eat participant may be engaged in multi ple, simultaneous communications. For example, B may be receving
requests from many clients other than A, and/or forwarding requests to servers other than C, at the same time that it
ishandling A’s request.

Any party to the ommunication which is not ading as a tunnel may employ an internal cace for handling requests.
The dfed of a cate isthat the request/response chain is ortened if one of the participants along the chain hasa
caded response gplicable to that request. The foll owingill ustrates the resulting chain if B has a caded copy of an
ealier response from O (via C) for arequest which has not been cached by UA or A.

Fielding, et a Standards Tradk [Page 10Q]

RFC 2616 HTTP/1.1 June, 1999

S response chain
Not all responses are usefully cadheable, and some requests may contain modifiers which placespedal requirements
on cade behavior. HTTP requirements for cade behavior and cactheable responses are defined in sedion 13.

Infad, there ae awide variety of architedures and configurations of cades and proxies currently being
experimented with or deployed acossthe World Wide Web. These systems include national hierarchies of proxy
cades to save transoceanic bandwidth, systems that broadcast or multi cast cade entries, organizations that
distribute subsets of caded datavia CD-ROM, and so on. HTTP systems are used in corporate intranets over high
bandwidth links, and for accessvia PDAs with low-power radio links and intermittent connedivity. The goal of
HTTP/1.1isto suppart the wide diversity of configurations already deployed whil e introducing protocol constructs
that mee the neals of those who build web appli cations that require high reli ability and, faili ng that, at least reliable
indications of fail ure.

HTTP communicaion usually takes placeover TCP/IP connedions. The default port is TCP 80[19], but other ports
can be used. This does not predude HTTP from being implemented on top d any other protocol on the Internet, or
on other networks. HTTP only presumes a reliable transport; any protocol that provides sich guarantees can be used,
the mapping of the HTTP/1.1 request and response structures onto the transport data units of the protocol in question
is outside the scope of this gedfication.

In HTTP/1.0, most implementations used a new connedion for ead request/response exchange. INHTTP/1.1, a
connedion may be used for one or more request/response exchanges, although connedions may be dosed for a
variety of reasons (seesedion 8.1).

2 Notational Conventions and Generic Grammar
2.1 Augmented BNF

All of the mechanisms gedfied in this document are described in both prose and an augmented Badkus-Naur Form
(BNF) similar to that used by RFC 822[9]. Implementors will need to be famili ar with the notation in order to
understand this pedficaion. The aigmented BNF includes the foll owing constructs:

name =definition
The name of aruleis $mply the name itself (without any enclosing"<" and ">") and is sparated from its
definition by the egqual “=" charader. White spaceis only significant in that indentation of continuation linesis
used to indicae arule definition that spans more than one line. Certain basic rules are in uppercase, such as SP,
LW5, HT, CRLF, DI T, ALPHA, etc. Angle bradets are used within definiti ons whenever their
presencewill fadlit ate discerning the use of rule names.

“literal"
Quotation marks aurround literal text. Unless sated atherwise, the text is case-insensitive.

rulel | rule2
Elements sparated by abar (“| ") are dternatives, e.g., “yes | no” will accept yesor no.

(rulel rule2)
Elements enclosed in parentheses are treaed asasingle dement. Thus, “(el em (foo | bar) elem”
allows the token sequences“el em f oo el enf and“el em bar el enf.

*rule
The dharader “*” precealding an element indicaes repetition. The full formis“<n>* <nmeel enent ” indicaing
at least <n> and at most <m> occurrences of element. Default values are 0 and infinity so that “* (el enent) ”
allows any number, including zero; “1* el enent ” requires at least one; and “1* 2el enent ” allows one or
two.

[rul e]
Square bradkets enclose optional elements; “[f oo bar] ” isequivalent to“*1(f oo bar)”.

Fielding, et a Standards Tradk [Page 17]

RFC 2616 HTTP/1.1 June, 1999

N rule
Spedfic repetition: “<n>(el ement) ” isequivalent to “<n>* <n>(el enent) ”; that is, exadly <n>
occurrences of (el ement) . Thus2Dl G T isa2-digit number, and 3ALPHA isastring of three dphabetic
charaders.

#rul e
A construct “#” is defined, similar to “* ", for defining lists of elements. The full formis“<n>#<nmel enent”
indicaing at least <n> and at most <m> elements, eat separated by one or more cmmas (", ") and

OPTIONAL linea white space(LWS). This makes the usual form of lists very easy; arule such as
(*LW5 elenent *(*LWs "," *LWS el enent))

can be shown as
1#el ement

Wherever this construct is used, null elements are dl owed, but do not contribute to the count of elements
present. That is, “(el enent), , (el enent) " ispermitted, but counts as only two elements. Therefore,
where & least one dement is required, at least one non-null element MUST be present. Default values are 0 and
infinity so that “#el enment " allows any number, including zero; “1#el ement ” requires at least one; and
“1#2el emrent ” allows one or two.

; conmment
A semi-colon, set off some distanceto the right of rule text, starts a comment that continues to the end of line.
Thisisasimple way of including wseful notes in parall el with the spedfications.

i mplied *LW5
The grammar described by this gpedfication is word-based. Except where noted atherwise, linea white space
(LWB) can be included between any two adjacent words (t oken or quot ed- st ri ng), and between adjacent
words and separ at or s, without changing the interpretation of afield. At least one delimiter (L\WS and/or
separ at or s) MUST exist between any two t okens (for the definition of “t oken” below), sincethey would
otherwise be interpreted as a single token.

2.2 Basic Rules

The foll owing rules are used throughout this edficaion to describe basic parsing constructs. The US-ASCII coded
charader set isdefined by ANSI X3.4-1986[21].

CCTET = <any 8-bit sequence of data>
CHAR = <any US-ASCI| character (octets 0 - 127)>
UPALPHA = <any US-ASCI| uppercase letter "A".."Z">
LOALPHA = <any US-ASCI| |owercase letter "a".."z">
ALPHA = UPALPHA | LQOALPHA
DAT = <any US-ASCII digit "0".."9">
CTL = <any US-ASCI| control character
(octets 0 - 31) and DEL (127)>
CR = <US-ASCIl CR, carriage return (13)>
LF = <US-ASCI| LF, linefeed (10)>
SP = <US-ASCI | SP, space (32)>
HT = <US-ASCI | HT, horizontal-tab (9)>
<"> = <US-ASCI | doubl e-quote nark (34)>

HTTP/1.1 defines the sequence CR LF asthe end-of-line marker for all protocol elements except the entity-body
(see @pendix 19.3 for tolerant applicaions). The end-of-line marker within an entity-body is defined by its
associated mediatype, as described in sedion 3.7.

CRLF = CR LF
HTTP/1.1 header field values can be folded onto mulltiple linesif the cntinuation line begins with a spaceor
horizontal tab. All li nea white space including folding, has the same semantics as SP. A redpient MAY replace ay
linea white spacewith asinge SP before interpreting the field value or forwarding the message downstream.

LVB = [CRLF] 1*(SP | HT)

Fielding, et a Standards Tradk [Page 12]

RFC 2616 HTTP/1.1 June, 1999

The TEXT ruleisonly used for descriptive field contents and values that are not intended to be interpreted by the
message parser. Words of * TEXT MAY contain charaders from charader sets other than 1SO-88591 [22] only
when encoded acording to the rules of RFC 2047[14].

TEXT = <any OCTET except CILs,
but including LWs>
A CRLF isalowed in the definition of TEXT only as part of a healer field continuation. It is expeded that the
folding LWS will be replaced with asingle SP before interpretation of the TEXT value.

Hexadedmal numeric charaders are used in several protocol elements.
HEX ="A"| "B" | "C | "D | "E'"| "F"
| "a" | "b" | "c" | "d" | "e" | "f" | DAT
Many HTTP/1.1 header field values consist of words separated by LWS or spedal charaders. These spedal
charaders MUST be in a quoted string to be used within a parameter value (as defined in sedion 3.6).

t oken
separators

1*<any CHAR except CTLs or separators>
Tt | @

N IR AR A S

A I S I R I B

("])] SP | HT

Comments can be included in some HTTP header fields by surrounding the comment text with parentheses.
Comments are only allowed in fields containing “comrent ” as part of their field value definition. In al other fields,

parentheses are cnsidered part of the field value.

conment "(" *(ctext | quoted-pair | comrent) ")"
ct ext <any TEXT excluding "(" and ")">

A string of text is parsed as asingle word if it is quoted using double-quote marks.

guot ed-string (<"> *(qdtext | quoted-pair) <">)

gdt ext <any TEXT except <">>
The badkslash charader (“\") MAY be used as a single-charader quoting mechanism only within quoted-string and
comment constructs.

quot ed- pai r = "\" CHAR

3 Protocol Parameters

3.1 HTTP Version

HTTP uses a“<major>.<minor>" numbering scheme to indicate versions of the protocol. The protocol versioning
palicy isintended to all ow the sender to indicae the format of a message and its cgpadty for understanding further
HTTP communication, rather than the feaures obtained via that communication. No change is made to the version
number for the aldition of message components which do not affed communication behavior or which only add to
extensible field values. The <minor> number isincremented when the changes made to the protocol add feaures
which do not change the general message parsing algorithm, but which may add to the message semantics and imply
additional cgpabiliti es of the sender. The <major> number is incremented when the format of a message within the
protocol is changed. SeeRFC 2145[36] for afuller explanation.

The version of an HTTP messageisindicated by an HTTP- Ver si on field in thefirst line of the message.
HTTP- Ver si on = "HTTP* "/" 1*DIGT "." 1*DIAT

Note that the major and minor numbers MUST be treaed as sparate integers and that eact MAY be incremented
higher than asingle digit. Thus, HTTP/2.4 isalower version than HTTP/2.13, which in turn is lower than
HTTP/12.3. Leading zeros MUST be ignored by redpients and MUST NOT be sent.

An applicaion that sends a request or response message that includes HTTP- Ver si on of “HTTP/1.1” MUST be &
least conditi onally compliant with this gedfication. Applicaionsthat are & least conditionally compliant with this
spedficaion SHOULD use an HTTP-Version of “HTTP/1.1” in their messages, and MUST do so for any message

Fielding, et a Standards Tradk [Page 13

RFC 2616 HTTP/1.1 June, 1999

that is not compatible with HTTP/1.0. For more detail s on when to send spedfic HTTP- Ver si on values, seeRFC
2145[36).

The HTTP version of an applicaion isthe highest HTTP version for which the gplicationisat least conditionally
compli ant.

Proxy and gateway appli cations need to be caeful when forwarding messages in protocol versions diff erent from
that of the gplicaion. Sincethe protocol version indicates the protocol capability of the sender, a proxy/gateway
MUST NOT send a message with aversion indicaor which is greaer than its acual version. If ahigher version
request isreceved, the proxy/gateway MUST either downgrade the request version, or respond with an error, or
switch to tunrel behavior.

Due to interoperability problems with HTTP/1.0 proxies discovered sincethe publication of RFC 2069 33], cating
proxies MUST, gateways MAY/, and tunrels MUST NOT upgrade the request to the highest version they suppart.
The proxy/gateway’ s response to that request MUST be in the same mgjor version as the request.

Note: Converting between versions of HTTP may involve modification of header fields required or
forbidden by the versions involved.

3.2 Uniform Resource ldentifiers

URIs have been known by many names: WWW addresses, Universal Document Identifiers, Universal Resource
Identifiers[3], and finally the cmbination of Uniform Resource Locators (URL) [4] and Names (URN) [20]. Asfar
asHTTP is concerned, Uniform Resource ldentifiers are simply formatted strings which identify--via name, location,
or any other charaderistic--aresource

3.2.1 General Syntax

URIsin HTTP can be represented in absolute form or relative to some known base URI [11], depending ypon the
context of their use. The two forms are diff erentiated by the fad that absolute URIs always begin with a scheme
name foll owed by a mlon. For definitive information on URL syntax and semantics, see”Uniform Resource
Identifiers (URI): Generic Syntax and Semantics,” RFC 2396[42] (which replaces RFCs 1738[4] and RFC 1808
[11]). This pedficaion adopts the definitions of “URI - r ef er ence”, “absol ut eURI ", “rel ati veURI ",

“port”,

” o« LI

host " ,“abs_pat h”,“rel _pat h”,and“aut hori ty” from that spedfication.

The HTTP protocol does not place ay a priori limit on the length of aURI. Servers MUST be ale to handle the
URI of any resourcethey serve, and SHOULD be aleto handle URIs of unbounded length if they provide GET-
based forms that could generate such URIs. A server SHOULD return 414 (Request-URI Too Long) statusif a URI
islonger than the server can handle (seesedion 10.4.15).

Note: Servers ouglt to be caitious about depending on URI lengths above 255 lytes, because some older
client or proxy implementations might not properly suppart these lengths.

3.2.2 hitp URL

The “http” scheme is used to locae network resources viathe HTTP protocol. This dion defines the scheme-
spedfic syntax and semantics for http URLSs.

http URL = "http:" "//" host [":" port] [abs_path ["?" query]]

If theport isempty or not given, port 80is assumed. The semantics are that the identified resourceis locaed at the
server listening for TCP connedions on that por t of that host , and the Request - URI for the resourceis
abs_pat h (sedion 5.1.2). The use of IP addressesin URLs SHOULD be avoided whenever posshble (seeRFC
1900[24]). If theabs_pat h isnot present in the URL, it MUST be given as“/” when used asaRequest - UR
for aresource (sedion 5.1.2). If aproxy receves a host name which is not a fully qualified damain name, it MAY
add its domain to the host name it receved. If a proxy receves afully qualified damain name, the proxy MUST
NOT change the host name.

Fielding, et a Standards Tradk [Page 14]

RFC 2616 HTTP/1.1 June, 1999

3.2.3 URI Comparison

When comparing two URIsto dedde if they match or not, a dient SHOULD use a cae-sensiti ve octet-by-octet
comparison of the etire URIs, with these exceptions:

* A port that isempty or not given is equivalent to the default port for that URI-reference
* Comparisons of host names MUST be cae-insensitive;

e Comparisons of scheme names MUST be cae-insensitive;

 Anempty abs_path isequivalent to anabs_path of “/".

Charaders other than those in the “reserved” and “unsafe” sets (seeRFC 2396[42]) are equivalent to their “"%"
HEX HEX encoding.

For example, the following threeURIs are equivalent:

http://abc.com:80/~smith/home.html
http://ABC.com/%7Esmith/home.html
http://ABC.com:/%7esmith/home.html

3.3 Date/Time Formats

3.3.1 Full Date

HTTP applications have historicdly all owed threediff erent formats for the representation of date/time stamps:
Sun, 06 Nov 1994 08:49:37 GMT ; RFC 822 , updated by RFC 1123
Sunday, 06-Nov-94 08:49:37 GMT ; RFC 850 , obsoleted by RFC 1036

Sun Nov 6 08:49:37 1994 ; ANSI C's asctime() format
Thefirst format is preferred as an Internet standard and represents a fixed-length subset of that defined by RFC 1123
[8] (an update to RFC 822[9]). The second format isin common use, but is based on the obsolete RFC 850[12] date
format and ladks a four-digit yea. HTTP/1.1 clients and servers that parse the date value MUST accept al three
formats (for compatibilit y with HTTP/1.0), thoughthey MUST only generate the RFC 1123format for representing
HTTP-date valuesin header fields. Seesedion 19.3 for further information.

Note: Redpients of date values are encouraged to be robust in accepting date values that may have been
sent by non-HTTP applications, asis smetimes the cae when retrieving or posting messages via
proxies/gatewaysto SMTP or NNTP.

All HTTP date/time stamps MUST be represented in Greenwich Mean Time (GMT), without exception. For the
purposes of HTTP, GMT isexadly equal to UTC (Coordinated Universal Time). Thisisindicated in the first two
formats by the inclusion of “GMT” as the threeletter abbreviation for time zone, and MUST be asumed when
reading the asctime format. HT TP-date is case sensitive and MUST NOT include additional LWS beyond that
spedficdly included as SP in the grammar.

HTTP-date = rfc1123-date | rfc850-date | asctime-date
rfc1123-date = wkday "," SP datel SP time SP "GMT"
rfc850-date = weekday "," SP date2 SP time SP "GMT"
asctime-date = wkday SP date3 SP time SP 4DIGIT
datel = 2DIGIT SP month SP 4DIGIT
; day month year (e.g., 02 Jun 1982)
date2 = 2DIGIT "-" month "-" 2DIGIT
; day-month-year (e.g., 02-Jun-82)
date3 = month SP (2DIGIT | (SP 1DIGIT))
; month day (e.g., Jun 2)
time = 2DIGIT ":" 2DIGIT ":" 2DIGIT
; 00:00:00 - 23:59:59
wkday ="Mon" | "Tue" | "Wed"
| "Thu" | "Fri* | "Sat" | "Sun"
weekday ="Monday" | "Tuesday" | "Wednesday"
| "Thursday" | "Friday" | "Saturday" | "Sunday"”
month ="Jan" | "Feb" | "Mar" | "Apr"

| "May" | "Jun™ | "Jul" | "Aug"

Fielding, et a Standards Tradk [Page 15]

RFC 2616 HTTP/1.1 June, 1999

| "Sep" | "Cct" | "Nov" | "Dec"
Note: HTTP requirements for the date/time stamp format apply only to their usage within the protocol
stream. Clients and servers are not required to use these formats for user presentation, request logging, etc.

3.3.2 Delta Seconds

Some HTTP healer fields allow atime value to be spedfied as an integer number of seconds, represented in
dedmal, after the time that the message was receved.

delta-seconds = 1*DIGA T
3.4 Character Sets

HTTP uses the same definition of the term “charader set” as that described for MIME:

The term “charader set” is used in this document to refer to a method used with one or more tables to
convert a sequence of octets into a sequence of charaders. Note that unconditional conversion in the other
diredionisnot required, in that not all charaders may be available in a given charader set and a charader
set may provide more than one sequence of octets to represent a particular charader. This definition is
intended to all ow various kinds of characer encoding, from simple single-table mappings suich asUS-
ASCII to complex table switching methods such as those that use 1SO-2022 s techniques. However, the
definition asociated with a MIME charader set name MUST fully speafy the mappingto be performed
from octetsto characders. In particular, use of external profili nginformation to determine the exad mapping
is not permitted.

Note: This use of the term “charader set” is more commonly referred to as a“ charader encoding.”
However, sinceHTTP and MIME share the same registry, it isimportant that the terminology also be
shared.

HTTP charader sets are identified by case-insensiti ve tokens. The cmplete set of tokensis defined by the IANA
Charader Set registry [19].

charset = token
AlthoughHTTP al ows an arbitrary token to be used as a charset value, any token that has a predefined value within
the IANA Charader Set registry [19] MUST represent the charader set defined by that registry. Applications
SHOULD limit their use of charader setsto those defined by the IANA registry.

Implementors should be avare of IETF charader set requirements [38] [41].

3.4.1 Missing Charset

Some HTTP/1.0 software has interpreted a Cont ent - Type header without charset parameter incorredly to mean
“redpient should guess” Senderswishingto defea this behavior MAY include a darset parameter even when the
charset is 1SO-8859-1 and SHOULD do so when it is known that it will not confuse the redpient.

Unfortunately, some older HTTP/1.0 clients did not ded properly with an explicit charset parameter. HTTP/1.1
redpients MUST resped the charset label provided by the sender; and those user agents that have aprovision to
“guess’ a charset MUST use the charset from the content-type field if they suppart that charset, rather than the
redpient’s preference, when initially displaying adocument. Seesedion 3.7.1.

3.5 Content Codings

Content coding values indicate an encoding transformation that has been or can be gplied to an entity. Content
codings are primarily used to allow a document to be compressed or otherwise usefully transformed without losing
the identity of its underlying media type and without lossof information. Frequently, the entity is gored in coded
form, transmitted dredly, and only deaoded by the reapient.

cont ent - codi ng = t oken
All content-coding values are cae-insensitive. HTTP/1.1 uses content-coding valuesin the Accept - Encodi ng
(sedion 14.3) and Cont ent - Encodi ng (sedion 14.11) header fields. Althoughthe value describes the content-

Fielding, et a Standards Tradk [Page 16]

RFC 2616 HTTP/1.1 June, 1999

coding, what is more important isthat it indicates what deaoding mechanism will be required to remove the
encoding.

The Internet Assgned Numbers Authority (IANA) ads asaregistry for content-coding value tokens. Initialy, the
registry contains the foll owing tokens:

gzi p Anencodingformat produced by the file compresgon program “gzip” (GNU zip) as described in RFC 1952
[25]. Thisformat isa Lempel-Ziv coding (LZ77) with a32 bt CRC

conpr ess
The encoding format produced by the ommon UNIX file cmpresson program “compress’. Thisformat is
an adaptive Lempel-Ziv-Welch coding (LZW).

Use of program names for the identification of encoding formatsis not desirable and is discouraged for
future encodings. Their use here is representative of historicd pradice, not good design. For compatibility
with previous implementations of HTTP, applications SHOULD consider “x-gzip” and “x-compress’ to be
equivalent to “gzip” and “compress’ respedively.

defl ate
The*“zlib” format defined in RFC 1950[31] in combination with the “deflate” compresgon mechanism
described in RFC 1951[29].

identity
The default (identity) encoding; the use of no transformation whatsoever. This content-coding is used only
inthe Accept - Encodi ng header, and SHOULD NOT be used in the Cont ent - Encodi ng header.

New content-coding value tokens SHOULD be registered; to all ow interoperabilit y between clients and servers,
spedfications of the mntent coding agorithms neaded to implement a new value SHOULD be publicly avail able and
adequate for independent implementation, and conform to the purpose of content coding defined in this sdion.

3.6 Transfer Codings

Transfer-coding values are used to indicae an encoding transformation that has been, can be, or may need to be
applied to an entity-body in order to ensure “safe transport” throughthe network. This differs from a content coding
in that the transfer-coding is a property of the message, not of the original entity.

transfer-codi ng = "chunked" | transfer-extension

transfer-extension = token *(";" paraneter)
Parametersarein the form of attribute/value pairs.

par anet er = attribute "=" value

attribute = token

val ue = token | quoted-string

All transfer-coding values are cae-insensitive. HTTP/1.1 uses transfer-coding values in the TE header field (sedion
14.39) and inthe Tr ansf er - Encodi ng header field (sedion 14.41).

Whenever atransfer-coding is applied to a message-body, the set of transfer-codings MUST include “chunked”,
unlessthe message is terminated by closing the wnnedion. When the “chunked” transfer-codingis used, it MUST
be the last transfer-coding applied to the message-body. The “chunked” transfer-coding MUST NOT be gplied
more than onceto a message-body. These rules all ow the redpient to determine the transfer-length of the message
(sedion 4.4).

Transfer-codings are analogous to the Cont ent - Tr ansf er - Encodi ng values of MIME [7], which were
designed to enable safe transport of binary data over a 7-bit transport service However, safe transport has a diff erent
focus for an 8hit-clean transfer protocol. In HTTP, the only unsafe dharaderistic of message-bodesis the difficulty
in determining the exad body length (sedion 7.2.2), or the desire to encrypt data over a shared transport.

The Internet Assgned Numbers Authority (IANA) ads as aregistry for transfer-coding value tokens. Initially, the
registry contains the following tokens: “chunked” (sedion 3.6.1), “i denti t y” (sedion 3.6.2), “gzi p” (sedion
3.5), “conpr ess” (sedion 3.5), and “def | at e” (sedion 3.5).

Fielding, et a Standards Tradk [Page 17]

RFC 2616 HTTP/1.1 June, 1999

New transfer-coding value tokens SHOULD be registered in the same way as new content-coding value tokens
(sedion 3.5).

A server which recaves an entity-body with a transfer-coding it does not understand SHOULD return 501
(Unimplemented), and close the mnnedion. A server MUST NOT send transfer-codingsto an HTTP/1.0 client.

3.6.1 Chunked Transfer Coding

The chunked encoding modifies the body of a message in order to transfer it as a series of chunks, ead with its own
sizeindicator, followed by an OPTIONAL trail er containing entity-header fields. This all ows dynamicdly produced
content to be transferred along with the information necessary for the redpient to verify that it has recaved the full
message.

Chunked- Body *chunk

| ast - chunk

trailer

CRLF

chunk-size [chunk-extension] CRLF
chunk-data CRLF

1* HEX

chunk

chunk- si ze

| ast - chunk 1*("0") [chunk-extension] CRLF
chunk-extension= *(";" chunk-ext-name ["=" chunk-ext-val])
chunk- ext - name t oken

chunk- ext - val token | quoted-string

chunk- dat a chunk- si ze(OCTET)
trailer = *(entity-header CRLF)

Thechunk- si ze field isastring of hex digitsindicatingthe size of the chunk The chunked encodingis ended by
any chunkwhose sizeis zero, followed by the trail er, which is terminated by an empty line.

The trailer al ows the sender to include alditional HTTP healer fields at the end of the message. The Tr ai | er
header field can be used to indicate which header fields areincluded in atrail er (seesedion 14.40).

A server using chunked transfer-codingin aresponse MUST NOT use thetrailer for any header fields unlessat least
one of the followingistrue:

a) therequestincluded a TE header field that indicaes “trailers’ is accetable in the transfer-coding of the
response, as described in sedion 14.39; or,

b) the server isthe origin server for the response, the trail er fields consist entirely of optional metadata, and the
redpient could use the message (in a manner acceptable to the origin server) without recaving this
metadata. In other words, the origin server iswilli ngto accept the possbility that the trail er fields might
be silently discarded along the path to the dient.

This requirement prevents an interoperabilit y fail ure when the message is being receved by an HTTP/1.1 (or later)
proxy and forwarded to an HTTP/1.0 redpient. It avoids a situation where compliancewith the protocol would have
necesstated a possbly infinite buffer on the proxy.

An example processfor deamding a Chunked- Body is presented in appendix 19.4.6.

All HTTP/1.1 applications MUST be aleto recaéve and decode the “chunked” transfer-coding, and MUST ignore
chunk- ext ensi on extensions they do not understand.

3.7 Media Types

HTTP uses Internet Media Types[17] inthe Cont ent - Type (sedion 14.17) and Accept (sedion 14.1) header
fieldsin order to provide open and extensible data typing and type negotiation.

medi a-t ype = type "/" subtype *(";" paraneter)
type = token
subt ype = t oken

Fielding, et a Standards Tradk [Page 18]

RFC 2616 HTTP/1.1 June, 1999

Parameters MAY foll ow the type/subtype in the form of attribute/value pairs (as defined in sedion 3.6).

The type, subtype, and parameter attribute names are case-insensiti ve. Parameter values might or might not be case-
sensitive, depending on the semantics of the parameter name. Linea white space(LW5) MUST NOT be used
between the type and subtype, nor between an attribute and its value. The presence or absence of a parameter might
be significant to the processng of a media-type, depending on its definiti on within the media type registry.

Note that some older HT TP appli caions do not recognize media type parameters. When sending datato dder HTTP
appli cations, implementations SHOULD only use media type parameters when they are required by that type/subtype
definition.

Media-type values are registered with the Internet Assgned Number Authority (IANA [19]). The mediatype
registration processis outlined in RFC 1590[17]. Use of non-registered media types is discouraged.

3.7.1 Canonicalization and Text Defaults

Internet media types are registered with a caonicd form. An entity-body transferred viaHT TP messages MUST be
represented in the gpropriate caonicd form prior to its transmisson except for “text” types, as defined in the next

paragraph.

When in canonicd form, media subtypes of the “text” type use CRLF asthe text line bre&k. HTTP relaxes this
requirement and all ows the transport of text mediawith plain CR or LF alone representing aline bre&k wheniit is
done wmnsistently for an entire entity-body. HTTP applications MUST accept CRLF, bare CR, and bare LF as being
representative of aline bre&k in text mediareceved viaHTTP. In addition, if the text is represented in a charader
set that does not use octets 13 and 10for CR and LF respedively, asisthe cae for some multi-byte dharader sets,
HTTP all ows the use of whatever octet sequences are defined by that charader set to represent the eguivalent of CR
and LF for line breaks. Thisflexihility regarding li ne bress applies only to text mediain the entity-body; abare CR
or LF MUST NOT be substituted for CRLF within any of the HTTP control structures (such as header fields and
multi part boundaries).

If an entity-body is encoded with a content-coding, the underlying data MUST be in aform defined above prior to
being encoded.

The “charset” parameter is used with some mediatypesto define the charader set (sedion 3.4) of the data. When no
explicit charset parameter is provided by the sender, media subtypes of the “text” type ae defined to have adefault
charset value of “1S0-88591" when receved viaHTTP. Datain charader sets other than “1SO-88591" or its
subsets MUST be labeled with an appropriate dharset value. Seesedion 3.4.1 for compatibility problems.

3.7.2 Multipart Types

MIME provides for a number of “multi part” types -- encapsulations of one or more entiti es within a single message-
body. All multi part types hare a @mmon syntax, as defined in sedion 5.1.1 of RFC 2046[40], and MUST include a
boundary parameter as part of the mediatype value. The message body isitself a protocol element and MUST
therefore use only CRLF to represent line bregks between body-parts. Unlike in RFC 2046 the il ogue of any

multi part message MUST be empty; HTTP applicaions MUST NOT transmit the il ogue (even if the original

multi part contains an epil ogue). These restrictions exist in order to preserve the self-deli miting reture of a multi part
message-body, wherein the “end” of the message-body isindicaed hy the ending multi part boundary.

In general, HTTP treas a multi part message-body no dff erently than any other media type: strictly as payload. The
one exception is the “multi part/byteranges’ type (appendix 19.2) when it appeasin a 206 (Partial Content) response,
which will beinterpreted by some HTTP cacing mechanisms as described in sedions 13.5.4 and 14.16. In all other
cases, an HTTP user agent SHOULD foll ow the same or simil ar behavior asa MIME user agent would upon recept
of amulti part type. The MIME header fields within ead body-part of a multi part message-body do not have any
significanceto HT TP beyond that defined by their MIME semantics.

In general, an HTTP user agent SHOULD foll ow the same or similar behavior asa MIME user agent would upon
recept of amulti part type. If an application recaves an urrecognized multi part subtype, the gplication MUST trea
it as being equivalent to “ multi part/mixed”.

Fielding, et a Standards Tradk [Page 19

RFC 2616 HTTP/1.1 June, 1999

Note: The “multi part/form-data” type has been spedficdly defined for carrying form data suitable for
processng viathe POST request method, as described in RFC 1867[15)].

3.8 Product Tokens

Product tokens are used to al ow communicaing applicaions to identify themselves by software name and version.
Most fields using product tokens also all ow sub-products which form a significant part of the gplicaion to be listed,
separated by white space By convention, the products are listed in order of their significancefor identifying the
applicaion.

pr oduct
product - ver si on

Examples:

User - Agent: CERN- Li neMode/ 2. 15 |i bww/ 2. 17b3
Server: Apache/0.8.4

Product tokens SHOULD be short and to the point. They MUST NOT be used for advertising or other non-essential
information. Althoughany token charader MAY appea inapr oduct - ver si on, thistoken SHOULD only be
used for aversion identifier (i.e., successve versions of the same product SHOULD only differ inthe pr oduct -
ver si on portion of the pr oduct value).

token ["/" product-version]
t oken

3.9 Quality Values

HTTP content negotiation (sedion 12) uses sort “floating point” numbers to indicate the relative importance
(“weight”) of various negotiable parameters. A weight is normalized to ared number in the range 0 through 1,
where 0 is the minimum and 1 the maximum value. If a parameter has a quality value of 0, then content with this
parameter is‘not acceptable’ for the dient. HTTP/1.1 applications MUST NOT generate more than threedigits after
the dedmal point. User configuration of these values SHOULD also be limited in this fashion.

gval ue =("0" ["." 0*3DIAT])

| (M1 [t 063(70")])

“Quality values’ is a misnomer, sincethese values merely represent relative degradation in desired quality.

3.10 Language Tags

A languege tag identifies a natural language spoken, written, or otherwise mnveyed by human beings for
communication of information to ather human beings. Computer languages are expli citly excluded. HTTP uses
language tags within the Accept - Language and Cont ent - Language fields.

The syntax and registry of HTTP languege tags is the same as that defined by RFC 1766[1]. In summary, alanguage
tag is composed of 1 or more parts: A primary language tag and a poassbly empty series of subtags:

| anguage-tag = primary-tag *("-" subtag)
primary-tag = 1*8ALPHA
subt ag = 1*8ALPHA

White spaceis not all owed within the tag and all tags are cae-insensitive. The name spaceof language tagsis
administered by the IANA. Example tags include:

en, en-US, en-cockney, i-cherokee, x-pig-latin
where any two-letter primary-tag is an 1SO-6391language ebreviation and any two-letter initial subtag isan 1SO-
3166¢ourtry code. (The last threetags above ae not registered tags; all but the last are examples of tags which
could be registered in future.)

3.11 Entity Tags

Entity tags are used for comparing two or more entiti es from the same requested resource HTTP/1.1 uses entity tags
inthe ETag (sedion 14.19), | f - Mat ch (sedion 14.24), | f - None- Mat ch (sedion 14.26), and | f - Range

Fielding, et a Standards Tradk [Page 20|

RFC 2616 HTTP/1.1 June, 1999

(sedion 14.27) healer fields. The definition of how they are used and compared as cache validatorsisin sedion
13.3.3. An entity tag consists of an opagque quoted string, possbly prefixed by a wegnessindicaor.
entity-tag = [weak] opaque-tag
weak ="w"
opaque-tag = quoted-string
A “strong entity tag” MAY be shared by two entities of aresourceonly if they are equivalent by octet equality.

A “wedk entity tag,” indicaed by the "W/" prefix, MAY be shared by two entities of aresourceonly if the entities
are gquivalent and could be substituted for ead other with no significant change in semantics. A we&k entity tag can
only be used for we& comparison.

An entity tag MUST be unique acossall versions of all entiti es associated with a particular resource A given entity
tag value MAY be used for entiti es obtained by requests on different URIs. The use of the same antity tag valuein
conjunction with entities obtained by requests on different URIs does not imply the eguivalence of those entities.

3.12 Range Units

HTTP/1.1 alows a dient to request that only part (arange of) the response entity be included within the response.
HTTP/1.1 usesrange unitsin the Range (sedion 14.35) and Cont ent - Range (sedion 14.16) header fields. An
entity can be broken down into subranges acording to various gructural units.

range- unit

byt es- uni t "byt es"

ot her -range-unit t oken
The only range unit defined by HTTP/1.1is“bytes’. HTTP/1.1 implementations MAY ignore ranges gedfied using
other units. HTTP/1.1 has been designed to all ow implementations of applications that do not depend on knowledge
of ranges.

4 HTTP Message

4.1 Message Types

HTTP messages consist of requests from client to server and responses from server to client.

bytes-unit | other-range-unit

HTTP- message = Request | Response ; HTTP/ 1.1 nessages
Request (sedion5) and Response (sedion 6) messages use the generic message format of RFC 822[9] for
transferring entiti es (the payload of the message). Both types of message ansist of a start-line, zero or more headler
fields (also known as “headers’), an empty line (i.e., aline with nothing precealing the CRLF) indicaing the end of
the header fields, and possbly a message-body.
generi c-nmessage = start-line
*(message- header CRLF)

CRLF
[nessage- body]
start-line = Request-Line | Status-Line

In the interest of robustness servers SHOULD ignore any empty line(s) recaved where aRequest - Li ne is
expedaed. In other words, if the server is reading the protocol stream at the beginning of amessage and recaves a
CRLFfirst, it should ignore the CRLF.

Certain buggy HTTP/1.0 client implementations generate extra CRLF's after a POST request. To restate what is
explicitly forbidden by the BNF, an HTTP/1.1 client MUST NOT prefaceor foll ow arequest with an extra CRLF.

4.2 Message Headers

HTTP healer fields, which include general-header (sedion 4.5), request-header (sedion 5.3), response-header
(sedion 6.2), and entity-header (sedion 7.1) fields, foll ow the same generic format as that given in Sedion 3.1 of
RFC 822[9]. Each header field consists of a name followed by a wlon (*: ") and the field value. Field names are

Fielding, et a Standards Tradk [Page 2]

RFC 2616 HTTP/1.1 June, 1999

case-insensitive. Thefield value MAY be precealed by any amount of LW5, thougha single SP is preferred. Header
fields can be extended over multiple lines by precaling ead extraline with at least one SP or HT. Applications
ougtt to foll ow “common form”, where one is known or indicated, when generating HT TP constructs, sincethere
might exist some implementations that fail to accept anything beyond the common forms.

nessage- header
field-nane
field-val ue

fi el d- cont ent

field-name ":" [field-value]

t oken

*(field-content | LWS)

<t he OCTETs nmking up the field-value

and consisting of either *TEXT or conbinations
of token, separators, and quoted-string>

Thef i el d- cont ent doesnot include any leading or trailing LWS: linea white spaceoccurring before the first
non-whitespace tarader of thef i el d- val ue or after the last non-whitespace tarader of thef i el d- val ue.
Such leaing or trailing LWS MAY be removed without changing the semantics of the field value. Any LWS that
ocaursbetweenf i el d- cont ent MAY bereplacel with asinge SP before interpreting the field value or
forwarding the message downstrean.

The order in which header fields with differing field names are receéved is not significant. However, it is“good
pradice” to send general-header fields first, followed by request-header or response-header fields, and ending with
the entity-header fields.

Multi ple message-header fields with the samef i el d- name MAY be present in amessage if and only if the antire
fi el d- val ue for that header field is defined as a momma-separated list [i.e., #(val ues)]. It MUST be posshle
to combine the multiple header fieldsinto one “f i el d- nane: fi el d-val ue” pair, without changing the
semantics of the message, by appending ead subsequent f i el d- val ue to thefirst, eat separated by a omma.
The order in which header fields with the same field-name ae receéved is therefore significant to the interpretation of
the combined field value, and thus a proxy MUST NOT change the order of these field values when amessage is
forwarded.

4.3 Message Body

The message-body (if any) of an HTTP message is used to carry the entity-body associated with the request or
response. The message-body differs from the entity-body only when a transfer-coding has been applied, asindicaed
by the Tr ansf er - Encodi ng header field (sedion 14.41).

nessage- body = entity-body

| <entity-body encoded as per Transfer-Encodi ng>

Tr ansf er - Encodi ng MUST be used to indicate any transfer-codings applied by an appli caion to ensure safe
and proper transfer of the message. Tr ansf er - Encodi ng isaproperty of the message, not of the entity, and thus
MAY be added or removed by any appli cation along the request/response dhain. (However, sedion 3.6 places
restrictions on when certain transfer-codings may be used.)

Therules for when amessage-body is all owed in a message differ for requests and responses.

The presence of amessage-body in arequest is sgnaled by theinclusion of aCont ent - Lengt h or Tr ansf er -
Encodi ng healer field in the request’s message-headers. A message-body MUST NOT beincluded in arequest if
the spedficaion of the request method (sedion 5.1.1) does not all ow sending an entity-body in requests. A server
SHOULD rea and forward a message-body on any request; if the request method dces not include defined
semantics for an entity-body, then the message-body SHOULD be ignored when handling the request.

For response messages, whether or not a message-body isincluded with a message is dependent on bath the request
method and the response status code (sedion 6.1.1). All responsesto the HEAD request method MUST NOT
include amessage-body, even thoughthe presence of entity-healer fields might lead one to believe they do. All 1xx
(informational), 204 (no content), and 304(not modified) responses MUST NOT include amessage-body. All other
responses do include amessage-body, althoughit MAY be of zero length.

Fielding, et a Standards Tradk [Page 22]

RFC 2616 HTTP/1.1 June, 1999

4.4 Message Length

The transfer-length of a message is the length of the message-body as it appeas in the message; that is, after any
transfer-codings have been applied. When a message-body is included with a message, the transfer-length of that
body is determined by one of the following (in order of precelence):

1. Any response message which “MUST NOT” include amessage-body (such as the 1xx, 204, and 304
responses and any response to a HEAD request) is always terminated by the first empty line dter the header
fields, regardlessof the entity-header fields present in the message.

2. IfaTransfer - Encodi ng healer field (sedion 14.41) is present and has any value other than
“i denti ty”, then the transfer-length is defined by use of the “chunked” transfer-coding (sedion 3.6),
unlessthe messge is terminated by closing the mnnedion.

3. IfaContent - Lengt h header field (sedion 14.13) is present, its dedmal value in OCTETSs represents
both the entity-length and the transfer-length. The Cont ent - Lengt h healer field MUST NOT be sent if
these two lengths are different (i.e., if aTr ansf er - Encodi ng header field is present). If amessageis
recaved with both a Tr ansf er - Encodi ng header field and a Cont ent - Lengt h healer field, the
latter MUST beignored.

4. If the message uses the media type “ multi part/byteranges’, and the transfer-length is not otherwise
spedfied, then this slf-deli miting media type defines the transfer-length. This mediatype MUST NOT be
used unlessthe sender knows that the redpient can parse it; the presencein arequest of aRange header
with multi ple byte-range spedfiersfrom a 1.1 client implies that the dient can parse multi part/byteranges
responses.

A range header might be forwarded by a 1.0 proxy that does not understand multi part/byteranges; in this
case the server MUST deli mit the message using methods defined initems 1,3 or 5 of this dion.

5. By the server closing the mnnedion. (Closing the connedion cannot be used to indicate the end of a request
body, sincethat would leave no passhbility for the server to send bad aresponse.)

For compatibility with HTTP/1.0 applications, HTTP/1.1 requests containing a message-body MUST include avalid
Cont ent - Lengt h header field unlessthe server is known to be HTTP/1.1 compliant. If arequest contains a
message-body and aCont ent - Lengt h isnot given, the server SHOULD respond with 400 (bad request) if it
cannot determine the length of the message, or with 411 (Iength required) if it wishesto insist on recevingavalid
Cont ent - Lengt h.

All HTTP/1.1 applicaions that recave entities MUST accept the “chunked” transfer-coding (sedion 3.6), thus
allowing this mechanism to be used for messages when the message length cannot be determined in advance

Messages MUST NOT include bath a Cont ent - Lengt h healer field and a non-identity transfer-coding. If the
message does include anon-identity transfer-coding, the Cont ent - Lengt h MUST be ignored.

When aCont ent - Lengt h isgiven in amessage where amessage-body is all owed, itsfield value MUST exadly
match the number of OCTETSs in the message-body. HTTP/1.1 user agents MUST notify the user when an invalid
length isrecaved and detected.

45 General Header Fields

There ae afew header fields which have general appli cability for both request and response messages, but which do
not apply to the entity being transferred. These header fields apply only to the message being transmitted.

gener al - header = Cache-Control ; Section 14.9
| Connection ; Section 14.10
| Date ; Section 14.18
| Pragma ; Section 14. 32
| ; Section 14.40
| ,

Section 14.41

Trailer
Tr ansf er - Encodi ng

Fielding, et a Standards Tradk [Page 23]

RFC 2616 HTTP/1.1 June, 1999

| Upgrade ; Section 14.42
| Via ; Section 14. 45
| Warning ; Section 14. 46

General-header field names can be extended reliably only in combination with a dhange in the protocol version.
However, new or experimental header fields may be given the semantics of general header fieldsif all partiesin the
communication recgnizethem to be general-header fields. Unreagnized header fields are treaed as entity-header
fields.

5 Request

A request message from a dient to a server includes, within the first line of that message, the method to be gplied to
the resource, the identifier of the resource, and the protocol versionin use.

Request = Request-Li ne ; Section 5.1
*((general - header ; Section 4.5
| request-header ; Section 5.3
| entity-header) CRLF) ; Section 7.1
CRLF
[nessage- body] ; Section 4.3

5.1 Request-Line

The Request - Li ne begins with a method token, followed by the Request - URI and the protocol version, and
endingwith CRLF. The dements are separated by SP charaders. No CRor LF is allowed except in the final CRLF
sequence

Request - Li ne = Method SP Request-URI SP HTTP- Version CRLF
5.1.1 Method

The Met hod token indicates the method to be performed on the resourceidentified by the Request - URI . The
method is case-sensitive.

Met hod = "OPTI ONS" ; Section 9.2
| "GET" ; Section 9.3
| "HEAD' ; Section 9.4
| "PCST" ; Section 9.5
| "PUT" ; Section 9.6
| "DELETE" ; Section 9.7
| " TRACE" ; Section 9.8
| " CONNECT" ; Section 9.9
|

ext ensi on- net hod
ext ensi on- net hod = t oken

The list of methods allowed by aresource can be spedfiedinan Al | ow healer field (sedion 14.7). The return code
of the response dways notifies the dient whether amethod is currently allowed on aresource, sincethe set of

all owed methods can change dynamicadly. An origin server SHOULD return the status code 405 (Method Not
Allowed) if the method is known by the origin server but not all owed for the requested resource, and 501(Not
Implemented) if the method is unrecognized or not implemented by the origin server. The methods GET and HEAD
MUST be supparted by al general-purpose servers. All other methods are OPTIONAL; however, if the dove
methods are implemented, they MUST be implemented with the same semantics as those spedfied in sedion 9.

5.1.2 Request-URI

The Request - URI isaUniform Resource Identifier (sedion 3.2) and identifies the resource upon which to apply
the request.

Request - URI = "*" | absoluteURl | abs_path | authority
Thefour options for Request - URI are dependent on the nature of the request. The asterisk “*” meansthat the
request does not apply to a particular resource, but to the server itself, and is only all owed when the method used
does not necessarily apply to aresource One example would be

Fielding, et a Standards Tradk [Page 24]

RFC 2616 HTTP/1.1 June, 1999

OPTIONS * HTTP/ 1.1
Theabsol ut eURl formis REQUIRED when the request is being made to a proxy. The proxy is requested to
forward the request or serviceit from avalid cade, and return the response. Note that the proxy MAY forward the
request on to another proxy or diredly to the server spedfied by the absol ut eURI . In order to avoid request
loops, aproxy MUST be aleto recognize dl of its srver names, including any aliases, locd variations, and the
numeric IP address An example Request - Li ne would be:

GET http://ww. w3. or g/ pub/ WMV TheProj ect. html HITP/ 1.1
To allow for transition to absoluteURIsin all requestsin future versions of HTTP, all HTTP/1.1 servers MUST
accet theabsol ut eURI formin requests, even thoughHTTP/1.1 clients will only generate them in requeststo
proxies.

Theaut hori ty formisonly used by the CONNECT method (sedion 9.9).

The most common form of Request - URI isthat used to identify aresource on an origin server or gateway. In this
case the absolute path of the URI MUST be transmitted (seesedion 3.2.1, abs_pat h) asthe Request - URI , and
the network location of the URI (aut hor i t y) MUST be transmitted ina Host header field. For example, a dient
wishing to retrieve the resource d&ove diredly from the origin server would creae aTCP connedion to pat 80 o
the host “www.w3.0rg” and send the lines:

GET / pub/ WAV TheProject.htm HITP/ 1.1

Host: www. w3. org
followed by the remainder of the Request . Note that the asolute path cannot be enpty; if noneis present in the
origina URI, it MUST begivenas*“/” (the server roat).

The Request - URI istransmitted in the format spedfied in sedion 3.2.1. If the Request - URI isencoded using
the “% HEX HEX" encoding[42], the origin server MUST deade the Request - URI in order to properly interpret
the request. Servers SHOULD respond to invalid Request - URI swith an appropriate status code.

A transparent proxy MUST NOT rewrite the “abs_pat h” part of the recéved Request - URI when forwarding it
to the next inbound server, except as noted above to replace andl abs_pat h with“/ ”.

Note: The “no rewrite” rule prevents the proxy from changing the meaning of the request when the origin
server isimproperly using a non-reserved URI charader for areserved purpose. Implementors sould be
aware that some pre-HTTP/1.1 proxies have been known to rewrite the Request - URI .

5.2 The Resource I dentified by a Request

The exad resourceidentified by an Internet request is determined by examining both the Request - URI and the
Host header field.

An origin server that does not all ow resourcesto dffer by the requested host MAY ignore the Host header field
value when determining the resourceidentified by an HTTP/1.1 request. (But seesedion 19.6.1.1 for other
requirements on Host suppat in HTTP/1.1.)

An origin server that does diff erentiate resources based on the host requested (sometimes referred to as virtual hosts
or vanity host names) MUST use the foll owing rules for determining the requested resource on an HTTP/1.1 request:

1. If Request - URI isanabsol ut eURI , the host is part of the Request - URI . Any Host header field
value in the request MUST be ignored.

2. IftheRequest - URI isnot anabsol ut eURI , and the request includes aHost header field, the host is
determined by the Host header field value.

3. If thehost asdetermined by rule 1 or 2 isnot avalid host on the server, the response MUST be a400 (Bad
Request) error message.

Fielding, et a Standards Tradk [Page 25]

RFC 2616 HTTP/1.1 June, 1999

Recipients of an HTTP/1.0 request that lacks a Host header field MAY attempt to use heuristics (e.g., examination
of the URI path for something unique to a particular host) in order to determine what exact resource is being
requested.

5.3 Request Header Fields

The request-header fields allow the client to pass additional information about the request, and about the client itself,
to the server. These fields act as request modifiers, with semantics equivalent to the parameters on a programming
language method invocation.

request - header = Accept ; Section 14.1
Accept - Char set Section 14.2
Accept - Encodi ng Section 14.3
Accept - Language Section 14.4
Aut hori zati on Section 14.8
Expect Section 14. 20
From Section 14.22
Host Section 14.23
| f-Match Section 14.24

| f - None- Mat ch Section 14. 26
| f - Range Section 14.27
| f - Unnodi fi ed-Si nce Section 14. 28
Max- For war ds Section 14. 31

I .
I .
I .
I .
I .
I .
I ;
| 1f-Modified-Since . Section 14.25
I ;
I .
I ;
| Proxy-Authorization Section 14. 34
I .
I .
I .
I .

Range Section 14. 35
Ref er er Section 14. 36
TE Section 14. 39
User - Agent Section 14. 43

Request-header field names can be extended reliably only in combination with a change in the protocol version.
However, new or experimental header fields MAY be given the semantics of request-header fields if all partiesin the
communication recognize them to be request-header fields. Unrecognized header fields are treated as entity-header
fields.

6 Response

After receiving and interpreting a request message, a server responds with an HTTP response message.

Response = St at us-Line ; Section 6.1
*((general - header ; Section 4.5
| response- header ; Section 6.2
| entity-header) CRLF) ; Section 7.1
CRLF
[nessage- body] ; Section 7.2

6.1 Status-Line

Thefirst line of aResponse messageisthe St at us- Li ne, consisting of the protocol version followed by a
numeric status code and its associated textual phrase, with each element separated by SP characters. No CRor LF is
allowed except in the final CRLF sequence.

St at us-Li ne = HTTP- Versi on SP St atus- Code SP Reason- Phrase CRLF

6.1.1 Status Code and Reason Phrase

The St at us- Code element is a 3-digit integer result code of the attempt to understand and satisfy the request.
These codes are fully defined in section 10. The Reason- Phr ase isintended to give a short textual description of
the St at us- Code. The St at us- Code isintended for use by automata and the Reason- Phr ase isintended
for the human user. The client is not required to examine or display the Reason- Phr ase.

Fielding, et a Standards Track [Page 26]

RFC 2616

HTTP/1.1

June, 1999

Thefirst digit of the St at us- Code definesthe dassof response. The last two digits do not have any
caegorizaionrole. There ae 5 values for the first digit:

» 1xx: Informational - Request recdved, continuing process

* 2xx: Success- The adion was siccesSully recaved, understood, and accepted

» 3xx: Rediredion - Further adion must be taken in order to complete the request

» 4xx: Client Error - The request contains bad syntax or cannot be fulfill ed

» 5xx: Server Error - The server fail ed to fulfill an apparently valid request

Theindividual values of the numeric status codes defined for HTTP/1.1, and an example set of corresponding
Reason- Phr ase’s, are presented below. The reason phrases listed here ae only recommendations -- they MAY
be replacal by locd equivalents without aff eding the protocol.

St at us- Code

ext ensi on- code

"100"
"101"
" 200"
"201"
"202"
" 203"
"204"
" 205"
" 206"
" 300"
"301"
" 302"
" 303"
" 304"
" 305"
" 307"
" 400"
"401"
"402"
" 403"
" 404"
" 405"
" 406"
" 407"
" 408"
" 409"
"410"
411"
"412"
"413"
"414"
"415"
"416"
417"
" 500"
"501"
"502"
" 503"
" 504"
" 505"

Sect i
Sect i
Sect i
Sect i
Sect i
Sect i
Sect i
Sect i
Sect i
Sect i
Sect i
Sect i
Sect i
Sect i
Sect i
Sect i
Sect i
Sect i
Sect i
Sect i
Sect i
Sect i
Sect i
Sect i
Sect i
Sect i
Sect i
Sect i
Sect i
Sect i
Sect i
Sect i
Sect i
Sect i
Sect i
Sect i
Sect i
Sect i
Sect i
Sect i

ext ensi on- code

Reason- Phr ase

Fielding, et a

3DIA T
*<TEXT

on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on

Standards Tradk

QONANORARRARRARRARRARRAROONWORWNNNNNNNEE

CRANQURWONROQURWONRNQORWNERNE

Conti nue

Swi t chi ng Protocols
XK

Creat ed

Accept ed

Non- Aut horitative Information
No Cont ent

Reset Cont ent
Partial Content
Mul ti pl e Choices
Moved Permanent!|y
Found

See O her

Not Modi fi ed

Use Proxy

Tenporary Redirect
Bad Request

Unaut hori zed
Payment Required
For bi dden

Not Found

Met hod Not Al | owed
Not Acceptabl e
Proxy Aut hentication Required
Request Ti ne- out

Conflict
Gone
Lengt h Required

Precondition Fail ed
Request Entity Too Large
Request - URI Too Large
Unsupported Media Type
Request ed range not satisfiable
Expect ati on Fail ed

I nternal Server Error

Not | npl enent ed

Bad Gat eway

Servi ce Unavail abl e

Gat eway Ti ne-out

HTTP Versi on not supported

excluding CR, LF>

[Page 27]

RFC 2616 HTTP/1.1 June, 1999

HTTP status codes are extensible. HTTP applications are not required to understand the meaning of al registered
status codes, though such understanding is obviously desirable. However, applications MUST understand the class of
any status code, asindicated by the first digit, and treat any unrecognized response as being equivalent to the x00
status code of that class, with the exception that an unrecognized response MUST NOT be cached. For example, if
an unrecognized status code of 431 isreceived by the client, it can safely assume that there was something wrong
with its request and treat the response as if it had received a 400 status code. In such cases, user agents SHOULD
present to the user the entity returned with the response, since that entity is likely to include human-readable
information which will explain the unusual status.

6.2 Response Header Fields

The response-header fields allow the server to pass additional information about the response which cannot be
placed inthe St at us- Li ne. These header fields give information about the server and about further accessto the
resource identified by the Request - URI .

response- header = Accept - Ranges ; Section 14.5
Age ; Section 14.6
ETag ; Section 14.19
Locati on ; Section 14. 30
Pr oxy- Aut henti cat e ; Section 14. 33
Retry-After ; Section 14. 37
Server ; Section 14. 38
Vary ; Section 14. 44

WAV Aut hent i cat e ; Section 14.47
Response-header field names can be extended reliably only in combination with a change in the protocol version.
However, new or experimental header fields MAY be given the semantics of response-header fieldsif al partiesin
the communi cation recognize them to be response-header fields. Unrecognized header fields are treated as entity-
header fields.

7 Entity

Request and Response messages MAY transfer an entity if not otherwise restricted by the request method or
response status code. An entity consists of entity-header fields and an entity-body, although some responses will only
include the entity-headers.

In this section, both sender and recipient refer to either the client or the server, depending on who sends and who
receives the entity.

7.1 Entity Header Fields

Entity-header fields define metainformation about the entity-body or, if no body is present, about the resource
identified by the request. Some of this metainformation is OPTIONAL ; some might be REQUIRED by portions of
this specification.

entity-header = Allow ; Section 14.7
| Content-Encodi ng Section 14.11
| Content-Language Section 14.12
| Content-Length Section 14.13
| Content-Location Section 14. 14
| Content- M5 Section 14.15
| Content-Range Section 14.16
| Content-Type Section 14.17
| Expires Section 14.21
| Last-Modified Section 14. 29
| extension-header

r = message- header

ext ensi on- heade

Fielding, et a Standards Track [Page 28]

RFC 2616 HTTP/1.1 June, 1999

The extension-healer mecdhanism all ows additi onal entity-header fieldsto be defined without changing the protocol,
but these fields cannot be asaumed to be reagnizable by the redpient. Unreagnized header fields SHOULD be
ignored by the redpient and MUST be forwarded by transparent proxies.

7.2 Entity Body

The entity-body (if any) sent with an HTTP request or responseisin aformat and encoding defined by the entity-
header fields.

entity-body = *OCTET
An entity-body is only present in a message when a message-body is present, as described in sedion 4.3. The entity-
body is obtained from the message-body by deadingany Tr ansf er - Encodi ng that might have been applied to
ensure safe and proper transfer of the message.

7.2.1 Type

When an entity-body is included with a message, the data type of that body is determined via the header fields
Cont ent - Type and Cont ent - Encodi ng. These define atwo-layer, ordered encoding mode!:

entity-body := Content-Encodi ng(Content-Type(data))
Cont ent - Type spedfiesthe mediatype of the underlying data. Cont ent - Encodi ng may be used to indicae
any additional content codings applied to the data, usualy for the purpose of data mmpresdgon, that are aproperty of
the requested resource There isno default encoding.

Any HTTP/1.1 message @ntaining an entity-body SHOULD include aCont ent - Type healer field definingthe
media type of that body. If and only if the mediatypeis not given by aCont ent - Type field, the redpient MAY
attempt to guessthe media type viainspedion of its content and/or the name extension(s) of the URI used to identify
the resource. If the media type remains unknown, the reapient SHOULD trea it astype “appl i cat i on/ oct et -
streant.

7.2.2 Entity Length

The entity-length of a message isthe length of the message-body before ay transfer-codings have been applied.
Sedion 4.4 defines how the transfer-length of a message-body is determined.

8 Connections

8.1 Persistent Connections

8.1.1 Purpose

Prior to persistent connedions, a separate TCP connedion was establi shed to fetch ead URL, increasing the load on
HTTP servers and causing congestion on the Internet. The use of inline images and ather associated data often
require a dient to make multi ple requests of the same server in a short amount of time. Analysis of these
performance problems and results from a prototype implementation are avail able [26] [30]. Implementation
experience and measurements of acual HTTP/1.1 (RFC 2068 implementations sow goodresults [39]. Alternatives
have dso been explored, for example, T/TCP [27].

Persistent HT TP connedions have anumber of advantages:
e By openingand closing fewer TCP connedions, CPU timeis saved in routers and hosts (clients, servers,

proxies, gateways, tunnels, or cades), and memory used for TCP protocol control blocks can be saved in
hosts.

e HTTPrequests and responses can be pipelined on a wnnedion. Pipelining allows a dient to make multiple
requests without waiting for ead response, alowing asingle TCP connedion to be used much more
efficiently, with much lower elapsed time.

Fielding, et a Standards Tradk [Page 29

RFC 2616 HTTP/1.1 June, 1999

» Network congestion is reduced by reducing the number of padkets caused by TCP opens, and by allowing
TCP sufficient time to determine the congestion state of the network.

» Latency on subsequent requests is reduced sincethere is no time spent in TCP's connedion opening
handshake.

» HTTP can evolve more gracdully, since erors can be reported without the penalty of closing the TCP
connedion. Clients using future versions of HTTP might optimisticdly try a new feaure, but if
communicating with an older server, retry with old semantics after an error is reported.

HTTP implementations SHOUL D implement persistent connedions.

8.1.2 Overall Operation

A significant difference between HTTP/1.1 and ealier versions of HTTP is that persistent connedions are the
default behavior of any HTTP connedion. That is, unlessotherwise indicaed, the dient SHOULD asaume that the
server will maintain a persistent connedion, even after error responses from the server.

Persistent connedions provide amechanism by which a dient and a server can signal the dose of a TCP connedion.
This ggnaling takes placeusingthe Connect i on header field (sedion 14.10). Once a ¢ose has been signaled, the
client MUST NOT send any more requests on that connedion.

8.1.2.1 Negotiation

AnHTTP/1.1 server MAY asaumethat aHTTP/1.1 client intends to maintain a persistent connedion urlessa
Connect i on healer including the connedion-token “cl ose” was snt in the request. If the server choosesto
close the mnnedion immediately after sending the response, it SHOULD send aConnect i on healer including the
connedion-token cl ose.

AnHTTP/1.1 client MAY exped a mnnedion to remain open, but would dedde to keep it open based on whether
the response from a server containsa Connect i on healer with the mnnedion-token cl ose. In case the dient
does not want to maintain a wnnedion for more than that request, it SHOULD send aConnect i on healer
including the connedion-token cl ose.

If either the dient or the server sendsthe cl ose token inthe Connect i on header, that request becomes the last
one for the mnnedion.

Clients and servers SHOULD NOT assume that a persistent connedion is maintained for HTTP versions lessthan
1.1 unlessit is explicitly signaled. Seesedion 19.6.2 for more information on badkward compatibility with
HTTP/1.0 clients.

In order to remain persistent, all messages on the cnnedion MUST have aself-defined message length (i.e., one not
defined by closure of the mnnedion), as described in sedion 4.4.

8.1.2.2 Pipelining

A client that supparts persistent connedions MAY “pipeline” its requests (i.e., send multi ple requests without
waiting for ead response). A server MUST send its responses to those requests in the same order that the requests
were recaved.

Clients which asaume persistent connedions and pipeline immediately after connedion establi shment SHOULD be
prepared to retry their connedion if the first pipelined attempt fails. If a dient does such aretry, it MUST NOT
pipeline before it knows the connedion is persistent. Clients MUST also be prepared to resend their requestsif the
server closesthe mnnedion before sending al of the mrresponding responses.

Clients SHOULD NOT pipeline requests using ron-idempatent methods or non-idempotent sequences of methods
(seesedion 9.1.2). Otherwise, a premature termination of the transport connedion could lead to indeterminate
results. A client wishingto send a non-idempotent request SHOULD wait to send that request urtil it has recaved
the response status for the previous request.

Fielding, et a Standards Tradk [Page 30|

RFC 2616 HTTP/1.1 June, 1999

8.1.3 Proxy Servers

It is espedally important that proxies corredly implement the properties of the Connect i on header field as
spedfied in sedion 14.10.

The proxy server MUST signal persistent connedions sparately with its clients and the origin servers (or other
proxy servers) that it conneds to. Each persistent connedion appliesto only one transport link.

A proxy server MUST NOT establishaHTTP/1.1 persistent connedion with an HTTP/1.0 client (but seeRFC 2068
[33] for information and discusdon of the problems with the Keep- Al i ve header implemented by many HTTP/1.0
clients).

8.1.4 Practical Considerations

Serverswill usually have some time-out value beyond which they will no longer maintain an inadive connedion.
Proxy servers might make this a higher value sinceit islikely that the dient will be making more mnnedions
throughthe same server. The use of persistent connedions places no requirements on the length (or existence) of this
time-out for either the dient or the server.

When a dient or server wishes to time-out it SHOULD isaue agracdul close on the transport connedion. Clients
and servers SHOULD bath constantly watch for the other side of the transport close, and respond to it as appropriate.
If a dient or server does not deted the other side’s close promptly it could cause unrecessary resource drain on the
network.

A client, server, or proxy MAY close the transport connedion at any time. For example, a dient might have started
to send a new request at the same time that the server has dedded to close the “idle” connedion. From the server’s
point of view, the mnnedion isbeing closed while it wasidle, but from the dient’s point of view, arequest isin
progress

This means that clients, servers, and proxies MUST be ale to recover from asynchronous close events. Client
software SHOUL D reopen the transport connedion and retransmit the eborted sequence of requests without user
interadion so long as the request sequenceisidempatent (seesedion 9.1.2). Non-idempaotent methods or sequences
MUST NOT be aittomaticdly retried, although ser agents MAY offer a human operator the dhoice of retrying the
request(s). Confirmation by user-agent software with semantic understanding of the gplication MAY substitute for
user confirmation. The automatic retry SHOULD NOT be repeded if the second sequence of requests fail s.

Servers SHOULD always respond to at least one request per connedion, if at all possble. Servers SHOULD NOT
close a onnedion in the middle of transmitting a response, unlessa network or client failure is sispeded.

Clients that use persistent connedions SHOULD limit the number of simultaneous connedions that they maintain to
agiven server. A single-user client SHOULD NOT maintain more than 2 connedions with any server or proxy. A
proxy SHOULD use up to 2*N connedions to another server or proxy, where N is the number of simultaneously
adive users. These guidelines are intended to improve HT TP response times and avoid congestion.

8.2 Message Transmission Requirements

8.2.1 Persistent Connections and Flow Control

HTTP/1.1 servers SHOULD maintain persistent connedions and use TCP's flow control mechanisms to resolve
temporary overloads, rather than terminating connedions with the expedation that clients will retry. The latter
technique can exacebate network congestion.

8.2.2 Monitoring Connectionsfor Error Status M essages

AnHTTP/1.1 (or later) client sending a message-body SHOUL D monitor the network connedion for an error status
while it istransmitti ng the request. If the dient sees an error status, it SHOULD immediately cease transmitting the
body. If the body is being sent using a“chunked” encoding (sedion 3.6), a zeo length chunkand empty trailer MAY

Fielding, et a Standards Tradk [Page 31]

RFC 2616 HTTP/1.1 June, 1999

be used to prematurely mark the end of the message. If the body was precealed by a Cont ent - Lengt h header, the
client MUST close the mnnedion.

8.2.3 Use of the 100 (Continue) Status

The purpose of the 100 (Continue) status (seesedion 10.1.1) isto allow a dient that is snding a request message
with arequest body to determine if the origin server is willi ngto accept the request (based on the request headers)
before the dient sends the request body. In some caes, it might either be inappropriate or highly inefficient for the
client to send the body if the server will rejed the message without looking at the body.

Requirements for HTTP/1.1 clients:

e Ifadient will wait for a100(Continue) response before sending the request body, it MUST send an
Expect request-header field (sedion 14.20) with the “100-continue” expedation.

e Aclient MUST NOT send an Expect request-header field (sedion 14.20) with the “100-continue”
expedation if it does not intend to send a request body.

Because of the presence of older implementations, the protocol al ows ambiguous stuationsin which a dient may
send “Exped: 100-continue” without receving either a 417 (Expedation Fail ed) status or a 100 (Continue) status.
Therefore, when a dient sends this header field to an origin server (possbly via aproxy) from which it has never
seen a 100 (Continue) status, the dient SHOULD NOT wait for an indefinite period before sending the request body.

Requirementsfor HTTP/1.1 arigin servers:

» Uponrecaving areguest which includes an Expect request-header field with the “100-continue”
expedation, an origin server MUST either respond with 100 (Continue) status and continue to read from the
input stream, or respond with afinal status code. The origin server MUST NOT wait for the request body
before sending the 100 (Continue) response. If it responds with afinal status code, it MAY close the
transport connedion or it MAY continue to read and discard the rest of the request. It MUST NOT perform
the requested method if it returns afinal status code.

e Anoriginserver SHOULD NOT send a 100 (Continue) response if the request message does not include an
Expect request-header field with the “100-continue” expedation, and MUST NOT send a 100 (Continue)
response if such arequest comes from an HTTP/1.0 (or ealier) client. There is an exception to thisrule: for
compatibility with RFC 2068 a server MAY send a 100 (Continue) statusin responseto an HTTP/1.1 PUT
or POST request that does not include an Expect request-healer field with the “100-continue”
expedation. This exception, the purpase of which isto minimize ay client processng delays associated
with an urdedared wait for 100 (Continue) status, appliesonly to HTTP/1.1 requests, and not to requests
with any other HTTP-version value.

* Anoriginserver MAY omit a 100 (Continue) responseif it has already receved some or all of the request
body for the crresponding request.

e Anorigin server that sends a 100 (Continue) response MUST ultimately send afinal status code, oncethe
request body isrecaved and processed, unlessit terminates the transport connedion prematurely.

» If anorigin server recaves arequest that does not include an Expect request-header field with the “100
continue” expedation, the request includes a request body, and the server responds with afinal status code
before reading the entire request body from the transport connedion, then the server SHOULD NOT close
the transport connedion urtil it hasread the entire request, or until the dient closes the connedion.
Otherwise, the dient might not reli ably receve the response message. However, this requirement is not be
construed as preventing a server from defending itself against denial-of-service atads, or from badly
broken cli ent implementations.

Requirements for HTTP/1.1 proxies:

» |If aproxy recaves arequest that includes an Expect request-header field with the “100-continue”
expedation, and the proxy either knows that the next-hop server complies with HTTP/1.1 or higher, or does

Fielding, et a Standards Tradk [Page 32]

RFC 2616 HTTP/1.1 June, 1999

not know the HTTP version of the next-hop server, it MUST forward the request, including the Expect
header field.

» |If the proxy knows that the version of the next-hop server isHTTP/1.0 or lower, it MUST NOT forward the
request, and it MUST respond with a 417 (Expedation Fail ed) status.

e Proxies SHOULD maintain a cate recording the HTTP version numbers recaved from recently-referenced
next-hop servers.

* A proxy MUST NOT forward a 100 (Continue) response if the request message was recaved from an
HTTP/1.0 (or ealier) client and did not include an Expect request-header field with the “100-continue”
expedation. This requirement overrides the general rule for forwarding of 1xx responses (seesedion 10.1).

8.2.4 Client Behavior if Server Prematurely Closes Connection

If an HTTP/1.1 client sends a request which includes a request body, but which does not include an Expect
request-header field with the “100-continue” expedation, and if the dient is not diredly conneced to an HTTP/1.1
origin server, and if the dient seesthe mnnedion close before recaving any status from the server, the dient
SHOULD retry the request. If the dient does retry thisrequest, it MAY use the following “ binary exponential
badoff” algorithm to be asaured of obtaining areli able response:

1. [Initiate anew connedion to the server
2. Transmit the request-headers

3. Initialize avariable R to the estimated round-trip time to the server (e.g., based on thetimeit took to
establish the mnnedion), or to a cnstant value of 5 seconds if the round-trip time is not avail able.

Compute T = R* (2** N), where N is the number of previous retries of this request.
Wait either for an error response from the server, or for T seconds (whichever comes first)

If no error response isreceaved, after T seconds transmit the body of the request.

N o o &

If client seesthat the connedion is closed prematurely, repea from step 1 urtil the request is accepted, an
error response is receved, or the user becomes impatient and terminates the retry process

If at any point an error statusis recaved, the dient
¢ SHOULD NOT continue and
» SHOULD close the mnnedion if it has not completed sending the request message.

9 Method Definitions

The set of common methods for HTTP/1.1 is defined below. Althoughthis st can be expanded, additional methods
cannot be asaumed to share the same semantics for separately extended clients and servers.

The Host request-header field (sedion 14.23) MUST acompany al HTTP/1.1 requests.

9.1 Safeand Idempotent Methods

9.11 SafeMethods

Implementors should be avare that the software represents the user in their interadions over the Internet, and should
be caeful to allow the user to be avare of any adions they might take which may have an urexpeded significanceto
themselves or others.

Fielding, et a Standards Tradk [Page 33

RFC 2616 HTTP/1.1 June, 1999

In particular, the convention has been establi shed that the GET and HEAD methods SHOULD NOT have the
significance of taking an adion other than retrieval. These methods ought to be considered “safe”. This all ows user
agents to represent other methods, such as POST, PUT and DELETE, in aspedal way, so that the user is made avare
of the fad that a posdbly unsafe adion is being requested.

Naturally, it is not possble to ensure that the server does not generate side-effeds as aresult of performinga GET
request; in fad, some dynamic resources consider that afeaure. The important distinction here is that the user did
not request the side-effeds, so therefore cannot be held acmuntable for them.

9.1.2 ldempotent M ethods

Methods can also have the property of “idempotence” in that (aside from error or expiration issues) the side-effeds
of N > O identicd requestsis the same & for asingle request. The methods GET, HEAD, PUT and DELETE share
this property. Also, the methods OPTIONS and TRACE SHOULD NOT have side dfeds, and so are inherently
idempotent.

However, it is possble that a sequence of several requestsis non-idempotent, even if al of the methods exeauted in
that sequence aeidempatent. (A sequenceisidempatent if asingle exeaution of the entire sequence dwaysyields a
result that is not changed by areexeaution of all, or part, of that sequence) For example, a sequenceis non-
idempotent if its result depends on avalue that islater modified in the same sequence

A sequencethat never has sde dfedsisidempatent, by definition (provided that no concurrent operations are being
exeauted on the same set of resources).

9.2 OPTIONS

The OPTI ONS method represents a request for information about the cmmmunication options avail able on the
request/response chain identified by the Request - URI . This method all ows the dient to determine the options
and/or requirements associated with aresource, or the cagabiliti es of a server, without implying aresource adion or
initiating aresourceretrieval .

Responses to this method are not caceale.

If the OPTIONS request includes an entity-body (asindicaed by the presenceof Cont ent - Lengt h or

Tr ansf er - Encodi ng), then the mediatype MUST beindicated by a Cont ent - Type field. Althoughthis
spedfication does not define any use for such abody, future extensionsto HTTP might use the OPTIONS body to
make more detail ed queries on the server. A server that does not suppart such an extension MAY discard the request

body.

If theRequest - URI isan asterisk (“*"), the OPTI ONS request isintended to apply to the server in general rather
than to a spedfic resource. Since aserver’'s communication options typicaly depend on the resource, the “*” request
isonly useful asa“ping’ or “no-op” type of method; it does nothing beyond all owing the dient to test the

cgpabiliti es of the server. For example, this can be used to test a proxy for HTTP/1.1 compliance (or lack thereof).

If theRequest - URI isnot an asterisk, the OPTI ONS request applies only to the options that are avail able when
communicating with that resource

A 200response SHOULD include any healer fields that indicate optional feaures implemented by the server and
applicable to that resource (e.g., Al | ow), possbly including extensions not defined by this edficaion. The
response body, if any, SHOULD also include information about the ammmunication options. The format for such a
body is not defined by this pedficaion, but might be defined by future extensionsto HTTP. Content negotiation
MAY be used to seled the gpropriate response format. If no response body isincluded, the response MUST include
aCont ent - Lengt h field with afield-value of “0”.

The Max- For war ds request-header field MAY be used to target a spedfic proxy in the request chain. When a
proxy receaves an OPTIONS request on an absoluteURI for which request forwarding is permitted, the proxy MUST
ched for aMax- For war ds field. If the Max- For war ds field-valueis zero (“0”), the proxy MUST NOT
forward the message; instead, the proxy SHOULD respond with its own communication options. If the Max-

For war ds field-value is an integer greaer than zero, the proxy MUST deaement the field-value when it forwards

Fielding, et a Standards Tradk [Page 34]

RFC 2616 HTTP/1.1 June, 1999

the request. If no Max- For war ds field is present in the request, then the forwarded request MUST NOT include a
Max- For war ds field.

9.3 GET

The GET method means retrieve whatever information (in the form of an entity) isidentified by the Request - URI .
If theRequest - URI refersto adata-producing process it isthe produced data which shall be returned as the entity
in the response and not the sourcetext of the process unlessthat text happensto be the output of the process

The semantics of the GET method change to a“conditional GET” if the request message includesan | f -

Modi fi ed- Si nce, | f-Unnodi fied-Since,|f-Mtch,If-None-Match,orlf-Range heaer field. A
conditional GET method requests that the entity be transferred only under the drcumstances described by the
conditional header field(s). The conditional GET method is intended to reduce unrecessary network usage by
allowing caded entitiesto be refreshed without requiring multi ple requests or transferring data dready held by the
client.

The semantics of the GET method change to a“partial GET” if the request message includes a Range header field.
A partial GET requests that only part of the entity be transferred, as described in sedion 14.35. The partial GET
method is intended to reduce unrecessary network usage by all owing partiall y-retrieved entities to be completed
without transferring data drealy held by the dient.

Theresponseto a GET request is cadheable if and only if it mees the requirements for HT TP cading described in
sedion 13.

Seesedion 15.1.3 for seaurity considerations when used for forms.

9.4 HEAD

The HEAD method isidenticd to GET except that the server MUST NOT return a message-body in the response. The
metainformation contained in the HTTP headers in response to a HEAD request SHOULD be identicd to the
information sent in response to a GET request. This method can be used for obtaining metainformation about the
entity implied by the request without transferring the entity-body itself. This method is often used for testing
hypertext links for validity, accesshility, and recent modification.

The response to a HEAD request MAY be cadeddle in the sense that the information contained in the response MAY
be used to update apreviously caded entity from that resource. If the new field values indicate that the caded entity
differsfrom the arrent entity (aswould be indicated by a changein Cont ent - Lengt h, Cont ent - MD5, ETag
or Last - Mbdi fi ed), thenthe catie MUST trea the cabe entry as dae.

9.5 POST

The POST method is used to request that the origin server accept the entity enclosed in the request as a new
subordinate of the resourceidentified by the Request - URI inthe Request - Li ne. POST isdesigned to allow a
uniform method to cover the foll owing functions:

* Annotation of existing resources,
» Posting a message to a bull etin board, newsgroup, maili nglist, or similar group of articles;
» Providingablock of data, such asthe result of submitting aform, to a data-handling process

» Extending a database throughan append operation.
The acual function performed by the POST method is determined by the server and is usually dependent on the
Request - URI . The posted entity is subordinate to that URI in the same way that afile is subordinate to a direcory

containing it, anews article is subordinate to a newsgroup to which it is posted, or arecord is sibordinate to a
database.

Fielding, et a Standards Tradk [Page 35]

RFC 2616 HTTP/1.1 June, 1999

The adion performed by the POST method might not result in aresourcethat can be identified by a URI. In this
case, either 200(OK) or 204 (No Content) isthe gpropriate response status, depending on whether or not the
response includes an entity that describes the resullt.

If aresource has been creaed on the origin server, the response SHOULD be 201 (Creaed) and contain an entity
which describes the status of the request and refers to the new resource, and aLocat i on healer (seesedion
14.30).

Responses to this method are not caceable, unlessthe response includes appropriate Cache- Cont r ol or
Expi r es heaer fields. However, the 303 (SeeOther) response can be used to dired the user agent to retrieve a
cadeableresource

POST requests MUST obey the message transmisson requirements st out in sedion 8.2.

Seesedion 15.1.3 for seaurity considerations.

9.6 PUT

The PUT method requests that the enclosed entity be stored under the supplied Request - URI . If the Request -
URI refersto an already existing resource, the enclosed entity SHOULD be considered as a modified version of the
one residing on the origin server. If the Request - URI does not point to an existing resource, and that URI is
cgpable of being defined as a new resource by the requesting wser agent, the origin server can creae the resource
with that URI. If anew resourceis creaed, the origin server MUST inform the user agent viathe 201 (Creaed)
response. If an existing resourceis modified, either the 200 (OK) or 204 (No Content) response mdes SHOULD be
sent to indicate successul completion of the request. If the resource @muld not be aeaed or modified with the
Request - URI , an appropriate aror response SHOULD be given that refleds the nature of the problem. The
redpient of the entity MUST NOT ignore any Cont ent - * (e.g. Cont ent - Range) healersthat it does not
understand or implement and MUST return a501 (Not Implemented) response in such cases.

If the request passes througha catie and the Request - URI identifies one or more aurrently caded entities, those
entries SHOULD be treaed as dale. Responses to this method are not cadedble.

The fundamental diff erence between the POST and PUT requestsis refleded in the diff erent meaning of the
Request - URI . The URI in a POST request identifies the resource that will handle the enclosed entity. That
resource might be adata-accepting process a gateway to some other protocol, or a separate entity that accepts
annotations. In contrast, the URI in a PUT request identifies the entity enclosed with the request -- the user agent
knows what URI isintended and the server MUST NOT attempt to apply the request to some other resource. If the
server desires that the request be gplied to adifferent URI, it MUST send a 301 (Moved Permanently) response; the
user agent MAY then make its own dedsion regarding whether or not to redired the request.

A singleresource MAY beidentified by many different URIs. For example, an article might have aURI for
identifying “the airrent version” which is sparate from the URI identifying ead particular version. In thiscase, a
PUT request on ageneral URI might result in several other URIs being defined by the origin server.

HTTP/1.1 dees not define how a PUT method aff eds the state of an origin server.
PUT requests MUST obey the message transmisson requirements st out in sedion 8.2.

Unlessotherwise spedfied for a particular entity-header, the entity-headersin the PUT request SHOULD be gplied
to theresource aeaed or modified by the PUT.

9.7 DELETE

The DELETE method requests that the origin server delete the resourceidentified by the Request - URI . This
method MAY be overridden by human intervention (or other means) on the origin server. The dient cannot be
guaranteed that the operation has been carried aut, even if the status code returned from the origin server indicaes
that the adion has been completed successully. However, the server SHOULD NOT indicate successunless at the
time the response is given, it intends to delete the resource or move it to an inaccessble location.

Fielding, et a Standards Tradk [Page 36]

RFC 2616 HTTP/1.1 June, 1999

A succesdul response SHOULD be 200 (OK) if the response includes an entity describing the status, 202 (Accepted)
if the adion has not yet been enaded, or 204 (No Content) if the adion has been enaded but the response does not
include an entity.

If the request passes througha cate and the Request - URI identifies one or more aurrently caded entiti es, those
entries SHOULD be treaed as gale. Responses to this method are not cadhedble.

9.8 TRACE

The TRACE method is used to invoke aremote, appli cation-layer loop-badk of the request message. The fina
redpient of the request SHOULD refled the message recaved badk to the dient asthe entity-body of a200(OK)
response. The final redpient is either the origin server or the first proxy or gateway to recave aMax- For war ds
value of zero (0) in the request (seesedion 14.31). A TRACE request MUST NOT include an entity.

TRACE alowsthe dient to seewhat is being recaved at the other end of the request chain and use that data for
testing or diagnostic information. The value of the Vi a header field (sedion 14.45) is of particular interest, sinceit
ads as atraceof the request chain. Use of the Max- For war ds healer field all ows the dient to limit the length of
the request chain, which is useful for testing a chain of proxies forwarding messages in an infinite loop.

If the request is valid, the response SHOULD contain the entire request message in the entity-body, with a
Cont ent - Type of “messge/http”. Responses to this method MUST NOT be caded.

9.9 CONNECT

This gedfication reserves the method name CONNECT for use with a proxy that can dynamicdly switchto beinga
tunrel (e.g. S tunreling [44]).

10 Status Code Definitions

Each St at us- Code isdescribed below, including a description of which method(s) it can foll ow and any
metainformation required in the response.

10.1 Informational 1xx

This classof status code indicates a provisional response, consisting only of the St at us- Li ne and ogtional
headers, and is terminated by an empty line. There ae no required headers for this classof status code. Since
HTTP/1.0 did not define any 1xx status codes, servers MUST NOT send a 1xx response to an HTTP/1.0 client
except under experimental conditions.

A client MUST be prepared to accept one or more 1xx status responses prior to aregular response, even if the dient
does not exped a 100 (Continue) status message. Unexpeded 1xx status responses MAY be ignored by a user agent.

Proxies MUST forward 1xx responses, unlessthe cnnedion between the proxy and its client has been closed, or
unlessthe proxy itself requested the generation of the 1xx response. (For example, if a proxy adds a“Exped: 100-
continue” field when it forwards a request, then it need not forward the arresponding 100 (Continue) response(s).)

10.1.1 100 Continue

The dient SHOULD continue with its request. Thisinterim response is used to inform the dient that the initial part
of the request has been receved and has not yet been rejeded by the server. The dient SHOULD continue by
sending the remainder of the request or, if the request has already been completed, ignore this response. The server
MUST send afinal response dter the request has been completed. Seesedion 8.2.3 for detailed discusson of the use
and handling of this gatus code.

Fielding, et a Standards Tradk [Page 37]

RFC 2616 HTTP/1.1 June, 1999

10.1.2 101 Switching Protocols

The server understands and is willi ng to comply with the dient’s request, viathe Upgr ade message header field
(sedion 14.42), for a change in the goplication protocol being used on this connedion. The server will switch
protocols to those defined by the response’ s Upgr ade header field immediately after the ampty line which
terminates the 101 response.

The protocol SHOULD be switched only when it is advantageous to doso. For example, switching to a newer
version of HTTP is advantageous over older versions, and switchingto a red-time, synchronous protocol might be
advantageous when deli vering resources that use such feaures.

10.2 Successful 2xx

This classof status code indicates that the dient’s request was successully recaved, understood, and accepted.

10.21 200 OK

The request has siccealed. The information returned with the response is dependent on the method used in the
request, for example:

GET anentity corresponding to the requested resourceis ent in the response;

HEAD the entity-header fields corresponding to the requested resource ae sent in the response without any
message-body;

POST an entity describing or containing the result of the adion;

TRACE an entity containing the request message asreceved by the end server.

10.2.2 201 Created

The request has been fulfill ed and resulted in a new resource being creaed. The newly creaed resource can be
referenced by the URI(S) returned in the entity of the response, with the most spedfic URI for the resource given by
aLocat i on heaer field. The response SHOULD include an entity containing alist of resource daraderistics and
locaion(s) from which the user or user agent can choase the one most appropriate. The entity format is edfied by
the media type given in the Cont ent - Type header field. The origin server MUST crede the resource before
returning the 201 status code. If the ation cannot be caried out immediately, the server SHOULD respond with 202
(Accepted) response instea.

A 201response MAY contain an ETag response header field indicating the arrent value of the entity tag for the
requested variant just creaed, seesedion 14.19.

10.2.3 202 Accepted

The request has been accepted for processng, but the processng has not been completed. The request might or
might not eventually be aded upon, asit might be disall owed when processng adually takes place Thereisno
fadlity for re-sending a status code from an asynchronous operation such as this.

The 202response is intentionally non-committal. Its purpose isto allow a server to accet arequest for some other
process(perhaps a batch-oriented processthat is only runonce per day) without requiring that the user agent’s
connedion to the server persist urtil the processis completed. The entity returned with this response SHOULD
include an indication of the request’s current status and either a pointer to a status monitor or some estimate of when
the user can exped the request to be fulfill ed.

Fielding, et a Standards Tradk [Page 38

RFC 2616 HTTP/1.1 June, 1999

10.2.4 203 Non-Authoritative Information

The returned metainformation in the entity-header is not the definitive set as avail able from the origin server, but is
gathered from alocd or athird-party copy. The set presented MAY be asubset or superset of the original version.
For example, including locd annotation information about the resource might result in a superset of the
metainformation known by the origin server. Use of this response mde is not required and is only appropriate when
the response would atherwise be 200 (OK).

10.2.5 204 No Content

The server has fulfill ed the request but does not need to return an entity-body, and might want to return updated
metainformation. The response MAY include new or updated metainformation in the form of entity-headers, which if
present SHOULD be asoociated with the requested variant.

If the dient isauser agent, it SHOULD NOT change its document view from that which caused the request to be
sent. Thisresponse is primarily intended to all ow input for adions to take placewithout causing a change to the user
agent’ s adive document view, althoughany new or updated metainformation SHOULD be gplied to the document
currently in the user agent’s adive view.

The 204 response MUST NOT include amessage-body, and thus is always terminated by the first empty line dter
the header fields.

10.2.6 205 Reset Content

The server has fulfill ed the request and the user agent SHOULD reset the document view which caused the request to
be sent. Thisresponse is primarily intended to all ow input for adions to take placevia user input, followed by a
cleaing of the form in which the input is given so that the user can easily initiate another input adion. The response
MUST NOT include an entity.

10.2.7 206 Partial Content

The server has fulfill ed the partial GET request for the resource. The request MUST have included a Range healer
field (sedion 14.35) indicaing the desired range, and MAY haveincluded an | f - Range healer field (sedion
14.27) to make the request conditional.

The response MUST include the following header fields:

e Either aCont ent - Range header field (sedion 14.16) indicaing the range included with this response, or
amulti part/byteranges Cont ent - Type including Cont ent - Range fieldsfor eat part. If aCont ent -
Lengt h header field is present in the response, its value MUST match the adual number of OCTETs
transmitted in the message-body.

e Date

e ETag and/or Cont ent - Locat i on, if the header would have been sent in a 200 response to the same
request

 Expires, Cache- Control,and/or Vary, if the field-value might differ from that sent in any previous
response for the same variant

If the 206 responseistheresult of an | f - Range request that used a strong cade validator (seesedion 13.3.3), the
response SHOULD NOT include other entity-headers. If the responseistheresult of an | f - Range request that
used awedk validator, the response MUST NOT include other entity-headers; this prevents inconsistencies between
caded entity-bodes and updated healers. Otherwise, the response MUST include dl of the entity-headers that
would have been returned with a 200 (OK) response to the same request.

A cade MUST NOT combine a206 response with other previously caded content if the ETag or Last -
Modi f i ed healers do not match exadly, seel13.5.4.

Fielding, et a Standards Tradk [Page 39

RFC 2616 HTTP/1.1 June, 1999

A cache that does not support the Range and Cont ent - Range headers MUST NOT cache 206 (Partial)
responses.

10.3 Redirection 3xx

This class of status code indicates that further action needs to be taken by the user agent in order to fulfill the request.
The action required MAY be carried out by the user agent without interaction with the user if and only if the method
used in the second request is GET or HEAD. A client SHOULD detect infinite redirection loops, since such loops
generate network traffic for each redirection.

Note: previous versions of this specification recommended a maximum of five redirections. Content
developers should be aware that there might be clients that implement such a fixed limitation.

10.3.1 300 Multiple Choices

The requested resource corresponds to any one of a set of representations, each with its own specific location, and
agent-driven negotiation information (section 12) is being provided so that the user (or user agent) can select a
preferred representation and redirect its request to that location.

Unless it was a HEAD request, the response SHOUL D include an entity containing a list of resource characteristics
and location(s) from which the user or user agent can choose the one most appropriate. The entity format is specified
by the media type given in the Cont ent - Type header field. Depending upon the format and the capabilities of the
user agent, selection of the most appropriate choice MAY be performed automatically. However, this specification
does not define any standard for such automatic selection.

If the server has a preferred choice of representation, it SHOULD include the specific URI for that representation in
theLocat i on field; user agents MAY usethe Locat i on field value for automatic redirection. Thisresponseis
cacheable unlessindicated otherwise.

10.3.2 301 Moved Per manently

The requested resource has been assigned a new permanent URI and any future references to this resource SHOULD
use one of the returned URIs. Clients with link editing capabilities ought to automatically re-link references to the
Request - URI to one or more of the new references returned by the server, where possible. This response is
cacheable unlessindicated otherwise.

The new permanent URI SHOULD be given by the Locat i on field in the response. Unless the request method was
HEAD, the entity of the response SHOULD contain a short hypertext note with a hyperlink to the new URI(S).

If the 301 status code is received in response to a request other than GET or HEAD, the user agent MUST NOT
automatically redirect the request unless it can be confirmed by the user, since this might change the conditions
under which the request was issued.

Note: When automatically redirecting a POST request after receiving a 301 status code, some existing
HTTP/1.0 user agents will erroneously change it into a GET request.

10.3.3 302 Found

The requested resource resides temporarily under a different URI. Since the redirection might be altered on occasion,
the client SHOULD continue to use the Request - URI for future requests. This response isonly cacheable if
indicated by aCache- Cont r ol or Expi r es header field.

The temporary URI SHOULD be given by the Locat i on field in the response. Unless the request method was
HEAD, the entity of the response SHOULD contain a short hypertext note with a hyperlink to the new URI(S).

If the 302 status code is received in response to a request other than GET or HEAD, the user agent MUST NOT
automatically redirect the request unless it can be confirmed by the user, since this might change the conditions
under which the request was issued.

Fielding, et a Standards Track [Page 40]

RFC 2616 HTTP/1.1 June, 1999

Note: RFC 1945 and RFC 2068 specify that the client is not allowed to change the method on the redirected
request. However, most existing user agent implementations treat 302 asiif it were a 303 response,
performing a GET onthe Locat i on field-value regardiess of the original request method. The status
codes 303 and 307 have been added for servers that wish to make unambiguously clear which kind of
reaction is expected of the client.

10.3.4 303 See Other

The response to the regquest can be found under a different URI and SHOULD be retrieved using a GET method on
that resource. This method exists primarily to alow the output of a POST-activated script to redirect the user agent
to a selected resource. The new URI is not a substitute reference for the originally requested resource. The 303
response MUST NOT be cached, but the response to the second (redirected) request might be cacheable.

The different URI SHOULD be given by the Locat i on field in the response. Unless the request method was
HEAD, the entity of the response SHOULD contain a short hypertext note with a hyperlink to the new URI(S).

Note: Many pre-HTTP/1.1 user agents do not understand the 303 status. When interoperability with such
clientsisaconcern, the 302 status code may be used instead, since most user agents react to a 302 response
as described here for 303.

10.3.5 304 Not Modified

If the client has performed a conditional GET request and accessis alowed, but the document has not been
modified, the server SHOULD respond with this status code. The 304 response MUST NOT contain a message-
body, and thusis always terminated by the first empty line after the header fields.

The response MUST include the following header fields:

e Dat e, unlessitsomissionis required by section 14.18.1
If aclockless origin server obeys these rules, and proxies and clients add their own Dat e to any response
received without one (as already specified by [RFC 2068], section 14.19), caches will operate correctly.

» ETag and/or Cont ent - Locat i on, if the header would have been sent in a 200 response to the same
request
» Expires, Cache- Contr ol , and/or Vary, if the field-value might differ from that sent in any previous
response for the same variant
If the conditional GET used a strong cache validator (see section 13.3.3), the response SHOULD NOT include other
entity-headers. Otherwise (i.e., the conditional GET used aweak validator), the response MUST NOT include other
entity-headers; this prevents inconsistencies between cached entity-bodies and updated headers.

If @304 response indicates an entity not currently cached, then the cache MUST disregard the response and repeat
the request without the conditional.

If a cache uses areceived 304 response to update a cache entry, the cache MUST update the entry to reflect any new
field values given in the response.

10.3.6 305 Use Proxy

The requested resource MUST be accessed through the proxy given by the Locat i on field. TheLocat i on field
givesthe URI of the proxy. The recipient is expected to repeat this single request via the proxy. 305 responses
MUST only be generated by origin servers.

Note: RFC 2068 was not clear that 305 was intended to redirect a single request, and to be generated by
origin servers only. Not observing these limitations has significant security consequences.

10.3.7 306 (Unused)

The 306 status code was used in a previous version of the specification, is no longer used, and the code is reserved.

Fielding, et a Standards Track [Page 41]

RFC 2616 HTTP/1.1 June, 1999

10.3.8 307 Temporary Redirect

The requested resource resides temporarily under adifferent URI. Sincethe rediredion MAY be dtered on occasion,
the dient SHOULD continue to use the Request - URI for future requests. Thisresponseisonly cateale if
indicaed by aCache- Cont r ol or Expi r es healer field.

The temporary URI SHOULD be given by the Locat i on field in the response. Unlessthe request method was
HEAD, the antity of the response SHOULD contain a short hypertext note with a hyperlink to the new URI(S) , since
many pre-HTTP/1.1 user agents do not understand the 307 status. Therefore, the note SHOULD contain the
information necessary for a user to repea the original request on the new URI.

If the 307 status code is receved in response to arequest other than GET or HEAD, the user agent MUST NOT
automaticdly redired the request unlessit can be confirmed by the user, sincethis might change the anditions
under which the request was isaued.

10.4 Client Error 4xx

The 4xx classof status code isintended for casesin which the dient seensto have ared. Except when responding to
aHEAD request, the server SHOULD include an entity containing an explanation of the eror situation, and whether
it isatemporary or permanent condition. These status codes are gpli cable to any request method. User agents
SHOULD display any included entity to the user.

If the dient is £nding data, a server implementation using TCP SHOULD be caeful to ensure that the dient
adknowledges recept of the padket(s) containing the response, before the server closes the input connedion. If the
client continues ®nding data to the server after the dose, the server’s TCP stadk will send areset padket to the dient,
which may erase the dient’s unacknowledged input buffers before they can be read and interpreted by the HTTP
applicaion.

10.4.1 400 Bad Request

The request could not be understood Ly the server due to malformed syntax. The dient SHOULD NOT reped the
request without modifications.

10.4.2 401 Unauthorized

The request requires user authentication. The response MUST include aW\V Aut hent i cat e header field
(sedion 14.47) containingachal | enge applicable to the requested resource The dient MAY repea the request
with asuitable Aut hor i zat i on healer field (sedion 14.8). If the request already included Authorization
credentials, then the 401 response indicates that authorizaion has been refused for those aedentials. If the 401
response wntains the same challenge as the prior response, and the user agent has already attempted authentication
at least once, then the user SHOULD be presented the entity that was given in the response, sincethat entity might
include relevant diagnostic information. HT TP accessauthenticaion is explained in “HT TP Authenticaion: Basic
and Digest AccessAuthentication” [43].

10.4.3 402 Payment Required

This code is reserved for future use.

10.4.4 403 Forbidden

The server understoodthe request, but isrefusingto fulfill it . Authorizaion will not help and the request SHOULD
NOT be repeaed. If the request method was not HEAD and the server wishes to make publi c why the request has not
been fulfill ed, it SHOULD describe the reason for the refusal in the entity. If the server does not wish to make this
information avail able to the dient, the status code 404 (Not Found) can be used instead.

Fielding, et a Standards Tradk [Page 42]

RFC 2616 HTTP/1.1 June, 1999

10.4.5 404 Not Found

The server has not found anything matching the Request - URI . No indication is given of whether the conditionis
temporary or permanent. The 410 (Gone) status code SHOULD be used if the server knows, through some internally
configurable mechanism, that an old resourceis permanently unavail able and has no forwarding address This gatus
code is commonly used when the server does not wish to reved exadly why the request has been refused, or when no
other responseis applicable.

10.4.6 405 Method Not Allowed

The method spedfied in the Request - Li ne isnot allowed for the resourceidentified by the Request - URI . The
response MUST include an Al | ow header containing alist of valid methods for the requested resource

10.4.7 406 Not Acceptable

The resourceidentified by the request is only capable of generating response antities which have antent
charaderistics not acceptable acordingto the accet headers sent in the request.

Unlessit was a HEAD request, the response SHOULD include an entity containing alist of available entity
charaderistics and location(s) from which the user or user agent can choose the one most appropriate. The entity
format is pedfied by the media type given in the Cont ent - Type healer field. Depending uyon the format and the
cgpabiliti es of the user agent, seledion of the most appropriate choice MAY be performed automaticaly. However,
this edficaion does not define any standard for such automatic seledion.

Note: HTTP/1.1 servers are dl owed to return responses which are not acceptable acordingto the accet
headers snt in the request. In some caes, this may even be preferable to sending a 406 response. User
agents are encouraged to insped the headers of an incoming response to determineif it is acceptable.

If the response could be unacceptable, a user agent SHOULD temporarily stop recept of more data and query the
user for adedsion on further adions.

10.4.8 407 Proxy Authentication Required

Thiscodeis smilar to 401(Unauthorized), but indicaes that the dient must first authenticate itself with the proxy.
The proxy MUST return aPr oxy- Aut hent i cat e header field (sedion 14.33) containing a challenge goplicable
to the proxy for the requested resource. The dient MAY reped the request with a suitable Pr oxy-

Aut hori zat i on healer field (sedion 14.34). HTTP accessauthenticaion is explained in “HTTP Authentication:
Basic and Digest AccessAuthentication” [43].

10.4.9 408 Request Timeout

The dient did not produce arequest within the time that the server was prepared to wait. The dient MAY repea the
request without modifications at any later time.

10.4.10 409 Conflict

The request could not be acmpleted due to a conflict with the aurrent state of the resource. This codeis only all owed
in situations where it is expeded that the user might be ale to resolve the cnflict and resubmit the request. The
response body SHOULD include exoughinformation for the user to recognize the source of the conflict. Idedly, the
response entity would include enoughinformation for the user or user agent to fix the problem; however, that might
not be possble and is not required.

Conflicts are most likely to occur in response to a PUT request. For example, if versioning were being wsed and the
entity being PUT included changes to a resource which conflict with those made by an ealier (third-party) request,
the server might use the 409response to indicate that it can’t complete the request. In this case, the response ettty
would likely contain alist of the diff erences between the two versionsin aformat defined by the response

Cont ent - Type.

Fielding, et a Standards Tradk [Page 43

RFC 2616 HTTP/1.1 June, 1999

10.4.11 410 Gone

The requested resourceis no longer avail able a the server and no forwarding addressis known. This condition is
expedaed to be considered permanent. Clients with link editi ng capabiliti es SHOULD delete references to the
Request - URI after user approval. If the server does not know, or has no fadlity to determine, whether or not the
conditi on is permanent, the status code 404 (Not Found) SHOULD be used insteal. This response is cacheable
unlessindicaed otherwise.

The 410response is primarily intended to asdst the task of web maintenance by notifying the redpient that the
resourceis intentionally unavail able and that the server owners desire that remote links to that resource be removed.
Such an event is common for limited-time, promotional services and for resources belonging to individuals no longer
working at the server’s ste. It is not necessary to mark all permanently unavail able resources as “gone” or to kegp
the mark for any length of time -- that isleft to the discretion of the server owner.

10.4.12 411 Length Required

The server refusesto accept the request without a defined Cont ent - Lengt h. The dient MAY reped the request
if it addsavalid Cont ent - Lengt h header field containing the length of the message-body in the request message.

10.4.13 412 Precondition Failed

The precondition dgven in one or more of the request-header fields evaluated to false when it was tested on the
server. Thisresponse mde dlowsthe dient to placepreanditions on the aurrent resource metainformation (header
field data) and thus prevent the requested method from being applied to a resource other than the one intended.

10.4.14 413 Request Entity Too Large

The server isrefusing to processa request because the request entity is larger than the server iswilli ng or able to
process The server MAY close the mnnedion to prevent the dient from continuing the request.

If the condition istemporary, the server SHOULD include aRet r y- Af t er header field to indicae that it is
temporary and after what time the dient MAY try again.

10.4.15 414 Request-URI Too Long

The server isrefusing to servicethe request because the Request - URI islonger than the server iswilli ngto
interpret. Thisrare condition isonly likely to occur when a dient has improperly converted a POST request to a
GET request with long query information, when the dient has descended into a URI “bladk hole” of rediredion (e.g.,
aredireded URI prefix that pointsto a suffix of itself), or when the server is under attad by a dient attemptingto
exploit seaurity holes present in some servers using fixed-length buffers for reading or manipulating the Request -
URI .

10.4.16 415 Unsupported Media Type

The server isrefusing to servicethe request becaiuse the entity of the request isin aformat not supparted by the
requested resourcefor the requested method.

10.4.17 416 Requested Range Not Satisfiable

A server SHOULD return aresponse with this gatus code if arequest included a Range request-header field
(sedion 14.35) , and none of the range-spedfier valuesin thisfield overlap the arrent extent of the seleded
resource, and the request did not include an | f - Range request-header field. (For byte-ranges, this means that the
first-byte-pos of all of the byte-range-specvalues were greaer than the aurrent length of the seleded resource)

Fielding, et a Standards Tradk [Page 44]

RFC 2616 HTTP/1.1 June, 1999

When this gatus code is returned for a byte-range request, the response SHOULD include aCont ent - Range
entity-header field spedfying the aurrent length of the seleded resource (seesedion 14.16). Thisresponse MUST
NOT usethenul ti part/ byt er anges content-type.

10.4.18 417 Expectation Failed

The expedation gveninan Expect request-header field (seesedion 14.20) could not be met by this srver, or, if
the server is a proxy, the server has unambiguous evidencethat the request could not be met by the next-hop server.

10.5 Server Error 5xx

Response status codes beginning with the digit “5” indicate cases in which the server is aware that it has erred or is
incgpable of performing the request. Except when responding to a HEAD request, the server SHOULD include an
entity containing an explanation of the eror situation, and whether it isatemporary or permanent conditi on. User
agents SHOULD display any included entity to the user. These response ades are gplicable to any request method.

10.5.1 500 Internal Server Error

The server encountered an urexpeaed condition which prevented it from fulfilli ng the request.

10.5.2 501 Not Implemented

The server does not suppart the functionality required to fulfill the request. Thisisthe gpropriate response when the
server does not recognize the request method and is not cgpable of supparting it for any resource

10.5.3 502 Bad Gateway

The server, while ating as a gateway or proxy, recaved an invalid response from the upstream server it accessed in
attemptingto fulfill t he request.

10.5.4 503 Service Unavailable

The server is currently unable to handle the request due to atemporary overloading or maintenance of the server.
Theimplication isthat thisis atemporary condition which will be dleviated after some delay. If known, the length
of thedelay MAY beindicaedinaRet ry- Af t er healer. If noRet ry- Af t er isgiven, the dient SHOULD
handl e the response @it would for a 500response.

Note: The existence of the 503 status code does not imply that a server must use it when becming
overloaded. Some servers may wish to simply refuse the awnnedion.

10.5.5 504 Gateway Timeout

The server, while ading as a gateway or proxy, did not receve atimely response from the upstream server spedfied
by the URI (e.g. HTTP, FTP, LDAP) or some other auxili ary server (e.g. DNS) it nealed to accessin attempting to
compl ete the request.

Note: Note to implementors: some deployed proxies are known to return 400 @ 500when DNS lookups
time out.

10.5.6 505 HTTP Version Not Supported

The server does not suppart, or refuses to suppart, the HTTP protocol version that was used in the request message.
The server isindicaingthat it is unable or unwilli ngto compl ete the request using the same magjor version as the
client, as described in sedion 3.1, other than with this error message. The response SHOULD contain an entity
describing why that version is not supparted and what other protocols are supparted by that server.

Fielding, et a Standards Tradk [Page 45]

RFC 2616 HTTP/1.1 June, 1999

11 Access Authentication

HTTP provides sveral OPTIONAL challenge-response authentication mecdanisms which can be used by a server to
challenge a dient request and by a dient to provide authentication information. The general framework for access
authentication, and the spedficaion of “basic” and “digest” authenticaion, are spedfied in “HTTP Authentication:
Basic and Digest AccessAuthentication” [43]. This pedficaion adopts the definitions of “chal | enge” and
“credenti al s” fromthat spedficaion.

12 Content Negotiation

Most HTTP responses include an entity which contains information for interpretation by a human user. Naturally, it
is desirable to supply the user with the “best avail able” entity corresponding to the request. Unfortunately for servers
and cades, not all users have the same preferences for what is “best,” and not all user agents are equally cgpable of
rendering all entity types. For that reason, HTTP has provisions for several mechanisms for “content negotiation” --
the processof seleding the best representation for a given response when there ae multi ple representations
available.

Note: Thisis not caled “format negotiation” because the dternate representations may be of the same
media type, but use diff erent capabiliti es of that type, be in different languages, etc.

Any response mntaining an entity-body MAY be subjed to negotiation, including error responses.

There ae two kinds of content negotiation which are passblein HTTP: server-driven and agent-driven negotiation.
These two kinds of negotiation are orthogonal and thus may be used separately or in combination. One method o
combination, referred to as transparent negotiation, occurs when a cate uses the agent-driven negotiation
information provided by the origin server in order to provide server-driven negotiation for subsequent requests.

12.1 Server-driven Negotiation

If the seledion of the best representation for a response is made by an algorithm located at the server, it iscdled
server-driven negotiation. Seledion is based on the avail able representations of the response (the dimensions over
which it can vary; e.g. language, content-coding, etc.) and the mntents of particular header fields in the request
message or on other information pertaining to the request (such as the network addressof the dient).

Server-driven negotiation is advantageous when the dgorithm for seleding from among the avail able representations
isdifficult to describe to the user agent, or when the server desiresto send its “best guess’ to the dient along with the
first response (hoping to avoid the round-trip delay of a subsequent request if the “best guess' is good enoughfor the
user). In order to improve the server's guess the user agent MAY include request header fields (Accept , Accept -
Language, Accept - Encodi ng, etc.) which describe its preferences for such aresponse.

Server-driven negotiation has disadvantages:

1. Itisimpossblefor the server to acairately determine what might be “best” for any given user, sincethat
would require cmplete knowledge of bath the caabiliti es of the user agent and the intended use for the
response (e.g., does the user want to view it on screen or print it on paper?).

2. Havingthe user agent describe its cgpabiliti es in every request can be both very inefficient (given that only
asmall percentage of responses have multi ple representations) and a potential violation of the user's

privagy.

3. It complicates the implementation of an origin server and the dgorithms for generating responsesto a
request.

4. It may limit a public cahe’ s ahility to use the same response for multi ple user’ s requests.

HTTP/1.1 includes the foll owing request-header fields for enabling server-driven negotiation through description of
user agent capabiliti es and user preferences: Accept (sedion 14.1), Accept - Char set (sedion 14.2), Accept -

Fielding, et a Standards Tradk [Page 46]

RFC 2616 HTTP/1.1 June, 1999

Encodi ng (sedion 14.3), Accept - Language (sedion 14.4), and User - Agent (sedion 14.43). However, an
origin server is not limited to these dimensions and MAY vary the response based on any asped of the request,
including information outside the request-header fields or within extension header fields not defined by this
spedfication.

TheVary healer field can be used to expressthe parameters the server uses to seled a representation that is subject
to server-driven negotiation. Seesedion 13.6 for use of the Var y healer field by caches and sedion 14.44 for use of
the Var y header field by servers.

12.2 Agent-driven Negotiation

With agent-driven negotiation, seledion of the best representation for aresponse is performed by the user agent after
recaving an initial response from the origin server. Seledion is based on alist of the avail able representations of the
response included within the header fields or entity-body of theinitial response, with ead representation identified
by its own URI. Seledion from among the representations may be performed automaticdly (if the user agent is
cgpable of doing so) or manually by the user seleding from a generated (possbly hypertext) menu.

Agent-driven negotiation is advantageous when the response would vary over commonly-used dmensions (such as
type, language, or encoding), when the origin server is unable to determine auser agent's capabiliti es from examining
the request, and generally when public cahes are used to dstribute server load and reduce network usage.

Agent-driven negotiation suff ers from the disadvantage of needing a seaond request to oltain the best aternate
representation. This ssoond request is only efficient when cadiingis used. In addition, this gedficaion does not
define ay medhanism for supparting automatic seledion, thoughit also dees not prevent any such mecdhanism from
being developed as an extension and used within HTTP/1.1.

HTTP/1.1 defines the 300 (Multi ple Choices) and 406(Not Acceptable) status codes for enabling agent-driven
negotiation when the server is unwilli ng or unable to provide avarying response using server-driven negotiation.

12.3 Transparent Negotiation

Transparent negotiation is a cmmbination of both server-driven and agent-driven negotiation. When a cateis
supplied with aform of the list of avail able representations of the response (asin agent-driven negotiation) and the
dimensions of variance ae completely understood by the cade, then the cadie beaomes cgpable of performing
server-driven negotiation on behalf of the origin server for subsegquent requests on that resource

Transparent negotiation has the alvantage of distributing the negotiation work that would otherwise be required of
the origin server and also removing the second request delay of agent-driven negotiation when the cade is ableto
corredly guessthe right response.

This pedficaion does not define ay medchanism for transparent negotiation, thoughit also daes not prevent any
such mechanism from being developed as an extension that could be used within HTTP/1.1.

13 Cachingin HTTP

HTTPistypicdly used for distributed information systems, where performance can be improved by the use of
response cades. The HTTP/1.1 protocol includes a number of elementsintended to make cating work as well as
posshle. Becaise these dements are inextricable from other aspeds of the protocol, and because they interad with
ead other, it isuseful to describe the basic cating design of HTTP separately from the detail ed descriptions of
methods, headers, response ades, etc.

Cachingwould be uselessif it did not significantly improve performance The goal of cachingin HTTP/1.1 isto
eliminate the neal to send requests in many cases, and to eli minate the need to send full responsesin many other
cases. The former reduces the number of network round-trips required for many operations; we use an “expiration”
medhanism for this purpose (seesedion 13.2). The latter reduces network bandwidth requirements; we use a
“validation” mechanism for this purpose (seesedion 13.3).

Fielding, et a Standards Tradk [Page 47]

RFC 2616 HTTP/1.1 June, 1999

Requirements for performance, avail ability, and dsconneded operation require usto be aleto relax the goal of
semantic transparency. The HTTP/1.1 protocol all ows origin servers, cades, and clients to explicitly reduce
transparency when necessary. However, because non-transparent operation may confuse non-expert users, and might
be incompatible with certain server applicaions (such as those for ordering merchandise), the protocol requires that
transparency be relaxed

» only by an explicit protocol-level request when relaxed by client or origin server

» only with an explicit warningto the end user when relaxed by cace or client
Therefore, the HTTP/1.1 protocol provides these important elements:

1. Protocol feauresthat provide full semantic transparency when thisisrequired by all parties.

2. Protocol feauresthat al ow an origin server or user agent to explicitly request and control non-transparent
operation.

3. Protocol feauresthat alow a cate to attach warnings to responses that do not preserve the requested
approximation of semantic transparency.

A basic principleisthat it must be possble for the dientsto detea any potential relaxation of semantic transparency.

Note: The server, cade, or client implementor might be faced with design dedsions not explicitly discussed
inthis gpedfication. If adedsion might affed semantic transparency, the implementor ought to err on the
side of maintaining transparency unlessa caeful and complete analysis $rows sgnificant benefitsin
bre&ing transparency.

13.1.1 Cache Correctness

A corred cathe MUST respond to areguest with the most up-to-date response held by the cate that is appropriate
to the request (seesedions 13.2.5, 13.2.6, and 13.12) which mees one of the foll owing conditi ons:

1. It hasbeen chedked for equivalencewith what the origin server would have returned by revalidating the
response with the origin server (sedion 13.3);

2. ltis“freshenough’ (seesedion 13.2). In the default case, this means it meds the least restrictive freshness
requirement of the dient, origin server, and cade (seesedion 14.9); if the origin server so spedfies, itis
the freshnessrequirement of the origin server alone.

If astored response is not “fresh enough’ by the most restrictive freshnessrequirement of baoth the dient
and the origin server, in carefully considered circumstances the catie MAY till return the response with
the gopropriate War ni ng healer (seesedion 13.1.5 and 14.46), unless sich aresponse is prohibited (e.g.,
by a“no- st or e” cache-diredive, or by a“no- cache” cache-request-diredive; seesedion 14.9).

3. Itisanappropriate 304 (Not Modified), 305 (Proxy Redired), or error (4xx or 5xx) response message.

If the cabe can not communicate with the origin server, then a orred cate SHOULD respond as above if the
response can be crredly served from the cade; if not it MUST return an error or warning indicaing that there was
a ommunication fail ure.

If a cade recaves aresponse (either an entire response, or a 304 (Not Modified) response) that it would normally
forward to the requesting client, and the receved responseis no longer fresh, the cate SHOULD forward it to the
requesting client without adding a new War ni ng (but without removing any existing War ni ng healers). A cace
SHOULD NOT attempt to revalidate aresponse simply because that response becane stale in transit; this might lead
to an infinite loop. A user agent that receves a stale response without aVar ni ng MAY display awarning
indicaion to the user.

Fielding, et a Standards Tradk [Page 48]

RFC 2616 HTTP/1.1 June, 1999

13.1.2 Warnings

Whenever a cate returns aresponse that is neither first-hand nor “fresh enough’ (in the sense of condition 2 in
sedion 13.1.1), it MUST attach awarning to that effedt, usingaWar ni ng general-header. The War ni ng header
and the aurrently defined warnings are described in sedion 14.46. The warning all ows clientsto take gpropriate
adion.

Warnings MAY be used for other purposes, both cadhe-related and atherwise. The use of awarning, rather than an
error status code, distinguish these responses from true fail ures.

Warnings are asdgned threedigit war n- codes. Thefirst digit indicates whether the War ni ng MUST or MUST
NOT be deleted from a stored cadhe entry after a successul revali dation:

Ixx Warnings that describe the freshnessor revalidation status of the response, and so MUST be deleted after a
successul revalidation. 1XX war n- codes MAY be generated by a cade only when validating a caded entry.
It MUST NOT be generated by clients.

2xx Warnings that describe some asped of the entity body or entity headersthat is not redified by arevalidation (for
example, alosg/ compresgon of the entity bodes) and which MUST NOT be deleted after a successul
revali dation.

Seesedion 14.46 for the definiti ons of the ades themselves.

HTTP/1.0 cadeswill cache dl WAr ni ngs in responses, without deleting the onesin the first category. Warnings
in responses that are passed to HTTP/1.0 cadhes carry an extrawar ni ng- dat e field, which prevents a future
HTTP/1.1 redpient from believing an erroneously caced WAr ni ng.

Warnings also carry awarning text. The text MAY be in any appropriate natural language (perhaps based on the
client' sAccept headers), and include an OPTIONAL indication of what charader set is used.

Multiple warnings MAY be dtadhed to aresponse (either by the origin server or by a cade), including multiple
warnings with the same code number. For example, a server might provide the same warning with texts in both
English and Basque.

When multi ple warnings are atached to aresponse, it might not be pradicd or reasonable to display all of them to
the user. Thisversion of HTTP does not spedfy strict priority rules for dedding which warningsto display and in
what order, but does s1ggest some heuristics.

13.1.3 Cache-control M echanisms

The basic catie mechanismsin HTTP/1.1 (server-spedfied expiration times and vali dators) are implicit diredivesto
cades. In some cases, aserver or client might need to provide explicit diredivesto the HTTP cades. We use the
Cache- Cont r ol header for this purpose.

The Cache- Cont r ol healer alows a dient or server to transmit a variety of diredivesin either requests or
responses. These diredives typicdly override the default cadhing algorithms. As a general rule, if thereisany
apparent conflict between header values, the most restrictive interpretation is applied (that is, the one that is most
likely to preserve semantic transparency). However, in some caes, cache-control diredives are explicitly spedfied
as weakening the gproximation of semantic transparency (for example, “max- st al e” or “publ i ¢”).

The cate-control diredives are described in detail i n sedion 14.9.

13.1.4 Explicit User Agent Warnings

Many user agents make it passble for usersto override the basic cating mechanisms. For example, the user agent
might all ow the user to spedfy that caced entities (even explicitly stale ones) are never validated. Or the user agent
might habitually add“Cache- Cont rol : nax- st al e=3600" to every request. The user agent SHOULD NOT
default to either non-transparent behavior, or behavior that resultsin abnormally ineffedive cating, but MAY be
explicitly configured to doso by an explicit adion of the user.

Fielding, et a Standards Tradk [Page 49

RFC 2616 HTTP/1.1 June, 1999

If the user has overridden the basic cading mechanisms, the user agent SHOULD explicitly indicae to the user
whenever this results in the display of information that might not mee the server’s transparency requirements (in
particular, if the displayed entity is known to be stale). Sincethe protocol normally all ows the user agent to
determine if responses are stale or not, thisindication need only be displayed when this adually happens. The
indicaion need not be adialog box; it could be an icon (for example, a picture of arotting fish) or some other
indicator.

If the user has overridden the cating mechanismsin away that would abnormally reducethe dfedivenessof
cades, the user agent SHOULD continually indicae this gate to the user (for example, by adisplay of a picture of
currency in flames) so that the user does not inadvertently consume excessresources or suffer from excessve
latency.

13.1.5 Exceptionsto the Rulesand Warnings

In some cases, the operator of a cabie MAY choose to configure it to return stale responses even when not requested
by clients. This dedsion ought not be made lightly, but may be necessary for reasons of avail ability or performance,
espedally when the cateis poaly conneded to the origin server. Whenever a cate returns a stale response, it
MUST mark it as such (usingaWar ni ng header) enabling the dient software to alert the user that there might be a
potential problem.

It also all ows the user agent to take steps to oltain afirst-hand or fresh response. For thisreason, a cathe SHOULD
NOT return a stale response if the dient explicitly requests afirst-hand or fresh one, unlessit isimpaossble to
comply for technicd or palicy reasons.

13.1.6 Client-controlled Behavior

While the origin server (and to alesser extent, intermediate cades, by their contribution to the age of aresponse) are
the primary source of expiration information, in some caes the dient might need to control a cate’s dedsion about
whether to return a caded response without validating it. Clients do this using several diredives of the Cache-
Cont r ol header.

A client’srequest MAY spedfy the maximum age it iswilli ngto accept of an unwali dated response; spedfyinga
value of zero forces the cate(s) to revalidate dl responses. A client MAY also spedfy the minimum time remaining
before aresponse expires. Both of these options increase cnstraints on the behavior of cades, and so cannot further
relax the cate' s approximation of semantic transparency.

A client MAY also spedfy that it will accept stale responses, up to some maximum amount of staleness Thisloaosens
the constraints on the cades, and so might violate the origin server’s gedfied constraints on semantic transparency,
but might be necessary to suppart disconneded operation, or high avail abilit y in the faceof poar connedivity.

13.2 Expiration M odel

13.2.1 Server-Specified Expiration

HTTP cading works best when cades can entirely avoid making requests to the origin server. The primary
medhanism for avoiding requestsis for an origin server to provide an explicit expiration time in the future, indicaing
that aresponse MAY be used to satisfy subsequent requests. In other words, a cade can return afresh response
without first contading the server.

Our expedation isthat serverswill assgn future explicit expiration timesto responsesin the belief that the entity is
not likely to change, in asemanticdly significant way, before the expiration time is readed. This normally preserves
semantic transparency, as long as the server’s expiration times are caefully chosen.

The expiration mechanism applies only to responses taken from a cadie and not to first-hand responses forwarded
immediately to the requesting client.

Fielding, et a Standards Tradk [Page 50|

RFC 2616 HTTP/1.1 June, 1999

If an origin server wishesto force asemanticdly transparent cace to validate every request, it MAY asdgnan
explicit expiration timein the past. This means that the response is always gale, and so the cate SHOULD validate
it before using it for subsequent requests. Seesedion 14.9.4 for a more restrictive way to forcerevalidation.

If an origin server wishesto force ayy HTTP/1.1 cade, no matter how it is configured, to validate every request, it
SHOULD usethe“nust - r eval i dat e” cache-control diredive (seesedion 14.9).

Servers pedfy explicit expiration times using either the Expi r es healer, or the max- age diredive of the
Cache- Cont r ol header.

An expiration time cannot be used to force auser agent to refresh its display or reload aresource its mantics apply
only to caching mechanisms, and such mechanisms need only chedk aresource s expiration status when a new
request for that resourceis initiated. Seesedion 13.13 for an explanation of the diff erence between caches and
history mechanisms.

13.2.2 Heuristic Expiration

Sinceorigin servers do not always provide explicit expiration times, HTTP cades typicdly assgn heuristic
expiration times, employing algorithms that use other header values (such asthe Last - Modi f i ed time) to
estimate aplausible expiration time. The HTTP/1.1 spedficaion does not provide spedfic dgorithms, but does
impose worst-case @nstraints on their results. Since heuristic expiration times might compromise semantic
transparency, they ought to used cautiously, and we encourage origin serversto provide eplicit expiration times as
much as posshle.

13.2.3 AgeCalculations

In order to know if a caded entry isfresh, a cade neals to know if its age exceals its freshnesslifetime. We discuss
how to cdculate the latter in sedion 13.2.4; this sdion describes how to cdculate the aye of aresponse or cache
entry.

In this discusdon, we use the term “now” to mean “the arrent value of the dock at the host performing the
cdculation.” Hosts that use HTTP, but espedally hosts running origin servers and caces, SHOULD use NTP [28]
or some similar protocol to synchronizetheir clocks to a globally acairate time standard.

HTTP/1.1 requires origin serversto send a Dat e header, if passble, with every response, giving the time & which
the response was generated (seesedion 14.18). We use theterm “date_value” to denote the value of the Dat e
header, in aform appropriate for arithmetic operations.

HTTP/1.1 uses the Age response-healer to convey the estimated age of the response message when obtained from a
cade. The Age field value isthe cade’s estimate of the anount of time sincethe response was generated or
revalidated by the origin server.

In esence the Age vaueisthe sum of the time that the response has been resident in ead of the cates alongthe
path from the origin server, plus the anount of timeit has been in transit along retwork paths.

We use the term “age_value” to denote the value of the Age header, in aform appropriate for arithmetic operations.
A response’ s age can be cdculated in two entirely independent ways:

1. now minusdate value, if thelocd clock isreasonably well synchronized to the origin server’s clock. If the
result is negative, the result isreplacad by zero.
2. age value, if al of the cates aong the response path implement HTTP/1.1.

Given that we have two independent ways to compute the age of a response when it isrecaved, we can combine
these &

corrected_recei ved_age = nmax(now - date_val ue, age_val ue)
and aslong as we have dther nealy synchronized clocks or all-HTTP/1.1 paths, one gets areliable (conservative)
result.

Fielding, et a Standards Tradk [Page5]]

RFC 2616 HTTP/1.1 June, 1999

Because of network-impased delays, some significant interval might passbetween the time that a server generates a
response and the time it isreceved at the next outbound cache or client. If uncorreded, this delay could result in

improperly low ages.

Because the request that resulted in the returned Age value must have been initiated prior to that Age value's
generation, we can corred for delaysimpased by the network by recording the time & which the request was
initiated. Then, when an Age valueisreceved, it MUST be interpreted relative to the time the request was initi ated,
not the time that the response was receved. This algorithm resultsin conservative behavior no matter how much
delay is experienced. So, we mmpute:

corrected_initial_age = corrected_received_age
+ (now - request_time)
where “request_time” isthe time (acarding to the locd clock) when the request that elicited this response was sent.

Summary of age cdculation algorithm, when a cade receves a response:

/*
* age value
* is the value of Age : header received by the cache with
* this response.
* date_value
* is the value of the origin server's Date: header
* request_time
* is the (local) time when the cache made the request
* that resulted in this cached response
* response_time
* is the (local) time when the cache received the

* response

* now

* is the current (local) time
*/

apparent_age = max(0, response_time - date_value);

corrected_received_age = max(apparent_age, age_value);

response_delay = response_time - request_time;

corrected_initial_age = corrected_received_age + response_delay;

resident_time = now - response_time;

current_age = corrected_initial_age + resident_time;
Thecurrent_age of a cate entry is cdculated by adding the anourt of time (in seands) sincethe cade etry
was last validated by the origin server to the corrected_initial_age . When aresponse is generated from a
cade etry, the cabe MUST include asinge Age healer field in the response with avalue equal to the cate
entry' surrent_age

The presence of an Age healer field in aresponse implies that aresponse is not first-hand. However, the onverseis
not true, sincethe ladk of an Age header field in aresponse does not imply that the response is first-hand unlessall
cades along the request path are compliant with HTTP/1.1 (i.e., older HTTP cades did not implement the Age
header field).

13.2.4 Expiration Calculations

In order to dedde whether aresponseisfresh or stale, we need to compare its freshnesslifetime to its age. The ageis
caculated as described in sedion 13.2.3; this sdion describes how to caculate the freshnesslifetime, and to
determine if aresponse has expired. In the discusgon below, the values can be represented in any form appropriate
for arithmetic operations.

We usetheterm “expires_value " to denote the value of the Expires header. We use the term
“max_age_value " to denote an appropriate value of the number of seconds caried by the “max-age” diredive
of the Cache-Control header in aresponse (seesedion 14.9.3).

The max-age diredive takes priority over Expires , so if max-ageis present in aresponse, the cdculation is
simply:

Fielding, et a Standards Tradk [Page 52]

RFC 2616 HTTP/1.1 June, 1999

freshness lifetime = max_age_val ue
Otherwise, if Expi r es ispresent in the response, the cdculation is:

freshness_lifetime = expires_value - date_val ue
Note that neither of these cdculationsis vulnerable to clock skew, since dl of the information comes from the origin
server.

If none of Expi r es, Cache- Control : nmax-age, or Cache- Control : s- naxage (seesedion 14.9.3)
appeasin the response, and the response does not include other restrictions on cading, the cabe MAY compute a
freshnesslifetime using a heuristic. The cade MUST attach War ni ng 113 to any response whose gje is more than
24 hoursiif such warning hes not arealy been added.

Also, if the response does have a Last - Modi f i ed time, the heuristic expiration value SHOULD be no more than
some fradion of the interval sincethat time. A typicd setting of this fradion might be 10%.

The cdculation to determine if aresponse has expired is quite smple:
response_is fresh = (freshness |ifetime > current_age)

13.2.5 Disambiguating Expiration Values

Because expiration values are sssgned optimisticdly, it is possble for two cades to contain fresh values for the
same resourcethat are diff erent.

If a dient performing aretrieval recaves a non-first-hand response for arequest that was already fresh inits own
cade, and the Dat e healer in its existing cache entry is newer than the Dat e on the new response, then the dient
MAY ignorethe response. If so, it MAY retry the request with a“Cache- Contr ol : nmax- age=0" diredive (see
sedion 14.9), to force a ek with the origin server.

If a cade has two fresh responses for the same representation with diff erent validators, it MUST use the one with the
more recant Dat e header. This stuation might arise becaise the cate is poding responses from other cades, or
becaise a dient has asked for areload or arevalidation of an apparently fresh cade entry.

13.2.6 Disambiguating M ultiple Responses

Because a dient might be recaving responses via multi ple paths, so that some responses flow through one set of
cades and ather responses flow througha diff erent set of cades, a dient might recave responsesin an order
different from that in which the origin server sent them. We would like the dient to use the most recently generated
response, even if older responses are still apparently fresh.

Neither the entity tag nor the expiration value can impose a ordering on responses, sinceit is posshle that a later
response intentionally carries an ealier expiration time. The Dat e values are ordered to a granularity of one second.

When a dient triesto revalidate a cabe entry, and the response it recaves contains a Dat e healer that appeasto be

older than the one for the eisting entry, then the dient SHOULD repea the request unconditi onally, and include
Cache- Control : nmax-age=0

to force aty intermediate catiesto validate their copies direaly with the origin server, or

Cache-Control : no-cache
to force aty intermediate catiesto oltain a new copy from the origin server.

If the Dat e values are equal, then the dient MAY use ather response (or MAY,, if it is being extremely prudent,
request a new response). Servers MUST NOT depend on clients being able to choose deterministicdly between
responses generated during the same seaond, if their expiration times overlap.

13.3 Validation Model

When a cate has a stale entry that it would like to use as aresponse to a dient’s request, it first has to chedk with
the origin server (or posshly an intermediate cade with a fresh response) to seeif its caced entry is ill usable. We
cdl this“validating’ the cate entry. Sincewe do not want to have to pay the overhead of retransmitti ng the full

Fielding, et a Standards Tradk [Page 53]

RFC 2616 HTTP/1.1 June, 1999

response if the caded entry is good, and we do not want to pay the overhead of an extraround trip if the cated
entry isinvalid, the HTTP/1.1 protocol supparts the use of conditional methods.

The key protocol feaures for supparting conditi onal methods are those ancerned with “cade validators.” When an
origin server generates afull response, it attaches ssme sort of validator to it, which is kept with the cate entry.
When a dient (user agent or proxy cade) makes a conditional request for aresourcefor which it hasa cade entry, it
includes the asciated validator in the request.

The server then chedks that validator against the aurrent validator for the entity, and, if they match (seesedion
13.3.3), it responds with a spedal status code (usually, 304 (Not Modified)) and no entity-body. Otherwise, it returns
afull response (including entity-body). Thus, we aroid transmitting the full response if the validator matches, and we
avoid an extraround trip if it does not match.

In HTTP/1.1, a conditional request looks exadly the same a a normal request for the same resource, except that it
cariesaspedal header (which includes the validator) that implicitly turns the method (usually, GET) into a
conditional.

The protocol includes both positive and negative senses of cade-validating conditions. That is, it is possble to
request either that a method ke performed if and only if a validator matches or if and only if no vali dators match.

Note: aresponse that ladks a validator may till be cated, and served from cade urtil it expires, unless
thisis explicitly prohibited by a cade-control diredive. However, a catie caanot do a cnditional retrieval
if it does not have avalidator for the entity, which meansit will not be refreshable dter it expires.

13.3.1 Last-Modified Dates

TheLast - Mbdi fi ed entity-header field value is often used asa cade vaidator. In simpleterms, a cabe atry is
considered to be valid if the entity has not been modified sincethe Last - Modi f i ed value.

13.3.2 Entity Tag Cache Validators

The ETag response-healer field value, an entity tag, provides for an “opague” cade validator. This might all ow
more reliable validation in situations where it is inconvenient to store modificdion dates, where the one-second
resolution of HTTP date values is not sufficient, or where the origin server wishes to avoid certain paradoxes that
might arise from the use of modification dates.

Entity Tags are described in sedion 3.11. The headers used with entity tags are described in sedions 14.19, 14.24,
14.26 and 14.44.

13.3.3 Weak and Strong Validators

Sinceboth origin servers and cades will compare two validatorsto dedde if they represent the same or diff erent
entities, one normally would exped that if the entity (the entity-body or any entity-headers) changes in any way, then
the associated validator would change a well. If thisistrue, then we cdl this validator a*“strong validator.”

However, there might be cases when a server prefers to change the validator only on semanticdly significant
changes, and not when insignificant aspeds of the entity change. A validator that does not always change when the
resource diangesisa“wedk validator.”

Entity tags are normally “strong validators,” but the protocol provides a mecdhanism to tag an entity tag as “weék.”
One can think of a strong validator as one that changes whenever the bits of an entity changes, while awe& value
changes whenever the meaning of an entity changes. Alternatively, one can think of a strong validator as part of an
identifier for a spedfic entity, while awegk validator is part of an identifier for a set of semanticaly equivalent
entiti es.
Note: One example of astrong validator is an integer that isincremented in stable storage every time an
entity is changed.

Fielding, et a Standards Tradk [Page 54]

RFC 2616 HTTP/1.1 June, 1999

An entity’s modificaion time, if represented with one-second resolution, could be awe&k validator, sinceit
is possble that the resource might be modified twice during a single second.

Suppart for wes validatorsis optional. However, weak validators allow for more dficient cacing of
equivalent objeds; for example, a hit counter on a siteis probably good enoughif it is updated every few
days or weeks, and any value during that periodislikely “goodenough’ to be equivalent.

A “use” of avalidator is either when a dient generates a request and includes the validator in avalidating header
field, or when a server compares two vali dators.

Strong validators are usable in any context. Weak vali dators are only usable in contexts that do not depend on exad
equality of an entity. For example, either kind is usable for a conditional GET of afull entity. However, only a strong
validator is usable for a sub-range retrieval, since otherwise the dient might end up with an internally inconsistent
entity.

Clients MAY isaie simple (non-subrange) GET requests with either weak validators or strong vali dators. Clients
MUST NOT use we validators in other forms of request.

The only function that the HTTP/1.1 protocol defines on vali dators is comparison. There ae two validator
comparison functions, depending on whether the comparison context all ows the use of we&k validators or not:

» The strong comparison function: in order to be mnsidered equal, both validators MUST beidenticd in
every way, and bah MUST NOT be we&k.

» Thewed& comparison function: in order to be mnsidered equal, bath validators MUST be identicd in every
way, but either or both of them MAY be tagged as “we&” without affeding the result.

An entity tag is grong uressit is explicitly tagged as weak. Sedion 3.11 gives the syntax for entity tags.
A Last - Modi f i ed time, when used as a validator in arequest, isimplicitly weak uniessit is possble to deduce
that it is grong, using the foll owing rules:

» Thevalidator is being compared by an origin server to the adual current validator for the entity and,

» That origin server reliably knows that the associated entity did not change twice during the second covered
by the presented validator.

or
e Thevalidator isabout to beused by a dientinan| f - Modi fi ed- Si nce or | f - Unnodi fi ed- Si nce
healer, because the dient hasa cade entry for the asociated entity, and
» That cade entry includes a Dat e value, which gves the time when the origin server sent the original
response, and
* Thepresented Last - Modi fi ed timeisat least 60 seconds before the Dat e value.
or

e Thevalidator is being compared by an intermediate cade to the validator stored in its cadhe entry for the
entity, and

e That cade etry includes aDat e value, which gves the time when the origin server sent the original
response, and

» Thepresented Last - Modi fi ed timeisat least 60 seconds before the Dat e value.

This method relies on the fad that if two diff erent responses were sent by the origin server during the same second,
but both had the same Last - Mbdi f i ed time, then at least one of those responses would have aDat e value equal
toitsLast - Modi f i ed time. The abitrary 60-second limit guards against the possbility that the Dat e and

Last - Modi f i ed values are generated from different clocks, or at somewhat diff erent times during the preparation
of the response. An implementation MAY use avalue larger than 60 seaonds, if it is believed that 60 semndsistoo
short.

Fielding, et a Standards Tradk [Page 55]

RFC 2616 HTTP/1.1 June, 1999

If aclient wishes to perform a sub-range retrieval on avalue for which it hasonly aLast - Modi f i ed time and no
opaque validator, it MAY do thisonly if theLast - Modi f i ed timeis strong in the sense described here.

A cache or origin server receiving a conditional request, other than a full-body GET request, MUST use the strong
comparison function to evaluate the condition.

Theserulesalow HTTP/1.1 caches and clientsto safely perform sub-range retrievals on values that have been
obtained from HTTP/1.0 servers.

13.3.4 Rulesfor When to Use Entity Tagsand Last-M odified Dates

We adopt a set of rules and recommendations for origin servers, clients, and caches regarding when various validator
types ought to be used, and for what purposes.

HTTP/1.1 origin servers:

e SHOULD send an entity tag validator unlessit is not feasible to generate one.

« MAY send aweak entity tag instead of a strong entity tag, if performance considerations support the use of
weak entity tags, or if it is unfeasible to send a strong entity tag.

*+ SHOULD sendalast - Modi fi ed vaueif it isfeasible to send one, unless the risk of a breakdown in
semantic transparency that could result from using thisdateinan | f - Mbdi f i ed- Si hce header would
lead to serious problems.

In other words, the preferred behavior for an HTTP/1.1 origin server isto send both a strong entity tag and aLast -
Modi fi ed value.

In order to be legal, a strong entity tag MUST change whenever the associated entity value changesin any way. A
weak entity tag SHOUL D change whenever the associated entity changes in a semantically significant way.

Note: in order to provide semantically transparent caching, an origin server must avoid reusing a specific
strong entity tag value for two different entities, or reusing a specific weak entity tag value for two
semantically different entities. Cache entries might persist for arbitrarily long periods, regardless of
expiration times, so it might be inappropriate to expect that a cache will never again attempt to validate an
entry using avalidator that it obtained at some point in the past.

HTTP/1.1 clients:

» |If an entity tag has been provided by the origin server, MUST use that entity tag in any cache-conditional
request (using | f - Mat ch or| f - None- Mat ch).

e Ifonlyalast - Modi fi ed value has been provided by the origin server, SHOULD use that value in non-
subrange cache-conditional requests (using | f - Mbdi fi ed- Si nce).

e Ifonlyalast - Modi fi ed value has been provided by an HTTP/1.0 origin server, MAY usethat valuein
subrange cache-conditional requests (using | f - Unnodi f i ed- Si nce:). The user agent SHOULD
provide away to disable this, in case of difficulty.

e |f both an entity tag and aLast - Mbdi f i ed value have been provided by the origin server, SHOULD use
both validators in cache-conditional requests. This allows both HTTP/1.0 and HTTP/1.1 caches to respond
appropriately.

AnHTTP/1.1 origin server, upon receiving a conditional request that includes both a Last-Modified date (e.g., inan
| f-Mdified-Sinceorlf-Unnodi fied-Si nce header field) and one or more entity tags (e.g., inan | f -
Mat ch, | f - None- Mat ch, or | f - Range header field) as cache validators, MUST NOT return a response status
of 304 (Not Modified) unless doing so is consistent with all of the conditional header fields in the request.

An HTTP/1.1 caching proxy, upon receiving a conditional request that includes both a Last-Modified date and one
or more entity tags as cache validators, MUST NOT return alocally cached response to the client unless that cached
response is consistent with all of the conditional header fieldsin the request.

Fielding, et a Standards Track [Page 56]

RFC 2616 HTTP/1.1 June, 1999

Note: The general principle behind theserulesisthat HTTP/1.1 servers and clients sould transmit as much
non-redundant information as is avail able in their responses and requests. HTTP/1.1 systems recaving this
information will make the most conservative assumptions about the validators they recave.

HTTP/1.0 clients and caches will i gnore entity tags. Generally, last-modified values receved or used by
these systems will suppart transparent and efficient cacing, and so HTTP/1.1 arigin servers sould provide
Last - Modi fi ed vaues. Inthose rare caes where the use of aLast - Modi f i ed value & avalidator by
an HTTP/1.0 system could result in a serious problem, then HTTP/1.1 arigin servers sould not provide
one.

13.3.5 Non-validating Conditionals

The principle behind entity tagsis that only the service aithor knows the semantics of a resourcewell enoughto
seled an appropriate cate validation mechanism, and the spedfication of any validator comparison function more
complex than byte-equality would open up a ca of worms. Thus, comparisons of any other headers (except Last -
Modi f i ed, for compatibility with HTTP/1.0) are never used for purposes of validatinga cate entry.

13.4 Response Cacheability

Unless pedficdly constrained by a cade-control (sedion 14.9) diredive, a cating system MAY aways dore a
successul response (seesedion 13.8) asa cade entry, MAY return it without validation if it isfresh, and MAY
return it after succes<ul validation. If there is neither a cate vali dator nor an explicit expiration time asociated
with aresponse, we do not exped it to be caded, but certain caches MAY violate this expedation (for example,
when littl e or no network connedivity is avail able). A client can usually deted that such a response was taken from a
cade by comparing the Dat e healer to the aurrent time.

Note: some HTTP/1.0 cadhes are known to violate this expedation without providing any Vr ni ng.

However, in some caes it might be inappropriate for a cade to retain an entity, or to return it in responseto a
subsequent request. This might be because asolute semantic transparency is deamed necessary by the service
author, or because of seaurity or privacy considerations. Certain cade-control diredives are therefore provided so
that the server can indicate that certain resource atities, or portions thereof, are not to be cated regardlessof other
considerations.

Note that sedion 14.8 normally prevents a shared cade from saving and returning a response to a previous request if
that request included an Aut hor i zat i on healer.

A response recaved with a status code of 200, 203 206, 300, 301 or 410MAY be stored by a catie and used in
reply to a subsequent request, subjed to the expiration mechanism, unlessa cade-control diredive prohibits
cading. However, a cade that does not suppart the Range and Cont ent - Range headers MUST NOT cade 206
(Partial Content) responses.

A response recaved with any other status code (e.g. status codes 302and 307 MUST NOT be returned in areply to
a subsequent request unlessthere ae cate-control diredives or another healer(s) that explicitly alow it. For

example, these include the following: an Expi r es healer (sedion 14.21); a“max- age”, “s- maxage”, “nust -

LIS "o«

reval i dat e”,“proxy-revalidate”, “public” or“privat e” cache-control diredive (sedion 14.9).

13.5 Constructing Responses From Caches

The purpose of an HTTP cadeisto store information receved in response to requests for use in responding to
future requests. In many cases, a cadie simply returns the gpropriate parts of aresponse to the requester. However,
if the cade holds a cate entry based on a previous response, it might have to combine parts of a new response with
what is held in the cade entry.

Fielding, et a Standards Tradk [Page 57]

RFC 2616 HTTP/1.1 June, 1999

13.5.1 End-to-end and Hop-by-hop Headers
For the purpose of defining the behavior of caches and non-caching proxies, we divide HTTP headersinto two
categories:

e End-to-end headers, which are transmitted to the ultimate recipient of arequest or response. End-to-end
headers in responses MUST be stored as part of a cache entry and MUST be transmitted in any response
formed from a cache entry.

e Hop-by-hop headers, which are meaningful only for a single transport-level connection, and are not stored
by caches or forwarded by proxies.

The following HTTP/1.1 headers are hop-by-hop headers:

 Connection
e Keep-Aive
« Proxy-Authenticate
e Proxy-Authorization
« TE
e Trailers
 Transfer-Encoding
* Upgrade
All other headers defined by HTTP/1.1 are end-to-end headers.

Other hop-by-hop headers MUST belisted inaConnect i on header, (section 14.10) to be introduced into
HTTP/1.1 (or later).

13.5.2 Non-modifiable Headers

Some features of the HTTP/1.1 protocol, such as Digest Authentication, depend on the value of certain end-to-end
headers. A transparent proxy SHOULD NOT modify an end-to-end header unless the definition of that header
requires or specifically allows that.

A transparent proxy MUST NOT modify any of the following fieldsin a request or response, and it MUST NOT add
any of these fieldsif not already present:

« Content-Location
» Content - M5
« ETag
* Last-Mdified
A transparent proxy MUST NOT modify any of the following fields in a response:
e Expires

but it MAY add any of these fieldsif not already present. If an Expi r es header is added, it MUST be given afield-
value identical to that of the Dat e header in that response.

A proxy MUST NOT modify or add any of the following fields in a message that containsthe no- t r ansf or m
cache-control directive, or in any request:

 Content-Encodi ng
 Content - Range
e Content-Type

Fielding, et a Standards Track [Page 58]

RFC 2616 HTTP/1.1 June, 1999

A non-transparent proxy MAY modify or add these fields to a message that does not include no- t r ansf or m but
if it does so, it MUST add a Warning 214 (Transformation applied) if one does not already appear in the message
(see section 14.46).

Warning: unnecessary modification of end-to-end headers might cause authentication failures if stronger
authentication mechanisms are introduced in later versions of HT TP. Such authentication mechanisms
MAY rely on the values of header fields not listed here.

The Cont ent - Lengt h field of arequest or response is added or deleted according to the rulesin section 4.4. A
transparent proxy MUST preserve the entity-length (section 7.2.2) of the entity-body, although it MAY change the
transfer-length (section 4.4).

13.5.3 Combining Headers

When a cache makes a validating request to a server, and the server provides a 304 (Not Modified) response or a 206
(Partial Content) response, the cache then constructs a response to send to the requesting client.

If the status code is 304 (Not Modified), the cache uses the entity-body stored in the cache entry as the entity-body of
this outgoing response. If the status code is 206 (Partial Content) and the ETag or Last - Modi f i ed headers match
exactly, the cache MAY combine the contents stored in the cache entry with the new contents received in the
response and use the result as the entity-body of this outgoing response, (see 13.5.4).

The end-to-end headers stored in the cache entry are used for the constructed response, except that

e any stored WAr ni ng headers with warn-code 1xx (see section 14.46) MUST be deleted from the cache
entry and the forwarded response.
e any stored WAr ni ng headers with warn-code 2xx MUST be retained in the cache entry and the forwarded
response.
e any end-to-end headers provided in the 304 or 206 response MUST replace the corresponding headers from
the cache entry.
Unless the cache decides to remove the cache entry, it MUST also replace the end-to-end headers stored with the
cache entry with corresponding headers received in the incoming response, except for Var ni ng headers as
described immediately above. If a header field-name in the incoming response matches more than one header in the
cache entry, all such old headers MUST be replaced.

In other words, the set of end-to-end headers received in the incoming response overrides all corresponding end-to-
end headers stored with the cache entry (except for stored \War ni ng headers with warn-code 1xx, which are deleted
even if not overridden).

Note: thisrule allows an origin server to use a 304 (Not Modified) or a 206 (Partial Content) response to
update any header associated with a previous response for the same entity or sub-ranges thereof, although it
might not always be meaningful or correct to do so. Thisrule does not allow an origin server to use a 304
(Not Modified) or a 206 (Partial Content) response to entirely delete a header that it had provided with a
previous response.

13.5.4 Combining Byte Ranges

A response might transfer only a subrange of the bytes of an entity-body, either because the request included one or
more Range specifications, or because a connection was broken prematurely. After several such transfers, a cache
might have received several ranges of the same entity-body.

If a cache has a stored non-empty set of subranges for an entity, and an incoming response transfers another
subrange, the cache MAY combine the new subrange with the existing set if both the following conditions are met:

« Both the incoming response and the cache entry have a cache validator.
e Thetwo cache validators match using the strong comparison function (see section 13.3.3).

Fielding, et a Standards Track [Page 59]

RFC 2616 HTTP/1.1 June, 1999

If either requirement is not met, the cate MUST use only the most recent partial response (based on the Dat e
values transmitted with every response, and using the incoming response if these values are equal or missng), and
MUST discard the other partial information.

13.6 Caching Negotiated Responses

Use of server-driven content negotiation (sedion 12.1), asindicated by the presenceof aVar y healer fieldina
response, aters the conditions and procedure by which a cade can use the response for subsequent requests. See
sedion 14.44 for use of the Var y header field by servers.

A server SHOULD usethe Var y healer field to inform a cade of what request-header fields were used to seled
among multi ple representations of a cateable response subjed to server-driven negotiation. The set of header fields
named by the Var y field value is known asthe “seleding’ request-healers.

When the cate receves a subseguent request whose Request - URI spedfies one or more catie entriesincluding
aVary heaer field, the catie MUST NOT use such a cate entry to construct a response to the new request unless
all of the seleding request-headers present in the new request match the crresponding stored request-headers in the
original request.

The seleding request-headers from two requests are defined to match if and only if the seleding request-headersin
the first request can be transformed to the seleding request-headers in the second request by adding or removing
linea white space(LWS) at places where thisis allowed by the arresponding BNF, and/or combining multi ple
message-header fields with the same field name foll owing the rules about message healersin sedion 4.2.

A Var y heaer field-value of “*” always fail s to match and subsequent requests on that resource can only be
properly interpreted by the origin server.

If the seleding request header fields for the cabed entry do not match the seleding request header fields of the new
request, then the cabhe MUST NOT use a cabed entry to satisfy the request unlessit first relays the new request to
the origin server in a conditional request and the server responds with 304 (Not Modified), including an entity tag or
Cont ent - Locat i on that indicaesthe entity to be used.

If an entity tag was assgned to a caded representation, the forwarded request SHOULD be aonditional and include
the etity tagsinan | f - None- Mat ch heaer field from all its cache entries for the resource This conveysto the
server the set of entities currently held by the cate, so that if any one of these entiti es matches the requested entity,
the server can usethe ETag healer field in its 304 (Not Modified) response to tell the cade which entry is
appropriate. If the entity-tag of the new response matches that of an existing entry, the new response SHOULD be
used to update the header fields of the existing entry, and the result MUST be returned to the dient.

If any of the existing cacte entries contains only partia content for the associated entity, its entity-tag SHOULD
NOT beincluded inthel f - None- Mat ch healer field unlessthe request is for arange that would be full y satisfied
by that entry.

If a caderecaves asuccessul response whose Cont ent - Locat i on field matches that of an existing cade entry
for the same Request - URI , whose antity-tag differs from that of the existing entry, and whose Dat e is more
recent than that of the eisting entry, the existing entry SHOULD NOT be returned in response to future requests and
SHOULD be deleted from the cade.

13.7 Shared and Non-Shared Caches

For reasons of seaurity and privagy, it is necessary to make adistinction between “shared” and “non-shared” caches.
A non-shared cade isone that isaccessble only to asingle user. Accesshility in this case SHOULD be enforced by
appropriate seaurity mechanisms. All other cades are considered to be “shared.” Other sedions of this gpedfication
place cetain constraints on the operation of shared cadesin order to prevent lossof privacy or failure of access
controls.

Fielding, et a Standards Tradk [Page 60Q]

RFC 2616 HTTP/1.1 June, 1999

13.8 Errorsor Incomplete Response Cache Behavior

A cade that receves an incomplete response (for example, with fewer bytes of data than spedfied in aCont ent -
Lengt h header) MAY store the response. However, the catie MUST trea this as a partial response. Partial
responses MAY be combined as described in sedion 13.5.4; the result might be afull response or might still be
partial. A cadhe MUST NOT return a partial response to a dient without explicitly markingit as sich, using the 206
(Partial Content) status code. A cache MUST NOT return a partial response using a status code of 200 (OK).

If a cate recaves a 5xx response while gtemptingto revalidate an entry, it MAY either forward this response to the
requesting client, or ad asif the server failed to respond. In the latter case, it MAY return a previously receved
response unlessthe cated entry includesthe “nust - r eval i dat e” cache-control diredive (seesedion 14.9).

13.9 Side Effectsof GET and HEAD

Unlessthe origin server explicitly prohibits the cading of their responses, the gplicaion of GET and HEAD
methods to any resources SHOULD NOT have side dfeds that would lead to erroneous behavior if these responses
aretaken from a cate. They MAY still have side dfeds, but a catie is not required to consider such side dfedsin
its caching dedsions. Caches are dways expeded to observe an origin server’s explicit restrictions on cading.

We note one exception to thisrule: since some gpli cations have traditionally used GETs and HEADs with query
URLSs (those mntaininga“?’ inther el _pat h part) to perform operations with significant side dfeds, cactes
MUST NOT trea responses to such URIs as fresh urlessthe server provides an explicit expiration time. This
spedficdly means that responses from HTTP/1.0 servers for such URIs SHOULD NOT be taken from a cade. See
sedion 9.1.1 for related information.

13.10 Invalidation After Updates or Deletions

The dfed of certain methods performed on aresource at the origin server might cause one or more eisting cade
entries to become non-transparently invalid. That is, althoughthey might continue to be “fresh,” they do not
acarately reflea what the origin server would return for a new request on that resource

Thereisno way for the HTTP protocol to guaranteethat all such cade entries are marked invalid. For example, the
request that caused the change & the origin server might not have gone throughthe proxy where a cabe entry is
stored. However, several rules help reducethe likelihood d erroneous behavior.

In this edion, the phrase “invalidate an entity” meansthat the cade will either remove dl i nstances of that entity
fromits gorage, or will mark these & “invalid” and in need of a mandatory revali dation before they can be returned
in response to a subsequent request.

Some HTTP methods MUST cause a cabeto invalidate an entity. Thisis either the entity referred to by the
Request - URI , or by theLocat i on or Cont ent - Locat i on headers (if present). These methods are:

- PUT
. DELETE
. POST

In order to prevent denial of service dtadks, an invalidation based onthe URI inalLocat i on or Cont ent -
Locat i on header MUST only be performed if the host part is the same & in the Request - URI .

A cade that passes throughrequests for methods it does not understand SHOULD invalidate any entities referred to
by the Request - URI .

13.11 Write-Through Mandatory

All methods that might be expeded to cause modificationsto the origin server’s resources MUST be written through
to the origin server. This currently includes all methods except for GET and HEAD. A cacthe MUST NOT reply to
such arequest from a dient before having transmitted the request to the inbound server, and having receved a

Fielding, et a Standards Tradk [Page 6]

RFC 2616 HTTP/1.1 June, 1999

corresponding response from the inbound server. This does not prevent a proxy cadie from sending a 100 (Continue)
response before the inbound server has snt its final reply.

The dternative (known as “write-badk” or “copy-bad” caching) isnot allowed in HTTP/1.1, due to the difficulty of
providing consistent updates and the problems arising from server, cade, or network fail ure prior to write-back.

13.12 Cache Replacement

If anew cadedble (seesedions 14.9.2, 13.2.5, 13.2.6 and 13.8) responseis receved from aresource while any
existing responses for the same resource ae caded, the cadie SHOULD use the new response to reply to the aurrent
request. It MAY insert it into cade storage and MAY,, if it meds all other requirements, use it to respond to any
future requests that would previously have caised the old response to be returned. If it inserts the new response into
cade storage therulesin sedion 13.5.3 apply.

Note: a new response that has an older Dat e header value than existing caded responsesis not caceale.

13.13 History Lists

User agents often have history medhanisms, such as “Badk” buttons and history lists, which can be used to redisplay
an entity retrieved ealier in asesson.

History mechanisms and cades are different. In particular history mechanisms SHOULD NOT try to show a
semanticdly transparent view of the arrent state of aresource Rather, a history medchanism is meant to show
exadly what the user saw at the time when the resource was retrieved.

By default, an expiration time does not apply to history mechanisms. If the antity is <ill i n storage, a history
mechanism SHOULD display it even if the antity has expired, unlessthe user has gedficdly configured the agent to
refresh expired history documents.

Thisisnot to be construed to prohibit the history mecdhanism from telli ng the user that a view might be stale.

Note: if history list mechanisms unrecessarily prevent users from viewing stale resources, this will tend to
force service aithorsto avoid using HT TP expiration controls and cache @ntrols when they would
otherwise like to. Service aithors may consider it important that users not be presented with error messages
or warning messages when they use navigation controls (such as BACK) to view previoudly fetched
resources. Even though sometimes such resources ought not to caced, or ought to expire quickly, user
interface onsiderations may force service aithorsto resort to ather means of preventing cacing (e.g.
“once-only” URLS) in order not to suffer the dfeds of improperly functioning hstory mechanisms.

14 Header Field Definitions

This dion defines the syntax and semantics of all standard HTTP/1.1 header fields. For entity-header fields, both
sender and recipient refer to either the dient or the server, depending on who sends and who receves the antity.

14.1 Accept

The Accept request-header field can be used to spedfy certain media types which are accetable for the response.
Accept healers can be used to indicae that the request is gedficdly limited to a small set of desired types, asin
the cae of arequest for an in-line image.

Accept "Accept "

#(nedia-range [accept-paranms |)

nmedi a- r ange = (
| (type "/" "*"

| (type "/" subtype)

) *(";" paraneter)

accept-paranms = ";" "q" "=" gvalue *(accept-extension)

accept-extension = ";" token ["=" (token | quoted-string)]

Fielding, et a Standards Tradk [Page 62]

RFC 2616 HTTP/1.1 June, 1999

The asterisk “*” charader isused to group media types into ranges, with “*/*” indicating all media types and
“type/*” indicating all subtypes of that type. The medi a- r ange MAY include mediatype parameters that are
applicable to that range.

Each media-range MAY be followed by one or more accept - par ans, beginning with the “q” parameter for
indicaing arelative quality fador. Thefirst “q” parameter (if any) separatesthe medi a- r ange parameter(s) from
theaccept - par ans. Quality fadors all ow the user or user agent to indicate the relative degreeof preferencefor
that media-range, using the gvalue scde from 0 to 1 (sedion 3.9). The default value is g=1.

Note: Use of the “q” parameter name to separate media type parameters from Accept extension
parametersis due to historicd pradice Althoughthis prevents any mediatype parameter named “q” from
being used with a media range, such an event is believed to be unlikely given the lad of any “q” parameters
in the IANA mediatype registry and the rare usage of any mediatype parametersin Accept . Future media
types are discouraged from registering any parameter named “q”.

The example

Accept: audio/*; g=0.2, audio/basic
SHOULD beinterpreted as“| prefer audio/basic, but send me any audio typeif it isthe best avail able dter an 80%
mark-down in quality.”

If no Accept healer field is present, then it is assumed that the dient accepts all mediatypes. If an Accept header
field is present, and if the server cannot send aresponse which is acceptable acordingto the ammbined Accept
field value, then the server SHOULD send a 406 (not acceptable) response.

A more daborate exampleis

Accept: text/plain; g=0.5, text/htnm,
text/x-dvi; g=0.8, text/x-c
Verbally, thiswould be interpreted as “text/html and text/x-c are the preferred media types, but if they do not exist,
then send the text/x-dvi entity, and if that does not exist, send the text/plain entity.”

Media ranges can be overridden by more spedfic mediaranges or spedfic mediatypes. If more than one media
range gpliesto agiven type, the most spedfic reference has precadence For example,

Accept: text/*, text/htm, text/htm ;level =1, */*
have the foll owing precedence

1) text/htm ;level =1

2) text/htm

3) text/*

4) */ *
The media type quality fador associated with a given type is determined by finding the media range with the highest
precedence which matches that type. For example,

Accept: text/*;q=0.3, text/htnl;q=0.7, text/htm;Ilevel =1,
text/htm ;level =2;9=0.4, */*;q=0.5
would cause the foll owing values to be asciated:

text/htm ;| evel =2
text/htm ;| evel =3 =

Note: A user agent might be provided with a default set of quality values for certain media ranges.
However, unlessthe user agent is a dosed system which cannot interad with other rendering agents, this
default set ought to be mnfigurable by the user.

text/htm ;level =1 =1
text/htn =0.7
text/plain =0.3
i mage/ j peg = 0.5
=0.4
=0.7

Fielding, et a Standards Tradk [Page 63

RFC 2616 HTTP/1.1 June, 1999

14.2 Accept-Char set

The Accept - Char set request-header field can be used to indicate what charader sets are accetable for the
response. Thisfield all ows clients cgpable of understanding more mmprehensive or spedal-purpose charader setsto
signal that capability to a server which is cgpable of representing documents in those charader sets.

Accept - Charset = "Accept-Charset" ":
1#((charset | "*")[";" "q" "=" qvalue])

Charader set values are described in sedion 3.4. Each charset MAY be given an asociated quality value which
represents the user’s preferencefor that charset. The default valueisg=1. An exampleis

Accept - Charset: iso0-8859-5, unicode-1-1;9=0.8

The spedal value “*”, if present inthe Accept - Char set field, matches every charader set (including 1SO-8859
1) which is not mentioned elsewherein the Accept - Char set field. If no“*” ispresent in an Accept - Char set
field, then all charader sets not explicitly mentioned get a quality value of 0, except for 1ISO-8859-1, which getsa
quality value of 1 if not expli citly mentioned.

If no Accept - Char set healer is present, the default isthat any charader set isacceptable. If an Accept -

Char set healer is present, and if the server cannot send a response which is acceptable acordingto the Accept -
Char set healer, then the server SHOULD send an error response with the 406 (not acceptable) status code, though
the sending of an uraccetable responseis also all owed.

14.3 Accept-Encoding

The Accept - Encodi ng request-header field is smilar to Accept , but restricts the @mntent-codings (sedion 3.5)
that are accetable in the response.

Accept - Encodi ng = "Accept - Encodi ng"
1#(codings [";" "qg" "=" qvalue])
codi ngs = (content-coding | "*")

Exampl es of its use are:
Accept - Encodi ng: conpress, gzip
Accept - Encodi ng:
Accept - Encodi ng: *
Accept - Encodi ng: conpress; q=0.5, gzip;g=1.0
Accept - Encodi ng: gzip;g=1.0, identity; g=0.5, *;qg=0
A server tests whether a content-codingis acceptable, acordingto an Accept - Encodi ng field, using these rules:

1. If the content-codingis one of the cntent-codings listed inthe Accept - Encodi ng field, thenit is
acceptable, unlessit isacammpanied by aqvalue of 0. (As defined in sedion 3.9, agvalue of 0 means “not
accetable.”)

2. The speda “*” symbad inan Accept - Encodi ng field matches any avail able content-coding not
explicitly listed in the header field.

3. If multiple mntent-codings are accetable, then the accetable mntent-coding with the highest non-zero
gval ue ispreferred.

4. The"i denti t y” content-coding is always accetable, unless pedficdly refused becaise the

Accept - Encodi ng field includes“i dent i t y; g=0", or because the field includes “* ; q=0" and dces
not explicitly include the“i dent i t y” content-coding. If the Accept - Encodi ng field-value is empty,
then only the“i dent i t y” encodingis accetable.

If an Accept - Encodi ng field is present in arequest, and if the server cannot send a response which is accetable
acordingto the Accept - Encodi ng healer, then the server SHOULD send an error response with the 406 (Not
Acceptable) status code.

Fielding, et a Standards Tradk [Page 64]

RFC 2616 HTTP/1.1 June, 1999

If no Accept - Encodi ng field is present in arequest, the server MAY asaume that the dient will accept any
content coding. Inthiscase, if “i denti t y” isone of the avail able ontent-codings, then the server SHOULD use
the“i dent i t y” content-coding, unlessit has additional information that a diff erent content-coding is meaningful
to the dient.

Note: If the request does not include an Accept - Encodi ng field, and if the“i denti t y” content-
codingis unavail able, then content-codings commonly understood by HTTP/1.0 clients (i.e., “gzi p” and
“conpr ess”) are preferred; some older clients improperly display messages ent with other content-
codings. The server might also make this dedsion based on information about the particular user-agent or
client.

Note: Most HTTP/1.0 applications do not reacognize or obey gvalues associated with content-codings. This
means that qvalues will not work and are not permitted with x- gzi p or x- conpr ess.

14.4 Accept-L anguage

The Accept - Language request-header field is smilar to Accept , but restricts the set of natural languages that
are preferred as aresponse to the request. Language tags are defined in sedion 3.10.

Accept - Language = "Accept - Language"
1#(language-range [";" "q" "=" qvalue])
| anguage-range = ((1*8ALPHA *("-" 1*8ALPHA)) | "*")

Each languege-range MAY be given an associated quality value which represents an estimate of the user’s
preferencefor the languages pedfied by that range. The quality value defaultsto “q=1". For example,

Accept - Language: da, en-gb;q=0.8, en;q=0.7
would mean: “I prefer Danish, but will accept British English and ather types of English.” A | anguage- r ange
matchesal anguage-t ag if it exadly equalsthetag, or if it exadly equals a prefix of the tag such that the first tag
charaaer following the prefix is“-". The spedal range “*”, if present in the Accept - Language field, matches
every tag not matched by any other range present in the Accept - Language field.

Note: This use of a prefix matching rule does not imply that languege tags are assgned to languages in such
away that it isalwaystrue that if a user understands alanguage with a cetain tag, then this user will also
understand all | anguages with tags for which thistag is a prefix. The prefix rule smply all ows the use of
prefix tagsif thisisthe cae.

The language quality fador assgned to alanguage-tag by the Accept - Language field is the quality value of the
longest | anguage- r ange inthefield that matchesthel anguage-t ag. If nol anguage- r ange inthefield
matches the tag, the language quality fador asdgned is 0. If no Accept - Language healer is present in the
request, the server SHOULD asume that al languages are equally acceptable. If an Accept - Language heaer is
present, then all | anguages which are assgned a quality fador greaer than O are accetable.

It might be contrary to the privagy expedations of the user to send an Accept - Language healer with the
complete linguistic preferences of the user in every request. For adiscusson of thisisaue, seesedion 15.1.4.

Asintelli gibility is highly dependent on the individual user, it isrecommended that client appli cations make the
choice of lingustic preference avail able to the user. If the choiceis not made avail able, thenthe Accept -
Language healer field MUST NOT be given in the request.

Note: When making the choice of lingustic preference avail able to the user, we remind implementors of
the fad that users are not famili ar with the detail s of language matching as described above, and should
provide gpropriate guidance As an example, users might assume that on seleding “en-gb”, they will be
served any kind of English document if British English is not avail able. A user agent might suggest in such
a caeto add “en” to get the best matching behavior.

Fielding, et a Standards Tradk [Page 65]

RFC 2616 HTTP/1.1 June, 1999

14.5 Accept-Ranges

The Accept - Ranges response-header field all ows the server to indicate its acceptance of range requests for a
resource

Accept - Ranges = "Accept - Ranges" ":" acceptabl e-ranges
accept abl e-ranges = 1#range-unit | "none"

Origin servers that accept byte-range requests MAY send

Accept - Ranges: bytes
but are not required to doso. Clients MAY generate byte-range requests without having receved this header for the
resourceinvolved. Range units are defined in sedion 3.12.

Serversthat do not accept any kind of range request for aresource MAY send

Accept - Ranges: none
to advise the dient not to attempt a range regquest.

14.6 Age

The Age response-header field conveys the sender's estimate of the amount of time sincethe response (or its
revalidation) was generated at the origin server. A caded responseis“fresh” if its age does not excedl its freshness
lifetime. Age values are caculated as gedfied in sedion 13.2.3.
Age = "Age" ":" age-val ue
age-val ue = delta-seconds
Age values are non-negative dedmal integers, representing time in seands.

If a caberecavesavalue larger than the largest positive integer it can represent, or if any of its age cdculations
overflows, it MUST transmit an Age header with avalue of 21474836482"31). An HTTP/1.1 server that includes a
cathe MUST include an Age healer field in every response generated from its own cade. Caches SHOULD use an
arithmetic type of at least 31 hits of range.

14.7 Allow

The Al | ow entity-header field lists the set of methods supparted by the resourceidentified by the Request - URI .
The purpose of thisfield is grictly to inform the redpient of valid methods associated with the resource An Al | ow
header field MUST be present in a 405 (Method Not All owed) response.

Allow = "Alow' ":" #Method
Example of use:
Al'l ow. CGET, HEAD, PUT
Thisfield cannot prevent a dient from trying other methods. However, the indicaions given by the Al | ow header

field value SHOULD be followed. The adual set of all owed methodsis defined by the origin server at the time of
ead request.

The Al | owheader field MAY be provided with a PUT request to recommend the methods to be supparted by the
new or modified resource. The server is not required to suppart these methods and SHOULD include an Al | ow
header in the response giving the adua supparted methods.

A proxy MUST NOT modify the Al | ow header field even if it does not understand all the methods gedfied, since
the user agent might have other means of communicaing with the origin server.

14.8 Authorization

A user agent that wishes to authenticae itself with a server--usually, but not necessarily, after recavinga401
response--does 0 by includingan Aut hor i zat i on request-header field with the request. The Aut hori zat i on
field value consists of cr edent i al s containing the aithentication information of the user agent for the redm of
the resource being requested.

Fielding, et a Standards Tradk [Page 66]

RFC 2616 HTTP/1.1 June, 1999

Aut hori zation = "Authorization" credentials
HTTP accessauthenticaion is described in “HTTP Authentication: Basic and Digest AccessAuthenticaion” [43]. If
arequest is authenticated and ar eal mspedfied, thesamecr edent i al s SHOULD be valid for all other requests
within thisr eal m(assuming that the authenticaion scheme itself does not require otherwise, such as credentials that
vary acordingto a challenge value or using synchronized clocks).

When a shared cade (seesedion 13.7) recaves arequest containingan Aut hor i zat i on field, it MUST NOT
return the crresponding response & areply to any other request, unlessone of the foll owing spedfic exceptions
holds:

1. If theresponseincludesthe“s- maxage” cache-control diredive, the catie MAY use that response in
replying to a subsequent request. But (if the spedfied maximum age has passed) a proxy cate MUST first
revalidate it with the origin server, using the request-headers from the new request to all ow the origin server
to authenticae the new request. (Thisis the defined behavior for s- maxage.) If theresponseincludes“s-
maxage=0", the proxy MUST always revalidate it before re-usingit.

2. If theresponseincludesthe“nust - r eval i dat e” cache-control diredive, the cabie MAY use that
response in replying to a subsequent request. But if the responseis dale, all cades MUST first revalidate it
with the origin server, using the request-headers from the new request to all ow the origin server to
authenticate the new request.

3. If theresponseincludesthe“publ i ¢c” cache-control diredive, it MAY bereturned in reply to any
subsequent request.

14.9 Cache-Control

The Cache- Cont r ol genera-header field is used to spedfy diredives that MUST be obeyed by al cading
medanisms along the request/response chain. The diredives pedfy behavior intended to prevent caces from
adversely interfering with the request or response. These diredives typicaly override the default cading algorithms.
Cadhe diredives are unidiredional in that the presence of adiredive in aregquest does not imply that the same
dirediveisto be given in the response.

Note that HTTP/1.0 cadhes might not implement Cache- Cont r ol and might only implement Pr agna:
no- cache (seesedion 14.32).

Cadhe diredives MUST be passd throughby a proxy or gateway application, regardlessof their significanceto that
applicaion, sincethe diredives might be gplicableto all redpients along the request/response dhain. It is not
possble to spedfy a cade-diredive for a spedfic cate.

Cache- Cont r ol = "Cache-Control" ":" 1#cache-directive
cache-directive = cache-request-directive

| cache-response-directive
cache-request-directive =

"no-cache" ; Section 14.9.1
| "no-store" ; Section 14.9.2
| "nax-age" "=" delta-seconds ; Section 14.9.3, 14.9.4
| "max-stale" ["=" delta-seconds] ; Section 14.9.3
| "mn-fresh" "=" delta-seconds ; Section 14.9.3
| "no-transfornt ; Section 14.9.5
| "only-if-cached" ; Section 14.9.4
| cache-extension ; Section 14.9.6

cache-response-directive =

"public" ; Section 14.9.1
| "private" ["=" <"> 1#field-nane <">] ; Section 14.9.1
| "no-cache" ["=" <"> 1#field-name <">]; Section 14.9.1
| "no-store" ; Section 14.9.2
| "no-transfornt ; Section 14.9.5
| "nust-revalidate” ; Section 14.9.4
| "proxy-revalidate" ; Section 14.9.4

Fielding, et a Standards Tradk [Page 67]

RFC 2616 HTTP/1.1 June, 1999

| "nax-age" "=" delta-seconds ; Section 14.9.3

| "s-maxage" "=" delta-seconds ; Section 14.9.3

| cache-extension ; Section 14.9.6
cache-extension = token ["=" (token | quoted-string)]

When a directive appears without any 1#f i el d- name parameter, the directive appliesto the entire request or
response. When such a directive appears with a1#f i el d- nane parameter, it applies only to the named field or
fields, and not to the rest of the request or response. This mechanism supports extensibility; implementations of
future versions of the HTTP protocol might apply these directives to header fields not defined in HTTP/1.1.

The cache-control directives can be broken down into these general categories:

» Restrictions on what are cacheable; these may only be imposed by the origin server.

» Restrictions on what may be stored by a cache; these may be imposed by either the origin server or the user
agent.

* Maodifications of the basic expiration mechanism; these may be imposed by either the origin server or the
user agent.

» Controls over cache revalidation and rel oad; these may only be imposed by a user agent.
» Control over transformation of entities.
» Extensionsto the caching system.

14.9.1 What is Cacheable

By default, aresponse is cacheable if the requirements of the request method, request header fields, and the response
status indicate that it is cacheable. Section 13.4 summarizes these defaults for cacheability. The following Cache-
Cont r ol response directives allow an origin server to override the default cacheability of aresponse:

public
Indicates that the response MAY be cached by any cache, even if it would normally be non-cacheable or
cacheable only within a non-shared cache. (See also Aut hori zat i on, section 14.8, for additional details.)

private
Indicates that all or part of the response message is intended for a single user and MUST NOT be cached by a
shared cache. Thisallows an origin server to state that the specified parts of the response are intended for only
one user and are not a valid response for requests by other users. A private (non-shared) cache MAY cache the
response.

Note: This usage of the word pr i vat e only controls where the response may be cached, and cannot
ensure the privacy of the message content.

no- cache
If theno- cache directive does not specify afield-name, then a cache MUST NOT use the response to satisfy
a subsequent request without successful revalidation with the origin server. This allows an origin server to
prevent caching even by caches that have been configured to return stale responsesto client requests.

If theno- cache directive does specify one or more field-names, then acache MAY use the response to satisfy
a subsequent request, subject to any other restrictions on caching. However, the specified field-name(s) MUST
NOT be sent in the response to a subsequent request without successful revalidation with the origin server. This
allows an origin server to prevent the re-use of certain header fields in aresponse, while still allowing caching of
the rest of the response.

Note: Most HTTP/1.0 caches will not recognize or obey this directive.

Fielding, et a Standards Track [Page 68]

RFC 2616 HTTP/1.1 June, 1999

14.9.2 What May be Stored by Caches

no-store
The purpose of the no- st or e dirediveisto prevent the inadvertent release or retention of sensitive
information (for example, on badkup tapes). The no- st or e diredive gpliesto the entire message, and MAY
be sent either in aresponse or in arequest. If sent in arequest, a catie MUST NOT store any part of either this
request or any response to it. If sent in aresponse, a catie MUST NOT store any part of either this response or
the request that elicited it. This diredive gpliesto bah non-shared and shared cadies. “MUST NOT store” in
this context means that the cadie MUST NOT intentionally store the information in non-volatil e storage, and
MUST make abest-eff ort attempt to remove the information from volatil e storage a promptly as possble dter
forwardingit.

Even when this diredive is asciated with aresponse, users might explicitly store such aresponse outside of the
cading system (e.g., with a“Save As’ dialog). History buffers MAY store such responses as part of their
normal operation.

The purpose of this dirediveisto med the stated requirements of certain users and service aithorswho are
concerned about acddental releases of information via unanticipated accesses to cade data structures. Whil e the
use of this diredive might improve privacgy in some caes, we caition that it isNOT in any way areliable or
sufficient mechanism for ensuring privagy. In particular, mali cious or compromised cades might not recognize
or obey this diredive, and communications networks might be vulnerable to eavesdroppng.

14.9.3 Moadifications of the Basic Expiration M echanism

The epiration time of an entity MAY be spedfied by the origin server using the Expi r es header (seesedion
14.27). Alternatively, it MAY be spedfied using the max- age diredivein aresponse. When the max- age cade-
control dirediveis present in a catied response, the response is galeif its current ageis greaer than the age value
given (in seconds) at the time of a new request for that resource. The max- age diredive on aresponse implies that
theresponseis cateale (i.e., “publ i ¢c”) unless ®me other, more restrictive cabe dirediveisalso present.

If aresponseincludes both an Expi r es header and amax- age diredive, the max- age diredive overridesthe
Expi r es header, even if the Expi r es healer is morerestrictive. Thisrule dlows an origin server to provide, for a
given response, alonger expiration timeto an HTTP/1.1 (or later) cadhe than to an HTTP/1.0 cache. This might be
useful if certain HTTP/1.0 cadhes improperly cdculate ages or expiration times, perhaps due to desynchronized
clocks.

Many HTTP/1.0 cache implementations will trea an Expi r es value that islessthan or equal to the response Dat e
value & being equivalent to the Cache- Cont r ol responsediredive "no- cache". If an HTTP/1.1 cache receves
such aresponse, and the response does not include aCache- Cont r ol header field, it SHOULD consider the
response to be non-cadheable in order to retain compatibility with HTTP/1.0 servers.

Note: An origin server might wish to use arelatively new HTTP cade oontrol feaure, such asthe

“pri vat e” diredive, on a network including older cades that do not understand that feaure. The origin
server will need to combine the new feaure with an Expi r es field whose value is lessthan or equal to the
Dat e value. Thiswill prevent older cadies from improperly cading the response.

S- maxage
If aresponseincludes an s- maxage diredive, then for a shared cace (but not for a private cate), the
maximum age spedfied by this diredive overrides the maximum age spedfied by either the max-age diredive or
the Expi r es healer. The s- maxage diredive dso impliesthe semantics of the pr oxy-reval i dat e
diredive (seesedion 14.9.4), i.e., that the shared cade must not use the entry after it becomes gale to respond
to a subsequent request without first revalidating it with the origin server. The s- maxage diredive is aways
ignored by a private cade.

Note that most older cades, not compliant with this gedfication, do not implement any cade-control diredives. An
origin server wishing to use a cabe-control diredive that restricts, but does not prevent, cacing by an HTTP/1.1-

Fielding, et a Standards Tradk [Page 69

RFC 2616 HTTP/1.1 June, 1999

compliant cache MAY exploit the requirement that the max- age diredive overrides the Expi r es header, and the
fad that pre-HTTP/1.1-compliant caces do not observe the max- age diredive.

Other diredives all ow a user agent to modify the basic expiration medanism. These diredives MAY be spedfied on
arequest:

max- age
Indicates that the dient iswilli ngto accept aresponse whose aje is no greaer than the spedfied timein
semnds. Unlessnmax- st al e dirediveisaso included, the dient is not willi ngto accept a stale response.

m n-fresh
Indicates that the dient iswilli ngto accept a response whose freshnesslifetimeis no lessthan its current age
plus the spedfied time in seconds. That is, the dient wants aresponse that will till be fresh for at least the
spedfied number of seconds.

max- stal e
Indicates that the dient iswilli ngto accept aresponse that has excealed its expiration time. If max- st al e is
assgned avalue, then the dient iswilli ngto accept a response that has exceealed its expiration time by no more
than the spedfied number of seconds. If no valueis assgned to max- st al e, then the dient iswilli ngto accept
a stale response of any age.

If a cate returns a stale response, either because of a max-stale diredive on arequest, or because the cadeis
configured to override the expiration time of aresponse, the cate MUST attach a\War ni ng header to the stale
response, using Warning 110 (Responseis dae).

A cade MAY be configured to return stale responses without validation, but only if this does not conflict with any
“MUST”-level requirements concerning cade validation (e.g., a“nmust - r eval i dat e” cache-control diredive).

If both the new request and the caded entry include “rmex- age” diredives, then the lesser of the two valuesis used
for determining the freshnessof the caded entry for that request.

14.9.4 Cache Revalidation and Reload Controls

Sometimes a user agent might want or need to insist that a cate revalidate its cacde entry with the origin server (and
not just with the next cade dong the path to the origin server), or to reload its cace entry from the origin server.
End-to-end revalidation might be necessary if either the cade or the origin server has overestimated the expiration
time of the caded response. End-to-end reload may be necessary if the cadie entry has become @rrupted for some
reason.

End-to-end revali dation may be requested either when the dient does not have its own locd cadied copy, in which
case we cdl it “unspedfied end-to-end revalidation”, or when the dient does have alocd caded copy, in which case
we cdl it “spedfic end-to-end revalidation.”

The dient can spedfy these threekinds of adion using Cache- Cont r ol request diredives:

End-to-end reload
Therequest includesa“no- cache” cache-control diredive or, for compatibility with HTTP/1.0 clients,
“Pragma: no-cache”. Field names MUST NOT be included with the no- cache diredivein arequest. The
server MUST NOT use a cabed copy when responding to such a request.

Spedfic end-to-end revalidation
Therequest includes a“nmax- age=0" cache-control diredive, which forces eat cacte dong the path to the
origin server to revalidate its own entry, if any, with the next cade or server. Theinitial request includes a
cade-validating conditional with the dient’s current validator.

Unspedfied end-to-end revalidation
The request includes “max- age=0" cache-control diredive, which forces ead cade dongthe path to the
origin server to revalidate its own entry, if any, with the next cade or server. Theinitial request does not include

Fielding, et a Standards Tradk [Page 70Q]

RFC 2616 HTTP/1.1 June, 1999

a cade-validating conditi onal; the first cade dongthe path (if any) that holds a cade entry for this resource
includes a cate-vali dating conditional with its current vali dator.

max- age
When an intermediate cateisforced, by means of amax- age=0 diredive, to revalidate its own cace antry,
and the dient has supplied its own vali dator in the request, the supplied validator might differ from the vali dator
currently stored with the cade entry. In this case, the cadie MAY use éther validator in making its own request
without aff eding semantic transparency.

However, the choice of validator might affea performance. The best approach is for the intermediate catieto
use its own vali dator when making its request. If the server replies with 304 (Not Modified), then the catie can
return its now validated copy to the dient with a 200 (OK) response. If the server replies with a new entity and
cade validator, however, the intermediate catie can compare the returned vali dator with the one provided in
the dient’s request, using the strong comparison function. If the dient’s validator is equal to the origin server’s,
then the intermediate cate simply returns 304 (Not Modified). Otherwise, it returns the new entity with a 200
(OK) response.

If arequest includesthe no- cache diredive, it SHOULD NOT includemi n- f r esh, max- st al e, or max-
age.

only-if-cached

In some cases, such as times of extremely poar network connedivity, a dient may want a cade to return only
those responses that it currently has gored, and not to reload or revali date with the origin server. To dothis, the
client may includetheonl y-i f - cached diredivein arequest. If it recavesthisdiredive, a catie SHOULD
either respond using a catied entry that is consistent with the other constraints of the request, or respond with a
504 (Gateway Timeout) status. However, if agroup of cadesisbeing operated as a unified system with good

internal connedivity, such arequest MAY be forwarded within that group of caces.

nmust - reval i dat e
Becauise a cabe MAY be mnfigured to ignore aserver’'s gedfied expiration time, and becaise a di ent request
MAY include amax- st al e diredive (which hasasimilar effed), the protocol also includes a mechanism for
the origin server to require revalidation of a cade entry on any subsequent use. Whenthemust - r eval i dat e
dirediveis present in aresponse recaved by a cate, that cache MUST NOT use the entry after it becomes gale
to respond to a subsequent request without first revalidating it with the origin server. (1.e., the cabe MUST do
an end-to-end revalidation every time, if, based solely on the origin server’s Expi r es or max- age value, the
caded responseis gale)

Thenust - reval i dat e dirediveisnecessary to suppart reli able operation for certain protocol feaures. In
al circumstancesan HTTP/1.1 cache MUST obey the rust - r eval i dat e diredive; in particular, if the
cade canot read the origin server for any reason, it MUST generate a504 (Gateway Timeout) response.

Servers SHOULD send thenust - r eval i dat e dirediveif and only if failure to revalidate arequest on the
entity could result in incorred operation, such as a silently unexeauted financial transaction. Redpients MUST
NOT take any automated adion that violates this diredive, and MUST NOT automaticdly provide an
unvalidated copy of the entity if revalidation fail s.

Althoughthisis not recommended, user agents operating urder severe mnnedivity constraints MAY violate this
diredive but, if so, MUST explicitly warn the user that an un\ali dated response has been provided. The warning
MUST be provided on ead unwalidated access and SHOULD require eplicit user confirmation.

proxy-reval i date
Thepr oxy-reval i dat e diredive hasthe same meaningasthenust - r eval i dat e diredive, except that
it does not apply to non-shared user agent cades. It can be used on aresponse to an authenticated request to
permit the user’s cade to store and later return the response without needing to revalidate it (sinceit has alrealy
been authenticated once by that user), whil e still requiring proxies that service many usersto revalidate eat
time (in order to make sure that ead user has been authenticaed). Note that such authenticated responses also
need the publ i ¢ cade ontrol diredivein order to alow themto be cated at all.

Fielding, et a Standards Tradk [Page 71]

RFC 2616 HTTP/1.1 June, 1999

14.9.5 No-Transform Directive

no-transform
Implementors of intermediate cates (proxies) have found it useful to convert the media type of certain entity
bodes. A non-transparent proxy might, for example, convert between image formats in order to save cade
spaceor to reducethe amount of traffic on aslow link.

Serious operational problems occur, however, when these transformations are appli ed to entity bodes intended
for certain kinds of applicaions. For example, applications for medicd imaging, scientific data analysis and
those using end-to-end authenticaion, all depend on receaving an entity body that is bit for bit identicd to the
original entity-body.

Therefore, if amessgeincludestheno-t r ansf or mdiredive, an intermediate cate or proxy MUST NOT
change those headers that are listed in sedion 13.5.2 as being subjed to the no- t r ansf or mdiredive. This
implies that the cade or proxy MUST NOT change any asped of the entity-body that is gedfied by these
headers, including the value of the entity-body itself.

14.9.6 Cache Control Extensions

The Cache- Cont r ol heaer field can be extended throughthe use of one or more cabe-extension tokens, eat
with an optional asdgned value. Informational extensions (those which do not require a dange in cace behavior)
MAY be added without changing the semantics of other diredives. Behavioral extensions are designed to work by
ading as modifiers to the eisting base of cade diredives. Both the new diredive and the standard dredive ae
supplied, such that appli cations which do not understand the new diredive will default to the behavior spedfied by
the standard diredive, and those that understand the new diredive will reagnizeit as modifying the requirements
associated with the standard diredive. In thisway, extensionsto the cate-control diredives can be made without
requiring changes to the base protocol.

This extension mechanism depends on an HT TP cade obeying all of the cade-control diredives defined for its
native HTTP-version, obeying certain extensions, and ignoring all diredives that it does not understand.

For example, consider a hypotheticd new response diredive cdled conmuni t y which ads as amodifier to the

pri vat e diredive. We define this new diredive to mean that, in addition to any non-shared cacde, any cace
which is shared only by members of the community named within its value may cade the response. An origin server
wishing to allow the UCI community to use an otherwise private response in their shared cace(s) could do so by
including

Cache-Control : private, community="UC"
A cade sedangthis header field will ad corredly even if the cade does not understand the cormuni t y cade-
extension, sinceit will aso see and understand the pr i vat e diredive and thus default to the safe behavior.

Unreognized cathe-direcives MUST beignored; it is asaumed that any cace-diredive likely to be unrecognized
by an HTTP/1.1 cadhe will be mmbined with standard diredives (or the response’s default cadheability) such that
the cate behavior will remain minimally corred even if the cade does not understand the extension(s).

14.10 Connection

The Connect i on genera-header field all ows the sender to spedfy options that are desired for that particular
connedion and MUST NOT be communicated by proxies over further connedions.

The Connect i on header hasthe following gammar:

Connecti on = "Connection"
connection-token = token

HTTP/1.1 proxies MUST parse the Connect i on healer field before amessage is forwarded and, for eah
connedion-token in this field, remove a1y header field(s) from the message with the same name & the connedion-
token. Connect i on options are signaled by the presence of a cwnnedion-token inthe Connect i on healer field,

1#(connecti on-t oken)

Fielding, et a Standards Tradk [Page 72]

RFC 2616 HTTP/1.1 June, 1999

not by any corresponding additional header field(s), sincethe alditional header field may not be sent if there ae no
parameters associated with that connedion option.

Message healers listed in the Connect i on header MUST NOT include end-to-end healers, such as Cache-
Control .

HTTP/1.1 definesthe “cl ose” connedion option for the sender to signal that the annedion will be dosed after
completion of the response. For example,

Connection: cl ose
in either the request or the response healer fieldsindicates that the cnnedion SHOULD NOT be mnsidered
‘persistent’ (sedion 8.1) after the aurrent request/response is compl ete.

HTTP/1.1 applicaions that do not suppart persistent connedions MUST include the“cl ose” connedion optionin
every message.

A system recaving an HTTP/1.0 (or lower-version) message that includesa Connect i on header MUST, for eat
connedion-token in this field, remove and ignore any healer field(s) from the message with the same name & the
connedion-token. This proteds against mistaken forwarding of such header fields by preHTTP/1.1 proxies. See
sedion 19.6.2.

14.11 Content-Encoding

The Cont ent - Encodi ng entity-header field is used as a modifier to the media-type. When present, its value
indicaes what additi onal content codings have been applied to the entity-body, and thus what decoding mecdhanisms
must be goplied in order to oktain the media-type referenced by the Cont ent - Type header field. Cont ent -
Encodi ng is primarily used to allow a document to be compressed without losing the identity of its underlying
mediatype.

Cont ent - Encodi ng = "Content-Encodi ng"
Content codings are defined in sedion 3.5. An example of itsuse is

1#cont ent - codi ng

Cont ent - Encodi ng: gzip
The ontent-codingis a tharaderistic of the entity identified by the Request - URI . Typicdly, the entity-body is
stored with this encoding and is only decoded before rendering or anal ogous usage. However, a non-transparent
proxy MAY modify the content-codingif the new codingis known to be accetable to the redpient, unlessthe “no-
t ransf or m cache-control dirediveis present in the message.

If the content-coding of an entity isnot “i dent i t y”, then the response MUST include aCont ent - Encodi ng
entity-healer (sedion 14.11) that lists the non-identity content-coding(s) used.

If the content-coding of an entity in arequest message is not acceptable to the origin server, the server SHOULD
respond with a status code of 415 (Unsupparted Media Type).

If multi ple encodings have been applied to an entity, the cntent codings MUST be listed in the order in which they
were gplied. Additional information about the encoding parameters MAY be provided by other entity-header fields
not defined by this gpedfication.

14.12 Content-Language

The Cont ent - Language entity-header field describes the natural language(s) of the intended audiencefor the
enclosed entity. Note that this might not be equivalent to al the languages used within the entity-body.

Cont ent - Language = "Content - Language” 1#l anguage-t ag
Languege tags are defined in sedion 3.10. The primary purpose of Cont ent - Language isto allow a user to
identify and dff erentiate entities acwrding to the user’s own preferred language. Thus, if the body content is
intended only for a Danish-literate audience, the gpropriate field is

Cont ent - Language: da

Fielding, et a Standards Tradk [Page 73]

RFC 2616 HTTP/1.1 June, 1999

If no Cont ent - Language is pedfied, the default is that the mntent isintended for all language audiences. This
might mean that the sender does not consider it to be spedfic to any natural languege, or that the sender does not
know for which language it is intended.

Multiple languages MAY be listed for content that isintended for multiple audiences. For example, arenditi on of the
“Treay of Waitangi,” presented simultaneously in the original Maori and English versions, would cdl for

Cont ent - Language: ni, en
However, just because multi ple languages are present within an entity does not mean that it is intended for multiple
lingustic audiences. An example would be abeginner’s language primer, such as“A First Lesonin Latin,” whichis
clealy intended to be used by an English-literate audience In this case, the Cont ent - Language would properly
only include “en”.

Cont ent - Language MAY be applied to any mediatype -- it is not limited to textual documents.

14.13 Content-Length

The Cont ent - Lengt h entity-header field indicates the size of the entity-body, in deamal number of OCTETS,
sent to the redpient or, in the cae of the HEAD method, the size of the entity-body that would have been sent had the
request been a GET.

Content - Lengt h = "Content-Length" ":" 1*DIAT
Anexampleis

Content - Lengt h: 3495
Applications SHOULD use thisfield to indicate the transfer-length of the message-body, unlessthisis prohibited by
therulesin sedion 4.4.

Any Cont ent - Lengt h greder than or equal to zero isavalid value. Sedion 4.4 describes how to determine the
length of amessage-body if aCont ent - Lengt h isnot given.

Note that the meaning of thisfield is sgnificantly diff erent from the mrresponding definition in MIME, whereit is
an optional field used within the “message/external-body” content-type. In HTTP, it SHOULD be sent whenever the
message’ s length can be determined prior to being transferred, unlessthisis prohibited by the rulesin sedion 4.4.

14.14 Content-Location

The Cont ent - Locat i on entity-header field MAY be used to supply the resourcelocaion for the entity enclosed
in the message when that entity is accessble from alocation separate from the requested resource s URI. A server
SHOULD provide aCont ent - Locat i on for the variant corresponding to the response antity; espedally in the
case where aresource has multiple entiti es associated with it, and those entiti es adually have separate locaions by
which they might be individually accessed, the server SHOULD provide aCont ent - Locat i on for the particular
variant which is returned.

Cont ent - Locati on = "Content-Location"
(absoluteURl | relativeURl)

Thevalue of Cont ent - Locat i on also definesthe base URI for the antity.

The Cont ent - Locat i on valueisnot areplacanent for the original requested URI; it is only a statement of the
location of the resource @rrespondingto this particular entity at the time of the request. Future requests MAY
spedfy the Cont ent - Locat i on URI astherequest-URI if the desireis to identify the source of that particular
entity.

A cade cannot asaume that an entity with aCont ent - Locat i on different from the URI used to retrieve it can

be used to respond to later requests on that Cont ent - Locat i on URI. However, the Cont ent - Locat i on can
be used to differentiate between multiple entities retrieved from a single requested resource, as described in sedion
136.

If theCont ent - Locat i on isarelative URI, the relative URI isinterpreted relative to the Request - URI .

Fielding, et a Standards Tradk [Page 74]

RFC 2616 HTTP/1.1 June, 1999

The meaning of the Cont ent - Locat i on header in PUT or POST requests is undefined; servers are free to ignore
it in those cases.

14.15 Content-M D5

The Cont ent - MD5 entity-header field, as defined in RFC 1864 [23], is an MD5 digest of the entity-body for the
purpose of providing an end-to-end message integrity check (MI1C) of the entity-body. (Note: aMIC is good for
detecting accidental modification of the entity-body in transit, but is not proof against malicious attacks.)

Cont ent - MD5 = "Content-MD5" ":" nd5-digest
nd5- di gest = <base64 of 128 bit MD5 digest as per RFC 1864>

The Cont ent - MD5 header field MAY be generated by an origin server or client to function as an integrity check of
the entity-body. Only origin serversor clients MAY generate the Cont ent - MD5 header field; proxies and gateways
MUST NOT generate it, as this would defeat its value as an end-to-end integrity check. Any recipient of the entity-
body, including gateways and proxies, MAY check that the digest value in this header field matches that of the
entity-body as received.

The MD5 digest is computed based on the content of the entity-body, including any content-coding that has been
applied, but not including any transfer-encoding applied to the message-body. If the message is received with a
transfer-encoding, that encoding MUST be removed prior to checking the Cont ent - MD5 value against the
received entity.

This has the result that the digest is computed on the octets of the entity-body exactly as, and in the order that, they
would be sent if no transfer-encoding were being applied.

HTTP extends RFC 1864 to permit the digest to be computed for MIME composite media-types (e.g., multipart/*
and message/rfc822), but this does not change how the digest is computed as defined in the preceding paragraph.

There are several consequences of this. The entity-body for composite types MAY contain many body-parts, each
with its own MIME and HT TP headers (including Cont ent - MD5, Cont ent - Tr ansf er - Encodi ng, and

Cont ent - Encodi ng headers). If abody-part hasa Cont ent - Tr ansf er - Encodi ng or Cont ent -

Encodi ng header, it is assumed that the content of the body-part has had the encoding applied, and the body-part is
included in the Cont ent - MD5 digest asis-- i.e., after the application. The Tr ansf er - Encodi ng header field is
not allowed within body-parts.

Conversion of all line breaksto CRLF MUST NOT be done before computing or checking the digest: the line break
convention used in the text actually transmitted MUST be |eft unaltered when computing the digest.

Note: while the definition of Cont ent - MD5 is exactly the same for HTTP asin RFC 1864 for MIME
entity-bodies, there are several ways in which the application of Cont ent - MD5 to HTTP entity-bodies
differsfromits application to MIME entity-bodies. Oneisthat HTTP, unlike MIME, does not use

Cont ent - Tr ansf er - Encodi ng, and doesuse Tr ansf er - Encodi ng and Cont ent - Encodi ng.
Another isthat HTTP more frequently uses binary content types than MIME, so it isworth noting that, in
such cases, the byte order used to compute the digest is the transmission byte order defined for the type.
Lastly, HTTP allows transmission of text types with any of several line break conventions and not just the
canonical form using CRLF.

14.16 Content-Range

The Cont ent - Range entity-header is sent with a partial entity-body to specify where in the full entity-body the
partial body should be applied. Range units are defined in section 3.12.
Cont ent - Range = "Content-Range" ":" content-range-spec
cont ent - range- spec = byt e-content-range-spec
byt e- cont ent -range-spec = bytes-unit SP
byt e-range-resp-spec "/"
(instance-length | "*")

byt e-range-resp-spec = (first-byte-pos "-" |ast-byte-pos)

Fielding, et a Standards Track [Page 75]

RFC 2616 HTTP/1.1 June, 1999

W
i nstance-1ength = 1* DI aT

The header SHOULD indicate the total length of the full entity-body, unlessthislength is unkrown or difficult to

determine. The asterisk “*” charader meansthat thei nst ance- | engt h isunknown at the time when the

response was generated.

Unlike byt e- r anges- speci fi er values(seesedion 14.35.1), abyt e- r ange- r esp- spec MUST only
spedfy one range, and MUST contain absolute byte paositions for both the first and last byte of the range.

A byt e- cont ent - range- spec withabyt e-r ange- r esp- spec whosel ast - byt e- pos vaueisless
thanitsfirst- byt e- pos val ue, or whosei nst ance- | engt h valueislessthan or equal toits| ast -

byt e- pos value, isinvalid. Theredpient of aninvalid byt e- cont ent - r ange- spec MUST ignore it and any
content transferred along with it.

A server sending aresponse with status code 416 (Requested range not satisfiable) SHOULD include aCont ent -
Range field withabyt e- r ange- r esp- spec of “*”. Thei nst ance- | engt h spedfiesthe arrent length of
the seleded resource A response with status code 206 (Partial Content) MUST NOT include aCont ent - Range
field with abyt e- r ange- r esp- spec of “*”.

Examples of byt e- cont ent - r ange- spec values, assuumingthat the entity contains atotal of 1234 lytes:

e Thefirst 500 bytes:
bytes 0-499/1234
* Thesemnd 500 lytes:
byt es 500-999/1234
e All except for the first 500 bytes:
byt es 500-1233/1234
* Thelast 500 bytes:
bytes 734-1233/1234
When an HTTP message includes the content of a single range (for example, aresponse to arequest for asinge
range, or to arequest for a set of ranges that overlap without any holes), this content is transmitted with a
Cont ent - Range healer, and aCont ent - Lengt h header showing the number of bytes acually transferred. For
example,

HTTP/ 1.1 206 Partial content

Date: Wed, 15 Nov 1995 06: 25:24 GMr

Last-Modified: Wed, 15 Nov 1995 04:58:08 GVI

Cont ent - Range: bytes 21010-47021/ 47022

Content - Lengt h: 26012

Cont ent - Type: inmage/gif
When an HTTP message includes the content of multi ple ranges (for example, a response to arequest for multiple
non-overlapping ranges), these ae transmitted as a multi part message. The multi part media type used for this
purpose is “multi part/byteranges’ as defined in appendix 19.2. See gpendix 19.6.3 for a compatibility isaue.

A response to arequest for asingle range MUST NOT be sent using the multi part/byteranges mediatype. A
response to a request for multi ple ranges, whose result isa single range, MAY be sent as a multi part/byteranges
media type with one part. A client that cannot decde amulti part/byteranges message MUST NOT ask for multiple
byte-rangesin asingle request.

When a dient requests multi ple byte-ranges in one request, the server SHOULD return them in the order that they
appeaed in the request.

If the server ignoresa byt e- r ange- spec becaiseit is gntadicdly invalid, the server SHOULD trea the request
asif theinvalid Range header field did not exist. (Normally, this means return a 200 response @ntaining the full
entity).

If the server recaves arequest (other than oneincludingan | f - Range request-header field) with an ursatisfiable
Range request-healer field (that is, all of whose byt e- r ange- spec valueshave af i r st - byt e- pos value

Fielding, et a Standards Tradk [Page 76]

RFC 2616 HTTP/1.1 June, 1999

greder than the aurrent length of the seleded resource), it SHOULD return aresponse ade of 416 (Requested range
not satisfiable) (sedion 10.4.17).

Note: clients cannot depend on serversto send a 416 (Requested range not satisfiable) response instead of a
200(OK) response for an ursatisfiable Range request-header, since not al serversimplement this request-
header.

14.17 Content-Type

The Cont ent - Type entity-header field indicates the media type of the entity-body sent to the redpient or, in the
case of the HEAD method, the media type that would have been sent had the request been a GET.

Cont ent - Type = "Content - Type" nedi a-type
Mediatypes are defined in sedion 3.7. An example of thefield is

Content-Type: text/htm; charset=ISO 8859-4
Further discusdon of methods for identifying the media type of an entity is provided in sedion 7.2.1.

14.18 Date

The Dat e general-header field represents the date and time & which the message was originated, having the same
semanticsasor i g- dat e in RFC 822 Thefield valueisan HTTP- dat e, asdescribed in sedion 3.3.1; it MUST
be sent in RFC 1123[8]-date format.

Date = "Date" ":" HITP-date
Anexampleis

Date: Tue, 15 Nov 1994 08:12:31 GMVI
Origin servers MUST include aDat e header field in all responses, except in these cases:

1. If the response status code is 100 (Continue) or 101 (Switching Protocols), the response MAY include a
Dat e header field, at the server’'s option.

2. If theresponse status code mnveys a server error, e.g. 500 (Internal Server Error) or 503 (Service
Unavailable), and it isinconvenient or impossble to generate avalid Dat e.

3. If the server does not have a ¢ock that can provide areasonable goproximation of the aurrent time, its
responses MUST NOT include aDat e header field. In this case, the rulesin sedion 14.18.1 MUST be
foll owed.

A receved message that does not have aDat e header field MUST be assgned one by the redpient if the message
will be cated by that redpient or gatewayed via aprotocol which requires a Dat e. An HTTP implementation
without a dock MUST NOT cade responses without revali dating them on every use. An HTTP cade, espedally a
shared cade, SHOULD use amedhanism, such as NTP [28], to synchronizeits clock with areliable external
standard.

Clients SHOULD only send a Dat e header field in messages that include an entity-body, asin the cae of the PUT
and POST reguests, and even then it isoptional. A client without a dock MUST NOT send aDat e healer fieldina
request.

The HTTP-date sent in a Dat e header SHOULD NOT represent adate and time subsequent to the generation of the
message. It SHOULD represent the best avail able goproximation of the date and time of message generation, unless
the implementation has no means of generating a reasonably acairate date and time. In theory, the date ougtt to
represent the moment just before the entity is generated. In pradice, the date can be generated at any time during the
message origination without affedingits ssmantic value.

Fielding, et a Standards Tradk [Page 77]

RFC 2616 HTTP/1.1 June, 1999

14.18.1 Clockless Origin Server Operation

Some origin server implementations might not have a ¢ock available. An origin server without a dock MUST NOT
assgnExpi res or Last -Modi f i ed valuesto aresponse, unlessthese values were asciated with the resource
by a system or user with areliable dock. It MAY asdgnan Expi r es value that is known, at or before server
configuration time, to bein the past (this all ows “pre-expiration” of responses without storing separate Expi r es
values for ead resource).

14.19 ETag

The ETag response-header field provides the arrent value of the entity tag for the requested variant. The headers
used with entity tags are described in sedions 14.24, 14.26 and 14.44. The entity tag MAY be used for comparison
with other entiti es from the same resource (seesedion 13.3.3).

ETag = "ETag" ":" entity-tag
Examples:
ETag: "xyzzy"
ETag: W"xyzzy"
ETag: ""
14.20 Expect
The Expect request-header field is used to indicate that particular server behaviors are required by the dient.
Expect = "Expect" ":" 1#expectation
expectation = "100-continue" | expectation-extension
expectati on-extension = token ["=" (token | quoted-string)
*expect - parans |
expect-params = ";" token ["=" (token | quoted-string)]

A server that does not understand or is unable to comply with any of the expedation valuesin the Expect field of a
request MUST respond with appropriate eror status. The server MUST respond with a 417 (Expedation Fail ed)
status if any of the expedations cannot be met or, if there ae other problems with the request, some other 4xx status.

This header field is defined with extensible syntax to all ow for future extensions. If a server recaves a request
containing an Expect field that includes an expedation-extension that it does not suppart, it MUST respond with a
417 (Expedation Fail ed) status.

Comparison of expedation values is case-insensiti ve for unquoted tokens (including the 100-continue token), and is
case-sengitive for quoted-string expedation-extensions.

The Expect mechanism is hop-by-hop: that is, an HTTP/1.1 proxy MUST return a417 (Expedation Fail ed) status
if it recaves arequest with an expedation that it cannot med. However, the Expect request-healer itself is end-to-
end; it MUST be forwarded if the request is forwarded.

Many older HTTP/1.0 and HTTP/1.1 applications do not understand the Expect header.
Seesedion 8.2.3 for the use of the 100 (continue) status.

14.21 Expires

The Expi r es entity-header field gives the date/time &ter which the responseis considered stale. A stale cate
entry may not normally be returned by a cate (either a proxy cade or a user agent cade) unlessit isfirst validated
with the origin server (or with an intermediate cade that has a fresh copy of the entity). Seesedion 13.2 for further
discusson of the expiration model.

The presence of an Expi r es field does not imply that the original resourcewill change or ceae to exist at, before,
or after that time.

Fielding, et a Standards Tradk [Page 78]

RFC 2616 HTTP/1.1 June, 1999

The format is an absolute date and time a defined by HTTP- dat e in sedion 3.3.1; it MUST bein RFC 1123date
format:

Expires = "Expires" ":" HITP-date
An example of itsuse is

Expires: Thu, 01 Dec 1994 16:00: 00 GV
Note: if aresponseincludesaCache- Cont r ol field with the max- age diredive (seesedion 14.9.3),
that diredive overrides the Expi r es field.

HTTP/1.1 clients and caches MUST trea other invalid date formats, espedally including the value “0”, asin the past
(i.e., “arealy expired”).

To mark aresponse & “arealy expired,” an origin server sends an Expi r es date that is equal to the Dat e header
value. (Seethe rulesfor expiration cdculationsin sedion 13.2.4.)

To mark aresponse & “hever expires,” an origin server sends an Expi r es date goproximately one yea from the
time the responseis ent. HTTP/1.1 servers SHOULD NOT send Expi r es dates more than one yea in the future.

The presence of an Expi r es header field with a date value of some time in the future on a response that otherwise
would by default be non-cadheable indicates that the responseis caceable, unlessindicated atherwise by a Cache-
Cont r ol healer field (sedion 14.9).

14.22 From

The Fr omrequest-header field, if given, SHOULD contain an Internet e-mail addressfor the human user who
controls the requesting wser agent. The addressSHOULD be madhine-usable, as defined by “mai | box” in RFC 822
[9] as updated by RFC 1123[8]:

From = "Fronl ":" mail box
An exampleis:

From webmaster @a3. org
Thisheader field MAY be used for logging purposes and as a means for identifying the source of invalid or
unwanted requests. It SHOULD NOT be used as an inseaure form of accessprotedion. The interpretation of this
field isthat the request is being performed on behalf of the person gven, who accepts responsibility for the met hod
performed. In particular, roba agents SHOULD include this header so that the person responsible for runring the
roba can be mntaded if problems occur on the receving end.

The Internet e-mail addressin thisfield MAY be separate from the Internet host which isaued the request. For
example, when arequest is passd througha proxy the original isauer’s addressSHOULD be used.

The dient SHOULD NOT send the Fr omheader field without the user’s approval, as it might conflict with the
user’s privacy interests or their site’'s aurity palicy. It is grongly recommended that the user be aleto disable,
enable, and modify the value of thisfield at any time prior to arequest.

14.23 Host

The Host request-header field spedfiesthe Internet host and pat number of the resource being requested, as
obtained from the original URI given by the user or referring resource (generally an HTTP URL, as described in
sedion 3.2.2). The Host field value MUST represent the naming authority of the origin server or gateway given by
the original URL. This allows the origin server or gateway to dff erentiate between internall y-ambiguous URLs, such
astheroat “/” URL of a server for multi ple host nameson asinge |P address

Host = "Host" ":" host [":" port] ; Section 3.2.2
A “host” without any traili ng port information impli es the default port for the serviceregquested (e.g., “80" for an
HTTP URL). For example, arequest on the origin server for <ht t p: / / www. wW3. or g/ pub/ WAV > would
properly include:

GET / pub/ WW HTTP/ 1.1

Host: www. w3. org

Fielding, et a Standards Tradk [Page 79

RFC 2616 HTTP/1.1 June, 1999

A client MUST include aHost header field in all HTTP/1.1 request messages . If the requested URI does not
include an Internet host name for the service being requested, then the Host header field MUST be given with an
empty value. AnHTTP/1.1 proxy MUST ensure that any request message it forwards does contain an appropriate
Host header field that identifies the service being requested by the proxy. All Internet-based HTTP/1.1 servers
MUST respond with a400 (Bad Request) status code to any HTTP/1.1 request message which lacks a Host header
field.

Seesedions 5.2 and 19.6.1.1 for other requirements relatingto Host .

14.24 [f-Match

Thel f - Mat ch request-header field is used with a method to make it conditional. A client that has one or more
entities previously obtained from the resource can verify that one of those entitiesis current by including alist of
their asociated entity tagsinthe | f - Mat ch header field. Entity tags are defined in sedion 3.11. The purpaose of
thisfeaure isto all ow efficient updates of caded information with a minimum amount of transadion overhea. It is
also used, on updating requests, to prevent inadvertent modification of the wrong version of aresource. As a spedal
case, the value “* " matches any current entity of the resource

[f-Match = "If-Match" ":" ("*" | 1#entity-tag)
If any of the entity tags match the entity tag of the entity that would have been returned in the response to a simil ar
GET request (without the | f - Mat ch healer) on that resource, or if “*” is given and any current entity exists for
that resource, then the server MAY perform the requested method as if the | f - Mat ch header field did not exist.

A server MUST use the strong comparison function (seesedion 13.3.3) to compare the entity tagsin | f - Mat ch.

If none of the entity tags match, or if “*” is given and no current entity exists, the server MUST NOT perform the
requested method, and MUST return a 412 (Preconditi on Fail ed) response. This behavior is most useful when the
client wantsto prevent an updating method, such as PUT, from modifying a resourcethat has changed sincethe
client last retrieved it.

If the request would, without the | f - Mat ch header field, result in anything other than a 2xx or 412 status, then the
| f - Mat ch header MUST beignored.

Themeaning of “I f - Mat ch: *” isthat the method SHOULD be performed if the representation seleded by the
origin server (or by a cade, possbly usingthe Var y medhanism, seesedion 14.44) exists, and MUST NOT be
performed if the representation does not exist.

A request intended to update aresource(e.g., aPUT) MAY include an | f - Mat ch header field to signal that the
request method MUST NOT be gplied if the atity correspondingto thel f - Mat ch value (asinge antity tag) isno
longer arepresentation of that resource This all ows the user to indicae that they do not wish the request to be
succesgul if the resource has been changed without their knowledge. Examples:

| f-Match: "xyzzy"

I f-Match: "xyzzy", "r2d2xxxx", "c3piozzzz"
I f-Match: *

Theresult of arequest havingbath an | f - Mat ch header field and either an | f - None- Mat ch oran| f -
Modi f i ed- Si nce healer fieldsis undefined by this gpedfication.

14.25 1f-Modified-Since

Thel f - Modi fi ed- Si nce request-header field is used with a method to make it conditional: if the requested
variant has not been modified sincethe time spedfied in thisfield, an entity will not be returned from the server;
instead, a 304 (not modified) response will be returned without any message-body.

I f-Mdified-Since = "If-Mdified-Since" ":" HITP-date
An example of thefield is:

| f-Mdified-Since: Sat, 29 COct 1994 19:43:31 GVl

Fielding, et a Standards Tradk [Page 80

RFC 2616 HTTP/1.1 June, 1999

A GET methodwithan | f - Mbdi fi ed- Si nce healer and no Range healer requests that the identified entity be
transferred only if it has been modified sincethe date given by the | f - Mbdi fi ed- Si nce healer. The dgorithm
for determining this includes the foll owing cases:

a) If therequest would normally result in anything other than a 200 (OK) status, or if thepassd | f - Modi f i ed-
Si nce dateisinvalid, the responseis exadly the same asfor anorma GET. A date which islater than the
server’s current timeisinvalid.

b) If the variant has been modified sincethel f - Mbodi f i ed- Si nce date, the response is exadly the same & for
anormal GET.

¢) If thevariant has not been modified since avalid | f - Modi fi ed- Si nce date, the server SHOULD return a
304 (Not Modified) response.

The purpose of thisfeaureisto allow efficient updates of caced information with a minimum amount of transadion
overheal.

Note: The Range request-header field modifiesthe meaningof | f - Modi f i ed- Si nce; seesedion
14.35for full details.

Note: | f - Modi fi ed- Si nce timesareinterpreted by the server, whose dock might not be synchronized
with the dient.

Note: When handlingan | f - Modi fi ed- Si nce healer field, some serverswill use an exad date
comparison function, rather than alessthan function, for dedding whether to send a 304 (Not Modified)
response. To get best resultswhen sendingan | f - Modi f i ed- Si nce header field for cade validation,
clients are alvised to use the exad date stringreceved in aprevious Last - Modi f i ed healer field
whenever possble.

Note: If a dient uses an arbitrary dateinthel f - Modi f i ed- Si nce header instead of a date taken from
theLast - Modi f i ed healer for the same request, the dient should be avare of the fad that thisdate is
interpreted in the server’s understanding of time. The dient should consider unsynchronized clocks and
rounding problems due to the diff erent encodings of time between the dient and server. This includes the
possbility of race onditions if the document has changed between the time it was first requested and the

| f - Modi fi ed- Si nce date of a subsequent request, and the passhility of clock-skew-related problemsif
thel f - Modi fi ed- Si nce dateisderived from the dient’s clock without corredion to the server’s clock.
Corredions for diff erent time bases between client and server are & best approximate due to network
latency.

Theresult of arequest havingbothan | f - Modi fi ed- Si nce header field and either anl f - Mat ch oran|| f -
Unnodi fi ed- Si nce healer fieldsis undefined by this gedfication.

14.26 1f-None-M atch

Thel f - None- Mat ch request-header field is used with a method to make it conditional. A client that has one or
more antities previoudy obtained from the resource can verify that none of those entitiesis current by includingalist
of their associated entity tagsinthel f - None- Mat ch healer field. The purpose of thisfeaure isto all ow efficient
updates of caded information with a minimum amount of transadion overheal. It is also used to prevent a method
(e.g. PUT) from inadvertently modifying an existing resource when the dient beli eves that the resource does not
exist.

Asaspedal case, the value “* " matches any current entity of the resource

| f-None-Match = "If-None-Match" ":" ("*" | 1#entity-tag)
If any of the entity tags match the entity tag of the entity that would have been returned in the response to a similar
GET request (without the | f - None- Mat ch healer) on that resource, or if “*” is given and any current entity exists
for that resource, then the server MUST NOT perform the requested method, unlessrequired to doso because the

Fielding, et a Standards Tradk [Page 81]

RFC 2616 HTTP/1.1 June, 1999

resource s modificaion date fail s to match that suppliedinan | f - Modi f i ed- Si nce header field in the request.
Instead, if the request method was GET or HEAD, the server SHOULD respond with a 304 (Not Modified)
response, including the cade-related header fields (particularly ETag) of one of the entiti es that matched. For all
other request methods, the server MUST respond with a status of 412 (Precondition Fail ed).

Seesedion 13.3.3 for rules on how to determine if two entiti es tags match. The wegk comparison function can only
be used with GET or HEAD requests.

If none of the entity tags match, then the server MAY perform the requested method asif the | f - None- Mat ch
header field did not exist, but MUST alsoignore any | f - Modi fi ed- Si nce healer field(s) in the request. That is,
if no entity tags match, then the server MUST NOT return a 304 (Not Modified) response.

If the request would, without the | f - None- Mat ch header field, result in anything other than a 2xx or 304 status,
thenthel f - None- Mat ch header MUST beignored. (Seesedion 13.3.4 for a discusgon of server behavior when
both| f - Mbdi fi ed- Si nce and | f - None- Mat ch appea in the same request.)

Themeaning of “I f - None- Mat ch: *” isthat the method MUST NOT be performed if the representation seleced
by the origin server (or by a cate, posshly usingthe Var y mechanism, seesedion 14.44) exists, and SHOULD be
performed if the representation does not exist. Thisfeaure isintended to be useful in preventing races between PUT
operations.
Examples:
| f-None- Match: "xyzzy"

| f-None-Match: W"xyzzy"

| f-None-Match: "xyzzy", "r2d2xxxx", "c3piozzzz"

| f-None-Match: W"xyzzy", W"r2d2xxxx", W"c3piozzzz"

| f - None- Match: *
Theresult of arequest havingboth an | f - None- Mat ch header field and either an| f - Mat ch oran| f -
Unnodi fi ed- Si nce healer fieldsis undefined by this gedfication.

14.27 1f-Range

If a dient has apartial copy of an entity inits cate, and wishesto have an up-to-date mpy of the entire entity inits
cade, it could use the Range request-healer with a mnditional GET (using either or both of | f - Unmodi fi ed-
Si nce and | f - Mat ch.) However, if the condition fail s because the antity has been modified, the dient would then
have to make aseond request to oltain the entire aurrent entity-body.

Thel f - Range healer alows a dient to “short-circuit” the second request. Informally, its meaningis ‘if the entity
is unchanged, send me the part(s) that | am missng; otherwise, send me the entire new entity.’

| f-Range = "If-Range" ":" (entity-tag | HTTP-date)
If the dient has no entity tag for an entity, but does have aLast - Modi fi ed date, it MAY usethat dateinanl f -
Range healer. (The server can distinguish between avalid HTTP- dat e and any formof ent i t y-t ag by
examining o more than two characers.) Thel f - Range healer SHOULD only be used together with aRange
header, and MUST beignored if the request does not include aRange header, or if the server does not suppart the
sub-range operation.

If the atity tag gveninthel f - Range header matches the arrent entity tag for the entity, then the server
SHOULD provide the spedfied sub-range of the entity usinga 206 (Partial content) response. If the entity tag does
not match, then the server SHOULD return the entire entity usinga 200 (OK) response.

14.28 |f-Unmodified-Since

Thel f - Unnodi fi ed- Si nce request-header field is used with a method to make it conditional. If the requested
resource has not been modified sincethe time spedfied in thisfield, the server SHOULD perform the requested
operation asif thel f - Unnodi f i ed- Si nce header were not present.

Fielding, et a Standards Tradk [Page 82]

RFC 2616 HTTP/1.1 June, 1999

If the requested variant has been modified since the spedfied time, the server MUST NOT perform the requested
operation, and MUST return a 412 (Preconditi on Fail ed).

| f-Unnodified-Since = "If-Unnodi fied-Since" ":" HITP-date
An example of thefield is:

| f-Unnodi fied-Since: Sat, 29 CQct 1994 19:43:31 GVI

If the request normally (i.e., without the | f - Unnodi f i ed- Si nce header) would result in anything other than a
2xx or 412 status, the | f - Unnodi fi ed- Si nce header SHOULD be ignored.

If the spedfied date isinvalid, the header isignored.

Theresult of arequest havingbothan | f - Unmodi f i ed- Si nce healer field and either an | f - None- Mat ch or
anl f-Modi fi ed- Si nce heaer fieldsisundefined by this spedfication.

14.29 Last-Modified

TheLast - Modi f i ed entity-healer field indicaes the date and time & which the origin server believes the variant
was last modified.

Last-Modified = "Last-Mdified" ":" HITP-date
An example of itsuse is

Last-Mdified: Tue, 15 Nov 1994 12:45:26 GMI
The exad meaning of this header field depends on the implementation of the origin server and the nature of the
original resource For files, it may be just the file system last-modified time. For entiti es with dynamicadly included
parts, it may be the most recant of the set of last-modify times for its component parts. For database gateways, it may
be the last-update time stamp of the record. For virtual objeds, it may be the last time the internal state changed.

Anorigin server MUST NOT send aLast - Modi f i ed date which islater than the server’s time of message
origination. In such cases, where the resource s last modification would indicate some time in the future, the server
MUST replacethat date with the message origination date.

An origin server SHOULD obtainthe Last - Modi f i ed value of the entity as close & pasdbleto the time that it
generates the Dat e value of its response. This allows aredpient to make an acarate ssessnent of the aitity’s
modification time, espedally if the entity changes nea the time that the response is generated.

HTTP/1.1 servers SHOULD send Last - Modi f i ed whenever feasible.

14.30 L ocation

TheLocat i on response-header field is used to redired the redpient to alocation other than the Request - URI

for completion of the request or identification of a new resource For 201 (Creaed) responses, the Locat i on isthat
of the new resource which was creaed by the request. For 3xx responses, the location SHOULD indicae the server’s
preferred URI for automatic rediredion to the resource The field value @mnsists of asinge asolute URI.

Locati on = "Location" ":" absol uteURI
An exampleis:

Location: http://ww.w3. org/ pub/ WAV Peopl e. ht m
Note: The Cont ent - Locat i on heaer field (sedion 14.14) differsfrom Locat i on in that the
Cont ent - Locat i on identifiesthe original locaion of the entity enclosed in the request. It istherefore
possble for aresponse to contain header fieldsfor both Locat i on and Cont ent - Locat i on. Also see
sedion 13.10 for cade requirements of some methods.

14.31 Max-Forwards

The Max- For war ds request-header field provides a mechanism with the TRACE (sedion 9.8) and OPTIONS
(sedion 9.2) methods to limit the number of proxies or gateways that can forward the request to the next inbound

Fielding, et a Standards Tradk [Page 83

RFC 2616 HTTP/1.1 June, 1999

server. This can be useful when the dient is attempting to trace arequest chain which appeasto be failing or looping
in mid-chain.
Max- For war ds = "Max-Forwards" ":" 1*DIGT

The Max- For war ds valueisadedmal integer indicaing the remaining number of times this request message may
be forwarded.

Each proxy or gateway redpient of a TRACE or OPTIONS request containing a Max- For war ds header field
MUST ched and update its value prior to forwarding the request. If the recaved valueis zero (0), the redpient
MUST NOT forward the request; instead, it MUST respond as the final redpient. If the recaéved Max- For war ds
value is greaer than zero, then the forwarded message MUST contain an updated Max- For war ds field with a
value deaemented by one (1).

The Max- For war ds header field MAY be ignored for all other methods defined by this gpedficaion and for any
extension methods for which it is not explicitly referred to as part of that method definition.

14.32 Pragma

The Pragma general-header field is used to include implementation-spedfic diredives that might apply to any
redpient along the request/response chain. All pragma diredives gedfy optional behavior from the viewpoint of the
protocol; however, some systems MAY require that behavior be consistent with the diredives.

Pragma = "Pragma" ":" l1#pragme-directive
pragma-directive = "no-cache" | extension-pragnma
extension-pragma = token ["=" (token | quoted-string)]

When the no- cache dirediveis present in arequest message, an applicaion SHOULD forward the request toward
the origin server even if it has a cated copy of what is being requested. This pragma diredive has the same
semantics asthe no- cache cade-diredive (seesedion 14.9) and is defined here for badkward compatibility with
HTTP/1.0. Clients SHOULD include bath header fields when ano- cache request is nt to a server not known to
be HTTP/1.1 compliant.

Pragma diredives MUST be passed throughby a proxy or gateway application, regardlessof their significanceto
that applicdion, sincethe diredives might be gplicable to al redpients along the request/response chain. It is not
possble to spedfy a pragmafor a spedfic redpient; however, any pragma diredive not relevant to aredpient
SHOULD beignored by that redpient.

HTTP/1.1 cacdhes SHOULD trea “Pr agma: no- cache” asif the dient had sent “Cache- Control : no-
cache”. No new Pr agra dirediveswill be defined in HTTP.

Note: because the meaning of “ Pragma: no-cade” as aresponse header field is not adually spedfied, it
does not provide areliable replacement for “Cacdhe-Control: no-cade” in aresponse.

14.33 Proxy-Authenticate

The Pr oxy- Aut hent i cat e response-header field MUST be included as part of a407 (Proxy Authentication
Required) response. The field value mnsists of a chall enge that indicates the authentication scheme and parameters
applicable to the proxy for thisRequest - URI .

Proxy- Aut henticate = "Proxy-Authenticate" 1#chal | enge
The HTTP accessauthentication processis described in “HT TP Authenticaion: Basic and Digest Access
Authenticaion” [43]. Unlike WAV Aut hent i cat e, the Pr oxy- Aut hent i cat e header field applies only to the
current connedion and SHOULD NOT be passed on to dovnstream clients. However, an intermediate proxy might
need to olktain its own credentials by requesting them from the downstrean client, which in some drcumstances will
appea asif the proxy isforwarding the Pr oxy- Aut hent i cat e header field.

Fielding, et a Standards Tradk [Page 84]

RFC 2616 HTTP/1.1 June, 1999

14.34 Proxy-Authorization

The Pr oxy- Aut hor i zat i on request-healer field al ows the dient to identify itself (or its user) to a proxy which
requires authentication. The Pr oxy- Aut hor i zat i on field value cnsists of credentials containing the
authentication information of the user agent for the proxy and/or redm of the resource being requested.

Pr oxy- Aut hori zati on = "Proxy- Aut hori zati on" credential s
The HTTP accessauthentication processis described in “HT TP Authenticaion: Basic and Digest Access
Authenticaion” [43] . Unlike Aut hor i zat i on, the Pr oxy- Aut hori zat i on header field applies only to the
next outbound proxy that demanded authenticaion usingthe Pr oxy- Aut hent i cat e field. When multiple
proxies are used in a chain, the Pr oxy- Aut hor i zat i on healer field is consumed by the first outbound proxy
that was expedingto recave aedentials. A proxy MAY relay the aedentials from the dient request to the next
proxy if that is the medhanism by which the proxies cooperatively authenticate agiven request.

14.35 Range

14.35.1 Byte Ranges

Since d HTTP entities are represented in HTTP messages as squences of bytes, the amncept of a byterangeis
meaningful for any HTTP entity. (However, not al clients and servers need to suppart byte-range operations.)

Byte range spedficationsin HTTP apply to the sequence of bytesin the etity-body (not necessarily the same athe
message-body).

A byterange operation MAY spedfy asinge range of bytes, or a set of rangeswithin asinge antity.

ranges-speci fier = byte-ranges-specifier

byt e-ranges-specifier = bytes-unit "=" byte-range-set

byt e-range- set 1#(byte-range-spec | suffix-byte-range-spec)

byt e-range- spec first-byte-pos "-" [l ast-byte-pos]

first-byte-pos 1*DIAT

| ast - byt e- pos 1*DIAT
The first-byte-pos value in a byte-range-spec gives the byte-off set of the first byte in arange. The last-byte-pos value
gives the byte-off set of the last byte in the range; that is, the byte positions pedfied are inclusive. Byte off sets gart
at zeo.

If the last-byte-pos value is present, it MUST be greaer than or equal to the first-byte-pos in that byte-range-spec, or
the byte-range-specis g/ntadicdly invalid. The redpient of a byte-range-set that includes one or more syntadicdly
invalid byte-range-specvalues MUST ignore the header field that includes that byte-range-set.

If the last-byte-pos value is absent, or if the valueis greder than or equal to the arrent length of the entity-body,
last-byte-posistaken to be equal to one lessthan the aurrent length of the entity-body in bytes.

By its choice of last-byte-pas, a dient can limit the number of bytes retrieved without knowing the size of the entity.

suffi x-byte-range-spec = "-" suffix-length

suffix-length = 1*DIG T
A suffix-byte-range-specis used to spedfy the suffix of the entity-body, of alength gven by the suffix-length value.
(That is, thisform spedfiesthe last N bytes of an entity-body.) If the entity is dhorter than the spedfied suffix-length,
the etire entity-body is used.

If asyntadicdly valid byte-range-set includes at least one byte-range-specwhose first-byte-posis lessthan the
current length of the entity-body, or at least one suffix-byte-range-specwith a non-zero suffix-length, then the byte-
range-set is stisfiable. Otherwise, the byte-range-set is unsatisfiable. If the byte-range-set is unsatisfiable, the server
SHOULD return a response with a status of 416 (Requested range not satisfiable). Otherwise, the server SHOULD
return a response with a status of 206 (Partial Content) containing the satisfiable ranges of the entity-body.

Examples of byte-ranges-spedfier values (asuming an entity-body of length 10000:
» Thefirst 500 hytes (byte off sets 0-499, inclusive):

Fielding, et a Standards Tradk [Page 85]

RFC 2616 HTTP/1.1 June, 1999

byt es=0- 499

e Thesemnd 500 lytes (byte off sets 500-999, inclusive):
byt es=500- 999

» Thefinal 500 bytes (byte off sets 9500:9999 inclusive):

byt es=-500

e Or
byt es=9500-

» Thefirst and last bytes only (bytes 0 and 9999:
byt es=0-0, -1

e Severd legal but not canonicd spedfications of the seaond 500 lytes (byte off sets 500-999, inclusive):
byt es=500- 600, 601- 999
byt es=500- 700, 601- 999

14.35.2 Range Retrieval Requests

HTTP retrieval requests using conditional or unconditional GET methods MAY request one or more sub-ranges of
the entity, instead of the entire entity, using the Range request header, which appliesto the entity returned as the
result of the request:

Range = "Range" ranges-specifier
A server MAY ignore the Range healer. However, HTTP/1.1 arigin servers and intermediate cades ought to
suppart byte ranges when possble, since Range suppats efficient recovery from partially failed transfers, and
supparts efficient partial retrieval of large antities.

If the server supparts the Range header and the spedfied range or ranges are gpropriate for the entity:

» Thepresenceof aRange header in an urconditional GET modifies what isreturned if the GET is
otherwise succesgul. In other words, the response caries a status code of 206 (Partial Content) instead of
200(OK).

e Thepresenceof aRange header in a mnditional GET (areguest usingone or bath of | f - Mbdi fi ed-

Si nce and | f - None- Mat ch, or oneor bath of | f - Unnodi f i ed- Si nce and | f - Mat ch) modifies
what is returned if the GET is otherwise successul and the cndition istrue. It does not affed the 304 (Not
Modified) response returned if the conditional isfalse.
In some cases, it might be more gpropriateto usethel f - Range healer (seesedion 14.27) in addition to the
Range healer.

If aproxy that supparts ranges recaves a Range request, forwards the request to an inbound server, and receves an
entire entity in reply, it SHOULD only return the requested range to its client. It SHOULD store the entire receved
responseinits cadeif that is consistent with its cache dl ocation palicies.

14.36 Referer

The Ref er er [sic] request-header field all ows the dient to spedfy, for the server’s benefit, the address(URI) of the
resource from which the Request - URI was obtained (the “referrer”, althoughthe header field is misgelled.) The
Ref er er request-header al ows a server to generate lists of badk-linksto resources for interest, logging, optimized
cading, etc. It also all ows ohsolete or mistyped links to be traced for maintenance The Ref er er field MUST
NOT be sent if the Request - URI was obtained from a sourcethat does not have its own URI, such asinput from
the user keyboard.

Ref er er = "Referer"” ":" (absoluteURl | relativeURl)
Example:

Referer: http://ww. w3. or g/ hypert ext/ Dat aSour ces/ Over vi ew. ht m
If thefield valueis ardative URI, it SHOULD be interpreted relative to the Request - URI . The URI MUST NOT
include afragment. Seesedion 15.1.3 for seaurity considerations.

Fielding, et a Standards Tradk [Page 86]

RFC 2616 HTTP/1.1 June, 1999

14.37 Retry-After

TheRet ry- Af t er response-header field can be used with a 503 (Service Unavail able) response to indicate how
long the serviceis expeded to be unavail able to the requesting client. Thisfield MAY also be used with any 3xx
(Rediredion) response to indicae the minimum time the user-agent is asked wait before isaiing the redireced
request. The value of thisfield can be @ther an HTTP-date or an integer number of seconds (in deamal) after the
time of the response.

Retry-After = "Retry-After"” ":" (HITP-date | delta-seconds)
Two examples of itsuse ae

Retry-After: Fri, 31 Dec 1999 23:59:59 GMJI
Retry-After: 120

In the latter example, the delay is 2 minutes.

14.38 Server

The Ser ver response-header field contains information about the software used by the origin server to handle the
request. The field can contain multi ple product tokens (sedion 3.8) and comments identifying the server and any
significant subproducts. The product tokens are listed in order of their significance for identifying the gpli caion.

Server = "Server"
Example:

Server: CERN 3.0 |ibww 2.17
If the response is being forwarded througha proxy, the proxy application MUST NOT modify the Ser ver
response-healer. Instead, it SHOULD include aVi a field (as described in sedion 14.45).

1*(product | comment)

Note: Reveding the spedfic software version of the server might all ow the server machine to become more
vulnerable to attadks against software that is known to contain seaurity holes. Server implementors are
encouraged to make this field a anfigurable option.

1439 TE

The TE request-healer field indicates what extension transfer-codings it iswilli ngto accept in the response and
whether or not it iswilli ngto accept trailer fieldsin a chunked transfer-coding. Its value may consist of the keyword
“trai |l er s” and/or a omma-separated list of extension transfer-coding remes with optional accept parameters (as
described in sedion 3.6).

TE ="TE" ":" #(t-codings)

t - codi ngs = "trailers" | (transfer-extension [accept-parans |)
The presence of the keyword “t r ai | er s” indicates that the dient iswilli ngto accept trail er fieldsin a chunked
transfer-coding, as defined in sedion 3.6.1. This keyword is reserved for use with transfer-coding values even though
it does not itself represent a transfer-coding.

Examples of itsuse ae:

TE: deflate
TE:
TE: trailers, deflate;q=0.5

The TE header field only applies to the immediate cnnedion. Therefore, the keyword MUST be supplied within a
Connect i on healer field (sedion 14.10) whenever TE is present in an HTTP/1.1 message.

A server tests whether atransfer-coding is acceptable, acordingto a TE field, using these rules:

1. The“chunked” transfer-codingisaways acceptable. If the keyword “t r ai | er s” islisted, the dient
indicaes that it iswilli ngto accept trail er fieldsin the chunked response on behalf of itself and any
downstream clients. Theimplication isthat, if given, the dient is gating that either all downstrean clients
are willi ngto accept trail er fields in the forwarded response, or that it will attempt to buffer the response on
behalf of downstream redpients.

Fielding, et a Standards Tradk [Page 87]

RFC 2616 HTTP/1.1 June, 1999

Note: HTTP/1.1 dees not define any meansto limit the size of a chunked response such that a dient can be
asaured of buffering the entire response.

2. If thetransfer-coding being tested is one of the transfer-codings listed in the TE field, then it is acceptable
unlessit isacompanied by aqgvaue of 0. (Asdefined in sedion 3.9, agvalue of 0 means “not accetable.”)

3. If multiple transfer-codings are accetable, then the accetable transfer-coding with the highest non-zero
gvalueispreferred. The “chunked” transfer-coding always has a qvalue of 1.

If the TE field-value is empty or if no TE field is present, the only transfer-coding is“chunked”. A message with
no transfer-coding is always acceptable.

14.40 Trailer

TheTr ai | er general field value indicates that the given set of header fieldsis present in the trail er of amessage
encoded with chunked transfer-coding.

Trailer = "Trailer" ":" 1#fiel d-nane
An HTTP/1.1 message SHOULD include aTr ai | er healer field in amessage using chunked transfer-coding with
anon-empty trailer. Doing so al ows the redpient to know which header fieldsto exped in the trail er.

If no Tr ai | er header field is present, the trailer SHOULD NOT include any header fields. Seesedion 3.6.1 for
restrictions on the use of trailer fieldsina“chunked” transfer-coding.

Message header fieldslisted inthe Tr ai | er header field MUST NOT include the foll owing header fields:
e« Transfer-Encoding
« Content-Length

e Trailer

14.41 Transfer-Encoding

The Tr ansf er - Encodi ng general-healer field indicates what (if any) type of transformation has been applied to
the message body in order to safely transfer it between the sender and the redpient. This differs from the content-
codingin that the transfer-coding is a property of the message, not of the entity.

Transf er - Encodi ng = "Transfer-Encoding" ":" 1#transfer-coding
Transfer-codings are defined in sedion 3.6. An exampleis:

Transf er - Encodi ng: chunked
If multi ple encodings have been applied to an entity, the transfer-codings MUST be listed in the order in which they
were goplied. Additional information about the encoding parameters MAY be provided by other entity-header fields
not defined by this gedfication.

Many older HTTP/1.0 applications do not understand the Tr ansf er - Encodi ng header.

14.42 Upgrade

The Upgr ade general-healer all owsthe dient to speafy what additional communicaion protocols it supparts and
would like to use if the server findsit appropriate to switch protocols. The server MUST use the Upgr ade header
field within a 101 (Switching Protocols) response to indicate which protocol (s) are being switched.

Upgr ade = "Upgrade" ":" 1#product
For example,

Upgrade: HITP/ 2.0, SHTTP/ 1.3, IRC/ 6.9, RTA/ x11

Fielding, et a Standards Tradk [Page 88]

RFC 2616 HTTP/1.1 June, 1999

The Upgr ade header field isintended to provide asimple mechanism for transition from HTTP/1.1 to some other,
incompatible protocol. It does © by allowing the dient to advertise its desire to use aother protocol, such as a later
version of HTTP with a higher major version number, even thoughthe airrent request has been made using
HTTP/1.1. This eases the difficult transition between incompatible protocols by allowingthe dient to initiate a
request in the more commonly supparted protocol whil e indicating to the server that it would like to use a“better”
protocol if avail able (where “better” is determined by the server, posshly acording to the nature of the method
and/or resource being requested).

The Upgr ade header field only applies to switching appli cation-layer protocols upon the eisting transport-layer
connedion. Upgr ade cannot be used to insist on a protocol change; its acceptance and use by the server is optional .
The capabiliti es and nature of the gopli caion-layer communication after the protocol changeis entirely dependent
upon the new protocol chosen, althoughthe first adion after changing the protocol MUST be aresponse to theinitial
HTTP request containing the Upgr ade header field.

The Upgr ade header field only applies to the immediate connedion. Therefore, the upgr ade keyword MUST be
supplied within aConnect i on healer field (sedion 14.10) whenever Upgr ade ispresentinan HTTP/1.1
message.

The Upgr ade header field cannot be used to indicae aswitch to a protocol on a different connedion. For that
purpose, it is more gpropriateto use a301, 302 303, or 305rediredion response.

This gedfication only defines the protocol name “HTTP” for use by the family of Hypertext Transfer Protocols, as
defined by the HTTP version rules of sedion 3.1 and future updates to this gpedficaion. Any token can be used asa
protocol name; however, it will only be useful if bath the dient and server associate the name with the same
protocol.

14.43 User-Agent

The User - Agent request-header field contains information about the user agent originating the request. Thisisfor
dtatisticd purpases, the tradng of protocol violations, and automated recognition of user agents for the sake of

tail oring responsesto avoid particular user agent limitations. User agents SHOULD include this field with requests.
The field can contain multi ple product tokens (sedion 3.8) and comments identifying the agent and any subproducts
which form a significant part of the user agent. By convention, the product tokens are listed in order of their
significancefor identifying the gplication.

User - Agent = "User-Agent" ":" 1*(product | coment)
Example:

User - Agent: CERN- Li neMode/ 2. 15 |i bww/ 2. 17b3
14.44 Vary

The Var y field value indicates the set of request-header fields that fully determines, whil e the response is fresh,
whether a cade is permitted to use the response to reply to a subsequent request without revali dation. For
uncadeale or stale responses, the Var y field value alvises the user agent about the aiteriathat were used to seled
the representation. A Var y field value of “*” impliesthat a cade cannot determine from the request headers of a
subsequent request whether this responseisthe gpropriate representation. Seesedion 13.6 for use of the Var y
header field by cades.

Vary = "Vary" ":" ("*" | 1#field-name)
AnHTTP/1.1 server SHOULD include aVar y healer field with any cadeable response that is sibjed to server-
driven negotiation. Doing so allows a cade to properly interpret future requests on that resource and informs the
user agent about the presence of negotiation on that resource A server MAY include aVar y header field with a
non-caceable response that is subjed to server-driven negotiation, sincethis might provide the user agent with
useful information about the dimensions over which the response varies at the time of the response.

A Vary field value consisting of alist of field-names sgnals that the representation seleded for the responseis
based on a seledion agorithm which considers ONLY the li sted request-header field valuesin seleding the most

Fielding, et a Standards Tradk [Page 89

RFC 2616 HTTP/1.1 June, 1999

appropriate representation. A cache MAY asaume that the same seledion will be made for future requests with the
same values for the listed field names, for the duration of time for which the responseis fresh.

The field-names given are not limited to the set of standard request-header fields defined by this gedfication. Field
names are cae-insensiti ve.

A Vary field value of “*” signals that unspedfied parameters not limited to the request-headers (e.g., the network
addressof the dient), play arolein the seledion of the response representation. The “*” value MUST NOT be
generated by a proxy server; it may only be generated by an origin server.

1445 Via

The Vi a general-header field MUST be used by gateways and proxies to indicate the intermediate protocols and
redpients between the user agent and the server on requests, and between the origin server and the dient on
responses. It is analogous to the “Recaved” field of RFC 822[9] and isintended to be used for tradking message
forwards, avoiding request loops, and identifying the protocol capabiliti es of all senders along the request/response
chain.

Via = "Via" ":" 1#(received-protocol received-by [coment])
recei ved-protocol = [protocol-nane "/"] protocol -version

pr ot ocol - nane = token

protocol -version = token

recei ved- by = (host [":" port]) | pseudonym

pseudonym = token

The recaved-protocol indicates the protocol version of the message receved by the server or client along ead
segment of the request/response chain. The receved-protocol version is appended to the Vi a field value when the
message is forwarded so that information about the protocol cgpabiliti es of upstream appli cations remains visible to
all redpients.

The protocol-name isoptional if and only if it would be “HTTP". The receved-by field is normally the host and
optional port number of aredpient server or client that subsequently forwarded the message. However, if the red
host is considered to be sensitive information, it MAY be replaced by a pseudonym. If the port is not given, it MAY
be asumed to be the default port of the receved-protocol.

Multiple Vi a field values represents ead proxy or gateway that has forwarded the message. Each redpient MUST
append its information such that the end result is ordered acarding to the sequence of forwarding applications.

Comments MAY be used in the Vi a healer field to identify the software of the redpient proxy or gateway,
analogousto the User - Agent and Ser ver healer fields. However, all commentsin the Vi a field are optional
and MAY be removed by any redpient prior to forwarding the message.

For example, arequest message @uld be sent from an HTTP/1.0 user agent to an internal proxy code-named “fred”,
which usesHTTP/1.1 to forward the request to a public proxy at nowhere.com, which completes the request by
forwardingit to the origin server at www.ics.uci.edu. The request receved by wwwe.ics.uci.edu would then have the
following Vi a header field:

Via: 1.0 fred, 1.1 nowhere.com (Apache/1.1)
Proxies and gateways used as a portal througha network firewall SHOULD NOT, by default, forward the names and
ports of hosts within the firewall region. Thisinformation SHOULD only be propagated if expli citly enabled. If not
enabled, the recaved-by host of any host behind the firewall SHOULD be replaced by an appropriate pseudonym for
that host.

For organizaions that have strong privacy requirements for hiding internal structures, aproxy MAY combine an
ordered subsequence of Vi a header field entries with identicd receved-protocol valuesinto asingle such entry. For
example,

Via: 1.0 ricky, 1.1 ethel, 1.1 fred, 1.0 lucy
could be mllapsed to

Via: 1.0 ricky, 1.1 mertz, 1.0 lucy

Fielding, et a Standards Tradk [Page 90Q]

RFC 2616 HTTP/1.1 June, 1999

Applications SHOULD NOT combine multiple entries unlessthey are dl under the same organizationa control and
the hosts have dready been replacal by pseudonyms. Applicaions MUST NOT combine entries which have
different receved-protocol values.

14.46 Warning

TheWar ni ng general-healer field is used to carry additional information about the status or transformation of a
message which might not be refleced in the message. Thisinformation istypicaly used to warn about a passhle
ladk of semantic transparency from cading operations or transformations applied to the entity body of the message.

Warning headers are sent with responses using:

VMr ni ng = "War ni ng" 1#war ni ng- val ue
war ni ng- val ue = warn-code SP warn-agent SP warn-t ext
[SP war n- dat e]

3DA T
(host [":" port]) | pseudonym
; the nane or pseudonym of the server adding
; the Warni ng header, for use in debuggi ng
war n- t ext guot ed-string
war n- dat e <"> HITP-date <">

A response MAY carry more than one War ni ng header.

war n- code
war n- agent

Thewar n-t ext SHOULD bein anatural language and charader set that is most likely to be intelli gible to the
human user recaving the response. Thisdedsion MAY be based on any avail able knowledge, such as the location of
the cathe or user, the Accept - Language field in arequest, the Cont ent - Language field in aresponse, etc.
The default languege is English and the default charader set is1SO-8859-1.

If a charader set other than 1SO-88591 is used, it MUST be encoded inthewar n-t ext usingthe method
described in RFC 2047[14].

Warning headers canin general be gplied to any message, however some spedfic war n- codes are spedfic to
cades and can only be gplied to response messages. New War ni ng headers SHOULD be alded after any existing
War ni ng headers. A cache MUST NOT delete any War ni ng header that it receéved with a message. However, if a
cade succesdully validates a cade entry, it SHOULD remove any WAr ni ng headers previously attached to that
entry except as gedfied for spedfic War ni ng codes. It MUST then add any War ni ng headersrecaved in the
validating response. In other words, WAr ni ng healers are those that would be dtached to the most recent relevant
response.

When multi ple War ni ng headers are dtached to aresponse, the user agent ought to inform the user of as many of
them as possble, in the order that they appea in the response. If it is not possble to inform the user of all of the
warnings, the user agent SHOULD foll ow these heurigtics:

* Warningsthat appea ealy in the response take priority over those gppeaing later in the response.

» Warningsin the user’'s preferred charader set take priority over warningsin other charader sets but with
identicd war n- codes and war n- agent s.

Systems that generate multiple War ni ng headers SHOULD order them with this user agent behavior in mind.
Requirements for the behavior of cates with resped to Warnings are stated in sedion 13.1.2.

Thisisalist of the arrently-defined war n- codes, ead with arecommended war n-t ext in Engish, and a
description of its meaning.

110Responseis dae
MUST be included whenever the returned response is gale.

Fielding, et a Standards Tradk [Page 97]]

RFC 2616 HTTP/1.1 June, 1999

111 Revalidation failed
MUST beincluded if a catie returns a stale response becaise an attempt to revalidate the response fail ed, due
to an inability to read the server.

112 Disconneded operation
SHOULD be included if the cate isintentionally disconneded from the rest of the network for aperiod o
time.

113Heuristic expiration
MUST beincluded if the cade heuristicdly chose afreshnesslifetime greaer than 24 hours and the response’s
ageis greder than 24 hours.

199 Miscdlaneous warning
Thewarningtext MAY include abitrary information to be presented to a human user, or logged. A system
recevingthiswarning MUST NOT take any automated adion, besides presenting the warning to the user.

214 Transformation applied
MUST be added by an intermediate cade or proxy if it applies any transformation changing the content-coding
(as pedfied inthe Cont ent - Encodi ng header) or media-type (as gedfied in the Cont ent - Type header)
of the response, or the antity-body of the response, unlessthis War ni ng code drealy appeasin the response.

299 Miscdlaneous persistent warning
Thewarningtext MAY include abitrary information to be presented to a human user, or logged. A system
receving thiswarning MUST NOT take any automated adion.

If an implementation sends a message with one or more War ni ng headers whose versionisHTTP/1.0 or lower,
then the sender MUST include in ead war ni ng- val ue awar n- dat e that matches the date in the response.

If an implementation receves a message with awar ni ng- val ue that includesawar n- dat e, and that war n-
dat e isdifferent from the Dat e value in the response, then that war ni ng- val ue MUST be deleted from the
message before storing, forwarding, or usingit. (This prevents bad consequences of naive cating of Var ni ng
header fields.) If all of thewar ni ng- val uesare deleted for this reason, the War ni ng header MUST be deleted
aswell.

14.47 WWW -Authenticate

The WAV Aut hent i cat e response-header field MUST be included in 401 (Unauthorized) response messages.
Thefield value mnsists of at least one chal | enge that indicaes the authentication scheme(s) and parameters
applicable to the Request - URI .

WAV Aut henticate = "WWV Aut henticate" ":" 1#challenge
The HTTP accessauthentication processis described in “HT TP Authenticaion: Basic and Digest Access
Authenticaion” [43]. User agents are advised to take spedal care in parsing the WV Aut hent i cat e field value
asit might contain more than one challenge, or if more than one WA Aut hent i cat e header field is provided, the
contents of a chall enge itself can contain a cmma-separated li st of authentication parameters.

15 Security Considerations

This ®dion is meant to inform appli caion developers, information providers, and users of the seaurity limitationsin
HTTP/1.1 as described by this document. The discusson does not include definiti ve solutions to the problems
reveded, thoughit does make some suggestions for reducing seaurity risks.

15.1 Personal Information

HTTP clients are often privy to large anounts of personal information (e.g. the user’s name, location, mail address
passwvords, encryption keys, etc.), and SHOULD be very careful to prevent unintentional legkage of thisinformation
viathe HTTP protocol to ather sources. We very strongly recommend that a convenient interfacebe provided for the

Fielding, et a Standards Tradk [Page 92]

RFC 2616 HTTP/1.1 June, 1999

user to control diseemination of such information, and that designers and implementors be particularly careful in this
area History shows that errorsin this areaoften creae serious aurity and/or privacy problems and generate highly
adverse publicity for the implementor’s company.

15.1.1 Abuseof Server LogInformation

A server isin the position to save personal data éout a user’s requests which might identify their reading patterns or
subjeds of interest. Thisinformation is clealy confidential in nature and its handling can be onstrained by law in
certain countries. People usingthe HTTP protocol to provide data ae responsible for ensuring that such material is
not distributed without the permisson of any individuals that are identifiable by the publi shed results.

15.1.2 Transfer of Sensitive Infor mation

Like any generic datatransfer protocol, HT TP cannot regulate the content of the data that is transferred, nor is there
any a priori method d determining the sensitivity of any particular pieceof information within the context of any
given request. Therefore, applications SHOULD supply as much control over thisinformation as possble to the
provider of that information. Four healer fields are worth spedal mention in this context: Ser ver, Vi a, Ref er er
and Fr om

Reveding the spedfic software version of the server might all ow the server machine to beaome more vulnerable to
attacks against software that is known to contain seaurity holes. Implementors SHOULD make the Ser ver header
field a configurable option.

Proxies which serve & a portal througha network firewall SHOULD take spedal precaitions regarding the transfer
of header information that identifies the hosts behind the firewall . In particular, they SHOULD remove, or replace
with sanitized versions, any Vi a fields generated behind the firewall .

The Ref er er header allows realing patternsto be studied and reverse links drawn. Althoughit can be very useful,
its power can be abused if user detail s are not separated from the information contained in the Ref er er . Even when
the personal information has been removed, the Ref er er header might indicae aprivate document’s URI whose
publication would be inappropriate.

Theinformation sent in the Fr omfield might conflict with the user’s privacy interests or their site’s saurity palicy,
and henceit SHOULD NOT be transmitted without the user being able to disable, enable, and modify the mntents of
the field. The user MUST be aleto set the contents of this field within a user preference or appli cation defaults
configuration.

We suggest, thoughdo not require, that a convenient toggle interfacebe provided for the user to enable or disable
the sending of Fr omand Ref er er information.

TheUser - Agent (sedion 14.43) or Ser ver (sedion 14.38) header fields can sometimes be used to determine
that a spedfic dient or server have aparticular seaurity hole which might be exploited. Unfortunately, this sme
information is often used for other valuable purposes for which HTTP currently has no better mechanism.

15.1.3 Encoding Sensitive Information in URI’s

Because the source of alink might be private information or might reved an otherwise private information source, it
is grongy recommended that the user be ale to seled whether or not the Ref er er field is ®nt. For example, a
browser client could have atoggle switch for browsing openly/anonymously, which would respedively
enable/disable the sending of Ref er er and Fr ominformation.

Clients SHOULD NOT include aRef er er healer field in a(non-seaure) HTTP request if the referring page was
transferred with a seaure protocol.

Authors of services which use the HTTP protocol SHOULD NOT use GET based forms for the submisgon of
sensitive data, because thiswill cause this datato be encoded in the Request - URI . Many existing servers, proxies,
and user agents will | og the request URI in some placewhere it might be visible to third parties. Servers can use
POST-based form submisson instead

Fielding, et a Standards Tradk [Page 93]

RFC 2616 HTTP/1.1 June, 1999

15.1.4 Privacy Issues Connected to Accept Headers

Accept request-headers can reved information about the user to all serverswhich are accesed. The Accept -
Language header in particular can reved information the user would consider to be of a private nature, because the
understanding of particular languages is often strongly correlated to the membership of a particular ethnic group.
User agents which offer the option to configure the contents of an Accept - Language header to be sent in every
request are strongly encouraged to let the cnfiguration processinclude amessage which makes the user aware of the
lossof privacy involved.

An approach that limits the lossof privacy would be for a user agent to omit the sending of Accept - Language
headers by default, and to ask the user whether or not to start sending Accept - Language healersto aserver if it
deteds, by looking for any Var y response-healer fields generated by the server, that such sending could improve
the quality of service

Elaborate user-customized accet header fields ent in every request, in particular if these include quality values, can
be used by serversasrelatively reliable and long-lived user identifiers. Such user identifiers would all ow content
providersto doclick-trail tradking, and would all ow collaborating content providers to match crossserver click-trails
or form submissons of individual users. Note that for many users not behind a proxy, the network addressof the host
running the user agent will also serve @ along-lived user identifier. In environments where proxies are used to
enhance privagy, user agents ought to be cnservative in off ering accept header configuration options to end users.
As an extreme privacy measure, proxies could filter the accet headersin relayed requests. General purpose user
agents which provide ahigh degreeof headler configurability SHOULD warn users about the lossof privacy which
can beinvolved.

15.2 Attacks Based On File and Path Names

Implementations of HTTP origin servers SHOULD be caeful to restrict the documents returned by HTTP requests
to be only those that were intended by the server administrators. If an HTTP server trandatesHTTP URIs diredly
into file system cdls, the server MUST take spedal care not to serve fil es that were not intended to be delivered to
HTTP clients. For example, UNIX, Microsoft Windows, and ather operating systems use “..” as a path component to
indicae adiredory level above the aurrent one. On such a system, an HTTP server MUST disall ow any such
construct inthe Request - URI if it would atherwise dlow accessto aresource outside those intended to be
accessbleviathe HTTP server. Similarly, filesintended for reference only internally to the server (such as access
control files, configuration fil es, and script code) MUST be proteded from inappropriate retrieval, sincethey might
contain sensiti ve information. Experience has sown that minor bugsin such HTTP server implementations have

turned into seaurity risks.

15.3 DNS Spoofing

Clientsusing HTTP rely heavily on the Domain Name Service, and are thus generally prone to seaurity attadks based
on the deli berate mis-association of |P addresses and DNS names. Clients need to be caitious in assuming the
continuing validity of an IP number/DNS name asciation.

In particular, HTTP clients SHOULD rely on their name resolver for confirmation of an IP number/DNS name
association, rather than cading the result of previous host name lookups. Many platforms already can cade host
name lookups locdly when appropriate, and they SHOULD be mnfigured to doso. It is proper for these lookups to
be caded, however, only when the TTL (Time To Live) information reported by the name server makes it li kely that
the catied information will remain useful.

If HTTP clients cade the results of host name lookups in order to achieve aperformanceimprovement, they MUST
observe the TTL information reported by DNS.

If HTTP clients do not observe thisrule, they could be spoded when a previously-accessed server’s |P address
changes. As network renumberingis expeded to become increasingly common [24], the posshility of this form of
attack will grow. Observing this requirement thus reduces this potential security vulnerability.

Fielding, et a Standards Tradk [Page 94]

RFC 2616 HTTP/1.1 June, 1999

This requirement also improves the load-balancing behavior of clients for replicated servers using the same DNS
name and reduces the likelihood d a user’s experiencing fail ure in accesgng sites which use that strategy.

15.4 L ocation Headers and Spoofing

If asingle server supparts multi ple organizations that do not trust one another, then it MUST chedk the values of
Locat i on and Cont ent -Locat i on healersin responses that are generated under control of said organizaions
to make sure that they do not attempt to invali date resources over which they have no authority.

15.5 Content-Disposition | ssues

RFC 1806[35], from which the often implemented Cont ent - Di sposi ti on (seesedion 19.5.1) header in HTTP
is derived, has a number of very serious ®aurity considerations. Cont ent - Di sposi ti on isnot part of the HTTP
standard, but sinceit iswidely implemented, we ae documenting its use and risks for implementors. SeeRFC 2183
[49] (which uypdates RFC 1806 for detalil s.

15.6 Authentication Credentials and Idle Clients

Existing HTTP clients and user agents typicdly retain authentication information indefinitely. HTTP/1.1. does not
provide amethod for a server to dired clientsto discard these catied credentials. Thisisasignificant defed that
requires further extensions to HTTP. Circumstances under which credential cacing can interfere with the
applicaion’s faurity model include but are not limited to:

» Clientswhich have been idle for an extended period foll owing which the server might wish to cause the dient to
reprompt the user for credentials.

e Applicaionswhich include asesson termination indicaion (such asa‘logout’ or ‘commit’ button on a page)
after which the server side of the goplication ‘knows' that thereis no further reason for the dient to retain the
credentials.

Thisis currently under separate study. There ae anumber of work-arounds to parts of this problem, and we
encourage the use of password protedion in screen savers, idle time-outs, and ather methods which miti gate the
seaurity problemsinherent in this problem. In particular, user agents which cace aedentials are excouraged to
provide arealily accessble mecdhanism for discarding cadhed credentials under user control.

15.7 Proxiesand Caching

By their very nature, HTTP proxies are men-in-the-middle, and represent an oppatunity for man-in-the-middle
attacks. Compromise of the systems on which the proxies run can result in serious faurity and privacy problems.
Proxies have accesto seaurity-related information, personal information about individual users and organizations,
and proprietary information belonging to users and content providers. A compromised proxy, or a proxy
implemented or configured without regard to seaurity and privacy considerations, might be used in the commisgon
of awide range of potential attadks.

Proxy operators should proted the systems on which proxies run as they would proted any system that contains or
transports snsitive information. In particular, log information gathered at proxies often contains highly sensitive
personal information, and/or information about organizaions. Log information should be caefully guarded, and
appropriate guideli nes for use developed and foll owed. (Sedion 15.1.1).

Cadhing proxies provide alditional potential vulnerabiliti es, sincethe cntents of the cahe represent an attradive
target for malicious exploitation. Because cate contents persist after an HT TP request is complete, an attadk on the
cade can reved information long after a user beli eves that the information has been removed from the network.
Therefore, cadhe mntents $ould be proteded as snsitive information.

Proxy implementors should consider the privacy and seaurity impli cations of their design and coding dedsions, and
of the mnfiguration options they provide to proxy operators (espedally the default configuration).

Fielding, et a Standards Tradk [Page 95]

RFC 2616 HTTP/1.1 June, 1999

Users of aproxy need to be avare that they are no trustworthier than the people who runthe proxy; HTTP itself
cannot solve this problem.

Thejudicious use of cryptography, when appropriate, may sufficeto proted against a broad range of seaurity and
privacy attads. Such cryptography is beyond the scope of the HTTP/1.1 spedfication.

15.7.1 Denial of Service Attackson Proxies

They exist. They are hard to defend against. Research continues. Beware.

16 Acknowledgments

This gedficaion makes heary use of the augmented BNF and generic constructs defined by David H. Crocker for
RFC 822[9]. Similarly, it reuses many of the definiti ons provided by Nathaniel Borenstein and Ned Freed for MIME
[7]. We hope that their inclusion in this edficaion will help reduce past confusion over the relationship between
HTTP and Internet mail message formats.

The HTTP protocol has evolved considerably over the yeas. It has benefited from alarge and adive devel oper
community--the many people who have participated on the www-talk maili ng list--and it is that community which has
been most responsible for the successof HTTP and of the World-Wide Web in general. Marc Andreessen, Robert
Cailli au, Daniel W. Connolly, Bob Denny, John Franks, Jean-Francois Groff, Philli p M. Hall am-Baker, Hakon W.
Lie, Ari Luotonen, Rob McCoadl, Lou Montulli, Dave Raggett, Tony Sanders, and Marc VanHeyningen deserve
spedal recognition for their effortsin defining ealy aspeds of the protocol.

This document has benefited grealy from the comments of all those participatingin the HTTP-WG. In addition to
those dready mentioned, the foll owing individuals have contributed to this gedfication:

Gary Adans Ross Patterson

Harald Tveit Al vestrand Al bert Lunde

Keith Ball John C. Mallery

Bri an Behl endor f Jean-Philippe Martin-Flatin
Paul Burchard Mtra

Mauri zi o Codogno David Mrris

M ke Cow i shaw Gavin Ni col

Roman Czyborra Bill Perry

M chael A. Dol an
David J. Fi ander
Al an Freier

Mar ¢ Hedl und
Greg Herlihy
Koen Hol t man

Al ex Hopnmann

Bob Jer ni gan
Shel Kaphan
Rohit Khare

John Kl ensin
Martijn Koster
Al exei Kosut
David M Kristo
Dani el Lali berte
Ben Laurie

Paul J. Leach
Dani el DuBoi s

Jeffrey Perry
Scott Powers

Onen Rees

Luigi Rizzo

Davi d Robi nson
Mar c Sal oron

Rich Sal z

Allan M Schiffman
Ji m Sei dman

Chuck Shotton

Eric W Sink

Sinmon E. Spero

Ri chard N. Tayl or
Robert S. Thau
Bill (BearHeart) Weinman
Francoi s Yer geau
Mary Ell en Zurko
Josh Cohen

Much of the mntent and presentation of the cading designis due to suggestions and comments from individuals
including: Shel Kaphan, Paul Lead, Koen Holtman, David Morris, and Larry Masinter.

Most of the spedfication of rangesis based on work originally done by Ari Luotonen and John Franks, with
additi onal input from Steve Zill es.

Fielding, et a Standards Tradk [Page 96]

RFC 2616 HTTP/1.1 June, 1999

Thanks to the “cave men” of Palo Alto. You know who you are.

Jim Gettys (the aurrent editor of this document) wishes particularly to thank Roy Fielding, the previous editor of this
document, along with John Klensin, Jeff Mogul, Paul Lead, Dave Kristol, Koen Holtman, John Franks, Josh Cohen,
Alex Hopmann, Scott Lawrence, and Larry Masinter for their help. And thanks go perticularly to Jeff Mogul and
Scott Lawrencefor performing the “MUST/MAY/SHOULD” audit.

The Apade Group, Anselm Baird-Smith, author of Jigsaw, and Henrik Frystyk implemented RFC 2068ealy, and
we wish to thank them for the discovery of many of the problems that this document attempts to redify.

17 References

[1] Alvestrand, H., “Tagsfor the Identificaion of Langueges’ RFC 1766 March 1995

[2] Anklesaria, F., McCahill, M., Lindner, P., Johnson, D., Torrey, D., and B. Alberti. “The Internet Gopher
Protocol (adistributed document search and retrieval protocol)”, RFC 1436 March 1993

[3] Berners-Lee T., “Universal Resource ldentifiersin WWW,” RFC 1630 June 1994

[4] Berners-Lee T., Masinter, L., and M. McCahill . “Uniform Resource Locaors (URL),” RFC 1738 Decanber
1994

[5] Berners-Lee T. and D. Connolly. “Hypertext Markup Language - 2.0,” RFC 1866 November 1995

[6] Berners-Lee T., Fielding, R. and H. Frystyk. “Hypertext Transfer Protocol -- HTTP/1.0,” RFC 1945 May
1996

[7] Freed, N., and N. Borenstein. “Multi purpose Internet Mail Extensions (MIME) Part One: Format of Internet
Messge Bodies.” RFC 2045 November 1996

[8] Braden, R., “Requirementsfor Internet Hosts -- Communicaion Layers,” STD 3, RFC 1123 October 1989
[9] D.H. Crocker, “Standard for The Format of ARPA Internet Text Messages,” STD 11, RFC 822, August 1982

[10] Davis, F., Kahle, B., Morris, H., Salem, J., Shen, T., Wang, R., Sui, J., and M. Grinbaum, “WAIS Interface
Protocol Prototype Functional Spedfication.” (v1.5), Thinking Machines Corporation, April 199Q

[11] Fielding, R., “Relative Uniform Resource Locaors,” RFC 1808 June 1995
[12] Horton, M., and R. Adams. “ Standard for Interchange of USENET Messages,” RFC 1036 Decenber 1987.

[13] Kantor, B. and P. Lapsley. “Network News Transfer Protocol,” RFC 977, February 1986

[14] Moore, K., "MIME (Multi purpose Internet Mail Extensions) Part Three Message Header Extensions for Non-
ASCII Text", RFC 2047, November 1996

[15] Nebel, E., and L. Masinter. “Form-based File Upload in HTML,” RFC 1867, November 1995
[16] Postel, J., “ Simple Mail Transfer Protocol,” STD 10, RFC 821, August 1982

[17] Postel, J., “Media Type Registration Procedure,” RFC 1590 November 1996

[18] Postel, J. and J. Reynolds. “File Transfer Protocol,” STD 9, RFC 959, October 1985

[19] Reynolds, J. and J. Postel. “Assgned Numbers,” STD 2, RFC 170Q October 1994

Fielding, et a Standards Tradk [Page 97]

RFC 2616 HTTP/1.1 June, 1999

[20] Sollins, K. and L. Masinter. “Functional Requirements for Uniform Resource Names,” RFC 1737, Decamber
1994

[21] US-ASCII. Coded Charader Set - 7-Bit American Standard Code for Information Interchange. Standard ANSI
X3.4-1986 ANSI, 1986

[22] 1SO-8859 International Standard -- Information Processng --
8-bit Singe-Byte Coded Graphic Charader Sets --
Part 1: Latin alphabet No. 1, 1SO-88591:1987.
Part 2: Latin alphabet No. 2, 1SO-88592, 1987.
Part 3: Latin alphabet No. 3, 1SO-88593, 1988
Part 4: Latin alphabet No. 4, 1SO-88594, 1988
Part 5: Latin/Cyrilli ¢ dphabet, |SO-88595, 1988
Part 6: Latin/Arabic dphabet, |SO-88596, 1987.
Part 7: Latin/Greek al phabet, | SO-88597, 1987.
Part 8: Latin/Hebrew alphabet, 1SO-88598, 1988
Part 9: Latin alphabet No. 5, 1SO-88599, 1990

[23] Meyers, J., and M. Rose. “ The Content-MD5 Header Field,” RFC 1864 October 1995

[24] Carpenter, B. and Y. Rekhter. “Renumbering Neads Work,” RFC 190Q February 1996

[25] Deutsch, P., “GZIP file format spedfication version 4.3,.” RFC 1952 May 1996

[26] Venkata N. Padmanabhan, and Jeffrey C. Mogul. “Improving HTTP Latency”, Computer Networks and ISDN
Systems, v. 28, pp. 25-35, Dec 1995 Slightly revised version of paper in Proc. 2nd International WWW
Conference'94: Mosaic and the Web, Oct. 1994 which isavail able &
http://mwww.ncsa.uiuc.eduw/SDG/I T94/Proceealings/DDay/mogul/HT TPLatency.html.

[27] Joe Touch, John Heidemann, and Katia ObracZka. “Analysis of HTTP Rerformance”, <URL:
http://www.isi.edu/touch/pubs/http-perf96/>, ISl Research Report ISI/RR-98-463, (original report dated Aug.
1996), USC/Information Sciences Ingtitute, August 1998

[28] Mill s, D., “Network Time Protocol (Version 3) Spedfication, Implementation and Analysis.” RFC 1305 March
1992

[29] Deutsch, P., “DEFLATE Compressed Data Format Spedficaion version 1.3.” RFC 1951, May 1996
[30] S. Spero, “Analysis of HTTP Rerformance Problems,” http://sunsite.unc.edu/mdma-rel ease/http-prob.html.
[31] Deutsch, P. and J. Gailly. “ZL1B Compressed Data Format Spedficaion version 3.3,” RFC 1950 May 1996

[32] Franks, J., Hallam-Baker, P., Hostetler, J., Lead, P., Luotonen, A., Sink, E., and L. Stewart. “An Extension to
HTTP: Digest AccessAuthentication,” RFC 2069 January 1997,

[33] Fidding, R., Gettys, J., Mogul, J., Frystyk, H., and T. Berners-Leg “Hypertext Transfer Protocol -- HTTP/1.1”,
RFC 2068 January 1997.

[34] Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels,” RFC 2119 March 1997,

[35] Troost, R., and Dorner, S., “Communicaing Presentation Information in Internet Messages: The Content-
Disposition Header,” RFC 1806 June 1995

[36] Mogul, J.C., Fielding, R., Gettys, J., and H. Frystyk,., “Use and Interpretation of HTTP Version Numbers’,
RFC 2145 May 1997.

Fielding, et a Standards Tradk [Page 98]

RFC 2616 HTTP/1.1 June, 1999

[37] Palme, J, “Common Internet Message Headers,” RFC 2076 February 1997
[38] Yergeay, F., “UTF-8, atransformation format of Unicode and 1SO-10644" RFC 2279 January 1998

[39] Nielsen, H.F., Gettys, J., Baird-Smith, A., Prud’hommeaux, E., Lie, H., and C. Lill ey. “Network Performance
Effedsof HTTP/1.1, CSSL, and PNG,” Procealdings of ACM SIGCOMM ' 97, Cannes France, September 1997

[40] Freed, N., and N. Borenstein. “Multi purpose Internet Mail Extensions (MIME) Part Two: Media Types.” RFC
2046 November 1996

[41] Alvestrand, H. T., “IETF Policy on Charader Setsand Languages,” RFC 2277, BCP 18, January 1998

[42] Berners-Lee T., Fielding, R., and L. Masinter,“ Uniform Resource |dentifiers (URI): Generic Syntax and
Semantics,” RFC 2396 August 1998

[43] Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S., Lead, P., Luotonen, A., Sink, E., and L. Stewart,
“HTTP Authenticaion: Basic and Digest AccessAuthentication,” RFC 2617, June 1999

[44] Luotonen, A., “Tunreling TCP based protocols throughWeb proxy servers,” Work in Progress

[45] Palme, J., and A. Hopmann, “MIME E-mail Encapsulation of Aggregate Documents, such asHTML
(MHTML),” RFC 211Q March 1997

[46] Bradner, S., “The Internet Standards Process-- Revision 3,” BCP 9, RFC 2026 Harvard University, October
1996

[47] Masinter, L., “Hyper Text CoffeePot Control Protocol (HTCPCP/1.0),” RFC 2324 April 1998

[48] Fread, N., and N. Borenstein, “Multi purpose Internet Mail Extensions (MIME) Part Five: Conformance Criteria
and Examples,” RFC 2049 November 1996

[49] Troogt, R., Dorner, S., and K. Moore, “Communicating Presentation Information in Internet Messages: The
Content-Disposition Header Field,” RFC 2183 August 1997

18 Authors Addresses

Roy T. Fielding

Information and Computer Science
University of California

Irvine, CA 926973425 USA

Fax: +1 (949 8241715
EMail: fielding@ics.uci.edu

James Gettys

World Wide Web Consortium

MIT Laboratory for Computer Science
545Tedhnology Square

Cambridge, MA 02139 USA

EMail: jg@w3.org

Jeffrey C. Mogul

Western Reseach Laboratory
Compag Computer Corporation
250University Avenue

Palo Alto, California, 94305 USA

Fielding, et a Standards Tradk [Page 99

RFC 2616 HTTP/1.1 June, 1999

EMail: mogul @wrl.deccom

Henrik Frystyk Nielsen

World Wide Web Consortium

MIT Laboratory for Computer Science
545Technology Square

Cambridge, MA 02139 USA

EMail: frystyk@w3.org

Larry Masinter

Xerox Corporation
3333Coyote Hill Road
Palo Alto, CA 94034 USA

EMail: masinter@parc.xerox.com

Paul J. Leach

Microsoft Corporation

1 Microsoft Way

Redmond, WA 98052 USA

EMail: paull e@microsoft.com

Tim Berners-Lee

Diredor, World Wide Web Consortium
MIT Laboratory for Computer Science
545Tedhnology Square

Cambridge, MA 02139 USA

Fax: +1 (617) 258 8682
EMail: timbl@w3.org

19 Appendices

19.1 Internet Media Type message/http and application/http

In addition to definingthe HTTP/1.1 protocol, this document serves as the spedfication for the Internet media type
“message/http” and “applicaion/http”. The message/http type can be used to enclose asingle HTTP request or
response message, provided that it obeys the MIME restrictions for al “message” types regarding line length and
encodings. The gplicaion/http type can be used to enclose apipeline of one or more HTTP request or response
messages (not intermixed). The followingisto be registered with IANA [17].

Medi a Type nane: nessage

Medi a subtype nane: http

Requi red paraneters: none

Optional paraneters: versi on, negtype

versi on: The HTTP-Versi on nunber of the encl osed nessage
(e.g., "1.1"). If not present, the version can be
determned fromthe first |Iine of the body.

nsgtype: The nessage type -- "request" or "response". |f not

present, the type can be determined fromthe first
line of the body.
Encodi ng considerations: only "7hit", "8bit", or "binary" are
permtted
Security considerations: none

Fielding, et a Standards Tradk [Page 10Q

RFC 2616 HTTP/1.1 June, 1999

Medi a Type nane: application

Medi a subtype nane: http

Requi red paraneters: none

Optional paraneters: versi on, negtype

versi on: The HTTP-Versi on nunmber of the encl osed nmessages
(e.g., "1.1"). If not present, the version can be
determ ned fromthe first |Iine of the body.

nsgtype: The nessage type -- "request"” or "response". |f not

present, the type can be determined fromthe first
line of the body.

Encodi ng consi derations: HTTP nmessages encl osed by this type
are in "binary" format; use of an appropriate
Content - Transfer-Encoding is required when
transmtted via E-mail

Security considerations: none

19.2 Internet Media Type multipart/byteranges
When an HTTP 206 (Partial Content) response message includes the content of multi ple ranges (aresponse to a

request for multi ple non-overlapping ranges), these ae transmitted as a multi part message-body. The mediatype for

this purposeis cdled “multi part/byteranges’.

The multi part/byteranges media type includes two or more parts, eat with its own Cont ent - Type and
Cont ent - Range fields. The required baundary parameter spedfies the boundary string wsed to separate eab
body-part.

Medi a Type nane: mul tipart

Medi a subtype nane: byt er anges

Requi red paraneters: boundary

Optional paraneters: none

Encodi ng considerations: only "7hit", "8bit", or "binary" are
permtted

Security considerations: none

For example:

HTTP/ 1.1 206 Partial Content

Date: Wed, 15 Nov 1995 06:25:24 GVIT

Last - Modi fied: Wed, 15 Nov 1995 04:58: 08 GMI

Content-type: multipart/byteranges; boundary=TH S _STRI NG_SEPARATES

--TH S_STRI NG_SEPARATES
Content-type: application/ pdf
Cont ent -range: bytes 500-999/ 8000

...the first range...

--TH S_STRI NG_SEPARATES
Content-type: application/ pdf
Content -range: bytes 7000-7999/ 8000

...the second range
--TH S_STRI NG_SEPARATES- -

Notes:
1) Additional CRLFs may precale the first boundary stringin the entity.

2) AlthoughRFC 2046[40] permits the boundary stringto be quoted, some existing implementations
handle aquoted baundary stringincorredly.

Fielding, et a Standards Tradk [Page 107

RFC 2616 HTTP/1.1 June, 1999

3) A number of browsers and servers were mded to an ealy draft of the byteranges pedficaion to use a
media type of multi part/x-byteranges, which isamost, but not quite compatible with the version
documented in HTTP/1.1.

19.3 Tolerant Applications

Althoughthis document spedfies the requirements for the generation of HTTP/1.1 messages, not all appli cations will
be wrred in their implementation. We therefore recommend that operational appli cations be tolerant of deviations
whenever those deviations can be interpreted unambiguously.

Clients SHOULD be tolerant in parsingthe St at us- Li ne and serverstolerant when parsing the Request -
Li ne. In particular, they SHOULD accept any amourt of SP or HT charaders between fields, even thoughonly a
singe SPisrequired.

The line terminator for message-header fields is the sequence CRLF. However, we recommend that applications,
when parsing such healers, recognize asingle LF as aline terminator and ignore the leading CR.

The dharader set of an entity-body SHOULD be labeled as the lowest common denominator of the charader codes
used within that body, with the exception that not labeling the antity is preferred over labeling the entity with the
labels US-ASCII or ISO-88591. Seesedion 3.7.1 and 3.4.1.

Additional rules for requirements on parsing and encoding of dates and ather potential problems with date encodings
include:

» HTTP/1.1 clients and cacdhes SHOULD asaume that an RFC-850date which appeasto be more than 50
yeasinthefutureisin faa in the past (this helps lve the “yea 2000 problem).

e AnHTTP/1.1implementation MAY internally represent a parsed Expi r es date & ealier than the proper
value, but MUST NOT internall y represent a parsed Expi r es date & later than the proper value.

e All expiration-related cdculations MUST be donein GMT. The locd time 2one MUST NOT influencethe
cdculation or comparison of an age or expiration time.

* If an HTTP header incorredly carries a date value with atime zone other than GMT, it MUST be converted
into GMT using the most conservative possble mnversion.

19.4 Differences Between HT TP Entitiesand RFC 2045 Entities

HTTP/1.1 uses many of the anstructs defined for Internet Mail (RFC 822[9]) and the Multi purpose Internet Mail
Extensions (MIME [7]) to all ow entities to be transmitted in an open variety of representations and with extensible
medchanisms. However, RFC 2045discusses mail, and HTTP has a few feaures that are different from those
described in RFC 2045 These differences were caefully chosen to optimize performance over binary connedions,
to alow greaer freedom in the use of new media types, to make date mmparisons easier, and to adknowledge the
pradiceof some ealy HTTP servers and clients.

This appendix describes pedfic aeas where HTTP differs from RFC 2045 Proxies and gatewaysto strict MIME
environments SHOULD be aware of these diff erences and provide the gopropriate mnversions where necessry.
Proxies and gateways from MIME environments to HT TP also need to be avare of the diff erences because some
conversions might be required.

19.4.1 MIME-Version

HTTPisnot aMIME-compliant protocol. However, HTTP/1.1 messages MAY include asingle M ME- Ver si on
general-header field to indicae what version of the MIME protocol was used to construct the message. Use of the
M ME- Ver si on header field indicates that the message isin full compliancewith the MIME protocol (as defined
in RFC 20447]). Proxies/gateways are responsible for ensuring full compli ance (where passble) when exporting
HTTP messagesto strict MIME environments.

M ME- Ver si on = "M ME-Version" ":" 1*DIAT "." 1*DIAT

Fielding, et a Standards Tradk [Page 102

RFC 2616 HTTP/1.1 June, 1999

MIME version “1. 0” isthe default for usein HTTP/1.1. However, HTTP/1.1 message parsing and semantics are
defined by this document and not the MIME spedfication.

19.4.2 Conversion to Canonical Form

RFC 2045[7] requires that an Internet mail entity be mnverted to canonica form prior to being transferred, as
described in sedion 4 of RFC 2049[48]. Sedion 3.7.1 of this document describes the forms all owed for subtypes of
the “text” mediatype when transmitted over HTTP. RFC 2046requires that content with atype of “text” represent
line bre&ks as CRLF and forbids the use of CR or LF outside of line break sequences. HTTP allows CRLF, bare CR,
and bare LF to indicate aline break within text content when a message is transmitted over HTTP.

Whereit ispossble, aproxy or gateway from HTTP to a strict MIME environment SHOULD trandate dl li ne
breds within the text media types described in sedion 3.7.1 of this document to the RFC 2049canonicd form of
CRLF. Note, however, that this might be complicaed by the presenceof a Cont ent - Encodi ng and by the fad
that HTTP all ows the use of some charader sets which do not use octets 13 and 10to represent CRand LF, asisthe
case for some multi-byte charader sets.

Implementors dhould note that conversion will break any cryptographic chedksums applied to the original content
unlessthe original content is alrealy in canonicd form. Therefore, the caonicd form is recommended for any
content that uses such checksumsin HTTP.

19.4.3 Conversion of Date Formats

HTTP/1.1 uses arestricted set of date formats (sedion 3.3.1) to simplify the processof date mmparison. Proxies and
gateways from other protocols SHOULD ensure that any Dat e header field present in a message conformsto one of
the HTTP/1.1 formats and rewrite the date if necessary.

19.4.4 Introduction of Content-Encoding

RFC 2045does not include any concept equivalent to HTTP/1.1's Cont ent - Encodi ng healer field. Sincethis
ads as amodifier on the mediatype, proxies and gateways from HTTP to MIME-compliant protocols MUST either
change the value of the Cont ent - Type header field or decode the entity-body before forwarding the messge.
(Some experimental applicaions of Cont ent - Type for Internet mail have used a media-type parameter of

“; conver si ons=<cont ent - codi ng>" to perform afunction equivalent to Cont ent - Encodi ng. However,
this parameter is not part of RFC 2048)

19.4.5 No Content-Transfer-Encoding

HTTP does not use the Content-Transfer-Encoding (CTE) field of RFC 2045 Proxies and gateways from MIME-
compliant protocolsto HTTP MUST remove any non-identity CTE (“quoted-printable” or “base64”) encoding prior
to delivering the response message to an HTTP client.

Proxies and gateways from HTTP to MIME-compli ant protocols are responsible for ensuring that the messageisin
the corred format and encoding for safe transport on that protocol, where “safe transport” is defined by the
limitations of the protocol being wsed. Such a proxy or gateway SHOULD label the data with an appropriate
Content-Transfer-Encoding if doing so will i mprove the likelihood d safe transport over the destination protocol.

19.4.6 Introduction of Transfer-Encoding

HTTP/1.1 introducesthe Tr ansf er - Encodi ng healer field (sedion 14.41). Proxies/gateways MUST remove
any transfer-coding prior to forwarding a message via aM|M E-compli ant protocol.

A processfor deanding the “chunked” transfer-coding (sedion 3.6) can be represented in pseudo-code &:

length := 0
read chunk-si ze, chunk-extension (if any) and CRLF
whi l e (chunk-size > 0) {

Fielding, et a Standards Tradk [Page 103

RFC 2616 HTTP/1.1 June, 1999

read chunk-data and CRLF

append chunk-data to entity-body
length := length + chunk-size
read chunk-size and CRLF

read entity-header

while (entity-header not enpty) {
append entity-header to existing header fields
read entity-header

}
Content-Length := length
Renove "chunked" from Transfer-Encoding

19.4.7 MHTML and LineLength Limitations

HT TP implementations which share code with MHTML [45] implementations need to be avare of MIME line length
limitations. Since HTTP does not have this limitation, HT TP does not fold long lines. MHTML messages being
transported by HTTP follow all conventions of MHTML, including line length limitations and folding,
canonicdization, etc., since HTTP transports all message-bodes as payload (seesedion 3.7.2) and daes not interpret
the content or any MIME header lines that might be contained therein.

19.5 Additional Features

RFC 1945and RFC 2068document protocol elements used by some existing HT TP implementations, but not
consistently and corredly acossmost HTTP/1.1 appli cations. Implementors are alvised to be avare of these
feaures, but cannot rely upon their presencein, or interoperability with, other HTTP/1.1 appli cations. Some of these
describe proposed experimental feaures, and some describe feaures that experimental deployment found ladking
that are now addressed in the base HTTP/1.1 spedfication.

A number of other headers, such asCont ent - Di spositi onandTi t| e, from SMTP and MIME are dso dften
implemented (seeRFC 2076[37]).

19.5.1 Content-Disposition

The Cont ent - Di sposi ti on response-header field has been proposed as a means for the origin server to suggest
adefault filename if the user requests that the mntent is saved to afile. This usage is derived from the definition of
Cont ent - Di sposi ti oninRFC 1806[35].

content-di sposition = "Content-Di sposition" ":"
di sposition-type *(";" disposition-parm)
di sposition-type = "attachment" | di sp-extension-token

di sposition-parm = fil enane-parm | disp-extension-parm

filenane-parm= "fil ename" "=" quoted-string
di sp- ext ensi on-t oken = t oken
di sp- ext ensi on-parm = token "=" (token | quoted-string)

Anexampleis

Content-Di sposition: attachment; filename="fnane. ext"
Thereceving wer agent SHOULD NOT resped any diredory path information present inthef i | enane- parm
parameter, which is the only parameter believed to apply to HTTP implementations at this time. The filename
SHOULD betreded as aterminal component only.

If this header isused in aresponse with theappl i cat i on/ oct et - st r eamcontent-type, the implied suggestion
isthat the user agent should not display the response, but direaly enter a‘save response a...” dialog.

Seesedion 15.5 for Cont ent - Di sposi ti on seaurity issues.

Fielding, et a Standards Tradk [Page 104

RFC 2616 HTTP/1.1 June, 1999

19.6 Compatibility with PreviousVersions

It is beyond the scope of a protocol spedficaion to mandate mmpliancewith previous versions. HTTP/1.1 was
deliberately designed, however, to make supparting previous versions easy. It isworth noting that, at the time of
compasing this pedficaion (1996, we would exped commercial HTTP/1.1 serversto:

* reagnizethe format of the Request-Line for HTTP/0.9, 1.0, and 1.1 requests;
e understand any valid request in the format of HTTP/0.9, 1.0, or 1.1;

* respond appropriately with a message in the same major version used by the dient.
And we would exped HTTP/1.1 clientsto:

e reagnizethe format of the Status-Line for HTTP/1.0 and 11 responses;

e understand any valid response in the format of HTTP/0.9, 1.0, or 1.1.

For most implementations of HTTP/1.0, ead connedion is established by the dient prior to the request and closed
by the server after sending the response. Some implementations implement the Keep- Al i ve version of persistent
connedions described in sedion 19.7.1 of RFC 2068[33].

19.6.1 Changesfrom HTTP/1.0

This sdion summarizes major differences between versions HTTP/1.0 and HTTP/1.1.

19.6.1.1 Changesto Simplify Multi-homed Web Serversand Conserve | P Addresses

The requirements that clients and servers sippart the Host request-header, report an error if the Host request-
header (sedion 14.23) is missng from an HTTP/1.1 request, and accept absolute URIs (sedion 5.1.2) are anongthe
most important changes defined by this gedfication.

Older HTTP/1.0 clients assumed a one-to-one relationship of |P addresses and servers; there was no other

establi shed medhanism for distingushing the intended server of arequest than the I P addressto which that request
was direded. The changes outli ned above will allow the Internet, once older HTTP clients are no longer common, to
suppart multiple Web sites from asingle | P address grealy simplifying large operational Web servers, where
alocaion of many IP addresses to asingle host has creaed serious problems. The Internet will also be @leto
recover the |P addresses that have been all ocated for the sole purpase of all owing spedal-purpose domain names to
be used inroat-level HTTP URLs. Given the rate of growth of the Web, and the number of servers alrealy deployed,
it is extremely important that all i mplementations of HTTP (including uypdates to existing HTTP/1.0 appli cations)
corredly implement these requirements:

e Bothclientsand servers MUST suppart the Host request-header.
e Adclient that sendsan HTTP/1.1 request MUST send aHost header.

e Servers MUST report a400(Bad Request) error if an HTTP/1.1 request does not include aHost request-
header.

e Servers MUST accept absolute URIs.

19.6.2 Compatibility with HTTP/1.0 Persistent Connections

Some dients and servers might wish to be compatible with some previous implementations of persistent connedions
in HTTP/1.0 clients and servers. Persistent connedionsin HTTP/1.0 are explicitly negotiated as they are not the
default behavior. HTTP/1.0 experimental implementations of persistent connedions are faulty, and the new fadliti es
inHTTP/1.1 are designed to redify these problems. The problem was that some existing 1.0 clients may be sending
Keep- Al i ve to aproxy server that doesn’'t understand Connect i on, which would then erroneously forward it to

Fielding, et a Standards Tradk [Page 105

RFC 2616 HTTP/1.1 June, 1999

the next inbound server, which would establi sh the Keep- Al i ve connedion and result in ahungHTTP/1.0 proxy
waiting for the dose on the response. The result isthat HTTP/1.0 clients must be prevented from using Keep-
Al i ve when talkingto proxies.

However, talkingto proxiesisthe most important use of persistent connedions, so that prohibition is clealy
unaccetable. Therefore, we need some other mechanism for indicating a persistent connedion is desired, which is
safe to use even when talking to an old proxy that ignores Connect i on. Persistent connedions are the default for
HTTP/1.1 messages; we introduce anew keyword (Connect i on: cl ose) for dedaring ron-persistence See
sedion 14.10.

The original HTTP/1.0 form of persistent connedions (the Connecti on: Keep- Al i ve and Keep- Al i ve
header) is documented in RFC 2068 [33]

19.6.3 Changesfrom RFC 2068

This gedficaion has been carefully audited to corred and disambiguate key word usage; RFC 2068had many
problemsin resped to the mnventionslaid out in RFC 2119[34].

Clarified which error code should be used for inbound server failures (e.g. DNS fail ures). (Sedion 10.5.5)
CREATE had aracethat required an Et ag be sent when aresourceisfirst creaed. (Sedion 10.2.2)

Cont ent - Base was deleted from the spedfication: it was not implemented widely, and there is no simple, safe
way to introduceit without arobust extension mechanism. In addition, it isused in asimilar, but not identica fashion
in MHTML [45].

Transfer-coding and message lengths al i nterac in ways that required fixing exadly when chunked encodingis used
(to alow for transfer encoding that may not be self deli miting); it was important to straighten out exadly how
message lengths are computed. (Sedions 3.6, 4.4, 7.2.2, 135.2, 14.13, 14.16)

A content-coding of “i dent i t y” wasintroduced, to solve problems discovered in cacing. (Sedion 3.5)

Quality Values of zero should indicae that “1 don’t want something” to allow clientsto refuse arepresentation.
(Sedion 3.9)

The use and interpretation of HT TP version numbers has been clarified by RFC 2145 Require proxies to upgrade
requests to highest protocol version they suppartt to ded with problems discovered in HTTP/1.0 implementations
(Sedion 3.1).

Charset wildcarding is introduced to avoid explosion of charader set namesin accet headers. (Sedion 14.2)

A case was mised inthe Cache- Cont r ol model of HTTP/1.1; s- maxage was introduced to add this missng
case. (Sedions 134, 14.8, 14.9, 14.9.3)

TheCache- Control : max- age diredive was not properly defined for responses. (Sedion 14.9.3)

There ae situations where aserver (espedally aproxy) does not know the full 1 ength of aresponse but is capable of
serving a byterange request. We therefore need a mechanism to al ow byteranges with a content-range not indicaing
the full length of the message. (Sedion 14.16)

Range request responses would become very verbose if all meta-data were dways returned; by all owing the server to
only send nealed headersin a 206 response, this problem can be avoided. (Sedion 10.2.7, 13.5.3, and 14.27)

Fix problem with ursatisfiable range requests; there ae two cases: syntadic problems, and range doesn't exist in the
document. The 416 status code was nealed to resolve this ambiguity needed to indicate an error for a byte range
request that fall s outside of the atual contents of a document. (Sedion 10.4.17, 14.16)

Rewrite of message transmisgon requirements to make it much harder for implementorsto get it wrong, asthe
conseguences of errors here can have significant impad on the Internet, and to ded with the foll owing problems:

1. Changing“HTTP/1.1 or later” to “HTTP/1.1", in contexts where this was incorredly pladng a requirement
on the behavior of an implementation of a future version of HTTP/1.x

Fielding, et a Standards Tradk [Page 106§

RFC 2616 HTTP/1.1 June, 1999

2. Madeit clea that user-agents sould retry requests, not “clients’ in general.

3. Converted requirements for clients to ignore unexpeded 100(Continue) responses, and for proxiesto
forward 100responses, into a general requirement for 1xx responses.

4. Modified some TCP-spedfic language, to make it clearer that non-TCP transports are possble for HTTP.

5. Requirethat the origin server MUST NOT wait for the request body before it sends arequired 100
(Continue) response.

6. Allow, rather than require, a server to omit 100 (Continue) if it has already seen some of the request body.

7. Allow serversto defend against denial-of-service atacks and broken clients.

Thischange aldsthe Expect header and 417status code. The message transmisson requirements fixes arein
sedions 8.2, 10.4.18, 8.1.2.2, 13.11, and 14.20.

Proxies $ould be @leto add Cont ent - Lengt h when appropriate. (Sedion 13.5.2)
Clean up confusion between 403 and 404responses. (Sedion 10.4.4, 10.4.5, and 10.4.11)

Warnings could be caded incorredly, or not updated appropriately. (Sedion 13.1.2, 13.2.4, 135.2, 135.3, 14.9.3,
and 14.46). Warning also needed to be ageneral healer, as PUT or other methods may have need for it in requests.

Transfer-coding had significant problems, particularly with interadions with chunked encoding. The solution is that
transfer-codings become as full fledged as content-codings. Thisinvolves adding an IANA registry for transfer-
codings (separate from content codings), a new header field (TE) and enablingtrail er headersin the future. Transfer
encodingisamajor performance benefit, so it was worth fixing[39]. TE also solves another, obscure, downward
interoperability problem that could have occurred due to interadions between authentication trail ers, chunked
encodingand HTTP/1.0 clients.(Sedion 3.6, 3.6.1, and 14.39)

The PATCH, LINK, UNLINK methods were defined but not commonly implemented in previous versions of this
spedficaion. SeeRFC 2068[33].

The Al t er nat es, Cont ent - Ver si on, Deri ved- Fr om Li nk, URI , Publ i ¢ and Cont ent - Base header
fields were defined in previous versions of this gedfication, but not commonly implemented. SeeRFC 2068[33)].

Fielding, et a Standards Tradk [Page 107

RFC 2616 HTTP/1.1 June, 1999

20 Full Copyright Statement

Copyright (C) The Internet Society (1999. All Rights Reserved.

This document and translations of it may be mpied and furnished to others, and derivative works that comment on or
otherwise explainit or assst in itsimplementation may be prepared, copied, published and distributed, in whole or in
part, without restriction of any kind, provided that the @ove @pyright notice and this paragraph are included on all
such copies and derivative works. However, this document itself may not be modified in any way, such as by
removing the apyright notice or references to the Internet Society or other Internet organizaions, except as needed
for the purpase of developing Internet standards in which case the procedures for copyrights defined in the Internet
Standards processmust be foll owed, or as required to trandate it into languages other than Engli sh.

The limited permisdons granted above ae perpetual and will not be revoked by the Internet Society or its siccessors
or assgns.

This document and the information contained herein is provided on an “AS 1S’ basisand THE INTERNET
SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTSOR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

20.1 Acknowledgement
Funding for the RFC Editor function is currently provided by the Internet Society.

Fielding, et a Standards Tradk [Page 10§

RFC 2616

21 Index

While some care was taken producing thisindex, there is no guarantee that all occurrences of an index term have

HTTP/1.1

June, 1999

been entered into the index. Bold face italic is used for the definition of aterm.

"literal", 11

#rule, 12

(rulel rule?), 11

*rule, 11

; comment, 12

[rulg], 11

<"> 12

100, 27, 32, 33, 37,62, 77, 78

101, 27, 38, 77, 88

1xx Informational Status Codes, 37

200, 27, 34, 36, 37, 38, 39, 41, 57, 61, 71, 76, 77, 81,
82, 86

201, 27, 36, 38, 83

202, 27, 37, 38

203, 27, 39, 57

204, 22, 23, 27, 36, 37, 39

205, 27, 39

206, 27, 39, 40, 57, 59, 61, 76, 82, 85, 86, 101, 106

2xx, 82

2xx Successful Status Codes, 38

300, 27, 40, 47, 57

301, 27, 36, 40, 57, 89

302, 27, 40, 41, 42, 57, 89

303, 27, 36, 41, 89

304, 22, 23, 27, 41, 48, 54, 56, 59, 60, 71, 80, 81, 82,
86

305, 27, 41, 48, 89

306, 41

307, 27, 41, 42, 57

3xx Redirection Status Codes, 40

400, 23, 25, 27, 28, 42, 80, 105

401, 27, 42, 43, 66, 92

402, 27, 42

403, 27, 42, 107

404, 27, 42, 43, 44, 107

405, 24, 27, 43, 66

406, 27, 43, 47, 63, 64

407,27, 43, 84

408, 27, 43

409, 27, 43

Fielding, et a

Standards Track

4xx Client Error Status Codes, 42
500, 27, 45, 77
501, 18, 24, 27, 36, 45
502, 27, 45
503, 27, 45, 77, 87
504, 27, 45, 71
505, 27, 45
5xx Server Error Status Codes, 45
abs path, 14, 15, 24, 25
absoluteURI, 14, 24, 25, 74, 83, 86
Accept, 18, 26, 46, 49, 62, 63, 64, 65, 94
acceptable-ranges, 66
Accept-Charset, 26, 46, 64
Accept-Encoding, 16, 17, 26, 46, 47, 64, 65
accept-extension, 62
Accept-Language, 20, 26, 46, 47, 65, 91, 94
accept-params, 62, 87
Accept-Ranges, 28, 66
Access Authentication, 46

Basic and Digest. See[43]
Acknowledgements, 96
age, 9
Age, 28, 51, 52, 66
age-value, 66
Allow, 24, 28, 34, 43, 66
ALPHA, 11, 12
Alternates. See RFC 2068
ANSI X3.4-1986, 12, 98
asctime-date, 15
attribute, 17
authority, 14, 24, 25
Authorization, 26, 42, 57, 66, 67, 68, 85
Backus-Naur Form, 11
Basic Authentication. See [43]
BCP 18, 99
BCP9, 99
byte-content-range-spec, 75, 76
byte-range, 85
byte-range-resp-spec, 75, 76
byte-range-set, 85
byte-range-spec, 44, 76, 85
byte-ranges-specifier, 85
bytes, 66
bytes-unit, 21
cachable, 9
cache, 9
Cache

cachability of responses, 57

[Page 109]

RFC 2616 HTTP/1.1

calculating the age of aresponse, 51
combining byte ranges, 59
combining headers, 59
combining negotiated responses, 60
constructing responses, 57
correctness, 48
disambiguating expiration values, 53
disambiguating multiple responses, 53
entity tags used as cache validators, 54
entry validation, 53
errors or incomplete responses, 61
expiration calculation, 52
explicit expiration time, 50
GET and HEAD cannot affect caching, 61
heuristic expiration, 51
history list behavior, 62
invalidation cannot be complete, 61
Last-Modified values used as validators, 54
mechanisms, 49
replacement of cached responses, 62
shared and non-shared, 60
Warnings, 49
weak and strong cache validators, 54
write-through mandatory, 61
Cache-Control, 23, 36, 39, 40, 41, 42, 49, 50, 51, 52,
53, 54, 57, 58, 61, 67, 68, 69, 70, 73, 79, 84
cache-extension, 67
extensions, 72
max-age, 51, 52, 53, 57, 67, 68, 69, 70, 71, 79, 106
max-stale, 49, 67, 70, 71
min-fresh, 67, 70
must-revalidate, 67, 70, 71
no-cache, 48, 53, 67, 68, 69, 70, 71, 84
no-store, 48, 67, 69
no-transform, 67, 72, 73
only-if-cached, 67, 71
private, 57, 67, 68, 69, 72
proxy-revalidate, 57, 67, 71
public, 49, 57, 67, 68, 69, 71
s-maxage, 53, 57, 67, 68, 69, 106
cache-directive, 67, 72, 84
cache-request-directive, 48, 67
Changes from HTTP/1.0. See RFC 1945 and RFC
2068
Host requirement, 105
CHAR, 12
charset, 16, 64
chunk, 18
chunk-data, 18
chunked, 87, 88
Chunked-Body, 18
chunk-extension, 18
chunk-ext-name, 18
chunk-ext-val, 18

Fielding, et a

Standards Track

June, 1999

chunk-size, 18
client, 8
codings, 64
comment, 13, 89, 90
Compatibility
missing charset, 16
multipart/x-byteranges, 102
Compatibility with previous HTTP versions, 105
CONNECT, 24, 25. See [44].
connection, 8
Connection, 23, 30, 31, 58, 72, 73, 87, 89, 105, 106
close, 30, 73, 106
Keep-Alive, 106. See RFC 2068
connection-token, 72, 73
Content Codings
compress, 17
deflate, 17
gzip, 17
identity, 17
content negotiation, 8
Content Negotiation, 46
Content-Base, 106. See RFC 2068
content-cncoding, 73
content-coding, 16, 17, 18, 19, 46, 64, 65, 73, 88, 92,
107
identity, 106
new tokens SHOULD be registered with IANA, 17
gvalues used with, 65
content-disposition, 104
Content-Disposition, 95, 98, 104
Content-Encoding, 16, 17, 28, 29, 58, 73, 75, 92, 103
Content-Language, 20, 28, 73, 74, 91
Content-Length, 22, 23, 28, 32, 34, 35, 39, 44, 59,
61, 74, 76, 88, 104, 107
Content-Location, 28, 39, 41, 58, 60, 61, 74, 83, 95
Content-M D5, 28, 35, 58, 75, 98
Content-Range, 39, 40, 57, 75
content-range-spec, 75
Content-Transfer-Encoding, 17, 75, 103
Content-Type, 16, 18, 28, 29, 34, 37, 38, 39, 40, 43,
58, 73, 76, 77, 92, 101, 103
Content-Version. See RFC 2068
CR, 12, 19, 24, 26, 27, 102, 103
CRLF, 11, 12, 13, 18, 19, 21, 24, 26, 75, 102, 103
ctext, 13
CTL, 12
Date, 23, 39, 41, 51, 53, 55, 57, 60, 62, 69, 77, 79,
83,92, 103
datel, 15
date2, 15
date3, 15
DELETE, 24, 34, 36, 61
delta-seconds, 16, 87
Derived-From. See RFC 2068

[Page 110]

RFC 2616 HTTP/1.1

Differences between MIME and HTTP, 102
canonical form, 103
Content-Encoding, 103
Content-Transfer-Encoding, 103
date formats, 103
MIME-Version, 102
Transfer-Encoding, 103
Digest Authentication, 58. See [43]
Dl A T,11, 12, 13, 15, 20, 84, 102
disp-extension-token, 104
disposition-parm, 104
disposition-type, 104
DNS, 94, 95, 106
HTTP applications MUST obey TTL information,
94
downstream, 10
End-to-end headers, 58
entity, 8
Entity, 28
Entity body, 29
Entity Tags, 20, 54
entity-body, 29
entity-header, 24, 26, 28
Entity-header fields, 28
entity-length, 29, 59
entity-tag, 21, 81, 82
Et ag, 106
ETag, 20, 28, 35, 38, 39, 41, 54, 58, 59, 60, 78, 82
Expect, 26, 32, 33, 37, 45, 78, 107
expectation, 78
expectation-extension, 78
expect-params, 78
Expires, 28, 36, 39, 40, 41, 42, 51, 52, 53, 57, 58, 69,
70,71, 78, 79, 102
explicit expiration time, 9
extension-code, 27
extension-header, 28
extension-pragma, 84
field-content, 22
field-name, 22
field-value, 22
filename-parm, 104
first-byte-pos, 44, 76, 85
first-hand, 9
fresh, 9
freshness lifetime, 9
freshness lifetime, 53
From, 26, 31, 79, 93
gateway, 9
Genera Header Fields, 23
general-header, 23, 24, 26
generic-message, 21
GET, 14, 24, 25, 34, 35, 38,
55, 56, 61, 66, 74, 77, 80,

39, 40, 41, 42, 44, 54,
81, 82, 86, 93

Fielding, et a

Standards Track

June, 1999

HEAD, 22, 23, 24, 34, 35, 38, 40, 41, 42, 43, 45, 61,
66, 74, 77, 82
Headers
end-to-end, 58, 59, 73, 78
hop-by-hop, 10, 58
non-modifiable headers, 58
Henrik Frystyk Nielsen, 100
heuristic expiration time, 9
HEX, 13, 15, 18
Hop-by-hop headers, 58
host, 14, 90, 91
Hogt, 25, 26, 33, 79, 80, 105
HT, 11, 12, 13, 22, 102
http_ URL, 14
HTTP-date, 15, 77, 79, 80, 82, 83, 87, 91
HTTP-message, 21
HTTP-Version, 13, 24, 26
IANA, 16, 17, 19, 20, 63, 100
identity, 17, 64, 65, 73, 106
If-Match, 20, 26, 35, 56, 80, 81, 82, 86
If-Modified-Since, 26, 35, 55, 56, 80, 81, 82, 83, 86
If-None-Match, 20, 26, 35, 56, 60, 80, 81, 82, 83, 86
If-Range, 20, 26, 35, 39, 44, 56, 76, 82, 86
If-Unmodified-Since, 26, 35, 55, 56, 81, 82, 83, 86
If-Unmodified-Since, 83
implied *LWS, 12
inbound, 10
instance-length, 76
1SO-10646, 99
1SO-2022, 16
ISO-3166, 20
1SO-639, 20
SO-8859, 98
1SO-8859-1, 13, 16, 19, 64, 91, 102
James Gettys, 99
Jeffrey C. Mogul, 99
Keep-Alive, 31, 58, 105, 106. See RFC 2068
Language Tags, 20
language-range, 65
language-tag, 20, 65
Larry Masinter, 100
last-byte-pos, 76, 85
last-chunk, 18
Last-Modified, 10, 28, 35, 39, 51, 53, 54, 55, 56, 57,
58, 59, 78, 81, 82, 83
LF, 12, 19, 24, 26, 27, 102, 103
lifetime, 9, 51, 52, 53, 66, 70, 92
Link. See RFC 2068
LINK. See RFC 2068
LOALPHA, 12
Location, 28, 36, 38, 40, 41, 42, 61, 83, 95
LW, 11, 12, 13, 22
Max-Forwards, 26, 34, 37, 83, 84
MAY, 7

[Page 111]

RFC 2616 HTTP/1.1

mediatype, 12, 16, 19, 23, 29, 38, 40, 43, 46, 63, 72,
73,74, 77,100, 101, 102, 103
Media Types, 18
media-range, 62
media-type, 18, 19, 73, 75, 92
message, 8
Message Body, 22
Message Headers, 21
Message Length, 23
Message Transmission Requirements, 31
Message Types, 21
message-body, 21, 22, 24, 26, 29
message-header, 21, 22, 28
Method, 24, 66
Method Definitions, 33
Methods
| dempotent, 34
Safe and Idempotent, 33
MIME, 7, 10, 16, 17, 19, 74, 75, 96, 97, 99, 102,
103, 104
multipart, 19
MIME-Version, 102
month, 15
multipart/byteranges, 19, 23, 39, 45, 76, 101
multipart/x-byteranges, 102
MUST, 7
MUST NOT, 7
N rule, 12
name, 11
non-shared cache, 60, 68, 72
non-transparent proxy. See proxy: non-transparent
OCTET, 12,29
opaque-tag, 21
OPTIONAL, 7
OPTIONS, 24, 25, 34, 83, 84
origin server, 8
other-range-unit, 21
outbound, 10
parameter, 17
PATCH. See RFC 2068
Paul J. Leach, 100
Persistent Connections, 29
Overall Operation, 30
Purpose, 29
Use of Connection Header, 30
Pipelining, 30
port, 14, 90, 91
POST, 20, 21, 24, 32, 34, 35, 36, 38, 40, 41, 44, 61,
77,93
Pragma, 23, 67, 70, 84
no-cache, 48, 53, 67, 84
pragma-directive, 84
primary-tag, 20
product, 20, 89

Fielding, et a

Standards Track

June, 1999

Product tokens, 20

product-version, 20

protocol-name, 90

protocol-version, 90

proxy, 9
non-transparent, 9, 59, 72, 73
transparent, 9, 29, 58

Proxy-Authenticate, 28, 43, 58, 84, 85

Proxy-Authorization, 26, 43, 58, 85

pseudonym, 90, 91

Public. See RFC 2068

public cache, 46, 47

PUT, 24, 32, 34, 36, 43, 61, 66, 77, 80, 82

gdtext, 13

Quality Values, 20

query, 14

quoted-pair, 13

quoted-string, 12, 13, 18, 21, 22, 62, 68, 78, 84, 91,
104

gvalue, 20, 62, 64

Range, 21, 26, 28, 35, 36, 39, 40, 44, 45, 57, 58, 59,
76, 77, 81, 82, 85, 86, 101

Range Units, 21

ranges-specifier, 76, 85, 86

range-unit, 21, 66

Reason-Phrase, 26, 27

received-by, 90

received-protocol, 90, 91

RECOMMENDED, 7

References, 97

Referer, 26, 86, 93

rel_path, 14, 61

relativeURI, 14, 74, 86

representation, 8

request, 8

Request, 24

Request header fields, 26

request-header, 24, 26

Request-Line, 21, 24, 25, 35, 43, 102, 105

Request-URI, 14, 24, 25, 27, 28, 34, 35, 36, 37, 40,
42,43, 44, 60, 61, 66, 73, 74, 83, 84, 86, 92, 93,
94

REQUIRED, 7

Requirements
compliance, 7
key words, 7

resource, 8

response, 8

Response, 26

Response Header Fields, 28

response-header, 26, 28

Retry-After, 28, 44, 45, 87

Revalidation
end-to-end, 70

[Page 112]

RFC 2616 HTTP/1.1

end-to-end reload, 70
end-to-end spedfic revalidation, 70
end-to-end unspedfic revalidation, 70

RFC 1036 15, 97

RFC 1123 15, 77, 79, 97

RFC 1305 98

RFC 1436 97

RFC 159Q 19, 97

RFC 163Q 97

RFC 170Q 97

RFC 1737 98

RFC 1738 14, 97

RFC 1766 20, 97

RFC 1806 95, 98, 104

RFC 1808 14, 97

RFC 1864 75, 98

RFC 1866 97

RFC 1867, 20, 97

RFC 190Q 14, 98

RFC 1945 7, 41, 97, 104

RFC 195Q 17, 98

RFC 1951, 17, 98

RFC 1952 98

RFC 2026 99

RFC 2045 97, 102, 103

RFC 2046 19, 99, 101, 103

RFC 2047 13,91, 97

RFC 2049 99, 103

RFC 2068 1, 14, 29, 31, 32,41, 97, 98, 104, 105,
106
changes from, 106

RFC 2069 98

RFC 2076 99, 104

RFC 211Q 99

RFC 2119 7, 98, 106

RFC 2145 13, 98, 106

RFC 2277, 99

RFC 2279 99

RFC 2324 99

RFC 2396 14, 99

RFC 821, 97

RFC 822 11, 15, 21, 77, 79, 90, 96, 97, 102

RFC 850, 15

RFC 959, 97

RFC 977,97

rfc1123date, 15

RFC-850, 102

rfc850-date, 15

Roy T. Fielding, 99

rulel | rule2, 11

Safe and Idempotent Methods, 33

Seaurity Considerations, 92
abuse of server logs, 93
Accept header, 94

Fielding, et a

Standards Tradk

June, 1999

Accept headers can reved ethnic information, 94
attadks based on path names, 94
Authenticaion Credentials and Idle Clients, 95
be caeful about personal information, 92
Content-Disposition Header, 95
Content-Location header, 95
encoding information in URI's, 93
From header, 93, 94
GET method, 93
Locaion header, 95
Locaion headers and spoding, 95
Proxies and Caching, 95
Referer header, 93
sensitive headers, 93
Server healer, 93
Transfer of Sensitive Information, 93
Viahealer, 93

seleding request-headers, 60

semanticdly transparent, 10

separators, 13

server, 8

Server, 20, 28, 87, 90, 93

SHALL, 7

SHALL NOT, 7

shared cades, 60, 69

SHOULD, 7

SHOULD NOT, 7

SP, 11, 12, 13, 15, 22, 24, 26, 75, 91, 102

stale, 9

dtart-line, 21

Status Code Definitions, 37

Status-Code, 26, 27, 37

Status-Line, 21, 26, 28, 37, 102 105

STD1,1

strong entity tag, 21

strong validators, 55

subtag, 20

subtype, 18

suffix-byte-range-spec, 85

suffix-length, 85

TITCP, 29

t-codings, 87

TE, 18, 26, 58, 87, 88, 107

TEXT, 13

Tim Berners-Lee 100

time, 15

token, 11, 12, 13, 16, 17, 18, 20, 21, 22, 24, 62, 68,
72,78, 84,89 90, 104

Tolerant Applicaions, 102
bad dates, 102
should tolerate whitespacein request and status

lines, 102

tolerate LF and ignore CRin line terminators, 102

[Page 113

RFC 2616 HTTP/1.1

use lowest common denominator of character set,
102
TRACE, 24, 34, 37, 38, 83, 84
trailer, 18
Trailer, 18, 23, 88
trailers, 87
Trailers, 58
Transfer Encoding
chunked, 17
transfer-coding
chunked, 17
deflate, 17
gzip, 17
identity, 17
transfer-coding, 17, 18, 22, 23, 29, 75, 87, 88, 103,
106, 107
chunked, 17, 18, 23, 31, 87, 88, 103, 107
chunked REQUIRED, 23
compress, 17
identity, 23
trailers, 87
Transfer-Encoding, 17, 22, 23, 29, 34, 58, 88, 103,
104
transfer-extension, 17, 87
transfer-length, 29, 59
transparent
proxy, 58
transparent proxy. See proxy: transparent
tunnel, 9
type, 18
UNLINK. See RFC 2068
UPALPHA, 12
Upgrade, 24, 38, 58, 88, 89
upstream, 10
URI. See RFC 2396

Fielding, et a

Standards Track

June, 1999

URI-reference, 14
US-ASCII, 12, 16, 102
user agent, 8
User-Agent, 20, 26, 47, 89, 90, 93
validators, 10, 21, 49, 53, 54, 55, 56, 57, 59
rules on use of, 56
vaue, 17
variant, 8
Vary, 28, 39, 41, 47, 60, 80, 82, 89, 94
Via, 24, 37, 87, 90, 93
warn-agent, 91
warn-code, 59, 91
warn-codes, 49
warn-date, 91, 92
Warning, 24, 48, 49, 50, 53, 57, 59, 70, 91, 92, 107
Warnings
110 Responseis stale, 91
111 Revalidation failed, 92
112 Disconnected operation, 92
113 Heuristic expiration, 92
199 Miscellaneous warning, 92
214 Transformation applied, 92
299 Miscellaneous persistent warning, 92
warning-value, 91, 92
warn-text, 91
weak, 21
weak entity tag, 21
weak validators, 55
weekday, 15
wkday, 15
WWW-Authenticate, 28, 42, 84, 92
X-compress, 65
X-gzip, 65

[Page 114]

