Internet DRAFT - draft-gont-opsawg-firewalls-analysis

draft-gont-opsawg-firewalls-analysis







Operations Area Working Group                                    F. Gont
Internet-Draft                                    SI6 Networks / UTN-FRH
Intended status: Best Current Practice                          F. Baker
Expires: August 7, 2016                                    Cisco Systems
                                                        February 4, 2016


                    On Firewalls in Network Security
                draft-gont-opsawg-firewalls-analysis-02

Abstract

   This document analyzes the role of firewalls in network security, and
   recognizes their role in the internet architecture.  It suggests a
   line of reasoning about their usage, and analyzes common kinds of
   firewalls and the claims made for them.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on August 7, 2016.

Copyright Notice

   Copyright (c) 2016 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.



Gont & Baker             Expires August 7, 2016                 [Page 1]

Internet-Draft                                             February 2016


Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  Terminology . . . . . . . . . . . . . . . . . . . . . . . . .   3
   3.  Reasoning about Firewalls . . . . . . . . . . . . . . . . . .   4
     3.1.  A Simple Model of Communication . . . . . . . . . . . . .   4
     3.2.  The Role of Firewalls in Internet Security  . . . . . . .   5
     3.3.  Firewalls and The End-to-End Principle  . . . . . . . . .   5
   4.  Common kinds of firewalls . . . . . . . . . . . . . . . . . .   6
     4.1.  Perimeter security: Protection from aliens and intruders    7
     4.2.  Pervasive access control  . . . . . . . . . . . . . . . .   8
     4.3.  Intrusion Management: Contract and Reputation filters . .   9
   5.  Firewalling Strategies  . . . . . . . . . . . . . . . . . . .  10
     5.1.  Blocking Traffic Unless It Is Explicitly Allowed (default
           deny) . . . . . . . . . . . . . . . . . . . . . . . . . .  11
     5.2.  Allow Traffic Unless It Is Explicitly Blocked (default
           allow)  . . . . . . . . . . . . . . . . . . . . . . . . .  11
   6.  Assumptions on IP addresses and Transport Protocol Port
       Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . .  12
   7.  State Associated with Filtering Rules . . . . . . . . . . . .  13
   8.  Enforcing Protocol Syntax at the Firewall . . . . . . . . . .  14
   9.  Performing Deep Packet Inspection . . . . . . . . . . . . . .  14
   10. IANA Considerations . . . . . . . . . . . . . . . . . . . . .  15
   11. Security Considerations . . . . . . . . . . . . . . . . . . .  15
   12. Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .  15
   13. References  . . . . . . . . . . . . . . . . . . . . . . . . .  16
     13.1.  Normative References . . . . . . . . . . . . . . . . . .  16
     13.2.  Informative References . . . . . . . . . . . . . . . . .  16
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  18

1.  Introduction

   Prophylactic perimeter security in the form of firewalls, and the
   proper use of them, have been a fractious sub-topic in the area of
   internet security.  Firewalls have been largely seen by many in the
   IETF as a poor approach to security, and often as unnecessary and
   rather "evil" devices that hinder innovation and the deployment of
   new protocols and applications.  Operationally, they are also seen by
   some as attack vectors, with state exhaustion attacks, side-effects
   of the imposition of symmetry requirements and single points of
   failure.  This document analyzes the role of firewalls in network
   security, and recognizes their role in the internet architecture.  It
   suggests a line of reasoning about their usage, and analyzes common
   kinds of firewalls and the claims made for them.

   This document has, among others, the following goals:





Gont & Baker             Expires August 7, 2016                 [Page 2]

Internet-Draft                                             February 2016


   o  Recognize the important role of firewalls in enterprise security
      architecture for providing "prophylactic" security, rather than as
      "evil" ad-hoc functionality/devices (see Section 3.2).

   o  Analyze common kinds of firewalls and claims made for them (see
      Section 4).

   o  Analyze implicit assumptions made by firewalls, identifying where/
      when some of those assumptions may not apply (see e.g.
      Section 6).

   o  Discuss trade-offs in the possible firewalling paradigms (see
      Section 5).

   o  Provide conceptual guidance regarding the use and deployment of .

   o  Identify harmful behavior/policies commonly implemented and
      applied by firewalls, in the hopes of improving the state of
      affairs in that area.

   o  Possibly trigger other work in the area of firewalls, as a result
      of the previous items.

2.  Terminology

   Firewall:
      A device or software that imposes a policy whose effect is "a
      stated type of network traffic may or may not be allowed from A to
      B".  The firewall may reside in the destination itself (a "host
      firewall"), or in any intermediate system (a "network firewall").
      The firewalling functionality may be implemented in a general
      purpose system (e.g.  an ACL in a router), or in a special purpose
      middleware device (e.g., a "firewall product").  The details of
      the policy, the granularity with which a policy can be applied,
      how such policy is configured, or of the firewall's implementation
      are just that - implementation details.

      We also note that a firewall may enforce policies at different
      layers.  Typically, the layer at which a firewall operates will
      impact the type of policies that a firewall will be able to apply:
      for example, a layer-3 firewall may be able to enforce simple
      policies based on layer-3 addresses and some simple layer-4
      parameters such as transport protocol port numbers, while an
      "application firewall" may be able to enforce policies on higher-
      level entities such as application-request types.  We note that
      all such firewall types essentially enforce the same role of
      enforcing a policy of some sort on network traffic, and hence are




Gont & Baker             Expires August 7, 2016                 [Page 3]

Internet-Draft                                             February 2016


      referred to with the generic term "firewall" (or "firewall device"
      in some cases) throughout this document.

   Perimeter:
      The position in which the specific security policy applies.  In
      typical deployed networks, there are usually some easy- to-define
      perimeters.  A network connected with another network has a
      perimeter where the two meet, which is defined by what equipment
      is operated by each network.  It invariably imposes a security
      policy at that boundary, which may be as simple as "all traffic is
      welcome" and as complex as matching arriving and departing traffic
      to ensure specific behaviors, or inspecting traffic according to
      various algorithms.  Firewall functionality is usually implemented
      at or close to such network perimeters.

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

3.  Reasoning about Firewalls

3.1.  A Simple Model of Communication

   Any communication requires at least three components:

   o  a sender, someone or some thing that sends a message,

   o  a receiver, someone or some thing that receives the message, and

   o  a channel, which is a medium by which the message is communicated.

   In the Internet, the IP network is the channel; it may traverse
   something as simple as a directly connected cable or as complex as a
   sequence of ISPs, but it is the means of communication.  In normal
   communications, a sender sends a message via the channel to the
   receiver, who is willing to receive and operate on it.  In contrast,
   attacks are a form of harassment.  A receiver exists, but is
   unwilling to receive the message, has no application to operate on
   it, or is by policy unwilling to.  Attacks on infrastructure occur
   when message volume overwhelms infrastructure or uses infrastructure
   but has no obvious receiver.

   By that line of reasoning, a firewall operating at layer-3 primarily
   protects infrastructure, by preventing traffic that would attack it
   from it.  The best prophylactic might use a procedure for the
   dissemination of Flow Specification Rules [RFC5575] to drop traffic
   sent by an unauthorized or inappropriate sender or which has no host




Gont & Baker             Expires August 7, 2016                 [Page 4]

Internet-Draft                                             February 2016


   or application willing to receive it as close as possible to the
   sender.

   In other words, a firewall is comparable to the human skin, and has
   as its primary purpose the prophylactic defense of a network.  By
   extension, the firewall also protects a set of hosts and
   applications, and the bandwidth that serves them, as part of a
   strategy of defense in depth.  Since there is no one way to prevent
   attacks, a firewall is not itself a security strategy; the analogy to
   the skin would say that a body protected only by the skin has an
   immune system deficiency and cannot be expected to long survive.
   That said, every security solution has a set of vulnerabilities; the
   vulnerabilities of a layered defense is the intersection of the
   vulnerabilities of the various layers (e.g., a successful attack has
   to thread each layer of defense).

3.2.  The Role of Firewalls in Internet Security

   One could compare the role of firewalls in prophylactic perimeter
   security to that of the human skin: the service that the skin
   performs for the rest of the body is to keep common crud out, and as
   a result prevent much damage and infection that could otherwise
   occur.  The body supplies prophylactic perimeter security for itself
   and then presumes that the security perimeter has been breached; real
   defenses against attacks on the body include powerful systems that
   detect changes (anomalies) counterproductive to human health, and
   recognizable attack syndromes such as common or recently-seen
   diseases.  One might well ask, in view of those superior defenses,
   whether there is any value in the skin at all; the value is easily
   stated, however.  It is not in preventing the need for the stronger
   solutions, but in making their expensive invocation less needful and
   more focused.

3.3.  Firewalls and The End-to-End Principle

   One common complaint about firewalls in general is that they violate
   the End-to-End Principle [Saltzer].  The End-to-End Principle is
   often incorrectly stated as requiring that "application specific
   functions ought to reside in the end nodes of a network rather than
   in intermediary nodes, provided they can be implemented 'completely
   and correctly' in the end nodes" or that "there should be no state in
   the network."  What it actually says is heavily nuanced, and is a
   line of reasoning applicable when considering any two communication
   layers.

      [Saltzer] "presents a design principle that helps guide placement
      of functions among the modules of a distributed computer system.
      The principle, called the end-to-end argument, suggests that



Gont & Baker             Expires August 7, 2016                 [Page 5]

Internet-Draft                                             February 2016


      functions placed at low levels of a system may be redundant or of
      little value when compared with the cost of providing them at that
      low level."

   In other words, the End-to-End Argument is not a prohibition against
   lower layer retries of transmissions, which can be important in
   certain LAN technologies, nor of the maintenance of state, nor of
   consistent policies imposed for security reasons.  It is, however, a
   plea for simplicity.  Any behavior of a lower communication layer,
   whether found in the same system as the higher layer (and especially
   application) functionality or in a different one, that from the
   perspective of a higher layer introduces inconsistency, complexity,
   or coupling, extracts a cost.  That cost may be in user satisfaction,
   difficulty of management or fault diagnosis, difficulty of future
   innovation, reduced performance, or something else.  Such costs need
   to be clearly and honestly weighed against the benefits expected, and
   used only if the benefit outweighs the cost.

   From that perspective, introduction of a policy that prevents
   communication under an understood set of circumstances, whether it is
   to prevent access to pornographic sites or to prevent traffic that
   can be characterized as an attack, does not fail the End-to-End
   Argument; there are any number of possible sites on the network that
   are inaccessible at any given time, and the presence of such a policy
   is easily explained and understood.

   What does fail the End-to-End Argument is behavior that is
   intermittent, difficult to explain, or unpredictable.  If a site can
   be reached sometimes and not at other times, or can be reached using
   this host or application but not another, one will wonder why that is
   the case, and may not even know where to look for the issue.

4.  Common kinds of firewalls

   There are at least three common kinds of firewalls:

   o  Context or Zone-based firewalls, that protect systems within a
      perimeter from systems outside it,

   o  Pervasive routing-based measures, which protect intermingled
      systems from each other by enforcing role-based policies, and

   o  Systems that analyze network traffic behavior and trigger on
      events that are unusual, match a signature, or involve an
      untrusted peer.

   Each kind of firewall addresses a different view of the network.  A
   zone-based firewall (Section 4.1) views the network as containing



Gont & Baker             Expires August 7, 2016                 [Page 6]

Internet-Draft                                             February 2016


   zones of trust, and deems applications inside its zone of protection
   to be trustworthy.  A role-based firewall (Section 4.2) identifies
   parties on the basis of membership in groups, and prevents
   unauthorized communication between groups.  A reputation, anomaly, or
   signature-based intrusion management system (Section 4.3) depends on
   active administration, and permits known applications to communicate
   while excluding unknown or known-evil applications.  In each case,
   the host or application is its own final bastion of defense, but
   having a host blocking incoming traffic (so-called "host firewalls")
   does not defend infrastructure.  That is, each type of prophylactic
   has a purpose, and none of them is a complete prophylactic defense.

   Each type of defense, however, can be assisted by enabling an
   application running in a host to inform the network of what it is
   willing to receive.  As noted in Section 4.1, a zone-based firewall,
   generally denies all incoming sessions and permits responses to
   sessions initiated outbound from the zone, but can in some cases be
   configured to also permit specific classes of incoming session
   requests, such as WWW or SMTP to an appropriate server.  A simple way
   to enable a zone-based firewall to prevent attacks on infrastructure
   (traffic to an un-instantiated address or to an application that is
   off) while not impeding traffic that has a willing host and
   application would be for the application to inform the firewall of
   that willingness to receive incoming sessions.  The Port Control
   Protocol [RFC6887], or PCP, is an example of a protocol designed for
   that purpose.

4.1.  Perimeter security: Protection from aliens and intruders

   As discussed in [RFC6092], the most common kind of firewall is used
   at the perimeter of a network.  Perimeter security assumes two
   things: that applications and equipment inside the perimeter are
   under the control of the local administration and are therefore
   probably doing reasonable things, and that applications and equipment
   outside the perimeter are unknown.

   For example, it may enforce simple permission rules, such as that
   external web clients are permitted to access a specific web server or
   that external SMTP MTAs are permitted to access internal SMTP MTAs.
   Apart from those rules, a session may be initiated from inside the
   perimeter, and responses from outside will be allowed through the
   firewall, but sessions may never be initiated from outside.

   In addition, perimeter firewalls often perform some level of
   inspection/analysis, either as application proxies or through deep
   packet inspection, to verify that the protocol claimed to be being
   passed is in fact the protocol being passed.




Gont & Baker             Expires August 7, 2016                 [Page 7]

Internet-Draft                                             February 2016


   In many scenarios the existence and definition of zone-based
   perimeter defenses is arguably a side-effect of the deployment of
   Network Address Translation [RFC2993].  Since e.g. a single address
   is shared among multiple systems, the NAT device needs to translate
   both the IP addresses and the transport protocol ports in order to
   multiplex multiple communication instances from different nodes into
   the same external address.  Thus, the NAT device must keep a state
   table to know how to translate the IP addresses and transport
   protocol ports of incoming packets.  Packets originating from the
   internal network will either match an existing entry in the state
   table, or create a new one.  On the other hand, packets originating
   in the external network will either match an existing entry in the
   state table, or be dropped.  Thus, as a side effect, NATs implicitly
   require that communication be initiated from the internal network,
   and only allow return traffic from the external network.  We note
   that this is a side-effect of multiplexing traffic from multiple
   nodes on a single IP address, rather than a design goal of NAT
   devices or their associated network translation function.

   Some applications make the mistake of coupling application identities
   to network layer addresses, and hence employ such addresses in the
   application protocol.  Thus, Network Address Translation forces the
   translator to interpret packet payloads and change addresses where
   used by applications.

   As a result, if the transport or application headers are not
   understood by the translator, this has the effect of damaging or
   preventing communication.  Detection of such issues can be sold as a
   security feature, although it is really a side-effect of a failure.
   While this can have useful side-effects, such as preventing the
   passage of attack traffic that masquerades as some well-known
   protocol, it also has the nasty side-effect of making innovation
   difficult.  This has slowed the deployment of SCTP [RFC4960], since a
   firewall will often not permit a protocol it does not know even if a
   user behind it opens the session.  When a new protocol or feature is
   defined, the firewall needs to stop applying that rule, and that can
   be difficult to make happen.

4.2.  Pervasive access control

   Another access control model, often called "Role-based", tries to
   control traffic in flight regardless of the perimeter.  Given a rule
   that equipment located in a given routing domain or with a specific
   characteristic (such as "student dorms") should not be able to access
   equipment in another domain or with a specific characteristic (such
   as "academic records"), it might prevent routing from announcing the
   second route in the domain of the first, or it might tag individual
   packets ("I'm from the student dorm") and filter on those tags at



Gont & Baker             Expires August 7, 2016                 [Page 8]

Internet-Draft                                             February 2016


   enforcement points throughout network.  Such rules can be applied to
   individuals as well as equipment; in that case, the host needs to tag
   the traffic, or there must be a reliable correlation between
   equipment and its user.

   One common use of this model is in data centers, in which physical or
   virtual machines from one tenant (which is not necessarily an "owner"
   as much as it is a context in which the system is used) might be co-
   resident with physical or virtual machines from another.  Inter-
   tenant attacks, espionage, and fraud are prevented by enforcing a
   rule that traffic from systems used by any given tenant is only
   delivered to other systems used by the same tenant.  This might, of
   course have nuances; under stated circumstances, identified systems
   or identified users might be able to cross such a boundary.

   The major impediment in deployment is complexity.  The administration
   has the option to assign policies for individuals on the basis of
   their current location (e.g. as the cross-product of people,
   equipment, and topology), meaning that policies can multiply wildly.
   The administrator that applies a complex role-based access policy is
   probably most justly condemned to live in the world he or she has
   created.

4.3.  Intrusion Management: Contract and Reputation filters

   The model proposed in Advanced Security for IPv6 CPE
   [I-D.vyncke-advanced-ipv6-security] could be compared to purchasing
   an anti-virus software package for one's computer.  The proposal is
   to install a set of filters, perhaps automatically updated, that
   identify "bad stuff" and make it inaccessible, while not impeding
   anything else.

   It depends on four basic features:

   o  A frequently-updated signature-based Intrusion Prevention System
      which inspects a pre-defined set of protocols at all layers (from
      layer-3 to layer-7) and uses a vast set of heuristics to detect
      attacks within one or several flows.  Upon detection, the flow is
      terminated and an event is logged for further optional auditing.

   o  A centralized reputation database that scores prefixes for degree
      of trust.  This is unlikely to be on addresses per se, since e.g.
      temporary addresses [RFC4941] change regularly and frequently.

   o  Local correlation of attack-related information, and

   o  Global correlation of attacks seen, in a reputation database.




Gont & Baker             Expires August 7, 2016                 [Page 9]

Internet-Draft                                             February 2016


   The proposal does not mention anomaly-based intrusion detection,
   which could be used to detect zero-day attacks and new applications
   or attacks.  This would be an obvious extension.

   The comparison to anti-virus software is real; anti-virus software
   uses similar algorithms, but on API calls or on data exchanged rather
   than on network traffic, and for identified threats is often
   effective.

   The proposal also has weaknesses:

   o  People do not generally maintain anti-virus packages very well,
      letting contracts expire,

   o  Reputation databases have a bad reputation for distributing
      information which is incorrect, out of date, or compromised by
      attackers,

   o  Anomaly-based analysis identifies changes but is often ineffective
      in determining whether new application or application behaviors
      are pernicious (false positives).  Someone therefore has to
      actively decide - a workload the average homeowner might have
      little patience for, and

   o  Signature-based analysis applies to attacks that have been
      previously identified, and must be updated as new attacks develop.
      As a result, in a world in which new attacks literally arise
      daily, the administrative workload can be intense, and reflexive
      responses like accepting https certificates that are out of date
      or the download and installation of unsigned software on the
      assumption that the site administrator is behind are themselves
      vectors for attack.

   Security has to be maintained to be useful, because attacks are
   maintained.

5.  Firewalling Strategies

   There is a great deal of tension in firewall policies between two
   primary goals of networking: the security goal of "block traffic
   unless it is explicitly allowed" and the networking goal of "trust
   hosts with new protocols".  The two inherently cannot coexist easily
   in a set of policies for a firewall.

   The following subsections discuss the "default deny" and "default
   allow" security paradigms.





Gont & Baker             Expires August 7, 2016                [Page 10]

Internet-Draft                                             February 2016


5.1.  Blocking Traffic Unless It Is Explicitly Allowed (default deny)

   Many networks enforce the so-called "default deny" policy, in which
   traffic is blocked unless it is explicitly allowed.  The rationale
   for such policy is that it is easier to open "holes" in a firewall to
   allow specific protocols, than trying to block all protocols that
   might be employed as an attack vectors; and that a network should
   only support the protocols it has been explicitly meant to support.

   The drawback of this approach is that the security goal of "block
   traffic unless it is explicitly allowed" prevents useful new
   applications.  This problem has been seen repeatedly over the past
   decade: a new and useful application protocol is specified, but it
   cannot get wide adoption because it is blocked by firewalls.  The
   result has been a tendency to try to run new protocols over
   established applications, particularly over HTTP [RFC3205].  The
   result is protocols that do not work as well they might if they were
   designed from scratch.

   Worse, the same goal prevents the deployment of useful transports
   other than TCP, UDP, and ICMP.  A conservative firewall that only
   knows those three transports will block new transports such as SCTP
   [RFC4960]; this in turn causes the Internet to not be able to grow in
   a healthy fashion.  Many firewalls will also block TCP and UDP
   options they don't understand, and this has the same unfortunate
   result.

5.2.  Allow Traffic Unless It Is Explicitly Blocked (default allow)

   Some networks enforce the so-called "default allow" policy, in which
   traffic is allowed unless it is explicitly blocked.  This policy is
   usually enforced at perimeters where a comprehensive security policy
   is not really desirable or possible, but some level of packet
   filtering is considered appropriate.  One common example of such
   policy could be an ISP blocking TCP port 25 (SMTP), but allowing all
   other traffic.

   When a strict security policy is to be enforced (e.g., at an
   organizational network's edge), the "default allow" policy tends to
   be rather inappropriate, since it is usually easier and more
   effective to identify the traffic that must be allowed through the
   firewall (and open the necessary "holes" in the firewall) than to
   identify and block all traffic that may be considered undesirable/
   inappropriate.







Gont & Baker             Expires August 7, 2016                [Page 11]

Internet-Draft                                             February 2016


6.  Assumptions on IP addresses and Transport Protocol Port Numbers

   In a number of scenarios, simple firewall rules have traditionally
   been specified in terms of the associated IP addresses and transport
   protocol port numbers.  In general, this assumes that the associated
   IP addresses are stable, and that there is a "well known" transport
   protocol port number associated with each application.

   In the IPv4 world, IP addresses may be considered rather stable.
   However, IPv6 introduces the concept of "temporary addresses"
   [RFC4941] which, by definition, change over time.  This may prevent
   the enforcement of filtering policies based on specific IPv6
   addresses, or may lead to filtering based on a more coarse
   granularity (e.g. specific address prefixes, as opposed to specific
   IPv6 addresses).  In some scenarios, from the point of view of
   enforcing filtering policies, it might be desirable to disable
   temporary addresses altogether.

      For example, an administrator might prefer that a caching DNS
      server, a secondary DNS server doing zone transfers, or an SMTP
      MTA, always employ the same source IPv6 address, as opposed to the
      temporary addresses that change over time.

   The server-side transport protocol port is generally the so-called
   "well-known port" corresponding to the associated application.  While
   widespread, this practice should probably be considered a kludge/
   short-cut rather than a "design principle" that can be relied upon
   for the general case.  For example, use of DNS SRV records [RFC2782],
   or applications such as "portmapper" [Portmap] [RFC1833] might mean
   that the associated transport protocol port number cannot be assumed
   to be well-known, but rather needs to be dynamically learned.  In
   other cases, applications may employ (by design) ephemeral port
   numbers, and there may be no obvious way to dynamically learn the
   port number being employed.  FTP [RFC0959] and SIP [RFC3261] are
   examples of such applications.

   Finally, as a result of widespread packet filtering, many protocols
   tend to be tunneled employing specific transport-protocol port
   numbers that are known to be more generally allowed by firewalls,
   such as TCP port 80 (HTTP).  This essentially breaks the assumption
   that port numbers actually identify the actual application protocol
   using them.

   Some of the so called "next generation" firewalls make fewer
   assumptions about port numbers, and tend to analyze the application
   data stream in order to infer the application protocol type,
   regardless of the well-known port being used.  While this may prevent
   the circumvention of some security controls, it also implies Deep



Gont & Baker             Expires August 7, 2016                [Page 12]

Internet-Draft                                             February 2016


   Packet Inspection (DPI), and therefore there are a number of
   associated considerations, both in terms of introduced attack vectors
   and other possibilities for evasion of security controls (please see
   Section 9 for further discussion).

7.  State Associated with Filtering Rules

   There are two main paradigms for packet filtering:

   o  Stateless filtering

   o  Stateful filtering

   Stateless filtering implies that the decision on whether to allow or
   block a specific traffic entity is based solely on the contents of
   such entity.  One common example of such paradigm is the enforcement
   of network ingress filtering [RFC2827], in which packets may be
   blocked based on their IP addresses.  Stateless filtering scales
   well, since there are no state requirements on the filtering device
   other than that associated with maintaining the filtering rules to be
   applied to the incoming traffic entities (e.g., packets).

   On the other hand, stateful filtering implies that the decision on
   whether to allow or block a traffic entity is not only based on the
   contents of such entity, but also on the existence (or lack of)
   previous state associated with such entity.  A common example of such
   paradigm is a firewall that "allows outbound connection requests and
   only allows return traffic from the external network" (such as the
   policy implicitly enforced my most NAT devices).  For obvious
   reasons, the firewall needs to maintain state in order to be able to
   enforce such policies; that is, the firewall may need to keep track
   of all on-going communication instances, possibly applying timeouts
   and garbage collection on the associated state table.

   Stateful filtering tends to allow more powerful packet filtering, at
   the expense of increased state.  Thus, stateful filtering may be
   desirable when trying to perform deep packet inspection, but may be
   undesirable when the firewall is meant to block some Denial of
   Service attacks, since the firewall itself may become "the weakest
   link in the chain".  Typically, the higher the firewall operates in
   the network stack, the more state will be required associated.  For
   example, in order for a firewall to enforce a filtering policy based
   on applcation-layer request types, the firewall will need to enforce
   its filtering policy on the application-layer protocol stream, thus
   implying the need to perform layer-3 and layer-4 reassembly, etc.

   When stateful packet filtering is warranted, its associated security
   implications should be considered.  For example, an administrator may



Gont & Baker             Expires August 7, 2016                [Page 13]

Internet-Draft                                             February 2016


   want to enforce traffic filtering to mitigate denial of service
   attacks; however, when enforcement of such filtering implies
   increased state at the firewall, the firewall itself may become the
   easiest target for performing a denial of service attack.

8.  Enforcing Protocol Syntax at the Firewall

   Some firewalls try to enforce the protocol syntax by checking that
   only traffic complying with existing protocol definitions is allowed.
   While this can have useful side-effects, such as preventing the
   aforementioned traffic from triggering pathological behavior at the
   target system, it also has the nasty side-effect of making innovation
   difficult.  For example, one of the issues in the deployment of
   Explicit Congestion Notification [RFC3168] has been that common
   firewalls often inspect reserved/unused bits and require them to be
   set to zero to close covert channels.  Another example is the
   plethora of filtering rules applied to DNS traffic [DNS-FILTERING].
   When a new protocol or feature is defined, the firewall needs to stop
   applying that rule, and that can be difficult to make happen.

   NOTE:
      A somewhat related concept is that of traffic normalization (or
      "scrubbing"), in which the filtering device can "normalize"
      traffic by e.g. clearing bits that are expected to be cleared,
      changing some protocol fields such that they are within "normal"
      ranges, etc. (see e.g. the discussion of "traffic normalization"
      in [OpenBSD-PF]).  While this can have the useful effect of
      blocking DoS attacks to sloppy implementations that do not enforce
      sanity checks on the received packets, it also has the nasty side-
      effect of making innovation difficult, or even breaking deployed
      protocols.  For example, some firewalls are known enforce a
      default packet normalization policy that clears the TCP URG bit,
      as a result of the TCP urgent mechanism being associated with some
      popular DoS attacks.  Widespread deployment of such firewalls has
      essentially rendered the TCP urgent mechanism unusable, leading to
      its eventual formal deprecation in [RFC6093].

      We note that, as per our definition of "firewall" in Section 2,
      "traffic normalization" is not considered a firewall function.

9.  Performing Deep Packet Inspection

   While filtering packets based on the layer-3 protocol header fields
   is rather simple and straight-forward, performing enforcing a
   filtering policy at upper layer protocols can be a challenging task.

   For example, IP fragmentation may make this task quite challenging,
   since even the very layer-4 protocol header could be present in a



Gont & Baker             Expires August 7, 2016                [Page 14]

Internet-Draft                                             February 2016


   non-first fragment.  In a similar vein, IPv6 extension headers may
   represent a challenge for a filtering device, since they can result
   in long IPv6 extension header chains [RFC7112]
   [I-D.gont-v6ops-ipv6-ehs-packet-drops].

   This problem is exacerbated as one tries to filter packets based on
   upper layer protocol contents, since many of such protocols implement
   some form of fragmentation/segmentation and reassembly.  In many
   cases, the reassembly process could possibly lead to different
   results, and this may be exploited by attackers for circumventing
   security controls [Ptacek1998] [RFC6274].

   In general, the upper in the protocol stack that a filtering policy
   is to be enforced, the more complex the task becomes: an attacker has
   more opportunities for obfuscation, ranging from e.g. ambiguities in
   IP and/or TCP reassembly, to e.g. application-layer obfuscation (such
   as HTTP URL obfuscation or JavaScript bytecode obfuscation).  This
   usually implies that, in order to reliably enforce a filtering
   policy, more state is required on the firewall; and the
   considerations in Section 7 should be evaluated.

10.  IANA Considerations

   This memo asks the IANA for no new parameters.  It can before
   publication as an RFC by the RFC Editor.

11.  Security Considerations

   This documents recognizes the role of firewalls in network security,
   and discusses a number of considerations associated with firewalls
   which may be of use when designing or deploying firewalls.  This
   document, by itself, does not introduce any security implications.

12.  Acknowledgements

   The authors would like to thank (in alphabetical order) Fleming
   Andraeson, Mark Andrews, Lee Howard, Joel Jaeggli, Al Morton, Eric
   Vyncke and James Woodyatt, for providing valuable comments on earlier
   versions of this document.

   This document is based on [I-D.ietf-opsawg-firewalls-00] authored by
   Fred Baker, and [I-D.ietf-opsawg-firewalls-01] authored by Paul
   Hoffman.








Gont & Baker             Expires August 7, 2016                [Page 15]

Internet-Draft                                             February 2016


13.  References

13.1.  Normative References

   [RFC1833]  Srinivasan, R., "Binding Protocols for ONC RPC Version 2",
              RFC 1833, DOI 10.17487/RFC1833, August 1995,
              <http://www.rfc-editor.org/info/rfc1833>.

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <http://www.rfc-editor.org/info/rfc2119>.

   [RFC3205]  Moore, K., "On the use of HTTP as a Substrate", BCP 56,
              RFC 3205, DOI 10.17487/RFC3205, February 2002,
              <http://www.rfc-editor.org/info/rfc3205>.

   [RFC4941]  Narten, T., Draves, R., and S. Krishnan, "Privacy
              Extensions for Stateless Address Autoconfiguration in
              IPv6", RFC 4941, DOI 10.17487/RFC4941, September 2007,
              <http://www.rfc-editor.org/info/rfc4941>.

   [RFC6887]  Wing, D., Ed., Cheshire, S., Boucadair, M., Penno, R., and
              P. Selkirk, "Port Control Protocol (PCP)", RFC 6887,
              DOI 10.17487/RFC6887, April 2013,
              <http://www.rfc-editor.org/info/rfc6887>.

   [RFC7112]  Gont, F., Manral, V., and R. Bonica, "Implications of
              Oversized IPv6 Header Chains", RFC 7112,
              DOI 10.17487/RFC7112, January 2014,
              <http://www.rfc-editor.org/info/rfc7112>.

13.2.  Informative References

   [DNS-FILTERING]
              Andrews, M., "On Firewalls in Internet Security (Fwd: New
              Version Notification for draft-gont-opsawg-firewalls-
              analysis-00.txt)", post to the OPSAWG mailing-list,
              Message-Id: <20151012002551.8F7CD3A2FFD8@rock.dv.isc.org>,
              2015, <https://mailarchive.ietf.org/arch/msg/
              opsawg/2YQl6xBz6jtMyIkyAx59U-oPmPQ>.

   [I-D.gont-v6ops-ipv6-ehs-packet-drops]
              Gont, F., Hilliard, N., Doering, G., LIU, S., and W.
              Kumari, "Operational Implications of IPv6 Packets with
              Extension Headers", draft-gont-v6ops-ipv6-ehs-packet-
              drops-02 (work in progress), February 2016.




Gont & Baker             Expires August 7, 2016                [Page 16]

Internet-Draft                                             February 2016


   [I-D.ietf-opsawg-firewalls-00]
              Baker, F., "On Firewalls in Internet Security", draft-
              ietf-opsawg-firewalls-00 (work in progress), June 2012.

   [I-D.ietf-opsawg-firewalls-01]
              Baker, F. and P. Hoffman, "On Firewalls in Internet
              Security", draft-ietf-opsawg-firewalls-01 (work in
              progress), October 2012.

   [I-D.vyncke-advanced-ipv6-security]
              Vyncke, E., Yourtchenko, A., and M. Townsley, "Advanced
              Security for IPv6 CPE", draft-vyncke-advanced-
              ipv6-security-03 (work in progress), October 2011.

   [OpenBSD-PF]
              OpenBSD, , "pf(4) manual page: pf -- packet filter", 2015,
              <http://www.openbsd.org/cgi-bin/man.cgi/OpenBSD-
              current/man4/pf.4&query=pf>.

   [Portmap]  Wikipedia, , "Portmap", 2014,
              <https://en.wikipedia.org/wiki/Portmap>.

   [Ptacek1998]
              Ptacek, T. and T. Newsham, "Insertion, Evasion and Denial
              of Service: Eluding Network Intrusion Detection", 1998,
              <http://www.aciri.org/vern/Ptacek-Newsham-Evasion-98.ps>.

   [RFC0959]  Postel, J. and J. Reynolds, "File Transfer Protocol",
              STD 9, RFC 959, DOI 10.17487/RFC0959, October 1985,
              <http://www.rfc-editor.org/info/rfc959>.

   [RFC2782]  Gulbrandsen, A., Vixie, P., and L. Esibov, "A DNS RR for
              specifying the location of services (DNS SRV)", RFC 2782,
              DOI 10.17487/RFC2782, February 2000,
              <http://www.rfc-editor.org/info/rfc2782>.

   [RFC2827]  Ferguson, P. and D. Senie, "Network Ingress Filtering:
              Defeating Denial of Service Attacks which employ IP Source
              Address Spoofing", BCP 38, RFC 2827, DOI 10.17487/RFC2827,
              May 2000, <http://www.rfc-editor.org/info/rfc2827>.

   [RFC2993]  Hain, T., "Architectural Implications of NAT", RFC 2993,
              DOI 10.17487/RFC2993, November 2000,
              <http://www.rfc-editor.org/info/rfc2993>.







Gont & Baker             Expires August 7, 2016                [Page 17]

Internet-Draft                                             February 2016


   [RFC3168]  Ramakrishnan, K., Floyd, S., and D. Black, "The Addition
              of Explicit Congestion Notification (ECN) to IP",
              RFC 3168, DOI 10.17487/RFC3168, September 2001,
              <http://www.rfc-editor.org/info/rfc3168>.

   [RFC3261]  Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
              A., Peterson, J., Sparks, R., Handley, M., and E.
              Schooler, "SIP: Session Initiation Protocol", RFC 3261,
              DOI 10.17487/RFC3261, June 2002,
              <http://www.rfc-editor.org/info/rfc3261>.

   [RFC4960]  Stewart, R., Ed., "Stream Control Transmission Protocol",
              RFC 4960, DOI 10.17487/RFC4960, September 2007,
              <http://www.rfc-editor.org/info/rfc4960>.

   [RFC5575]  Marques, P., Sheth, N., Raszuk, R., Greene, B., Mauch, J.,
              and D. McPherson, "Dissemination of Flow Specification
              Rules", RFC 5575, DOI 10.17487/RFC5575, August 2009,
              <http://www.rfc-editor.org/info/rfc5575>.

   [RFC6092]  Woodyatt, J., Ed., "Recommended Simple Security
              Capabilities in Customer Premises Equipment (CPE) for
              Providing Residential IPv6 Internet Service", RFC 6092,
              DOI 10.17487/RFC6092, January 2011,
              <http://www.rfc-editor.org/info/rfc6092>.

   [RFC6093]  Gont, F. and A. Yourtchenko, "On the Implementation of the
              TCP Urgent Mechanism", RFC 6093, DOI 10.17487/RFC6093,
              January 2011, <http://www.rfc-editor.org/info/rfc6093>.

   [RFC6274]  Gont, F., "Security Assessment of the Internet Protocol
              Version 4", RFC 6274, DOI 10.17487/RFC6274, July 2011,
              <http://www.rfc-editor.org/info/rfc6274>.

   [Saltzer]  Saltzer, J., Reed, D., and D. Clark, "End-to-end arguments
              in system design", ACM Transactions on Computer Systems
              (TOCS) v.2 n.4, p277-288, Nov 1984.

Authors' Addresses












Gont & Baker             Expires August 7, 2016                [Page 18]

Internet-Draft                                             February 2016


   Fernando Gont
   SI6 Networks / UTN-FRH
   Evaristo Carriego 2644
   Haedo, Provincia de Buenos Aires  1706
   Argentina

   Phone: +54 11 4650 8472
   Email: fgont@si6networks.com
   URI:   http://www.si6networks.com


   Fred Baker
   Cisco Systems
   Santa Barbara, California  93117
   USA

   Email: fred@cisco.com


































Gont & Baker             Expires August 7, 2016                [Page 19]