Internet DRAFT - draft-dharinigert-ccamp-g-698-2-lmp

draft-dharinigert-ccamp-g-698-2-lmp







Internet Engineering Task Force                      D. Hiremagalur, Ed.
Internet-Draft                                           G. Grammel, Ed.
Intended status: Standards Track                                 Juniper
Expires: January 7, 2016                              G. Galimberti, Ed.
                                                             Z. Ali, Ed.
                                                                   Cisco
                                                           R. Kunze, Ed.
                                                        Deutsche Telekom
                                                          D. Beller, Ed.
                                                                     ALU
                                                            July 6, 2015


Extension to the Link Management Protocol (LMP/DWDM -rfc4209) for Dense
 Wavelength Division Multiplexing (DWDM) Optical Line Systems to manage
the application code of optical interface parameters in DWDM application
                 draft-dharinigert-ccamp-g-698-2-lmp-10

Abstract

   This memo defines extensions to LMP(rfc4209) for managing Optical
   parameters associated with Wavelength Division Multiplexing (WDM)
   systems or characterized by the Optical Transport Network (OTN) in
   accordance with the Interface Application Code approach defined in
   ITU-T Recommendation G.698.2.[ITU.G698.2], G.694.1.[ITU.G694.1] and
   its extensions.

Copyright Notice

   Copyright (c) 2011 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on January 7, 2016.



Hiremagalur, et al.      Expires January 7, 2016                [Page 1]

Internet-Draft   draft-dharinigert-ccamp-g-698-2-lmp-10        July 2015


Copyright Notice

   Copyright (c) 2015 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . .   4
   3.  Extensions to LMP-WDM Protocol  . . . . . . . . . . . . . . .  11
   4.  General Parameters - OCh_General  . . . . . . . . . . . . . .  11
   5.  ApplicationIdentifier - OCh_ApplicationIdentifier . . . . . .  13
   6.  OCh_Ss - OCh transmit parameters  . . . . . . . . . . . . . .  15
   7.  OCh_Rs - receive parameters . . . . . . . . . . . . . . . . .  15
   8.  Security Considerations . . . . . . . . . . . . . . . . . . .  16
   9.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  16
   10. Contributors  . . . . . . . . . . . . . . . . . . . . . . . .  17
   11. References  . . . . . . . . . . . . . . . . . . . . . . . . .  17
     11.1.  Normative References . . . . . . . . . . . . . . . . . .  17
     11.2.  Informative References . . . . . . . . . . . . . . . . .  18
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  18

1.  Introduction

   This extension is based on "draft-galikunze-ccamp-g-698-2-snmp-mib-
   10", for the relevant interface optical parameters described in
   recommendations like ITU-T G.698.2 [ITU.G698.2] and
   G.694.1.[ITU.G694.1].  The LMP Model from RFC4902 provides link
   property correlation between a client and an OLS device.  LMP link
   property correlation, exchanges the capabilities of either end of the
   link where the term 'link' refers to the attachment link between OXC
   and OLS (see Figure 1).  By performing link property correlation,
   both ends of the link exchange link properties, such as application
   identifiers.  This allows either end to operate within a commonly
   understood parameter window.  Based on known parameter limits, each
   device can supervise the received signal for conformance using
   mechanisms defined in RFC3591.  For example if the Client transmitter
   power (OXC1) has a value of 0dBm and the ROADM interface measured



Hiremagalur, et al.      Expires January 7, 2016                [Page 2]

Internet-Draft   draft-dharinigert-ccamp-g-698-2-lmp-10        July 2015


   power (at OLS1) is -6dBm the fiber patch cord connecting the two
   nodes may be pinched or the connectors are dirty.  More, the
   interface characteristics can be used by the OLS network Control
   Plane in order to check the Optical Channels feasibility.  Finally
   the OXC1 transceivers parameters (Application Code) can be shared
   with OXC2 using the LMP protocol to verify the Transceivers
   compatibility.  The actual route selection of a specific wavelength
   within the allowed set is outside the scope of LMP.  In GMPLS, the
   parameter selection (e.g. central frequency) is performed by RSVP-TE.

   Figure 1 shows a set of reference points, for the linear "black link"
   approach, for single-channel connection (Ss and Rs) between
   transmitters (Tx) and receivers (Rx).  Here the DWDM network elements
   include an OM and an OD (which are used as a pair with the opposing
   element), one or more optical amplifiers and may also include one or
   more OADMs.


          +-------------------------------------------------+
       Ss |              DWDM Network Elements              | Rs
   +--+ | |  | \                                       / |  |  | +--+
   Tx L1--|->|   \    +------+            +------+   /   |--|-->Rx L1
   +---+  |  |    |   |      |  +------+  |      |  |    |  |    +--+
   +---+  |  |    |   |      |  |      |  |      |  |    |  |    +--+
   Tx L2--|->| OM |-->|------|->| OADM |--|------|->| OD |--|-->Rx L2
   +---+  |  |    |   |      |  |      |  |      |  |    |  |    +--+
   +---+  |  |    |   |      |  +------+  |      |  |    |  |    +--+
   Tx L3--|->|   /    | DWDM |    |  ^    | DWDM |   \   |--|-->Rx L3
   +---+  |  | /      | Link +----|--|----+ Link |     \ |  |    +--+
          +-----------+           |  |           +----------+
                               +--+  +--+
                               |        |
                            Rs v        | Ss
                            +-----+  +-----+
                            |RxLx |  |TxLx |
                            +-----+  +-----+
   Ss = reference point at the DWDM network element tributary output
   Rs = reference point at the DWDM network element tributary input
   Lx = Lambda x
   OM = Optical Mux
   OD = Optical Demux
   OADM = Optical Add Drop Mux


   from Fig. 5.1/G.698.2

                   Figure 1: Linear Black Link approach




Hiremagalur, et al.      Expires January 7, 2016                [Page 3]

Internet-Draft   draft-dharinigert-ccamp-g-698-2-lmp-10        July 2015


   Figure 2 Extended LMP Model ( from [RFC4209] )


            +------+ Ss    +------+       +------+    Rs +------+
            |      | ----- |      |       |      | ----- |      |
            | OXC1 | ----- | OLS1 | ===== | OLS2 | ----- | OXC2 |
            |      | ----- |      |       |      | ----- |      |
            +------+       +------+       +------+       +------+
              ^  ^             ^              ^             ^  ^
              |  |             |              |             |  |
              |  +-----LMP-----+              +-----LMP-----+  |
              |                                                |
              +----------------------LMP-----------------------+

   OXC        : is an entity that contains transponders
   OLS        : generic optical system, it can be -
                Optical Mux, Optical Demux, Optical Add
                Drop Mux, etc.
   OLS to OLS : represents the black-Link itself
   Rs/Ss      : in between the OXC and the OLS



                       Figure 2: Extended LMP Model

2.  Use Cases

   The use cases described below are assuming that power monitoring
   functions are available in the ingress and egress network element of
   the DWDM network, respectively.  By performing link property
   correlation it would be beneficial to include the current transmit
   power value at reference point Ss and the current received power
   value at reference point Rs.  For example if the Client transmitter
   power (OXC1) has a value of 0dBm and the ROADM interface measured
   power (at OLS1) is -6dBm the fiber patch cord connecting the two
   nodes may be pinched or the connectors are dirty.  More, the
   interface characteristics can be used by the OLS network Control
   Plane in order to check the Optical Channels feasibility.  Finally
   the OXC1 transceivers parameters (Application Code) can be shared
   with OXC2 using the LMP protocol to verify the Transceivers
   compatibility.  The actual route selection of a specific wavelength
   within the allowed set is outside the scope of LMP.  In GMPLS, the
   parameter selection (e.g. central frequency) is performed by RSVP-TE.

   G.698.2 defines a single channel optical interface for DWDM systems
   that allows interconnecting network-external optical transponders
   across a DWDM network.  The optical transponders are considered to be
   external to the DWDM network.  This so-called 'black link' approach



Hiremagalur, et al.      Expires January 7, 2016                [Page 4]

Internet-Draft   draft-dharinigert-ccamp-g-698-2-lmp-10        July 2015


   illustrated in Figure 5-1 of G.698.2 and a copy of this figure is
   provided below.  The single channel fiber link between the Ss/Rs
   reference points and the ingress/egress port of the network element
   on the domain boundary of the DWDM network (DWDM border NE) is called
   access link in this contribution.  Based on the definition in G.698.2
   it is considered to be part of the DWDM network.  The access link
   typically is realized as a passive fiber link that has a specific
   optical attenuation (insertion loss).  As the access link is an
   integral part of the DWDM network, it is desirable to monitor its
   attenuation.  Therefore, it is useful to detect an increase of the
   access link attenuation, for example, when the access link fiber has
   been disconnected and reconnected (maintenance) and a bad patch panel
   connection (connector) resulted in a significantly higher access link
   attenuation (loss of signal in the extreme case of an open connector
   or a fiber cut).  In the following section, two use cases are
   presented and discussed:

        1) pure access link monitoring
        2) access link monitoring with a power control loop

   These use cases require a power monitor as described in G.697 (see
   section 6.1.2), that is capable to measure the optical power of the
   incoming or outgoing single channel signal.  The use case where a
   power control loop is in place could even be used to compensate an
   increased attenuation as long as the optical transmitter can still be
   operated within its output power range defined by its application
   code.
























Hiremagalur, et al.      Expires January 7, 2016                [Page 5]

Internet-Draft   draft-dharinigert-ccamp-g-698-2-lmp-10        July 2015


   Figure 3 Access Link Power Monitoring


                                       +--------------------------+
                                       |    P(in) = P(Tx) - a(Tx) |
                                       |    ___                   |
       +----------+                    |    \ /   Power Monitor   |
       |          | P(Tx)              |     V    P(in)           |
       |  +----+  | Ss    //\\         |     |    |\              |
       |  | TX |----|-----\\//------------------->| \             |
       |  +----+  | Access Link (AL-T) |       .  |  |            |
       |          | attenuation a(Tx)  |       .  |  |==============>
       |          |                    |       .  |  |            |
       | External |                    |      --->| /             |
       | Optical  |                    |          |/              |
       |Transpond.|                    |    P(out)                |
       |          |                    |    ___                   |
       |          |                    |    \ /   Power Monitor   |
       |          | P(Rx)              |     V    P(out)          |
       |  +----+  | Rs    //\\         |     |    |\              |
       |  | RX |<---|-----\\//--------------------| \             |
       |  +----+  | Access Link (AL-R) |       .  |  |            |
       |          | Attenuation a(Rx)  |       .  |  |<==============
       +----------+                    |       .  |  |            |
                                       |      <---| /             |
       P(Rx) = P(out) - a(Rx)          |          |/              |
                                       |                          |
                                       |           ROADM          |
                                       +--------------------------+

        -  For AL-T monitoring: P(Tx) and a(Tx) must be known
        -  For AL-R monitoring: P(RX) and a(Rx) must be known

       An alarm shall be raised if P(in) or P(Rx) drops below a
       configured threshold (t [dB]):
       -  P(in) < P(Tx) - a(Tx) - t (Tx direction)
       -  P(Rx) < P(out) - a(Rx) - t (Rx direction)
       -  a(Tx) =| a(Rx)


                       Figure 3: Extended LMP Model










Hiremagalur, et al.      Expires January 7, 2016                [Page 6]

Internet-Draft   draft-dharinigert-ccamp-g-698-2-lmp-10        July 2015


   Pure Access Link  (AL) Monitoring Use Case

      Figure 4 illustrates the access link monitoring use case and the
      different physical properties involved that are defined below:

    - Ss, Rs: G.698.2 reference points
    - P(Tx):  current optical output power of transmitter Tx
    - a(Tx):  access link attenuation in Tx direction (external
              transponder point of view)
    - P(in):  measured current optical input power at the input port
              of border DWDM NE
    - t:      user defined threshold (tolerance)
    - P(out): measured current optical output power at the output port
              of border DWDM NE
    - a(Rx):  access link attenuation in Rx direction (external
              transponder point of view)
    - P(Rx):  current optical input power of receiver Rx

   Assumptions:
    - The access link attenuation in both directions (a(Tx), a(Rx))
      is known or can be determined as part of the commissioning
      process.  Typically, both values are the same.
    - A threshold value t has been configured by the operator. This
      should also be done during commissioning.
    - A control plane protocol (e.g. this draft) is in place that allows
      to periodically send the optical power values P(Tx) and P(Rx)
      to the control plane protocol instance on the DWDM border NE.
      This is llustrated in Figure 3.
    - The DWDM border NE is capable to periodically measure the optical
      power Pin and Pout as defined in G.697 by power monitoring points
      depicted as yellow triangles in the figures below.

   AL monitoring process:
    - Tx direction: the measured optical input power Pin is compared
      with the expected optical input power P(Tx) - a(Tx). If the
      measured optical input power P(in) drops below the value
      (P(Tx) - a(Tx) - t) a low power alarm shall be raised indicating
      that the access link attenuation has exceeded a(Tx) + t.
    - Rx direction: the measured optical input power P(Rx) is
      compared with the expected optical input power P(out) - a(Rx).
      If the measured optical input power P(Rx) drops below the value
      (P(out) - a(Rx) - t) a
      low power alarm shall be raised indicating that the access link
      attenuation has exceeded a(Rx) + t.







Hiremagalur, et al.      Expires January 7, 2016                [Page 7]

Internet-Draft   draft-dharinigert-ccamp-g-698-2-lmp-10        July 2015


   Figure 4 Use case 1: Access Link power monitoring



     +----------+                    +--------------------------+
     | +------+ |    P(Tx), P(Rx)    |  +-------+               |
     | |      | | =================> |  |       |               |
     | | LMP  | |    P(in), P(out)   |  |  LMP  |               |
     | |      | | <================= |  |       |               |
     | +------+ |                    |  +-------+               |
     |          |                    |                          |
     |          |                    |    P(in) - P(Tx) - a(Tx) |
     |          |                    |    ___                   |
     |          |                    |    \ /  Power Monitor    |
     |          | P(Tx)              |     V                    |
     |  +----+  | Ss    //\\         |     |    |\              |
     |  | TX |----|-----\\//------------------->| \             |
     |  +----+  | Access Link (AL-T) |       .  |  |            |
     |          | attenuation a(Tx)  |       .  |  |==============>
     |          |                    |       .  |  |            |
     | External |                    |      --->| /             |
     | Optical  |                    |          |/              |
     |Transpond.|                    |    P(out)                |
     |          |                    |    ___                   |
     |          |                    |    \ /  Power Monitor    |
     |          | P(Rx)              |     V                    |
     |  +----+  | Rs    //\\         |     |    |\              |
     |  | RX |<---|-----\\//--------------------| \             |
     |  +----+  | Access Link (AL-R) |       .  |  |            |
     |          | Attenuation a(Rx)  |       .  |  |<==============
     +----------+                    |       .  |  |            |
                                     |      <---| /             |
     P(Rx) = P(out) - a(Rx)          |          |/              |
                                     |                          |
                                     |           ROADM          |
                                     +--------------------------+

      - For AL-T monitoring: P(Tx) and a(Tx) must be known
      - For AL-R monitoring: P(RX) and a(Rx) must be known
      An alarm shall be raised if P(in) or P(Rx) drops below a
      configured threshold  (t [dB]):
      -  P(in) < P(Tx) - a(Tx) - t (Tx direction)
      -  P(Rx) < P(out) - a(Rx) - t (Rx direction)
      -  a(Tx) = a(Rx)


                       Figure 4: Extended LMP Model




Hiremagalur, et al.      Expires January 7, 2016                [Page 8]

Internet-Draft   draft-dharinigert-ccamp-g-698-2-lmp-10        July 2015


   Power Control Loop Use Case

      This use case is based on the access link monitoring use case as
      described above. In addition, the border NE is running a power
      control application that is capable to control the optical output
      power of the single channel tributary signal at the output port
      of the border DWDM NE (towards the external receiver Rx) and the
      optical output power of the single channel tributary signal at
      the external transmitter Tx within their known operating range.
      The time scale of this control loop is typically relatively slow
      (e.g. some 10s or minutes) because the access link attenuation
      is not expected to vary much over time (the attenuation only
      changes when re-cabling occurs).
      From a data plane perspective, this use case does not require
      additional data plane extensions. It does only require a protocol
      extension in the control plane (e.g. this LMP draft) that allows
      the power control application residing in the DWDM border NE to
      modify the optical output power of the DWDM domain-external
      transmitter Tx within the range of the currently used application
      code. Figure 5 below illustrates this use case utilizing the LMP
      protocol with extensions defined in this draft.






























Hiremagalur, et al.      Expires January 7, 2016                [Page 9]

Internet-Draft   draft-dharinigert-ccamp-g-698-2-lmp-10        July 2015


   Figure 5 Use case 2: Power Control Loop



     +----------+                       +--------------------------+
     | +------+ | P(Tx),P(Rx),Set(Pout) |  +-------+   +--------+  |
     | |      | | ====================> |  |       |   | Power  |  |
     | | LMP  | | P(in),P(out),Set(PTx) |  |  LMP  |   |Control |  |
     | |      | | <==================== |  |       |   | Loop   |  |
     | +------+ |                       |  +-------+   +--------+  |
     |     |    |                       |                          |
     | +------+ |                       |    P(in) = P(Tx) - a(Tx) |
     | |C.Loop| |                       |    ___                   |
     | +------+ |                       |    \ /  Power Monitor    |
     |     |    | P(Tx)                 |     V                    |
     | +------+ | Ss    //\\            |     |    |\              |
     | | TX |>----|-----\\//---------------------->| \             |
     | +------+ | Access Link (AL-T)    |       .  |  |            |
     |  VOA(Tx) | attenuation a(Tx)     |       .  |  |==============>
     |          |                       |       .  |  |            |
     | External |                       |      --->| /             |
     | Optical  |                       |          |/              |
     |Transpond.|                       |    P(out)                |
     |          |                       |    ___                   |
     |          |                       |    \ /  Power Monitor    |
     |          | P(Rx)                 |     V                    |
     |  +----+  | Rs    //\\            |     |  VOA(out) |\       |
     |  | RX |<---|-----\\//---------------------<|-------| \      |
     |  +----+  | Access Link (AL-R)    |              .  |  |     |
     |          | attenuation a(Rx)     |              .  |  |<=======
     +----------+                       |        VOA(out) |  |     |
                                        |     <--<|-------| /      |
     P(Rx) = P(out) - a(Rx)             |                 |/       |
                                        |                          |
                                        |            ROADM         |
                                        +--------------------------+

      -  The Power Control Loops in Transponder and ROADM regulate
         the Variable Optical Attenuators (VOA) to adjust the proper
         power in base of the ROADM and Receiver caracteristics and
         the Access Link attenuation


                       Figure 5: Extended LMP Model







Hiremagalur, et al.      Expires January 7, 2016               [Page 10]

Internet-Draft   draft-dharinigert-ccamp-g-698-2-lmp-10        July 2015


3.  Extensions to LMP-WDM Protocol

   This document defines extensions to [RFC4209] to allow the Black Link
   (BL) parameters of G.698.2, to be exchanged between a router or
   optical switch and the optical line system to which it is attached.
   In particular, this document defines additional Data Link sub-objects
   to be carried in the LinkSummary message defined in [RFC4204] and
   [RFC6205].  The OXC and OLS systems may be managed by different
   Network management systems and hence may not know the capability and
   status of their peer.  The intent of this draft is to enable the OXC
   and OLS systems to exchange this information.  These messages and
   their usage are defined in subsequent sections of this document.

     The following new messages are defined for the WDM extension for
     ITU-T G.698.2 [ITU.G698.2]/ITU-T G.698.1 [ITU.G698.1]/
     ITU-T G.959.1 [ITU.G959.1]
       - OCh_General                 (sub-object Type = TBA)
       - OCh_ApplicationIdentier     (sub-object Type = TBA)
       - OCh_Ss                      (sub-object Type = TBA)
       - OCh_Rs                      (sub-object Type = TBA)

4.  General Parameters - OCh_General

   These are the general parameters as described in [G698.2] and
   [G.694.1].  Please refer to the "draft-galikunze-ccamp-g-698-2-snmp-
   mib-12" for more details about these parameters and the [RFC6205] for
   the wavelength definition.

    The general parameters are
     1. Central Frequency - (Tera Hz) 4 bytes (see RFC6205 sec.3.2)
     2. Number of Application Identifiers (A.I.) Supported
     3. Single-channel Application Identifier in use
     4. Application Identifier Type in use
     5. Application Identifier in use

   Figure 6: The format of the this sub-object (Type = TBA, Length =
   TBA) is as follows:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |    Type       |    Length     |         (Reserved)            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                     Central Frequency                         |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |   Number of Application                 |                     |
    |   Identifiers Supported                 |     (Reserved)      |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+



Hiremagalur, et al.      Expires January 7, 2016               [Page 11]

Internet-Draft   draft-dharinigert-ccamp-g-698-2-lmp-10        July 2015


    | Single-channel|  A.I. Type    |         A.I. length           |
    | Application   |   in use      |                               |
    | Identifier    |               |                               |
    | Number in use |               |                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |           Single-channel Application Identifier in use        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |           Single-channel Application Identifier in use        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |           Single-channel Application Identifier in use        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


      A.I. Type in use: STANDARD, PROPRIETARY

         A.I. Type in use: STANDARD

         Refer to G.698.2 recommendation :  B-DScW-ytz(v)

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                Single-channel Application Code                |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                Single-channel Application Code                |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                Single-channel Application Code                |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


         A.I. Type in use: PROPRIETARY

      Note: if the A.I. type = PROPRIETARY, the first 6 Octets of the
      Application Identifier in use are six characters of the
      PrintableString must contain the Hexadecimal representation of
      an OUI (Organizationally Unique Identifier) assigned to the
      vendor whose implementation generated the Application
      Identifier; the remaining octets of the PrintableString are
      unspecified.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                        OUI                                    |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |              OUI cont.        |           Vendor value        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                           Vendor Value                        |



Hiremagalur, et al.      Expires January 7, 2016               [Page 12]

Internet-Draft   draft-dharinigert-ccamp-g-698-2-lmp-10        July 2015


    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


                           Figure 6: OCh_General

5.  ApplicationIdentifier - OCh_ApplicationIdentifier

   This message is to exchange the application identifiers supported as
   described in [G698.2].  Please refer to the "draft-galikunze-ccamp-
   g-698-2-snmp-mib-10".  For more details about these parameters.
   There can be more than one Application Identifier supported by the
   OXC/OLS.  The number of application identifiers supported is
   exchanged in the "OCh_General" message.  (from
   [G698.1]/[G698.2]/[G959.1] and G.874.1 )

    The parameters are
        1. Number of Application Identifiers (A.I.) Supported

        2. Single-channel application identifier Number
           uniquely identifiers this entry - 8 bits

        3. Application Indentifier Type (A.I.) (STANDARD/PROPRIETARY)

        4. Single-channel application identifier -- 96 bits
           (from [G698.1]/[G698.2]/[G959.1]


      - this parameter can have
           multiple instances as the transceiver can support multiple
           application identifiers.



   Figure 7: The format of the this sub-object (Type = TBA, Length =
   TBA) is as follows:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |    Type       |    Length     |         (Reserved)            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |   Number of Application                 |                     |
    |   Identifiers Supported                 |     (Reserved)      |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    | Single-channel|  A.I. Type    |         A.I. length           |
    | Application   |               |                               |
    | Identifier    |               |                               |
    | Number        |               |                               |



Hiremagalur, et al.      Expires January 7, 2016               [Page 13]

Internet-Draft   draft-dharinigert-ccamp-g-698-2-lmp-10        July 2015


    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |               Single-channel Application Identifier           |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |               Single-channel Application Identifier           |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |               Single-channel Application Identifier           |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    //              ....                                           //
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    | Single-channel|               |         A.I. length           |
    | Application   |   A.I. Type   |                               |
    | Identifier    |               |                               |
    | Number        |               |                               |
    |               |               |                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |               Single-channel Application Identifier           |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |               Single-channel Application Identifier           |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |               Single-channel Application Identifier           |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


      A.I. Type in use: STANDARD, PROPRIETARY

       A.I. Type in use: STANDARD
       Refer to G.698.2 recommendation :  B-DScW-ytz(v)

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                Single-channel Application Code                |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                Single-channel Application Code                |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                Single-channel Application Code                |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


         A.I. Type in use: PROPRIETARY

      Note: if the A.I. type = PROPRIETARY, the first 6 Octets of the
      Application Identifier in use are six characters of the
      PrintableString must contain the Hexadecimal representation of
      an OUI (Organizationally Unique Identifier) assigned to the
      vendor whose implementation generated the Application
      Identifier; the remaining octets of the PrintableString are
      unspecified.



Hiremagalur, et al.      Expires January 7, 2016               [Page 14]

Internet-Draft   draft-dharinigert-ccamp-g-698-2-lmp-10        July 2015


     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                        OUI                                    |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |              OUI cont.        |           Vendor value        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                           Vendor Value                        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                    Figure 7: OCh_ApplicationIdentifier

6.  OCh_Ss - OCh transmit parameters

   These are the G.698.2 parameters at the Source(Ss reference points).
   Please refer to "draft-galikunze-ccamp-g-698-2-snmp-mib-10" for more
   details about these parameters.

       1. Output power



   Figure 8: The format of the OCh sub-object (Type = TBA, Length = TBA)
   is as follows:


     0                   1                   2                  3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |    Type       |    Length     |         (Reserved)            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                      Output Power                             |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


                   Figure 8: OCh_Ss transmit parameters

7.  OCh_Rs - receive parameters

   These are the G.698.2 parameters at the Sink (Rs reference points).
   Please refer to the "draft-galikunze-ccamp-g-698-2-snmp-mib-10" for
   more details about these parameters.

       1.  Current Input Power      - (0.1dbm) 4bytes







Hiremagalur, et al.      Expires January 7, 2016               [Page 15]

Internet-Draft   draft-dharinigert-ccamp-g-698-2-lmp-10        July 2015


   Figure 9: The format of the OCh receive sub-object (Type = TBA,
   Length = TBA) is as follows:

     The format of the OCh receive/OLS Sink sub-object (Type = TBA,
     Length = TBA) is as follows:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |    Type       |    Length     |                   (Reserved)  |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                   Current Input Power                         |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


                    Figure 9: OCh_Rs receive parameters

8.  Security Considerations

   LMP message security uses IPsec, as described in [RFC4204].  This
   document only defines new LMP objects that are carried in existing
   LMP messages, similar to the LMP objects in [RFC:4209].  This
   document does not introduce new security considerations.

9.  IANA Considerations

      LMP <xref target="RFC4204"/> defines the following name spaces and
      the ways in which IANA can make assignments to these namespaces:

    -  LMP Message Type
    -  LMP Object Class
    -  LMP Object Class type (C-Type) unique within the Object Class
    -  LMP Sub-object Class type (Type) unique within the Object Class
     This memo introduces the following new assignments:

      LMP Sub-Object Class names:

    under DATA_LINK Class name (as defined in <xref target="RFC4204"/>)
      - OCh_General                  (sub-object Type = TBA)
      - OCh_ApplicationIdentifier    (sub-object Type = TBA)
      - OCh_Ss                       (sub-object Type = TBA)
      - OCh_Rs                       (sub-object Type = TBA)









Hiremagalur, et al.      Expires January 7, 2016               [Page 16]

Internet-Draft   draft-dharinigert-ccamp-g-698-2-lmp-10        July 2015


10.  Contributors

               Arnold Mattheus
                 Deutsche Telekom
                 Darmstadt
                 Germany
                 email a.mattheus@telekom.de

                 John E. Drake
                 Juniper
                 1194 N Mathilda Avenue
                 HW-US,Pennsylvania
                 USA
                 jdrake@juniper.net


11.  References

11.1.  Normative References

   [RFC4204]  Lang, J., "Link Management Protocol (LMP)", RFC 4204,
              October 2005.

   [RFC4209]  Fredette, A. and J. Lang, "Link Management Protocol (LMP)
              for Dense Wavelength Division Multiplexing (DWDM) Optical
              Line Systems", RFC 4209, October 2005.

   [RFC6205]  Otani, T. and D. Li, "Generalized Labels for Lambda-
              Switch-Capable (LSC) Label Switching Routers", RFC 6205,
              March 2011.

   [RFC4054]  Strand, J. and A. Chiu, "Impairments and Other Constraints
              on Optical Layer Routing", RFC 4054, May 2005.

   [ITU.G698.2]
              International Telecommunications Union, "Amplified
              multichannel dense wavelength division multiplexing
              applications with single channel optical interfaces",
              ITU-T Recommendation G.698.2, November 2009.

   [ITU.G694.1]
              International Telecommunications Union, ""Spectral grids
              for WDM applications: DWDM frequency grid"", ITU-T
              Recommendation G.698.2, February 2012.







Hiremagalur, et al.      Expires January 7, 2016               [Page 17]

Internet-Draft   draft-dharinigert-ccamp-g-698-2-lmp-10        July 2015


   [ITU.G709]
              International Telecommunications Union, "Interface for the
              Optical Transport Network (OTN)", ITU-T Recommendation
              G.709, February 2012.

   [ITU.G872]
              International Telecommunications Union, "Architecture of
              optical transport networks", ITU-T Recommendation G.872,
              October 2012.

   [ITU.G874.1]
              International Telecommunications Union, "Optical transport
              network (OTN): Protocol-neutral management information
              model for the network element view", ITU-T Recommendation
              G.874.1, October 2012.

11.2.  Informative References

   [RFC3410]  Case, J., Mundy, R., Partain, D., and B. Stewart,
              "Introduction and Applicability Statements for Internet-
              Standard Management Framework", RFC 3410, December 2002.

   [RFC2629]  Rose, M., "Writing I-Ds and RFCs using XML", RFC 2629,
              June 1999.

   [RFC4181]  Heard, C., "Guidelines for Authors and Reviewers of MIB
              Documents", BCP 111, RFC 4181, September 2005.

   [I-D.kunze-g-698-2-management-control-framework]
              Kunze, R., "A framework for Management and Control of
              optical interfaces supporting G.698.2", draft-kunze-
              g-698-2-management-control-framework-00 (work in
              progress), July 2011.

Authors' Addresses

   Dharini Hiremagalur (editor)
   Juniper
   1194 N Mathilda Avenue
   Sunnyvale - 94089 California
   USA

   Phone: +1408
   Email: dharinih@juniper.net







Hiremagalur, et al.      Expires January 7, 2016               [Page 18]

Internet-Draft   draft-dharinigert-ccamp-g-698-2-lmp-10        July 2015


   Gert Grammel (editor)
   Juniper
   Oskar-Schlemmer Str. 15
   80807 Muenchen
   Germany

   Phone: +49 1725186386
   Email: ggrammel@juniper.net


   Gabriele Galimberti (editor)
   Cisco
   Via S. Maria Molgora, 48
   20871 - Vimercate
   Italy

   Phone: +390392091462
   Email: ggalimbe@cisco.com


   Zafar Ali (editor)
   Cisco
   3000 Innovation Drive
   KANATA
   ONTARIO K2K 3E8

   Email: zali@cisco.com


   Ruediger Kunze (editor)
   Deutsche Telekom
   Dddd, xx
   Berlin
   Germany

   Phone: +49xxxxxxxxxx
   Email: RKunze@telekom.de


   Dieter Beller (editor)
   ALU
   Lorenzstrasse, 10
   70435 Stuttgart
   Germany

   Phone: +4971182143125
   Email: Dieter.Beller@alcatel-lucent.com




Hiremagalur, et al.      Expires January 7, 2016               [Page 19]