Internet DRAFT - draft-demjanenko-payload-melp

draft-demjanenko-payload-melp



 



INTERNET-DRAFT                                         Victor Demjanenko
                                                         David Satterlee
Intended Status: Experimental                   VOCAL Technologies, Ltd.
Expires: September 24, 2015                               March 23, 2015


                   RTP Payload Format for MELPe Codec
                    draft-demjanenko-payload-melp-03


Abstract

   This document describes the RTP payload format for the Mixed
   Excitation Linear Prediction Enhanced (MELPe) speech coder algorithm
   developed by Atlanta Signal Processing (ASPI), Texas Instruments
   (TI), SignalCom (now Microsoft) and Thales Communications with noise
   preprocessor contributions from AT&T under contract with NSA/DOD as
   international NATO Standard STANAG 4591.  All three different speech
   encoding rates and sample frames sizes are included.  Comfort noise
   procedures and packet loss concealment are detailed.  Also, within
   the document there are included necessary details for the use of MELP
   with SDP.


Status of this Memo

   This Internet-Draft is submitted to IETF in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF), its areas, and its working groups.  Note that
   other groups may also distribute working documents as
   Internet-Drafts.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   The list of current Internet-Drafts can be accessed at
   http://www.ietf.org/1id-abstracts.html

   The list of Internet-Draft Shadow Directories can be accessed at
   http://www.ietf.org/shadow.html


Copyright and License Notice

 


Demjanenko, Satterlee  Expires September 24, 2015               [Page 1]

INTERNET DRAFT   RTP Payload Format for the MELPe Codec   March 23, 2015


   Copyright (c) 2015 IETF Trust and the persons identified as the
   document authors. All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document. Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document. Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.


Table of Contents

   1  Introduction  . . . . . . . . . . . . . . . . . . . . . . . . .  3
     1.1  Terminology . . . . . . . . . . . . . . . . . . . . . . . .  3
   2  Background  . . . . . . . . . . . . . . . . . . . . . . . . . .  3
   3  RTP Payload Format  . . . . . . . . . . . . . . . . . . . . . .  4
     3.1  MELPe Bitstream Definition  . . . . . . . . . . . . . . . .  5
       3.1.1 2400 bps Bitstream Structure . . . . . . . . . . . . . .  5
       3.1.2 1200 bps Bitstream Structure . . . . . . . . . . . . . .  8
       3.1.3 600 bps Bitstream Structure  . . . . . . . . . . . . . . 11
     3.2  MELPe Comfort Noise Bitstream Definition  . . . . . . . . . 14
     3.3  Multiple MELPe frames in a RTP packet . . . . . . . . . . . 16
   4  Mapping to SDP Parameters . . . . . . . . . . . . . . . . . . . 18
   5  Discontinious Transmission  . . . . . . . . . . . . . . . . . . 20
   6  Packet Loss Concealment . . . . . . . . . . . . . . . . . . . . 20
   7  Security Considerations . . . . . . . . . . . . . . . . . . . . 21
   8  IANA Considerations . . . . . . . . . . . . . . . . . . . . . . 21
   9  References  . . . . . . . . . . . . . . . . . . . . . . . . . . 21
     9.1  Normative References  . . . . . . . . . . . . . . . . . . . 21
     9.2  Informative References  . . . . . . . . . . . . . . . . . . 22
   Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 22













 


Demjanenko, Satterlee  Expires September 24, 2015               [Page 2]

INTERNET DRAFT   RTP Payload Format for the MELPe Codec   March 23, 2015


1  Introduction

   This document describes how compressed MELPe speech as produced by
   the MELPe codec may be formatted for use as an RTP payload.  Details
   are provided to packetize the three different codec rate data frames
   (2400, 1200, and 600) into RTP packets. The sender may send one or
   more codec data frames per packet, depending on the application
   scenario or based on the transport network condition, bandwidth
   restriction, delay requirements and packet-loss tolerance.


1.1  Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119].


2  Background


   The MELP speech coder was developed by the US military as an upgrade
   from LPC-based CELP standard vocoder for low bit-rate communications
   [MELP].  MELP was further enhanced and subsequently adopted by NATO
   as MELPe for use by its members and Partnership for Peace countries
   for military and other governmental communications [MELPE]. 
   Commercial/civilian applications have arisen because of the low bit-
   rate property of MELPe with its (relatively) high intelligibility. 
   As such MELPe is being used in a variety of wired and radio
   communications systems.  VoIP/SIP systems need to transport MELPe
   without decoding and re-encoding in order to preserve its
   intelligibility.  Hence it is desirable and necessary to define the
   proper payload formatting and use conventions of MELPe in RTP
   payloads.

   The MELPe codec [MELPE] supports three different vocoder rates; 2400,
   1200, and 600 bps.  The basic 2400 bps rate vocoder uses a 22.5 ms
   frame of speech consisting of 180 8000 Hz, 16-bit speech samples. 
   The 1200 and 600 bps rate vocoders uses respectively three and four
   22.5 ms frames of speech each.  These reduced rate vocoders
   internally use multiple 2400 bps parameter sets with further
   processing to strategically remove redundancy.  The payload sizes for
   each of the rates are 54, 81, and 54 bits respectively for the 2400,
   1200, and 600 bps frames.  Dynamic rate switching is permitted but
   only if supported by both endpoints.

   The MELPe algorithm distinguishes between voiced and un-voiced speech
   and encodes each differently.  Unvoiced speech can be coded with
 


Demjanenko, Satterlee  Expires September 24, 2015               [Page 3]

INTERNET DRAFT   RTP Payload Format for the MELPe Codec   March 23, 2015


   fewer information bits for the same quality.  Forward error
   correction (FEC) is applied to the 2400 bps codec unvoiced speech for
   better protection of the subtle differences in signal reconstruction.
   The lower bit rate coders do not allocate any bits for FEC and rely
   on strong error protection and correction in the communications
   channel.

   Comfort noise handling for MELPe is recommended to follow SCIP-210
   Appendix B [SCIP210].  After VAD no longer indicates the presence of
   speech/voice, a grace period of a minimum of two comfort noise
   vocoder fames are to be transmitted. The contents of the comfort
   noise frames is described in the next section.

   Packet loss concealment (PLC) exploits the FEC (and more precisely,
   double bits errors of the pitch/voicing parameter) of the 2400 bps
   speech coder.  The pitch/voicing parameter has a sparse set of
   permitted values.  A value of zero indicates a non-voiced frame.  At
   least three bits are set for all valid pitch parameters.  The PLC
   erasure indication utilizes any of the errored encodings of a non-
   voiced frame as will be described infra.


3  RTP Payload Format

   The MELPe codec uses 22.5, 67.5 or 90 ms frames with a sampling rate
   clock of 8 kHz, so the RTP timestamp MUST be in units of 1/8000 of a
   second.

   The RTP payload for MELPe has the format shown in the figure below. 
   No additional header specific to this payload format is required. 

   This format is intended for the situations where the sender and the
   receiver send one or more codec data frames per packet. The RTP
   packet looks as follows:


   0                   1                   2                   3 
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
   |                         RTP Header                            | 
   +=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+ 
   |                                                               | 
   +                  one or more frames of MELPe                  | 
   |                                                               | 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

   Figure 1 - Packet format diagram 

 


Demjanenko, Satterlee  Expires September 24, 2015               [Page 4]

INTERNET DRAFT   RTP Payload Format for the MELPe Codec   March 23, 2015


   The RTP header of the packetized encoded MELPe speech has the
   expected values as described in [RFC3550].  The usage of M bit SHOULD
   be as specified in the applicable RTP profile, for example, RFC 3551
   [RFC3551], where [RFC3551] specifies that if the sender does not
   suppress silence (i.e., sends a frame on every frame interval), the M
   bit will always be zero. When more then one codec data frame is
   present in a single RTP packet, the timestamp is, as always, that of
   the oldest data frame represented in the RTP packet. 

   The assignment of an RTP payload type for this new packet format is
   outside the scope of this document, and will not be specified here. 
   It is expected that the RTP profile for a particular class of
   applications will assign a payload type for this encoding, or if that
   is not done, then a payload type in the dynamic range shall be chosen
   by the sender. 


3.1  MELPe Bitstream Definition 

   The total number of bits used to describe one frame of 2400 bps
   speech is 54, which fits in 7 octets (with two unused bits). For the
   1200 bps speech the total number of bits used is 81, which fits in 11
   octets (with seven unused bits). For the 600 bps speech the total
   number of bits used is 54, which fits in 7 octets (with two unused
   bits).  Unused bits are coded as described in 3.3 in support of
   dynamic rate switching.

   In the MELPe bitstream definition, the most significant bits are
   considered priority bits.  The intention was that these bits receive
   greater protection in the underlying communications channel.  For IP
   networks, such additional protection is irrelevant.  However, for
   convenience of interoperable gateway devices, the bitstreams will be
   presented identically in IP networks.


3.1.1 2400 bps Bitstream Structure

   According to Table 3 of [MELPE], the 2400 bit/s MELPe bit
   transmission order (bit priority is not shown for clarity) is the
   following:


          +--------+-------------+-------------+
          |  Bit   |    Voiced   |   Unvoiced  |
          +--------+-------------+-------------+
          |  B_01  |       g20   |       g20   |
          |  B_02  |       BP0   |     FEC10   |
          |  B_03  |        P0   |        P0   |
 


Demjanenko, Satterlee  Expires September 24, 2015               [Page 5]

INTERNET DRAFT   RTP Payload Format for the MELPe Codec   March 23, 2015


          |  B_04  |     LSF20   |     LSF20   |
          |  B_05  |     LSF30   |     LSF30   |
          |  B_06  |       g23   |       g23   |
          |  B_07  |       g24   |       g24   |
          |  B_08  |     LSF35   |     LSF35   |
          +--------+-------------+-------------+
          |  B_09  |       g21   |       g21   |
          |  B_10  |       g22   |       g22   |
          |  B_11  |        P4   |        P4   |
          |  B_12  |     LSF34   |     LSF34   |
          |  B_13  |        P5   |        P5   |
          |  B_14  |        P1   |        P1   |
          |  B_15  |        P2   |        P2   |
          |  B_16  |     LSF40   |     LSF40   |
          +--------+-------------+-------------+
          |  B_17  |        P6   |        P6   |
          |  B_18  |     LSF10   |     LSF10   |
          |  B_19  |     LSF16   |     LSF16   |
          |  B_20  |     LSF45   |     LSF45   |
          |  B_21  |        P3   |        P3   |
          |  B_22  |     LSF15   |     LSF15   |
          |  B_23  |     LSF14   |     LSF14   |
          |  B_24  |     LSF25   |     LSF25   |
          +--------+-------------+-------------+
          |  B_25  |       BP3   |     FEC13   |
          |  B_26  |     LSF13   |     LSF13   |
          |  B_27  |     LSF12   |     LSF12   |
          |  B_28  |     LSF24   |     LSF24   |
          |  B_29  |     LSF44   |     LSF44   |
          |  B_30  |       FM0   |     FEC40   |
          |  B_31  |     LSF11   |     LSF11   |
          |  B_32  |     LSF23   |     LSF23   |
          +--------+-------------+-------------+
          |  B_33  |       FM7   |     FEC22   |
          |  B_34  |       FM6   |     FEC21   |
          |  B_35  |       FM5   |     FEC20   |
          |  B_36  |       g11   |       g11   |
          |  B_37  |       g10   |       g10   |
          |  B_38  |       BP2   |     FEC12   |
          |  B_39  |       BP1   |     FEC11   |
          |  B_40  |     LSF21   |     LSF21   |
          +--------+-------------+-------------+
          |  B_41  |     LSF33   |     LSF33   |
          |  B_42  |     LSF22   |     LSF22   |
          |  B_43  |     LSF32   |     LSF32   |
          |  B_44  |     LSF31   |     LSF31   |
          |  B_45  |     LSF43   |     LSF43   |
          |  B_46  |     LSF42   |     LSF42   |
 


Demjanenko, Satterlee  Expires September 24, 2015               [Page 6]

INTERNET DRAFT   RTP Payload Format for the MELPe Codec   March 23, 2015


          |  B_47  |        AF   |     FEC42   |
          |  B_48  |     LSF41   |     LSF41   |
          +--------+-------------+-------------+
          |  B_49  |       FM4   |     FEC32   |
          |  B_50  |       FM3   |     FEC31   |
          |  B_51  |       FM2   |     FEC30   |
          |  B_52  |       FM1   |     FEC41   |
          |  B_53  |       g12   |       g12   |
          |  B_54  |      SYNC   |      SYNC   |
          +--------+-------------+-------------+

          NOTES: 
          g = Gain
          BP = Bandpass Voicing
          P = Pitch/Voicing
          LSF = Line Spectral Frequencies
          FEC = Forward Error Correction Parity Bits
          FM = Fourier Magnitudes
          AF = Aperiodic Flag

          B_01 = least significant bit of data set

   Table 3.1 - The bitstream definition for MELPe 2400 bps. 


   The 2400 bps MELPe RTP payload is constructed as per Figure 2.  Note
   that bit B_01 is placed in the LSB of the first byte with all other
   bits in sequence.  When filling octets, the least significant bits of
   the seventh octet are filled with bits B_49 to B_54 respectively.


      MSB                                              LSB
       0      1      2      3      4      5      6      7
   +------+------+------+------+------+------+------+------+
   | B_08 | B_07 | B_06 | B_05 | B_04 | B_03 | B_02 | B_01 | 
   +------+------+------+------+------+------+------+------+
   | B_16 | B_15 | B_14 | B_13 | B_12 | B_11 | B_10 | B_09 | 
   +------+------+------+------+------+------+------+------+
   | B_24 | B_23 | B_22 | B_21 | B_20 | B_19 | B_18 | B_17 | 
   +------+------+------+------+------+------+------+------+
   | B_32 | B_31 | B_30 | B_29 | B_28 | B_27 | B_26 | B_25 | 
   +------+------+------+------+------+------+------+------+
   | B_40 | B_39 | B_38 | B_37 | B_36 | B_35 | B_34 | B_33 | 
   +------+------+------+------+------+------+------+------+
   | B_48 | B_47 | B_46 | B_45 | B_44 | B_43 | B_42 | B_41 | 
   +------+------+------+------+------+------+------+------+
   | RSVA | RSVB | B_54 | B_53 | B_52 | B_51 | B_50 | B_49 | 
   +------+------+------+------+------+------+------+------+
 


Demjanenko, Satterlee  Expires September 24, 2015               [Page 7]

INTERNET DRAFT   RTP Payload Format for the MELPe Codec   March 23, 2015


   Figure 2 - Packed MELPe 2400 bps payload octets. 


3.1.2 1200 bps Bitstream Structure

   According to Tables D9a and D9b of [MELPE], the 1200 bit/s MELPe bit
   transmission order is the following:


          +--------+-------------+-------------+
          |  Bit   |  Modes 1-4  |   Mode 5    |
          |        |   (Voiced)  | (Unvoiced)  |
          +--------+-------------+-------------+
          |  B_01  |     Syn     |     Syn     |
          |  B_02  |  Pitch&UV0  |  Pitch&UV0  |
          |  B_03  |  Pitch&UV1  |  Pitch&UV1  |
          |  B_04  |  Pitch&UV2  |  Pitch&UV2  |
          |  B_05  |  Pitch&UV3  |  Pitch&UV3  |
          |  B_06  |  Pitch&UV4  |  Pitch&UV4  |
          |  B_07  |  Pitch&UV5  |  Pitch&UV5  |
          |  B_08  |  Pitch&UV6  |  Pitch&UV6  |
          +--------+-------------+-------------+
          |  B_09  |  Pitch&UV7  |  Pitch&UV7  |
          |  B_10  |  Pitch&UV8  |  Pitch&UV8  |
          |  B_11  |  Pitch&UV9  |  Pitch&UV9  |
          |  B_12  | Pitch&UV10  | Pitch&UV10  |
          |  B_13  | Pitch&UV11  | Pitch&UV11  |
          |  B_14  |    LSP0     |    LSP0     |
          |  B_15  |    LSP1     |    LSP1     |
          |  B_16  |    LSP2     |    LSP2     |
          +--------+-------------+-------------+
          |  B_17  |    LSP3     |    LSP3     |
          |  B_18  |    LSP4     |    LSP4     |
          |  B_19  |    LSP5     |    LSP5     |
          |  B_20  |    LSP6     |    LSP6     |
          |  B_21  |    LSP7     |    LSP7     |
          |  B_22  |    LSP8     |    LSP8     |
          |  B_23  |    LSP9     |    LSP9     |
          |  B_24  |    LSP10    |    LSP10    |
          +--------+-------------+-------------+
          |  B_25  |    LSP11    |    LSP11    |
          |  B_26  |    LSP12    |    LSP12    |
          |  B_27  |    LSP13    |    LSP13    |
          |  B_28  |    LSP14    |    LSP14    |
          |  B_29  |    LSP15    |    LSP15    |
          |  B_30  |    LSP16    |    LSP16    |
          |  B_31  |    LSP17    |    LSP17    |
          |  B_32  |    LSP18    |    LSP18    |
 


Demjanenko, Satterlee  Expires September 24, 2015               [Page 8]

INTERNET DRAFT   RTP Payload Format for the MELPe Codec   March 23, 2015


          +--------+-------------+-------------+
          |  B_33  |    LSP19    |    LSP19    |
          |  B_34  |    LSP20    |    LSP20    |
          |  B_35  |    LSP21    |    LSP21    |
          |  B_36  |    LSP22    |    LSP22    |
          |  B_37  |    LSP23    |    LSP23    |
          |  B_38  |    LSP24    |    LSP24    |
          |  B_39  |    LSP25    |    LSP25    |
          |  B_40  |    LSP26    |    LSP26    |
          +--------+-------------+-------------+
          |  B_41  |    LSP27    |    GAIN0    |
          |  B_42  |    LSP28    |    GAIN1    |
          |  B_43  |    LSP29    |    GAIN2    |
          |  B_44  |    LSP30    |    GAIN3    |
          |  B_45  |    LSP31    |    GAIN4    |
          |  B_46  |    LSP32    |    GAIN5    |
          |  B_47  |    LSP33    |    GAIN6    |
          |  B_48  |    LSP34    |    GAIN7    |
          +--------+-------------+-------------+
          |  B_49  |    LSP35    |    GAIN8    |
          |  B_50  |    LSP36    |    GAIN9    |
          |  B_51  |    LSP37    |             |
          |  B_52  |    LSP38    |             |
          |  B_53  |    LSP39    |             |
          |  B_54  |    LSP40    |             |
          |  B_55  |    LSP41    |             |
          |  B_56  |    LSP42    |             |
          +--------+-------------+-------------+
          |  B_57  |    GAIN0    |             |
          |  B_58  |    GAIN1    |             |
          |  B_59  |    GAIN2    |             |
          |  B_60  |    GAIN3    |             |
          |  B_61  |    GAIN4    |             |
          |  B_62  |    GAIN5    |             |
          |  B_63  |    GAIN6    |             |
          |  B_64  |    GAIN7    |             |
          +--------+-------------+-------------+
          |  B_65  |    GAIN8    |             |
          |  B_66  |    GAIN9    |             |
          |  B_67  |     BP0     |             |
          |  B_68  |     BP1     |             |
          |  B_69  |     BP2     |             |
          |  B_70  |     BP3     |             |
          |  B_71  |     BP4     |             |
          |  B_72  |     BP5     |             |
          +--------+-------------+-------------+
          |  B_73  |   JITTER    |             |
          |  B_74  |     FS0     |             |
 


Demjanenko, Satterlee  Expires September 24, 2015               [Page 9]

INTERNET DRAFT   RTP Payload Format for the MELPe Codec   March 23, 2015


          |  B_75  |     FS1     |             |
          |  B_76  |     FS2     |             |
          |  B_77  |     FS3     |             |
          |  B_78  |     FS4     |             |
          |  B_79  |     FS5     |             |
          |  B_80  |     FS6     |             |
          +--------+-------------+-------------+
          |  B_81  |     FS7     |             |
          +--------+-------------+-------------+

          NOTES:
          BP = Band pass voicing
          FS = Fourier magnitudes

   Table 3.2 - The bitstream definition for MELPe 1200 bps. 


   The 1200 bps MELPe RTP payload is constructed as per Figure 3.  Note
   that bit B_01 is placed in the LSB of the first byte with all other
   bits in sequence.  When filling octets, the least significant bit of
   the eleventh octet is filled with bit B_81.


      MSB                                              LSB
       0      1      2      3      4      5      6      7
   +------+------+------+------+------+------+------+------+
   | B_08 | B_07 | B_06 | B_05 | B_04 | B_03 | B_02 | B_01 | 
   +------+------+------+------+------+------+------+------+
   | B_16 | B_15 | B_14 | B_13 | B_12 | B_11 | B_10 | B_09 | 
   +------+------+------+------+------+------+------+------+
   | B_24 | B_23 | B_22 | B_21 | B_20 | B_19 | B_18 | B_17 | 
   +------+------+------+------+------+------+------+------+
   | B_32 | B_31 | B_30 | B_29 | B_28 | B_27 | B_26 | B_25 | 
   +------+------+------+------+------+------+------+------+
   | B_40 | B_39 | B_38 | B_37 | B_36 | B_35 | B_34 | B_33 | 
   +------+------+------+------+------+------+------+------+
   | B_48 | B_47 | B_46 | B_45 | B_44 | B_43 | B_42 | B_41 | 
   +------+------+------+------+------+------+------+------+
   | B_56 | B_55 | B_54 | B_53 | B_52 | B_51 | B_50 | B_49 | 
   +------+------+------+------+------+------+------+------+
   | B_64 | B_63 | B_62 | B_61 | B_60 | B_59 | B_58 | B_57 | 
   +------+------+------+------+------+------+------+------+
   | B_72 | B_71 | B_70 | B_69 | B_68 | B_67 | B_66 | B_65 | 
   +------+------+------+------+------+------+------+------+
   | B_80 | B_79 | B_78 | B_77 | B_76 | B_75 | B_74 | B_73 | 
   +------+------+------+------+------+------+------+------+
   | RSVA | RSVB | RSVC | RSV0 | RSV0 | RSV0 | RSV0 | B_81 | 
   +------+------+------+------+------+------+------+------+
 


Demjanenko, Satterlee  Expires September 24, 2015              [Page 10]

INTERNET DRAFT   RTP Payload Format for the MELPe Codec   March 23, 2015


   Figure 3 - Packed MELPe 1200 bps payload octets. 


3.1.3 600 bps Bitstream Structure

   According to Tables M-11 to M-16 of [MELPE], the 600 bit/s MELPe bit
   transmission order (bit priority is not shown for clarity) is the
   following:


          +--------+-------------+-------------+-------------+
          |  Bit   |    Mode 1   |    Mode 2   |    Mode 3   |
          |        |   (Voiced)  |   (voiced)  |   (voiced)  |
          +--------+-------------+-------------+-------------+
          |  B_01  | Voicing (4) | Voicing (4) | Voicing (4) |
          |  B_02  | Voicing (3) | Voicing (3) | Voicing (3) |
          |  B_03  | Voicing (2) | Voicing (2) | Voicing (2) |
          |  B_04  | Voicing (1) | Voicing (1) | Voicing (1) |
          |  B_05  | Voicing (0) | Voicing (0) | Voicing (0) |
          |  B_06  |  LSF1,4 (3) |  Pitch (5)  |  Pitch (7)  |
          |  B_07  |  LSF1,4 (2) |  Pitch (4)  |  Pitch (6)  |
          |  B_08  |  LSF1,4 (1) |  Pitch (3)  |  Pitch (5)  |
          +--------+-------------+-------------+-------------+
          |  B_09  |  LSF1,4 (0) |  Pitch (2)  |  Pitch (4)  |
          |  B_10  |  LSF1,3 (3) |  Pitch (1)  |  Pitch (3)  |
          |  B_11  |  LSF1,3 (2) |  Pitch (0)  |  Pitch (2)  |
          |  B_12  |  LSF1,3 (1) |  LSF1,3 (3) |  Pitch (1)  |
          |  B_13  |  LSF1,3 (0) |  LSF1,3 (2) |  Pitch (0)  |
          |  B_14  |  LSF1,2 (3) |  LSF1,3 (1) |  LSF1,3 (3) |
          |  B_15  |  LSF1,2 (2) |  LSF1,3 (0) |  LSF1,3 (2) |
          |  B_16  |  LSF1,2 (1) |  LSF1,2 (3) |  LSF1,3 (1) |
          +--------+-------------+-------------+-------------+
          |  B_17  |  LSF1,2 (0) |  LSF1,2 (2) |  LSF1,3 (0) |
          |  B_18  |  LSF1,1 (5) |  LSF1,2 (1) |  LSF1,2 (4) |
          |  B_19  |  LSF1,1 (4) |  LSF1,2 (0) |  LSF1,2 (3) |
          |  B_20  |  LSF1,1 (3) |  LSF1,1 (5) |  LSF1,2 (2) |
          |  B_21  |  LSF1,1 (2) |  LSF1,1 (4) |  LSF1,2 (1) |
          |  B_22  |  LSF1,1 (1) |  LSF1,1 (3) |  LSF1,2 (0) |
          |  B_23  |  LSF1,1 (0) |  LSF1,1 (2) |  LSF1,1 (5) |
          |  B_24  |  LSF2,4 (3) |  LSF1,1 (1) |  LSF1,1 (4) |
          +--------+-------------+-------------+-------------+
          |  B_25  |  LSF2,4 (2) |  LSF1,1 (0) |  LSF1,1 (3) |
          |  B_26  |  LSF2,4 (1) |  LSF2,3 (3) |  LSF1,1 (2) |
          |  B_27  |  LSF2,4 (0) |  LSF2,3 (2) |  LSF1,1 (1) |
          |  B_28  |  LSF2,3 (3) |  LSF2,3 (1) |  LSF1,1 (0) |
          |  B_29  |  LSF2,3 (2) |  LSF2,3 (0) |  LSF2,3 (3) |
          |  B_30  |  LSF2,3 (1) |  LSF2,2 (4) |  LSF2,3 (2) |
          |  B_31  |  LSF2,3 (0) |  LSF2,2 (3) |  LSF2,3 (1) |
 


Demjanenko, Satterlee  Expires September 24, 2015              [Page 11]

INTERNET DRAFT   RTP Payload Format for the MELPe Codec   March 23, 2015


          |  B_32  |  LSF2,2 (3) |  LSF2,2 (2) |  LSF2,3 (0) |
          +--------+-------------+-------------+-------------+
          |  B_33  |  LSF2,2 (2) |  LSF2,2 (1) |  LSF2,2 (4) |
          |  B_34  |  LSF2,2 (1) |  LSF2,2 (0) |  LSF2,2 (3) |
          |  B_35  |  LSF2,2 (0) |  LSF2,1 (6) |  LSF2,2 (2) |
          |  B_36  |  LSF2,1 (5) |  LSF2,1 (5) |  LSF2,2 (1) |
          |  B_37  |  LSF2,1 (4) |  LSF2,1 (4) |  LSF2,2 (0) |
          |  B_38  |  LSF2,1 (3) |  LSF2,1 (3) |  LSF2,1 (5) |
          |  B_39  |  LSF2,1 (2) |  LSF2,1 (2) |  LSF2,1 (4) |
          |  B_40  |  LSF2,1 (1) |  LSF2,1 (1) |  LSF2,1 (3) |
          +--------+-------------+-------------+-------------+
          |  B_41  |  LSF2,1 (0) |  LSF2,1 (0) |  LSF2,1 (2) |
          |  B_42  |  GAIN2 (5)  |  GAIN2 (5)  |  LSF2,1 (1) |
          |  B_43  |  GAIN2 (4)  |  GAIN2 (4)  |  LSF2,1 (0) |
          |  B_44  |  GAIN2 (3)  |  GAIN2 (3)  |  GAIN2 (4)  |
          |  B_45  |  GAIN2 (2)  |  GAIN2 (2)  |  GAIN2 (3)  |
          |  B_46  |  GAIN2 (1)  |  GAIN2 (1)  |  GAIN2 (2)  |
          |  B_47  |  GAIN2 (0)  |  GAIN2 (0)  |  GAIN2 (1)  |
          |  B_48  |  GAIN1 (6)  |  GAIN1 (6)  |  GAIN2 (0)  |
          +--------+-------------+-------------+-------------+
          |  B_49  |  GAIN1 (5)  |  GAIN1 (5)  |  GAIN1 (5)  |
          |  B_50  |  GAIN1 (4)  |  GAIN1 (4)  |  GAIN1 (4)  |
          |  B_51  |  GAIN1 (3)  |  GAIN1 (3)  |  GAIN1 (3)  |
          |  B_52  |  GAIN1 (2)  |  GAIN1 (2)  |  GAIN1 (2)  |
          |  B_53  |  GAIN1 (1)  |  GAIN1 (1)  |  GAIN1 (1)  |
          |  B_54  |  GAIN1 (0)  |  GAIN1 (0)  |  GAIN1 (0)  |
          +--------+-------------+-------------+-------------+

   Table 3.3a - The bitstream definition for MELPe 600 bps (part 1 of
   2).

          +--------+-------------+-------------+-------------+
          |  Bit   |    Mode 4   |    Mode 5   |    Mode 6   |
          |        |   (voiced)  |   (voiced)  |   (voiced)  |
          +--------+-------------+-------------+-------------+
          |  B_01  | Voicing (4) | Voicing (4) | Voicing (4) |
          |  B_02  | Voicing (3) | Voicing (3) | Voicing (3) |
          |  B_03  | Voicing (2) | Voicing (2) | Voicing (2) |
          |  B_04  | Voicing (1) | Voicing (1) | Voicing (1) |
          |  B_05  | Voicing (0) | Voicing (0) | Voicing (0) |
          |  B_06  |  Pitch (7)  |  Pitch (7)  |  Pitch (7)  |
          |  B_07  |  Pitch (6)  |  Pitch (6)  |  Pitch (6)  |
          |  B_08  |  Pitch (5)  |  Pitch (5)  |  Pitch (5)  |
          +--------+-------------+-------------+-------------+
          |  B_09  |  Pitch (4)  |  Pitch (4)  |  Pitch (4)  |
          |  B_10  |  Pitch (3)  |  Pitch (3)  |  Pitch (3)  |
          |  B_11  |  Pitch (2)  |  Pitch (2)  |  Pitch (2)  |
          |  B_12  |  Pitch (1)  |  Pitch (1)  |  Pitch (1)  |
 


Demjanenko, Satterlee  Expires September 24, 2015              [Page 12]

INTERNET DRAFT   RTP Payload Format for the MELPe Codec   March 23, 2015


          |  B_13  |  Pitch (0)  |  Pitch (0)  |  Pitch (0)  |
          |  B_14  |  LSF1,3 (3) |  LSF1,3 (3) |  LSF1,3 (3) |
          |  B_15  |  LSF1,3 (2) |  LSF1,3 (2) |  LSF1,3 (2) |
          |  B_16  |  LSF1,3 (1) |  LSF1,3 (1) |  LSF1,3 (1) |
          +--------+-------------+-------------+-------------+
          |  B_17  |  LSF1,3 (0) |  LSF1,3 (0) |  LSF1,3 (0) |
          |  B_18  |  LSF1,2 (3) |  LSF1,2 (4) |  LSF1,2 (4) |
          |  B_19  |  LSF1,2 (2) |  LSF1,2 (3) |  LSF1,2 (3) |
          |  B_20  |  LSF1,2 (1) |  LSF1,2 (2) |  LSF1,2 (2) |
          |  B_21  |  LSF1,2 (0) |  LSF1,2 (1) |  LSF1,2 (1) |
          |  B_22  |  LSF1,1 (5) |  LSF1,2 (0) |  LSF1,2 (0) |
          |  B_23  |  LSF1,1 (4) |  LSF1,1 (5) |  LSF1,1 (6) |
          |  B_24  |  LSF1,1 (3) |  LSF1,1 (4) |  LSF1,1 (5) |
          +--------+-------------+-------------+-------------+
          |  B_25  |  LSF1,1 (2) |  LSF1,1 (3) |  LSF1,1 (4) |
          |  B_26  |  LSF1,1 (1) |  LSF1,1 (2) |  LSF1,1 (3) |
          |  B_27  |  LSF1,1 (0) |  LSF1,1 (1) |  LSF1,1 (2) |
          |  B_28  |  LSF2,3 (3) |  LSF1,1 (0) |  LSF1,1 (1) |
          |  B_29  |  LSF2,3 (2) |  LSF2,3 (3) |  LSF1,1 (0) |
          |  B_30  |  LSF2,3 (1) |  LSF2,3 (2) |  LSF2,3 (3) |
          |  B_31  |  LSF2,3 (0) |  LSF2,3 (1) |  LSF2,3 (2) |
          |  B_32  |  LSF2,2 (4) |  LSF2,3 (0) |  LSF2,3 (1) |
          +--------+-------------+-------------+-------------+
          |  B_33  |  LSF2,2 (3) |  LSF2,2 (4) |  LSF2,3 (0) |
          |  B_34  |  LSF2,2 (2) |  LSF2,2 (3) |  LSF2,2 (4) |
          |  B_35  |  LSF2,2 (1) |  LSF2,2 (2) |  LSF2,2 (3) |
          |  B_36  |  LSF2,2 (0) |  LSF2,2 (1) |  LSF2,2 (2) |
          |  B_37  |  LSF2,1 (6) |  LSF2,2 (0) |  LSF2,2 (1) |
          |  B_38  |  LSF2,1 (5) |  LSF2,1 (5) |  LSF2,2 (0) |
          |  B_39  |  LSF2,1 (4) |  LSF2,1 (4) |  LSF2,1 (6) |
          |  B_40  |  LSF2,1 (3) |  LSF2,1 (3) |  LSF2,1 (5) |
          +--------+-------------+-------------+-------------+
          |  B_41  |  LSF2,1 (2) |  LSF2,1 (2) |  LSF2,1 (4) |
          |  B_42  |  LSF2,1 (1) |  LSF2,1 (1) |  LSF2,1 (3) |
          |  B_43  |  LSF2,1 (0) |  LSF2,1 (0) |  LSF2,1 (2) |
          |  B_44  |  GAIN2 (4)  |  GAIN2 (4)  |  LSF2,1 (1) |
          |  B_45  |  GAIN2 (3)  |  GAIN2 (3)  |  LSF2,1 (0) |
          |  B_46  |  GAIN2 (2)  |  GAIN2 (2)  |  GAIN1 (8)  |
          |  B_47  |  GAIN2 (1)  |  GAIN2 (1)  |  GAIN1 (7)  |
          |  B_48  |  GAIN2 (0)  |  GAIN2 (0)  |  GAIN1 (6)  |
          +--------+-------------+-------------+-------------+
          |  B_49  |  GAIN1 (5)  |  GAIN1 (5)  |  GAIN1 (5)  |
          |  B_50  |  GAIN1 (4)  |  GAIN1 (4)  |  GAIN1 (4)  |
          |  B_51  |  GAIN1 (3)  |  GAIN1 (3)  |  GAIN1 (3)  |
          |  B_52  |  GAIN1 (2)  |  GAIN1 (2)  |  GAIN1 (2)  |
          |  B_53  |  GAIN1 (1)  |  GAIN1 (1)  |  GAIN1 (1)  |
          |  B_54  |  GAIN1 (0)  |  GAIN1 (0)  |  GAIN1 (0)  |
          +--------+-------------+-------------+-------------+
 


Demjanenko, Satterlee  Expires September 24, 2015              [Page 13]

INTERNET DRAFT   RTP Payload Format for the MELPe Codec   March 23, 2015


          Notes:
          xxxx (0) = LSB
          xxxx (nbits-1) = MSB
          LSF1,p = MSVQ indice of the pth stage of the two first frames
          LSF2,p = MSVQ indice of the pth stage of the two last frames
          GAIN1 = VQ/MSVQ indice of the 1st stage
          GAIN2 = MSVQ indice of the 2nd stage

   Table 3.3b - The bitstream definition for MELPe 600 bps (part 2 of
   2).


   The 600 bps MELPe RTP payload is constructed as per Figure 4.  Note
   that bit B_01 is placed in the LSB of the first byte with all other
   bits in sequence.  When filling octets, the least significant bits of
   the seventh octet are filled with bits B_49 to B_54 respectively.


      MSB                                              LSB
       0      1      2      3      4      5      6      7
   +------+------+------+------+------+------+------+------+
   | B_08 | B_07 | B_06 | B_05 | B_04 | B_03 | B_02 | B_01 | 
   +------+------+------+------+------+------+------+------+
   | B_16 | B_15 | B_14 | B_13 | B_12 | B_11 | B_10 | B_09 | 
   +------+------+------+------+------+------+------+------+
   | B_24 | B_23 | B_22 | B_21 | B_20 | B_19 | B_18 | B_17 | 
   +------+------+------+------+------+------+------+------+
   | B_32 | B_31 | B_30 | B_29 | B_28 | B_27 | B_26 | B_25 | 
   +------+------+------+------+------+------+------+------+
   | B_40 | B_39 | B_38 | B_37 | B_36 | B_35 | B_34 | B_33 | 
   +------+------+------+------+------+------+------+------+
   | B_48 | B_47 | B_46 | B_45 | B_44 | B_43 | B_42 | B_41 | 
   +------+------+------+------+------+------+------+------+
   | RSVA | RSVB | B_54 | B_53 | B_52 | B_51 | B_50 | B_49 | 
   +------+------+------+------+------+------+------+------+

   Figure 4 - Packed MELPe 600 bps payload octets. 


3.2  MELPe Comfort Noise Bitstream Definition 

   Table B.3-1 of [SCIP210] identifies the usage of MELPe 2400 bps
   parameters for conveying comfort noise.


          +-------------------------------------+----------------+
          |           MELPe Parameter           |      Value     |
          +-------------------------------------+----------------+
 


Demjanenko, Satterlee  Expires September 24, 2015              [Page 14]

INTERNET DRAFT   RTP Payload Format for the MELPe Codec   March 23, 2015


          | msvq[0] (line spectral frequencies) |  * See Note    |
          +-------------------------------------+----------------+
          | msvq[1] (line spectral frequencies) |    Set to 0    |
          +-------------------------------------+----------------+
          | msvq[2] (line spectral frequencies) |    Set to 0    |
          +-------------------------------------+----------------+
          | msvq[3] (line spectral frequencies) |    Set to 0    |
          +-------------------------------------+----------------+
          |      fsvq (Fourier magnitudes)      |    Set to 0    |
          +-------------------------------------+----------------+
          |            gain[0] (gain)           |    Set to 0    |
          +-------------------------------------+----------------+
          |            gain[1] (gain)           |  * See Note    |
          +-------------------------------------+----------------+
          |   pitch (pitch - overall voicing)   |    Set to 0    |
          +-------------------------------------+----------------+
          |        bp (bandpass voicing)        |    Set to 0    |
          +-------------------------------------+----------------+
          |   af (aperiodic flag/jitter index)  |    Set to 0    |
          +-------------------------------------+----------------+
          |           sync (sync bit)           |  Alternations  |
          +-------------------------------------+----------------+

          Note: The default value shall be the respective parameters
          from the vocoder frame.  It is recommended that msvq[0] and
          gain[1] values be derived by averaging the respective
          parameter from some number of previous vocoder frames.

   Table 3.4 - MELPe Comfort Noise Parameters 


   Since only msvq[0] (also known as LSF1x or the first LSP) and gain[1]
   (also known as g2x or the second gain) are required, the following
   bit order is used for comfort noise frames.


          +--------+-------------+
          |  Bit   |   Comfort   |
          |        |    Noise    |
          +--------+-------------+
          |  B_01  |     LSF10   |
          |  B_02  |     LSF11   |
          |  B_03  |     LSF12   |
          |  B_04  |     LSF13   |
          |  B_05  |     LSF14   |
          |  B_06  |     LSF15   |
          |  B_07  |     LSF16   |
          |  B_08  |       g20   |
 


Demjanenko, Satterlee  Expires September 24, 2015              [Page 15]

INTERNET DRAFT   RTP Payload Format for the MELPe Codec   March 23, 2015


          +--------+-------------+
          |  B_09  |       g21   |
          |  B_10  |       g22   |
          |  B_11  |       g23   |
          |  B_12  |       g24   |
          |  B_13  |      SYNC   |
          +--------+-------------+

          NOTES:
          g = Gain
          LSF = Line Spectral Frequencies

   Table 3.5 - The bitstream definition for MELPe Comfort Noise. 


   The Comfort Noise MELPe RTP payload is constructed as per Figure 5. 
   Note that bit B_01 is placed in the LSB of the first byte with all
   other bits in sequence.  When When filling octets, the least
   significant bits of the second octet are filled with bits B_09 to
   B_13 respectively.


      MSB                                              LSB
       0      1      2      3      4      5      6      7
   +------+------+------+------+------+------+------+------+
   | B_08 | B_07 | B_06 | B_05 | B_04 | B_03 | B_02 | B_01 | 
   +------+------+------+------+------+------+------+------+
   | RSVA | RSVB | RSVC | B_13 | B_12 | B_11 | B_10 | B_09 | 
   +------+------+------+------+------+------+------+------+

   Figure 5 - Packed MELPe Comfort Noise payload octets. 


3.3  Multiple MELPe frames in a RTP packet 

   A MELPe RTP packet may consist of zero or more MELPe coder frames,
   followed by zero or one MELPe Comfort Noise frames.  The presence of
   a comfort noise frame can be deduced from the length of the RTP
   payload.  The default packetization interval is one coder frame
   (22.5, 67.5 or 90 ms) according to the coder rate (2400, 1200 or 600
   bps).  For some applications, a longer packetization interval may be
   required to reduce the packet rate.

   All MELPe frames in a single RTP packet MUST be of the same coder
   rate. Dynamic switching between frame rates within an RTP stream may
   be permitted (if supported by both ends) provided that reserved bits,
   RSVA, RSVB, and RSVC are filled in as per Table 3.6.  If rate
   switching is not used, all reserved bits are encoded as 0 by the
 


Demjanenko, Satterlee  Expires September 24, 2015              [Page 16]

INTERNET DRAFT   RTP Payload Format for the MELPe Codec   March 23, 2015


   sender and ignored by the receiver.  (RSV0 is always coded as 0).

          +-------------------+------+------+------+
          |   Coder Rate      | RSVA | RSVB | RSVC |
          +-------------------+------+------+------+
          |   2400 bps        |   0  |   0  |  N/A |
          +-------------------+------+------+------+
          |   1200 bps        |   1  |   0  |   0  |
          +-------------------+------+------+------+
          |    600 bps        |   0  |   1  |  N/A |
          +-------------------+------+------+------+
          |   Comfort Noise   |   1  |   0  |   1  |
          +-------------------+------+------+------+
          |   (reserved)      |   1  |   1  |  N/A |
          +-------------------+------+------+------+

   Table 3.6 - MELPe Frame Rate Indicators.


   It is important to observe that senders have the following additional
   restrictions:

   SHOULD NOT include more MELPe frames in a single RTP packet than will
   fit in the MTU of the RTP transport protocol. 

   Frames MUST NOT be split between RTP packets. 

   It is RECOMMENDED that the number of frames contained within an RTP
   packet is consistent with the application.  For example, in a
   telephony and other real time applications where delay is important,
   then the fewer frames per packet the lower the delay, whereas for a
   bandwidth constrained links or delay insensitive streaming messaging
   application, more than one or many frames per packet would be
   acceptable.

   Information describing the number of frames contained in an RTP
   packet is not transmitted as part of the RTP payload.  The way to
   determine the number of MELPe frames is to count the total number of
   octets within the RTP packet, and divide the octet count by the
   number of expected octets per frame (7/11/7 per frame).  Keep in mind
   the last frame may be a 2 octet comfort noise frame.   

   When dynamic rate switching is used and more than one frame is
   contained in a RTP packet, it is recommended to inspect the coder
   rate bits contained in the last octet.  If the coder rate indicates a
   Comfort Noise frame, then inspect the third last octet for the coder
   rate.  All MELPe speech frames in the RTP packet will be of this same
   coder rate.
 


Demjanenko, Satterlee  Expires September 24, 2015              [Page 17]

INTERNET DRAFT   RTP Payload Format for the MELPe Codec   March 23, 2015


4  Mapping to SDP Parameters 

   The information carried in the MIME media type specification has a
   specific mapping to fields in the Session Description Protocol (SDP)
   [RFC2327], which is commonly used to describe RTP sessions.  When SDP
   is used to specify sessions employing the MELPe codec, the mapping is
   as follows: 

        o The MIME type ("audio") goes in SDP "m=" as the media name. 
        o The MIME subtype (payload format name) goes in SDP "a=rtpmap"
   as the encoding name. 
        o The parameter "rate" goes in the SDP "a=fmtp" attribute by
   copying it directly from the MIME media type string as "rate=value"
   or "rate=value1,value2" or "rate=value1,value2,value3". 

   When conveying information by SDP, the encoding name SHALL be "MELP"
   (the same as the MIME subtype).  Alternative encoding name types,
   "MELP2400", "MELP1200", and "MELP600", may be used in SDP to convey
   fixed rate configurations.  These names have been observed in systems
   that do not support dynamic frame rate switching as specified by the
   parameter, "rate".

   An example of the media representation in SDP for describing MELPe
   might be: 

    m=audio 49120 RTP/AVP 97 
    a=rtpmap:97 MELP/8000 

   An alternative example of SDP for fixed rate configurations might be:

    m=audio 49120 RTP/AVP 97 100 101 102
    a=rtpmap:97 MELP/8000 
    a=rtpmap:100 MELP2400/8000 
    a=rtpmap:101 MELP1200/8000 
    a=rtpmap:102 MELP600/8000 

   If the encoding name "MELP" is received without a "rate" parameter,
   the fixed coder rate of 2400 MUST be used.  The alternate encoding
   names, "MELP2400", "MELP1200", and "MELP600" directly specify the
   MELPe coder rate of 2400, 1200, and 600 respectively and MUST NOT
   specify a "rate" parameter.

   A remote MELPe encoder SHALL receive "rate" parameter in the SDP
   "a=fmtp" attribute by copying them directly from the MIME media type
   string as a semicolon separated with parameter=value, where parameter
   is "rate", and value can be one or more of 2400, 1200, and 600
   separated by commas (where each rate value indicates the
   corresponding MELPe coder). An example of the media representation in
 


Demjanenko, Satterlee  Expires September 24, 2015              [Page 18]

INTERNET DRAFT   RTP Payload Format for the MELPe Codec   March 23, 2015


   SDP for describing MELPe when all three coder rates are supported
   might be: 

    m=audio 49120 RTP/AVP 97 
    a=rtpmap:97 MELP/8000 
    a=fmtp:97 rate=2400,600,1200

   For streaming media, the "rate" parameter specifes the possible rates
   used by the sender.  In an Offer/Answer mode [RFC3264], "rate" is a
   bi-directional parameter.  Both sides MUST use a common "rate" value
   or values. 

   The offer contains the rates supported by the offerer listed in its
   preferred order.  The answerer may agree to any rate by listing the
   rate first in the answerer response.  Additionally the answerer may
   indicate any secondary rate or rates that it supports.  The initial
   rate used by both parties SHALL be the first bandwidth rate specified
   in the answerer response. 

   For example if offerer rates are "2400,600", and answer rates are
   "600,2400", the initial rate is 600.  If other rates are provided by
   the answerer, any common rate between offer and answer may be used at
   any time in the future.  Activation of these other common rates is
   beyond the scope of this document.

   The use of a lower rate is often important for a case such as when
   one end point utilizes a bandwidth constrained link (e.g. 1200 bps
   radio link or slower), where only the lower coder rate will work. 

   Parameter ptime can not be used for the purpose of specifying MELPe
   operating mode, due to fact that for the certain values it will be
   impossible to distinguish which mode is about to be used (e.g. when
   ptime=68, it would be impossible to distinguish if packet is carrying
   1 frames of 67.5 ms or 3 frames of 22.5 ms etc.). 

   When SDP is used for broadcast MELPe audio, multiple MELPe rtpmap
   values (such as 97, 98, and 99 as used below) may be used to convey
   MELPe coded voice at different rates.  The receiver can then select
   an appropriate MELPe codec by using 97, 98, or 99.

    m=audio 49120 RTP/AVP 97 98 99
    a=rtpmap:97 MELP/8000 
    a=fmtp:97 rate=2400
    a=rtpmap:98 MELP/8000 
    a=fmtp:98 rate=1200
    a=rtpmap:99 MELP/8000 
    a=fmtp:99 rate=600

 


Demjanenko, Satterlee  Expires September 24, 2015              [Page 19]

INTERNET DRAFT   RTP Payload Format for the MELPe Codec   March 23, 2015


   Note that the payload format (encoding) names are commonly shown in
   upper case. MIME subtypes are commonly shown in lower case.  These
   names are case-insensitive in both places.  Similarly, parameter
   names are case-insensitive both in MIME types and in the default
   mapping to the SDP a=fmtp attribute 

   The value for "packet time" and "maximum packet time" parameters of
   the "ptime" and "maxptime" SDP attributes respectively, SHALL use the
   nearest rounded-up ms integer packet duration.  For MELPe, this
   corresponds to the values: 23, 45, 68, 90, 112, 135, 156, and 180. 
   Larger values may be used as long as they are properly rounded.


5  Discontinious Transmission 

   A primary application of MELPe is for radio communications of voice
   conversations and discontinuous transmissions are normal.  When MELPe
   is used in an IP network, MELPe RTP packet transmissions may cease
   and resume frequently.  RTP SSRC sequence number gaps indicate lost
   packets to be filled by PLC while abrupt loss of RTP packets indicate
   intended discontinuous transmission.

   If a MELPe coder so desires, it may send a comfort noise frame as per
   SCIP-210 Appendix B [SCIP210] prior to ceasing transmission.  A
   receiver may optionally use comfort noise during its silence periods.
    No SDP negotiations are required.


6  Packet Loss Concealment 

   MELPe packet loss concealment (PLC) uses the special properties and
   coding for the pitch/voicing parameter of the MELPe 2400 bps coder. 
   The PLC erasure indication may utilize any of the errored encodings
   of a non-voiced frame as identified in Table 1 of [MELPE].  For the
   sake of simplicity it is recommended to use a code value of 3 for the
   pitch/voicing parameter (represented by the bits P6 to P0 in Table
   3.1).  Hence, set bits P0 and P1 to one and bits P2, P3, P4, P5, and
   P6 to zero.

   When using PLC in a 1200 bps or 600 bps mode, the MELPe 2400 bps
   decoder is called three or four times respectively to cover the loss
   of a MELPe frame.






 


Demjanenko, Satterlee  Expires September 24, 2015              [Page 20]

INTERNET DRAFT   RTP Payload Format for the MELPe Codec   March 23, 2015


7  Security Considerations

   RTP packets using the payload format defined in this specification
   are subject to the general security considerations discussed in
   [RFC3550] and any appropriate profile (e.g. [RFC2736]). 

   As this format transports encoded speech, the main security issues
   include confidentiality and authentication of the speech itself. The
   payload format itself does not have any built-in security mechanisms.
   Confidentiality of the media streams is achieved by encryption,
   therefore external mechanisms, such as SRTP [RFC3711], MAY be used
   for that purpose. The data compression used with this payload format
   is applied end-to-end; hence encryption may be performed after
   compression with no conflict between the two operations. 

   A potential denial-of-service threat exists for data encoding using
   compression techniques that have non-uniform receiver-end
   computational load. The attacker can inject pathological datagrams
   into the stream which are complex to decode and cause the receiver to
   become overloaded. However, the encodings covered in this document do
   not exhibit any significant non-uniformity. 

   <Security considerations text>


8  IANA Considerations

   <IANA considerations text>


9  References

9.1  Normative References

   [RFC2119] S. Bradner, "Key words for use in RFCs to Indicate
   requirement Levels", BCP 14, RFC 2119, March 1997. 

   [RFC3550] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson,
   "RTP: A Transport Protocol for Real-Time Applications", IETF RFC
   3550, July 2003. 

   [RFC3551] H. Schulzrinne, S. Casner, "RTP Profile for Audio and Video
   Conferences with Minimal Control" IETF RFC 3551, July 2003. 

   [RFC2327] M. Handley and V. Jacobson, "SDP: Session Description
   Protocol", IETF RFC 2327, April 1998 

   [RFC3264] J. Rosenberg, H. Schulzrinne, "An Offer/Answer Model with
 


Demjanenko, Satterlee  Expires September 24, 2015              [Page 21]

INTERNET DRAFT   RTP Payload Format for the MELPe Codec   March 23, 2015


   the Session Description Protocol (SDP)" IETF RFC 3264, June 2002. 

   [RFC2736] M. Handley and C. Perkins, "Guidelines for Writers of RTP
   Payload Format Specifications", BCP 36, RFC 2736, December 1999.

   [RFC3711] Baugher, et al., "The Secure Real Time Transport Protocol",
   IETF RFC 3711, March 2004. 


9.2  Informative References

   [MELP] Department of Defense Telecommunications Standard, "Analog-to-
   Digital Conversion of Voice by 2,400 Bit/Second Mixed Excitation
   Linear Prediction (MELP)", MIL-STD-3005, December 1999.

   [MELPE] North Atlantic Treaty Organization (NATO), "The 600 Bit/S,
   1200 Bit/S and 2400 Bit/S NATO Interoperable Narrow Band Voice
   Coder", STANAG No. 4591, January 2006.

   [SCIP210] National Security Agency, "SCIP Signaling Plan", SCIP-210,
   December 2007.


Authors' Addresses


   Victor Demjanenko, Ph.D.
   VOCAL Technologies, Ltd.
   520 Lee Entrance, Suite 202
   Buffalo, NY 14228
   USA
   Phone: +1 716 688 4675
   Email: victor.demjanenko@vocal.com

   David Satterlee
   VOCAL Technologies, Ltd.
   520 Lee Entrance, Suite 202
   Buffalo, NY 14228
   USA
   Phone: +1 716 688 4675
   Email: david.satterlee@vocal.com










Demjanenko, Satterlee  Expires September 24, 2015              [Page 22]