
CoRE Working Group T. Zotti
Internet-Draft Philips Research
Intended status: Informational P. van der Stok
Expires: September 10, 2015 Consultant
 E. Dijk
 Philips Research
 March 9, 2015

 Sleepy CoAP Nodes
 draft-zotti-core-sleepy-nodes-01

Abstract

 6LoWPAN networks rely on application protocols like CoAP to enable
 RESTful communications in constrained environments. Many of these
 networks make use of "Sleepy Nodes": battery powered devices that
 switch off their (radio) interface during most of the time to
 conserve battery energy. As a result of this, Sleepy Nodes cannot be
 reached most of the time. This fact prevents using normal
 communication patterns as specified in the CoRE group, since the
 server-model is not applicable to these devices. This document
 discusses and specifies an architecture to support Sleepy Nodes such
 as battery-powered sensors in 6LoWPAN networks with the goal of
 guiding and stimulating the discussion on Sleepy Nodes support for
 CoAP in the CoRE WG.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 10, 2015.

Zotti, et al. Expires September 10, 2015 [Page 1]

Internet-Draft Sleepy Nodes March 2015

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Problem statement . 3
 1.2. Assumptions . 4
 1.3. Requirements Language 4
 2. Solution Architecture . 6
 3. Use case scenarios . 7
 4. Initial operations . 9
 4.1. Proxy Discovery . 10
 4.2. Registration at a Proxy 10
 4.3. Initialization of Delegated Resource 10
 4.4. Proxy registers at a Discovery Server on behalf of Sleepy
 Node . 11
 5. Interfaces during operation 11
 5.1. Discovering Node DISCOVERs Sleepy Node via Discovery
 Server . 11
 5.2. Discovering Node DISCOVERs Sleepy Node via Proxy 11
 5.3. Sleepy Node REPORTs events directly to Destination Node . 11
 5.4. Sleepy Node REPORTs event to Destination Node(s) via
 Proxy . 12
 5.5. Sleepy Node WRITEs changed resource to Proxy 12
 5.6. A Node WRITEs to Sleepy Node via Proxy 12
 5.7. Sleepy Node READs resource updates from Proxy 13
 5.8. A Node READs information from Sleepy Node via Proxy . . . 13
 5.9. A Sleepy Node READs information from a Server Node . . . 14
 6. Realization with PubSub server 14
 7. Acknowledgements . 14
 8. IANA Considerations . 14
 9. Security Considerations 14
 10. References . 15
 10.1. Normative References 15
 10.2. Informative References 15

Zotti, et al. Expires September 10, 2015 [Page 2]

Internet-Draft Sleepy Nodes March 2015

 Authors’ Addresses . 16

1. Introduction

 6LoWPAN networks rely on application protocols such as CoAP to enable
 RESTful communications in constrained environments. Many of these
 networks feature "Sleepy Nodes": battery-powered nodes which switch
 on/off their communication interface to conserve battery energy. As
 a result of this, Sleepy Nodes cannot be reached most of the time.
 This fact prevents using normal communication patterns as specified
 by the CoRE group, since the server model is clearly not applicable
 to the most energy constrained devices.

 This document discusses and specifies an architecture to support
 Sleepy Nodes such as battery-powered sensors in 6LoWPAN networks.
 The proposed solution makes use of a Proxy Node to which a Sleepy
 Node delegates part of its communication tasks while it is not
 accessible in the 6LoWPAN network. Direct interactions between
 Sleepy Nodes and non-Sleepy Nodes are only possible, when the Sleepy
 Node initiates the communication.

 Earlier related documents treating the sleepy node subject are the
 CoRE mirror server [I-D.vial-core-mirror-server] and the Publish-
 Subscribe in the Constrained Application Protocol (CoAP)
 [I-D.koster-core-coap-pubsub]. Both documents describe the
 interfaces to the proxy accompanying the sleepy node. Both make use
 of the observe option discussed in [I-D.ietf-core-observe]. This
 document describes the roles of the nodes communicating with the
 sleepy node and/or its proxy. As such it contributes to
 understanding how well the other proposals support the operation of
 the sleepy nodes in a building control context.

 The issues that need to be addressed to provide support for Sleepy
 Nodes in 6LoWPAN networks are summarized in Section 1.1. Section 2
 shows the communications patterns involving Sleepy Nodes in 6LoWPAN
 networks. Section 3 provides a set of use case descriptions that
 illustrate how these communication patterns can be used in home and
 building control scenarios. For each of these scenarios, the
 behaviour of the Sleepy Node is explained in Section 5.

1.1. Problem statement

 During typical operation, a Sleepy Node has its radio disabled and
 the CPU may be in a sleeping state. If an external event occurs
 (e.g. person walks into the room activating a presence sensor), the
 CPU and radio are powered back on and they send out an event message
 to another node, or to a group of nodes. After sending this message,
 the radio and CPU are powered off again, and the Sleepy Node sleeps

Zotti, et al. Expires September 10, 2015 [Page 3]

Internet-Draft Sleepy Nodes March 2015

 until the next external event or until a predefined time period has
 passed. The main problems when introducing Sleepy Nodes into a
 6LoWPAN network are as follows:

 Problem 1: How to contact a Sleepy Node that has its radio turned off
 most of the time for:

 - Writing configuration settings.

 - Reading out sensor data, settings or log data.

 - Configuring additional event destination nodes or node groups.

 Problem 2: How to discover a Sleepy Node and its services, while the
 node is asleep:

 - Direct node discovery (CoAP GET /.well-known/core as defined in
 [RFC7252]) does not find the node with high probability.

 - Mechanisms may be needed to provide, as the result of node
 discovery, the IP address of a Proxy instead of the IP address of
 the node directly.

 Problem 3: How a Sleepy Node can convey data to a node or groups of
 nodes, with good reliability and minimal energy consumption.

1.2. Assumptions

 The solution architecture specified here assumes that a Sleepy Node
 has enough energy to perform bidirectional communication during its
 normal operational state. This solution may be applicable also to
 extreme low-power devices such as solar powered sensors as long as
 they have enough energy to perform commissioning and the initial
 registration steps. These installation operations may require, in
 some cases, an additional source of power. Since a Sleepy Node is
 unreachable for relatively long periods of times, the data exchanges
 in the interaction model are always initiated by a Sleepy Node when
 its sleep period ends.

1.3. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 This document assumes readers are familiar with the terms and
 concepts discussed in [RFC7252],[RFC5988],
 [I-D.ietf-core-resource-directory],

Zotti, et al. Expires September 10, 2015 [Page 4]

Internet-Draft Sleepy Nodes March 2015

 [I-D.ietf-core-interfaces],[I-D.ietf-core-observe] and
 [I-D.vial-core-mirror-server].

 In addition, this document makes use of the following additional
 terminology:

 Sleepy Node: a battery-powered node which does the on/off switching
 of its communication interface with the purpose of conserving battery
 energy

 Sleeping/Asleep: A Sleepy Node being in a "sleeping state" i.e. its
 network interface is switched off and a Sleepy Node is not able to
 send or receive messages.

 Awake/Not Sleeping: A Sleepy Node being in an "awake state" i.e. its
 network interface is switched on and the Sleepy Node is able to send
 or receive messages.

 Wake up reporting duration: the duration between a wake up from a
 Sleepy Node and the next wake up and report of the same Node.

 Proxy: any node that is configured to, or selected to, perform
 communication tasks on behalf of one or more Sleepy Nodes.

 Regular Node: any node in the network which is not a Proxy or a
 Sleepy Node.

 Reading Node: any regular node that reads information from the Sleepy
 Node.

 Configuring Node: any regular node that writes information/
 configuration into Sleepy Node(s). Examples of configuration are new
 thresholds for a sensor or a new value for the wake-up cycle time.

 Discovering Node: any regular node that performs discovery of the
 nodes in a network, including Sleepy Nodes.

 Destination Node: any regular node or node in a group that receives a
 message that is generated by the Sleepy Node.

 Server Node: an optional server that the Sleepy Node knows about, or
 is told about, which is used to fetch information/configuration/
 firmware updates/etc.

 Discovery Server: an optional server that enables nodes to discover
 all the devices in the network, including Sleepy Nodes, and query
 their capabilities. For example, a Resource Directory server as

Zotti, et al. Expires September 10, 2015 [Page 5]

Internet-Draft Sleepy Nodes March 2015

 defined in [I-D.ietf-core-resource-directory] or a DNS-SD server as
 defined in [RFC6763].

2. Solution Architecture

 The solution architecture described in this document makes use of a
 Proxy Node to which a Sleepy Node delegates part of its communication
 tasks during its sleeping periods. In particular, the solution is
 based on the set of functionalities described in
 [I-D.vial-core-mirror-server] according to which a Proxy Node hosts a
 ’delegated’ version of the original CoAP resources of the Sleepy
 Node. [I-D.vial-core-mirror-server] provides the interface to
 register, update and remove proxied resources, along with the
 interface to read and update the proxied resources by both the Sleepy
 Node and Regular Nodes.

 Figure 1 provides an overview of the communication interfaces
 required to support a Sleepy Node in a 6LoWPAN Network, highlighting
 the different types and roles of the Nodes (shown as blocks) along
 with the interactions between them. The interfaces are depicted as
 arrows. The arrows point from the Node taking the communication
 initiative to the target Node.

 In some implementations, the roles of Proxy and Discovery Server
 could be implemented by a single node. Furthermore, a single Node
 could act in a combination of roles (e.g. it may play both the role
 of discovering node and Configuring Node).

Zotti, et al. Expires September 10, 2015 [Page 6]

Internet-Draft Sleepy Nodes March 2015

 +------------+ +-------------+
 | Discovery | <-DISCOVERY-| Discovering |
 | server | | Node |
 | (Optional) | +-------------+
 +------------+ |
 |
 .--DISCOVERY--’ +---------+
 | | Reading |
 | .---| Node |
 v | +---------+
 +---------+ +-----------+ |
 | Sleepy |---REPORT(A)-->| |<--READ--’ +-------------+
 | Node |---READ------->| Proxy |<--WRITE----| Configuring |
 | |---WRITE------>| | | Node |
 +---------+ +-----------+ +-------------+
 | | | +-------------+
 | | ’---REPORT(B)->| Destination |
 | ’-----DIRECT REPORT---------------------->| Node |
 | +-------------+
 | +-----------+
 ’------------READ--------------------------->| Server |
 | Node |
 +-----------+

 Figure 1: Interaction model for Sleepy Nodes in 6LowPAN networks

3. Use case scenarios

 To describe the application viewpoint of the solution, we introduce
 some example scenarios for the various interface functions in
 Figure 1, assuming the Sleepy Node to be a sensor device in a home or
 a building control context.

 Function 1: a Node DISCOVERs Sleepy Node(s) (via Proxy or Discovery
 Server); for example:

 - A Node wants to discover given services related to a group of
 deployed sensors via multicast. It gets responses for the
 sleeping sensors from the Proxy nodes.

 - During commissioning phase, a configuring node queries a
 Discovery Server to find all the proxies providing a given
 service.

 Function 2: Sleepy Node REPORTs event to other Node(s) (directly or
 via Proxy); for example:

Zotti, et al. Expires September 10, 2015 [Page 7]

Internet-Draft Sleepy Nodes March 2015

 - A battery-powered sensor sends an event "battery low" directly
 to a designated reporting location Node.

 - A battery-powered occupancy sensor detects an event "people
 present", switches on the radio and sends a request to one or a
 group of lights to turn on.

 - A battery-powered temperature sensor reports periodically the
 room temperature to a designated Node that controls HVAC devices.
 The sensor reports also extra events when the temperature change
 deviates from a predefined range.

 Function 3: Sleepy Node WRITEs information to the Proxy; for example:

 - A battery-powered sensor wants to extend the registration
 lifetime of its delegated resource at the Proxy.

 Function 4: Sleepy Node READs from other Node(s) (directly or via
 Proxy); for example:

 - A sensor (periodically) updates internal data tables by fetching
 it from a predetermined remote node.

 - A sensor (periodically) checks for new firmware with a remote
 node. If new firmware is found, the sensor switches to a non-
 sleepy operation mode, and fetches the data.

 - A sensor (periodically) checks with his Proxy availability of
 configuration updates or changes of its delegated resources (e.g.
 a sensor may detect in this way that a configuring Node has
 changed its name or modified its reporting frequency).

 Function 5: Node READs information from Sleepy Node(s) (via Proxy
 only); for example:

 - A Node (e.g. in the backend) requests the status of a deployed
 sensor, e.g. asking the sensor state and/or firmware version and/
 or battery status and/or its error log. The Proxy returns this
 information.

 - A Node requests a Proxy when a Sleepy sensor was ’last active’
 (i.e. identified as being awake) in the network.

 - An authorized Node adds a new subscription to an operational
 sensor via the Proxy. From that moment on, the new Node receives
 also the sensor events and status updates from the sensor.

Zotti, et al. Expires September 10, 2015 [Page 8]

Internet-Draft Sleepy Nodes March 2015

 Function 6: A Node WRITEs information to a Sleepy Node (via Proxy
 only); for example:

 - An authorized Node changes the reporting frequency of a deployed
 sensor by contacting the Proxy node to which the sensor is
 registered.

 - Sensor firmware is upgraded. An authorized Node pushes firmware
 data blocks to the Proxy, which pushes the blocks to the Sleepy
 Node.

4. Initial operations

 In order to become fully operational in a network and to communicate
 over the interfaces shown in Figure 1, a Sleepy Node needs first to
 perform some initial operations:

 - Discovery of Proxy (directly or via Discovery Server)

 - Registration of resources to delegate at a Proxy

 - Initialization of its delegated resources at the Proxy

 - Registration to a Discovery Server via Proxy (optional)

 +------------+
 | Discovery |
 .-Proxy Discovery-->| server |<--Register Sleepy-.
 | | (Optional) | Node |
 | +------------+ |
 | |
 +---------+ +-----------+ |
 | |----Direct Proxy Discovery--->| | |
 | Sleepy |----Register Resources------->| Proxy |-----’
 | Node |----Initialize Resources----->| |
 +---------+ +-----------+

 Figure 2: Overview of initial operations

Zotti, et al. Expires September 10, 2015 [Page 9]

Internet-Draft Sleepy Nodes March 2015

4.1. Proxy Discovery

 A Sleepy Node can find a Proxy implementing resource cache
 functionalities to which it can delegate its own resources by means
 of:

 1. Discovery via Discovery Server: this interface is the default one
 supplied by the Discovery Server, e.g. CoRE Resource Directory
 [I-D.ietf-core-resource-directory] or DNS-SD [RFC6763].

 2. Direct Discovery: a CoAP multicast GET request can be performed
 on the /.well-known/core resource as specified for CoAP in
 [RFC7390].

 In both cases, a query can be done for the core.ms resource type,
 defined in [I-D.vial-core-mirror-server].

 In a system, The Proxy discovery can be performed even in both ways
 (e.g. if Discovery via Discovery Server fails, the Sleepy Node can
 try Direct Discovery).

4.2. Registration at a Proxy

 Once a Sleepy Node has discovered a Proxy by means of one of the
 procedures described above, the registration step can be performed.
 To perform registration, a Sleepy Node sends to the Proxy Node a CoAP
 POST request containing a description of the resources to be
 delegated to the Proxy as the message payload in the CoRE Link
 Format. The description of the resource includes the Sleepy Node
 identifier, its domain and the lifetime of the registration. The
 Link Format description is identical to the /.well-known/core
 resource. At the moment of the registration at the Proxy, the Sleepy
 Node may specify the ’obs’ attribute to indicate to the Proxy that a
 CoAP observation relationship between the delegated resource and a
 client is allowed and can be performed as described in IETF Draft
 CoRE Observe [I-D.ietf-core-observe]. Upon successful registration,
 the Proxy creates a new resource and returns its location.

4.3. Initialization of Delegated Resource

 Once registration has been successfully performed, the Sleepy Node
 must initialize the delegated resource before it can be visible in
 Resource Discovery via the Proxy Node. To send the initial contents
 (e.g. values, device name, manufacturer name) of the delegated
 resources to the Proxy, the Sleepy Node uses CoAP PUT repeatedly.
 The use of repeated CoAP PUT can be avoided by writing all relevant
 resources into the Proxy in one operation by means of the Batch
 interface described in [I-D.ietf-core-interfaces] After successful

Zotti, et al. Expires September 10, 2015 [Page 10]

Internet-Draft Sleepy Nodes March 2015

 initialization, a Proxy should enable resource discovery for the new
 delegated resources by updating its /.well-known/core resource.

4.4. Proxy registers at a Discovery Server on behalf of Sleepy Node

 Once a Sleepy Node has registered itself to a Proxy, the Proxy has
 the responsibility to register the Sleepy Node to a Discovery Server
 and to keep this registration up-to-date. This interface, not to be
 confused with the interface in which the Sleepy Node registers its
 resources to a Proxy, is required whenever a Discovery Server is
 present in the network. There may be in fact deployments that do not
 have a Discovery Server. At run-time, the Proxy will try to find a
 Discovery Server and if such server is found it will register the
 Sleepy Node. The details of the interface are exactly according to
 the respective Discovery Server specification. A special case might
 be when Proxy and Discovery Server are embodied by the same node. In
 this case the registration occurs as an internal process within the
 Proxy Node itself, upon registration of the Sleepy Node at the Proxy.

5. Interfaces during operation

 This section details the scope and behaviour of each interface
 function specified in the architecture in Figure 1.

5.1. Discovering Node DISCOVERs Sleepy Node via Discovery Server

 Through this interface, a Discovering Node can discover one or more
 Sleepy Node(s) through a Discovery Server. The interface is the
 default one supplied by the Discovery Server, e.g. CoRE Resource
 Directory or DNS-SD.

5.2. Discovering Node DISCOVERs Sleepy Node via Proxy

 Through this interface, a Discovering Node can discover one or more
 Sleepy Node(s) through a Proxy. In case a Discovery Server is not
 active in a system, this is the only way to discover Sleepy Nodes. A
 CoAP client discovers resources owned by the Sleepy Node but hosted
 on the Proxy using typical mechanisms such as one or more GETs on the
 resource /.well-known/core [RFC6690].

5.3. Sleepy Node REPORTs events directly to Destination Node

 When the Sleepy Node needs to report an event to Destination nodes or
 groups of Destination nodes present in the subscribers list, it
 becomes Awake and then it can use standard CoAP POST unicast or
 multicast requests to report the event.

Zotti, et al. Expires September 10, 2015 [Page 11]

Internet-Draft Sleepy Nodes March 2015

5.4. Sleepy Node REPORTs event to Destination Node(s) via Proxy

 This interface can be used by the Sleepy Node to communicate a sensor
 event report message to Proxy (REPORT A) which will further notify it
 to interested Destination Node(s) (REPORT B) that are not directly
 present in the subscribers list of the Sleepy Node itself. This
 indirect reporting is useful for a scalable solution, e.g. there may
 be many interested subscribers but the Sleepy Node itself can only
 support a limited number of subscribers given its limits on battery
 energy. The standard CoAP unicast POST can be used to report events
 to the Proxy (REPORT A), while the mechanism according to which the
 Proxy forwards the event to Destination Nodes (REPORT B) may be
 linked to a specific protocol (for example: CoAP, HTTP, or publish/
 subscribe as in MQTT). A client interested in the events related
 with a specific resource may send a CoAP GET to the Proxy, to obtain
 the last published state. If a Reading node is interested in
 receiving updates whenever the Sleepy Node reports event to its
 Proxy, it can perform a subscription at the Proxy to that specific
 resource. In this case, a standard CoAP GET with the CoAP Observe
 option on the delegated resource at the Proxy can be used, as
 described in [I-D.ietf-core-observe].

5.5. Sleepy Node WRITEs changed resource to Proxy

 A Sleepy Node can update a proxy resource at the Proxy using a
 standard CoAP PUT requests on the proxied resource. This interface
 is only needed when a resource can be changed on the Sleepy Node
 outside the knowledge of the Proxy, i.e. by an entity which is not
 the Proxy. For example, a resource can be changed by the Sleepy Node
 itself. It is good practice, to avoid write/write conflicts at the
 proxy side, to ensure that such frequently-updated resources are
 read-only, e.g. the sensed temperature value of a sensor can be read
 by external nodes but not written.

5.6. A Node WRITEs to Sleepy Node via Proxy

 A Configuring Node uses CoAP PUT to write information (such as
 configuration data) to the Proxy, where the information is destined
 for a Sleepy Node. Upon change of a delegated resource, an internal
 flag is set in the Proxy that the specific resource has changed.
 Next time the Sleepy Node wakes up, the PS Node checks the Proxy for
 any modification of its delegated resources and reads those changed
 resources using CoAP GET requests, as shown in Figure 3. The allowed
 resources that a Configuring Node can write to, and the CoAP Content-
 Format of those CoAP resources, is determined in the initial
 registration phase.

Zotti, et al. Expires September 10, 2015 [Page 12]

Internet-Draft Sleepy Nodes March 2015

5.7. Sleepy Node READs resource updates from Proxy

 This interface allows a Sleepy Node to retrieve a list of delegated
 resources that have been modified at the Proxy by other nodes. As in
 [I-D.vial-core-mirror-server], the path /ms is used to store the
 sleepy node resources in the proxy.

 The Sleepy Node can send GET requests to its Proxy on each delegated
 resource in order to receive their updated representation. The
 example in Figure 3 shows a configuration node which changes the name
 of a Sleepy Node at the Proxy. The Sleepy Node can then check and
 read the modification in its resource.

 +--------+ +-------+ +---------+
 | Sleepy | | Proxy | | Regular |
 | Node | | | | Node |
 +--------+ +-------+ +---------+
 | | <---PUT /ms/0/dev/n----|
 | | Payload: Sensor1 |
 Wake-up |---2.04 Changed-------->|
 event | |
 | | |
 |--POST /ms/0?chk------>| |
 |<----2.04 Changed------| |
 | Payload: <ms/0/dev/n> | |
 | | |
 |---GET /ms/0/dev/n---->| |
 |<-----2.05 Content-----| |
 | Payload: Sensor1 | |
 | | |

 Figure 3: Example: A Sleepy Node READs resource updates from his
 Proxy

5.8. A Node READs information from Sleepy Node via Proxy

 A Reading Node uses standard CoAP GET to read information of a Sleepy
 Node via a Proxy. However, not all information/resources from the
 Sleepy Node may be copied on the Proxy. In that case, the Reading
 Node cannot get direct access to resources that are not delegated to
 the Proxy. The strategy to follow in that case is to first WRITE to
 the Sleepy Node (via the Proxy, Section 5.6) a request for reporting
 this missing information; where the request can be fulfilled by the
 Sleepy Node the next time the Sleepy Node wakes up.

Zotti, et al. Expires September 10, 2015 [Page 13]

Internet-Draft Sleepy Nodes March 2015

5.9. A Sleepy Node READs information from a Server Node

 A Sleepy Node while Awake uses standard CoAP GET to read any
 information from a Server Node. While the Sleepy Node awaits a CoAP
 response containing the requested information, it remains awake. To
 increase battery life of Sleepy Nodes, such an operation should not
 be performed frequently.

6. Realization with PubSub server

 The registration and discovery of the PubSub broker
 [I-D.koster-core-coap-pubsub] is covered to the same extent as
 discussed in this document. Not covered is the direct interaction
 between sleepy node and destination nodes. The support from a server
 node to initialize resources or other information also represents an
 addition to PubSub broker.

 In addition to the continuous updates provided by the PubSub broker,
 the ad-hoc query of values, the maintenance of operational
 parameters, the provision of direct update from sleepy node to a
 node, the reliability aspects of the update, and the concept of
 groups are equally important topics that need consideration.

7. Acknowledgements

 TBD

8. IANA Considerations

 The new Resource Type (rt=) Link Target Attribute, ’core.ms’ needs to
 be registered in the "Resource Type (rt=) Link Target Attribute
 Values" subregistry under the "Constrained RESTful Environments
 (CoRE) Parameters" registry. This is not yet done by
 [I-D.vial-core-mirror-server].

9. Security Considerations

 Layer 2 (MAC) security is used in all communication in the 6LoWPAN
 network. A Sleepy Node may obtain the Layer 2 network key using the
 bootstrapping mechanism described in
 [I-D.kumar-6lo-selective-bootstrap]. On top of this, DTLS and DTLS-
 multicast can be used for further transport-layer protection of
 messages between a Sleepy Node and other nodes; and also between a
 Proxy and other nodes. There are no special adaptations needed of
 the DTLS handshake to support Sleepy Nodes. During the whole
 handshake, Sleepy Nodes are required to remain awake to avoid that,
 in case of small retransmission timers, the other node may think the
 handshake message was lost and starts retransmitting. In view of

Zotti, et al. Expires September 10, 2015 [Page 14]

Internet-Draft Sleepy Nodes March 2015

 this, the only key point, therefore, is that DTLS handshakes are not
 performed frequently to save on battery power. Based on the DTLS
 authentication, also an authorization method could be implemented so
 that only authorized nodes can e.g.

 - Act as a Proxy for a Sleepy Node. (The Proxy shall be a trusted
 device given its important role of storing values of parameters
 for the delegated resources);

 - READ data from Sleepy Nodes;

 - WRITE data to Sleepy Nodes (via the Proxy);

 - Receive REPORTs from Sleepy Nodes (direct or via Proxy).

10. References

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC5988] Nottingham, M., "Web Linking", RFC 5988, October 2010.

 [RFC6690] Shelby, Z., "Constrained RESTful Environments (CoRE) Link
 Format", RFC 6690, August 2012.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252, June 2014.

 [RFC7390] Rahman, A. and E. Dijk, "Group Communication for the
 Constrained Application Protocol (CoAP)", RFC 7390,
 October 2014.

10.2. Informative References

 [I-D.ietf-core-interfaces]
 Shelby, Z. and M. Vial, "CoRE Interfaces", draft-ietf-
 core-interfaces-02 (work in progress), November 2014.

 [I-D.ietf-core-observe]
 Hartke, K., "Observing Resources in CoAP", draft-ietf-
 core-observe-16 (work in progress), December 2014.

 [I-D.ietf-core-resource-directory]
 Shelby, Z. and C. Bormann, "CoRE Resource Directory",
 draft-ietf-core-resource-directory-02 (work in progress),
 November 2014.

Zotti, et al. Expires September 10, 2015 [Page 15]

Internet-Draft Sleepy Nodes March 2015

 [I-D.koster-core-coap-pubsub]
 Koster, M., Keranen, A., and J. Jimenez, "Publish-
 Subscribe in the Constrained Application Protocol (CoAP)",
 draft-koster-core-coap-pubsub-00 (work in progress),
 October 2014.

 [I-D.kumar-6lo-selective-bootstrap]
 Kumar, S. and P. Stok, "Security Bootstrapping over IEEE
 802.15.4 in selective order", draft-kumar-6lo-selective-
 bootstrap-00 (work in progress), March 2015.

 [I-D.vial-core-mirror-server]
 Vial, M., "CoRE Mirror Server", draft-vial-core-mirror-
 server-01 (work in progress), April 2013.

 [RFC6763] Cheshire, S. and M. Krochmal, "DNS-Based Service
 Discovery", RFC 6763, February 2013.

Authors’ Addresses

 Teresa Zotti
 Philips Research
 High Tech Campus 34
 Eindhoven 5656 AE
 The Netherlands

 Phone: +31 6 21175346
 Email: teresa.zotti@philips.com

 Peter van der Stok
 Consultant
 Kamperfoelie 8
 Helmond 5708 DM
 The Netherlands

 Phone: +31 492474673
 Email: consultancy@vanderstok.com

 Esko Dijk
 Philips Research
 High Tech Campus 34
 Eindhoven 5656 AE
 The Netherlands

 Phone: +31 6 55408986
 Email: esko.dijk@philips.com

Zotti, et al. Expires September 10, 2015 [Page 16]

