CCAMP Working Group Internet-Draft Intended status: Standards Track Expires: December 18, 2019 J. Zhang, Ed. S. Liu, Ed. Z. Liu, Ed. Y. Ji, Ed. bupt June 16, 2019 BBU Agregation: a usecase of the unified radio and optical control architecture draft-zhang-ccamp-bbu-aggregation-00 ## Abstract This document specifies a usecase, called BBU aggregation, for integreting radio and optical networks. It aims to compact several low-utilized BBU cards into one BBU to improve the BBU utilization. A flexible optical fronthaul network is connecting BBU and RRU to enable BBU aggregation by recongfiguring the lightpath between BBU and RRU. The procedure of the usecase is based on the unified radio and optical control archtecture, and an extended OpenFlow protocol is introduced to realize the procedure. ## Status of This Memo This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." This Internet-Draft will expire on December 18, 2019. #### Copyright Notice Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License. # Table of Contents | 1. | Introduc | ction | |----|----------|------------------------------------------------------| | 2. | | ments Language | | 3. | | logy | | 4. | Motivat: | ion | | 5. | Overvie | w of BBU aggregation | | | | olem | | | | Messages | | | | mal Communication Procedure | | | 5.3.1. | | | | 5.3.2. | Lightpath Reconfiguration Request Sent by a | | | | Controller to a BBU_A | | | 5.3.3. | Lightpath Reconfiguration Request Sent by a | | | | Controller to a TN_A | | | 5.3.4. | Lightpath Reconfiguration Reply Sent by a BBU_A to a | | | | Controller | | | 5.3.5. | Lightpath Reconfiguration Reply Sent by a TN_A to a | | | | Controller | | 6. | the comm | munication protocol Messages for BBU aggregation 1 | | | | RRU_Feature_Req message | | _ | - | RRU_Feature_Rep message | | _ | - | BBU_Feature_Req message | | 6 | | BBU_Feature_Rep message | | 6 | | TN_Feature_Req message | | 6 | | TN_Feature_Rep message | | 6 | | BBU_A_Mod message | | 6 | | BBU_A_Rep message | | _ | | TN_A_Mod message | | | | TN_A_Rep message | | | | Formats | | | .1. Init | tialization Phase Object | | | | RRU feature request TLV | | | | BBU feature request TLV | | | | TN feature request TLV | | | | RRU feature reply TLV | | | | BBU feature reply TLV | | | 7.1.6. | TN feature reply TLV | | 7 | .2. Lial | ntpath Reconfiguration Phase Object | | , | 7.2.1. | BBU modification request TLV | | | 7.2.2. | | | | – . – . | | | | 7.2.3. | BBU mod: | ific | ati | on | re | pl | у 5 | Γ L\ | Ţ | | | | | | | | 20 | |------|----------|----------|------|-----|-----|-----|----|-----|-------------|---|---|--|--|---|---|--|--|----| | | 7.2.4. | TN modi | fica | tic | n : | rep | ly | TI | LV | | | | | • | | | | 21 | | | | edgments | | | | | | | | | | | | | | | | | | 9. | Contrib | utors . | | | | | | | | | | | | | | | | 22 | | Aut. | hors' Ad | dresses | | | | | | | _ | | _ | | | | _ | | | 22 | #### 1. Introduction BBU aggregation is to compact some low-utilized BBUs into one BBU to improve the BBU utilization. In order to do that, it changes the connections of current RRU-BBU pairs, which is to reassociate the RRUs of low-utilized BBUs with one BBU, and shut down the low-utilized BBUs to save the cost. This requires a flexible optical fronthaul network, in which the lightpath between the BBU and RRUs can be reconfigured. To realize the BBU aggregation, radio and optical resources should be jointly allocated, and radio and optical network devises should to be simutaneusly controlled. This memo introduces a mechanism to aggregate low-utilized BBUs in a SDN-enabled radio and optical control architecture. The procedure of BBU aggregation contains the following steps: 1) radio controller (Radio-C) sends OF messages to RRU_A and BBU-A to inquire the current physical properties of radio networks, such as taffic load and BBU utilization. 2) RRU_A and BBU_A reply the requested information to the Radio-C. 3) after obtaining the reply message, the control plane will run BBU aggregation scheme to get new RRU-BBU pairs with the corresponding lightpath between them. 4) transport controller (Transport-C) sends OF messages to TN_As to establish the lightpaths between the new RRU-BBU pairs. ## 2. Requirements Language The key words are "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document. # 3. Terminology This memo uses the following terms: BBU_A, RRU_A, TN_A, Radio-C, Transport-C. #### 4. Motivation For real operational wireless networks, mobile subscribers have shown a strong time-geometry pattern, causing the base station utilization to fluctuate over time and area. For example, when users are moving to other areas, the BBU just stays in idle with a large amount of its processing power wasted. In addition, with the emerging of massive small cells, dynamic RRU association is gaining more and more attention to improve the energy saving and coordination efficiency. To solve these problem, turning off the low-utilized BBUs and migrating their RRUs to other active BBUs is an efficient method. However, it is hard to realize dynamic RRU-BBU reassociation because of the independent control of radio and optical networks. Therefore, this memo give a usecase to realize the BBU aggregation by joint allocation radio and optical resources in an unified control plane. # 5. Overview of BBU aggregation An architectural protocol overview (the big picture of the protocol) is provided in this section. Protocol details can be found in further sections. #### 5.1. Problem Because the BBU aggregation is realized by the lightpath reconfiguration, a communication protocol between the BBU_A and RRU_A is needed. The communication protocol is designed specifically for communications between a BBU_A and a controller. A controller may use the communication protocol to send a lightpath reconfiguration request to a BBU_A, and the BBU_A may reply with a set of reconfigured lightpaths if the lightpaths satisfying the set of constraints. # 5.2. New Messages The communication protocol operates over TCP, which fulfills the requirements for reliable messaging and flow control without further protocol work. This memo define the following new communication protocol messages for BBU aggregation: Controller Request Message for RRU Feature (RRU_Feature_Req): A message sent by a Controller to a RRU to request RRU Feature which contains RRU_ID and RRU_IP. A Controller MUST send RRU Feature request message to a RRU at initialization phase to get the information about traffic load, wavelength and corresponding BBUs. The details of RRU_Feature_Req message is described in Section 6.1. RRU Reply Message for RRU Feature (RRU_Feature_Rep): A message sent by a RRU to a Controller to reply specific RRU_Feature_Req message, which contains the features of the RRUs, such as traffic load and corresponding BBUs. A RRU sends RRU Feature reply message if and only if it received related RRU_Feature_Req message. The details of RRU_Feature_Rep message is described in Section 6.2. Controller Request Message for BBU Feature (BBU_Feature_Req): A message sent by a Controller to a BBU_A to request BBU Feature which contains BBU_ID and BBU_IP. A Controller MUST send RRU Feature request message to a BBU_A at initialization phase to get the information about traffic load, wavelength and BBU status. The details of BBU_Feature_Req message is described in Section 6.3. BBU Reply Message for BBU Feature (RRU_Feature_Rep): A message sent by a BBU_A to a Controller to reply specific BBU_Feature_Req message, which contains the features of the BBUs, such as traffic load and BBU status. A BBU sends BBU Feature reply message if and only if it received related BBU_Feature_Req message. The details of BBU_Feature_Rep message is described in Section 6.4. Controller Request Message for TN Feature (TN_Feature_Req): A message sent by a Controller to a TN to request TN Feature which contains node_ID and node_IP. A Controller MUST send TN Feature request message to a TN at initialization phase to get the information about port ,wavelength and switch status. The details of TN_Feature_Req message is described in Section 6.5. TN Reply Message for RRU Feature (TN_Feature_Rep): A message sent by a TN to a Controller to reply specific TN_Feature_Req message, which contains the features of the TNs, such as port ,wavelength and switch status. A TN sends TN Feature reply message if and only if it received related TN_Feature_Req message. The details of TN_Feature_Rep message is described in Section 6.6. Controller Request Message to BBU_A for Lightpath Reconfiguration (BBU_A_Mod): A message sent by a Controller to a BBU_A to request lightpath reconfiguration which contains BBU_ID, node_IP and BBU status. A Controller MAY send lightpath reconfiguration request message to a BBU_A at any time as long as it consideres this operation necessary. The details of BBU_A_Mod message is described in Section 6.7. BBU_A Reply Message for Lightpath Reconfiguration (BBU_A_Rep): A message sent by a BBU_A to a Controller to reply specific BBU_A_Mod message, which contains the configuration results of BBU_As. A BBU_A sends lightpath reconfiguration reply message if and only if it received related BBU_A_Mod message. A BBU_A_Rep message can contain either a set of reconfigurated lightpaths if the request can be satisfied, or a negative reply if not. The negative reply may indicate the reason why the lightpaths can not be reconfigurated. The details of BBU_A_Rep message is described in Section 6.8. Controller Request Message to TN_A for Lightpath Reconfiguration (TN_A_Mod): A message sent by a Controller to a TN_A to request lightpath reconfiguration which contains node_ID, node_IP, port, wavelength and switch status. A Controller MAY send lightpath reconfiguration request message to a TN_A at any time as long as it consideres this operation necessary. The details of TN_A_Mod message is described in Section 6.9. TN_A Reply Message for Lightpath Reconfiguration (TN_A_Rep): A message sent by a TN_A to a Controller to reply specific TN_A_Mod message, which contains the configuration results of TN_As. A TN_A sends lightpath reconfiguration reply message if and only if it received related TN_A_Mod message. A TN_A_Rep message can contain either a set of reconfigurated lightpaths if the request can be satisfied, or a negative reply if not. The negative reply may indicate the reason why the lightpaths can not be reconfigurated. The details of TN_A_Rep message is described in Section 6.10. #### 5.3. Normal Communication Procedure # 5.3.1. Initialization Phase The initialization phase consists of three subphases and each subphase two successive steps. In the first subphase, the two steps are (described in a schematic form in Figure 1: - 1) Establishment of a TCP connection (3-way handshake) between the RRU_A and the Controller. - 2) Establishment of a session over the TCP connection. Figure 1: Initialization Phase between the RRU_A and the Controller Once the TCP connection is established, the Controller and the RRU_A initiate session establishment during which various session parameters are negotiated. The Controller sends a RRU Feature request to the RRU (RRU_Feature_Req message). Details about the RRU_Feature_Req message can be found in Section 6.1. After received the RRU_Feature_Req message, the RRU send a RRU_Feature_Rep message including the features of the RRUs, such as traffic load, corresponding BBUs and potentially other detailed capabilities and policy rules that specify the conditions under which path computation requests may be sent to the Controller. Details about the RRU_Feature_Rep message can be found in Section 6.2. Similarly, in the second subphase, the two steps are (described in a schematic form in Figure 2: - 1) Establishment of a TCP connection (3-way handshake) between the BBU_A and the Controller. - 2) Establishment of a session over the TCP connection. Figure 2: Initialization Phase between the BBU_A and the Controller Once the TCP connection is established, the Controller and the BBU_A initiate session establishment during which various session parameters are negotiated. The Controller sends a BBU_A Feature request to the BBU_A (BBU_Feature_Req message). Details about the BBU_Feature_Req message can be found in Section 6.3. After received the BBU_Feature_Req message, the BBU send a BBU_Feature_Rep message including the features of the BBU_as, such as traffic load, BBU_A status and potentially other detailed capabilities and policy rules that specify the conditions under which path computation requests may be sent to the Controller. Details about the BBU_Feature_Rep message can be found in Section 6.4. Similarly, in the third subphase, the two steps are (described in a schematic form in Figure 3: - 1) Establishment of a TCP connection (3-way handshake) between the ${\tt TN_A}$ and the Controller. - 2) Establishment of a session over the TCP connection. Figure 3: Initialization Phasebetween the TN_A and the Controller Once the TCP connection is established, the Controller and the TN_A initiate session establishment during which various session parameters are negotiated. The Controller sends a RRU Feature request to the TN_A (TN_Feature_Req message). Details about the TN_Feature_Req message can be found in Section 6.5. After received the TN_Feature_Req message, the TN send a TN_Feature_Rep message including the features of the TNs, such as traffic load, corresponding TNs and potentially other detailed capabilities and policy rules that specify the conditions under which path computation requests may be sent to the Controller. Details about the TN_Feature_Rep message can be found in Section 6.6. 5.3.2. Lightpath Reconfiguration Request Sent by a Controller to a ${\tt BBU_A}$ Once a Controller has sucessfully established a session with one or more BBU_As, if a lightpath reconfiguration event is triggered that requires the reconfiguration of a set of lightpaths, the controller first selects one or more BBU_As. Once the Controller has selected a BBU_A, it sends a BBU_A_Mod message to the BBU_A. The process is shown in Figure 4. Details about the BBU_A_Mod message can be found in Section 6.7. Figure 4: Lightpath Reconfiguration Request to BBU_A # 5.3.3. Lightpath Reconfiguration Request Sent by a Controller to a TN_A Once a Controller has sucessfully established a session with one or more TN_As, if a lightpath reconfiguration event is triggered that requires the reconfiguration of a set of lightpaths, the controller first selects one or more TN_As. Once the Controller has selected a BBU_A, it sends a TN_Mod message to the TN_A. The process is shown in Figure 5. Details about the TN_Mod message can be found in Section 6.9. Figure 5: Lightpath Reconfiguration Request to TN_A 5.3.4. Lightpath Reconfiguration Reply Sent by a BBU_A to a Controller After receiving a lightpath reconfiguration request from a Controller, the BBU_A triggers a lightpath reconfiguration, If the BBU_A manages to reconfigure a lightpath satisfies the set of required constraints, the BBU_A returns the result to the requesting Controller. The process is shown in Figure 6. Figure 6: Lightpath Reconfiguration Reply (Success) from BBU_A However, if no lightpath could be found that satisfies the set of constraints. In this case, a BBU_A may provide the set of constraints that led to the lightpath reconfiguration failure. Upon receiving a negative reply, a Controller may decide to resend a modified request or take any other appropriate action. The process is shown in Figure 7. Figure 7: Lightpath Reconfiguration Reply (Failure) from BBU_A Details about the BBU_A_Rep message can be found in Section 6.8. # 5.3.5. Lightpath Reconfiguration Reply Sent by a TN_A to a Controller After receiving a lightpath reconfiguration request from a Controller, the TN_A triggers a lightpath reconfiguration, If the TN_A manages to reconfigure a lightpath satisfies the set of required constraints, the TN_A returns the result to the requesting Controller. The process is shown in Figure 8. Figure 8: Lightpath Reconfiguration Reply (Success) from TN_A However, if no lightpath could be found that satisfies the set of constraints. In this case, a TN_A may provide the set of constraints that led to the lightpath reconfiguration failure. Upon receiving a negative reply, a Controller may decide to resend a modified request or take any other appropriate action.' The process is shown in Figure 9 Figure 9: Lightpath Reconfiguration Reply (Failure) from TN_A Details about the TN_A_Rep message can be found in Section 6.10. # 6. the communication protocol Messages for BBU aggregation The communication protocol Messages for BBU aggregation consists of a common header followed by a variable-length body made of a set of objects. For each message type, rules are defined that specify the set of objects that the message can carry. ``` 6.1. The RRU_Feature_Req message ``` <RRU_Feature_Req message> ::= <Common Header> <RRU-information> Where: <RRU_information> ::= <RRU-ID> <RRU-IP> 6.2. The RRU_Feature_Rep message <RRU_Feature_Rep Message> ::= <Common Header> <RRU-feature-reply> Where: <RRU-feature-reply> ::= <RRU-information> <RRU-feature> <RRU_information> ::= <RRU-ID> <RRU-IP> <RRU-feature> ::= <related-BBU-ID> <traffic load> <wavelength> 6.3. The BBU_Feature_Req message <BBU_Feature_Req message> ::= <Common Header> <BBU-information> Where: <BBU_information> ::= <BBU-ID> <BBU-IP> 6.4. The BBU_Feature_Rep message ``` <BBU_Feature_Rep Message> ::= <Common Header> <BBU-feature-reply> Where: <BBU-feature-reply> ::= <BBU-information> <BBU-feature> <BBU_information> ::= <BBU-ID> <BBU-IP> <BBU-feature> ::= <BBU Status> <traffic load> <wavelength> 6.5. The TN_Feature_Req message <TN_Feature_Req message> ::= <Common Header> <TN-information> Where: <RRU information> ::= <node-ID> <node-IP> 6.6. The TN_Feature_Rep message <TN_Feature_Rep Message> ::= <Common Header> <TN-feature-reply> Where: <TN-feature-reply> ::= <TN-information> <TN-feature> <TN_information> ::= <node-ID> <node-IP> <TN-feature> ::= <port> <switch-status> <wavelength> 6.7. The BBU_A_Mod message <BBU_A_Mod message> ::= <Common Header> <Controller-reconfiguration-request> Where: <Controller-reconfiguration-request> ::= <BBU-ID> <node-IP> <BBU-status> ``` # 6.8. The BBU_A_Rep message Where: # 6.9. The TN_A_Mod message Where: ## 6.10. The TN_A_Rep message Where: # 7. Object Formats A object carried within a communication protocol messages for BBU aggregation, which consists of one or more 32-bit words with a common header. # 7.1. Initialization Phase Object #### 7.1.1. RRU feature request TLV | 0 1 | 2 | 3 | | | | | | | |-------------------|-------------------|---------------------|----------|--|--|--|--|--| | 0 1 2 3 4 5 6 7 0 | 1 2 3 4 5 6 7 0 1 | 2 3 4 5 6 7 0 1 2 3 | 4 5 6 7 | | | | | | | +-+-+-+-+-+-+-+- | +-+-+- | +-+-+-+-+-+-+-+ | -+-+-+-+ | | | | | | | version | type=40 | Message Lengt | h | | | | | | | +-+-+-+-+-+-+- | +-+-+- | +-+-+-+-+-+-+-+ | -+-+-+-+ | | | | | | | | xid | | | | | | | | | +-+-+-+-+-+-+- | +-+-+- | +-+-+-+-+-+-+ | -+-+-+-+ | | | | | | | RRU_ID | | | | | | | | | | +-+-+-+-+-+-+- | +-+-+- | +-+-+-+-+-+-+ | -+-+-+-+ | | | | | | | | RRU_IP | | | | | | | | | +-+-+-+-+-+-+- | +-+-+- | +-+-+-+-+ | -+-+-+-+ | | | | | | Figure 10: RRU feature request TLV format The common header consists of version, type and message length. Version (8 bits): The version number. Current version is version 1. Type (8 bits): A number indicates the message type. The "RRU_Feature_Req" message is the type 40. Message Length (16 bits): Total length of the message including the common header, expressed in bytes. The RRU_Feature_Req object body consists of the hardware id (xid), RRU id(RRU_ID) and RRU ip (RRU_IP). ## 7.1.2. BBU feature request TLV Figure 11: BBU feature request TLV format The common header is similar with the RRU feature request object. The "BBU_Feature_Req" message is the type 48. The BBU_Feature_Req object body consists of the hardware id (xid), BBU id(BBU_ID) and BBU ip (BBU_IP). ## 7.1.3. TN feature request TLV | 0 | 1 | 2 | 3 | | | | | | | |------------------------------------------|---------------|---------------|---------------|----------|--|--|--|--|--| | 0 1 2 3 4 5 6 7 | 0 1 2 3 4 5 (| 6 7 0 1 2 3 4 | 5 6 7 0 1 2 3 | 4 5 6 7 | | | | | | | +-+-+-+-+-+- | -+-+-+-+- | +-+-+-+-+-+ | -+-+-+-+-+-+ | -+-+-+-+ | | | | | | | version type=41 Message Length | | | | | | | | | | | +-+-+-+-+-+- | -+-+-+-+-+- | +-+-+-+-+-+ | -+-+-+-+-+-+ | -+-+-+-+ | | | | | | | xid | | | | | | | | | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- | | | | | | | | | | | node_ID | | | | | | | | | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- | | | | | | | | | | | node_IP | | | | | | | | | | | +-+-+-+-+-+-+- | _+_+_+_ | +-+-+-+-+-+ | _+_+_+ | _+_+_+ | | | | | | Figure 12: TN feature request TLV format The common header is similar with the RRU feature request object. The "TN_Feature_Req" message is the type 41. The TN_Feature_Req object body consists of the hardware id (xid), node id(node_ID) and node ip (node_IP). ## 7.1.4. RRU feature reply TLV Figure 13: RRU feature reply TLV format The common header is similar with the RRU feature request object. The "RRU_Feature_Rep" message is the type 42. The RRU_Feature_Rep object body consists of the hardware id (xid), RRU id(RRU_ID), RRU ip (RRU_IP), corresponding BBUs, traffic load and wavelength. ## 7.1.5. BBU feature reply TLV | 0 1 2 3 | | | | | | | | | | |-----------------------------------------------------------------|------------------------------------------|--|--|--|--|--|--|--|--| | 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 | | | | | | | | | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- | + | | | | | | | | | | version type=49 Message Length | | | | | | | | | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- | + | | | | | | | | | | xid | | | | | | | | | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- | + | | | | | | | | | | BBU_ID | | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | BBU_IP | | | | | | | | | | | ·
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- | +- | | | | | | | | | | BBU Status | traffic load | | | | | | | | | | | ·
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- | | | | | | | | | | | wavelength | | | | | | | | | | | +- | + | | | | | | | | | Figure 14: BBU feature reply TLV format The common header is similar with the BBU feature request object. The "BBU_Feature_Rep" message is the type 49. The BBU_Feature_Rep object body consists of the hardware id (xid), BBU id(BBU_ID), BBU ip (BBU_IP), BBU Status, traffic load and wavelength. # 7.1.6. TN feature reply TLV Figure 15: TN feature reply TLV format The common header is similar with the RRU feature request object. The "TN_Feature_Rep" message is the type 43. The TN_Feature_Rep object body consists of the hardware id (xid), node id(node_ID), node ip (node_IP),port, switch_status and wavelength. - 7.2. Lightpath Reconfiguration Phase Object - 7.2.1. BBU modification request TLV Figure 16: BBU modification request TLV format The common header is similar with the RRU feature request object. The "BBU_A_Mod" message is the type 44. The BBU_A_Mod object body consists of the hardware id (xid), BBU id(BBU_ID), node ip (node_IP) and BBU status(BBU_status). ## 7.2.2. TN modification request TLV Figure 17: TN modification request TLV format The common header is similar with the RRU feature request object. The "TN_A_Mod" message is the type 45. The TN_A_Mod object body consists of the hardware id (xid), node id(node_ID), node ip (node_IP), port, switch_status and wavelength. # 7.2.3. BBU modification reply TLV Figure 18: BBU modification reply TLV format The common header is similar with the RRU feature request object. The "BBU_A_Rep" message is the type 46. The BBU_A_Mod object body consists of the hardware id (xid), BBU id(BBU_ID), node ip (node_IP) and BBU configuration reply(BBU_config_reply). The BBU_config_reply is used to report the result of BBU configuration. Two values are currently defined: "1" is a successful state while "0" is a failure state. # 7.2.4. TN modification reply TLV Figure 19: TN modification reply TLV format The common header is similar with the RRU feature request object. The "TN_A_Rep" message is the type 47. The TN_A_Mod object body consists of the hardware id (xid), node id(node_ID), node ip (node_IP) and TN configuration reply(TN_config_reply). The TN_config_reply is used to report the result of TN configuration. Two values are currently defined: "1" is a successful state while "0" is a failure state. ## 8. Acknowledgments ### 9. Contributors Authors' Addresses Jiawei Zhang (editor) Beijing University of Posts and Telecommunications Xitucheng Road Beijing, Haidian Dist 100876 China Phone: +86-010-61198422 Email: zjw@bupt.edu.cn Sainan Liu (editor) Beijing University of Posts and Telecommunications Xitucheng Road Beijing, Haidian Dist 100876 China Phone: +86-010-61198422 Email: lsn0429@bupt.edu.cn Zhen Liu (editor) Beijing University of Posts and Telecommunications Xitucheng Road Beijing, Haidian Dist 100876 China Phone: +86-010-61198422 Email: liuzhen207@bupt.edu.cn Yuefeng Ji (editor) Beijing University of Posts and Telecommunications Xitucheng Road Beijing, Haidian Dist 100876 China Phone: +86-010-61198422 Email: jyf@bupt.edu.cn