
dnsop J. Woodworth
Internet-Draft D. Ballew
Updates: 2308, 2535 (if approved) S. Bindinganaveli Raghavan
Intended status: Standards Track CenturyLink, Inc.
Expires: December 31, 2015 June 30, 2015

 BULK DNS Resource Records
 draft-woodworth-bulk-rr-00

Abstract

 The BULK DNS resource record type defines a method of pattern based
 creation of DNS resource records to be used in place of NXDOMAIN
 errors which would normally be returned. These records are currently
 restricted to registered DNS resource record types A, AAAA, PTR and
 CNAME. The key benefit of the BULK resource record type is the
 simplification of maintaining "generic" record assignments which
 would otherwise be too many to manage or require scripts or
 proprietary methods as bind's $GENERATE.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF). Note
 that other groups may also distribute working documents as
 Internet-Drafts. The list of current Internet-Drafts is at
 http://datatracker.ietf.org/drafts/current.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other
 documents at any time. It is inappropriate to use Internet-
 Drafts as reference material or to cite them other than as
 "work in progress."

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Simplified BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Simplified BSD License.

Woodworth, et al. Expires: December 31, 2015 [Page 1]

Internet-Draft BULK DNS Resource Records June 2015

Table of Contents

 1. Introduction . 3
 1.1. Background and Related Documents 4
 1.2. Reserved Words . 4
 2. The BULK Resource Record 4
 2.1. BULK OPTIONAL Hidden Wildcards 4
 2.2. BULK RDATA Wire Format 5
 2.2.1. The Match Type Field 5
 2.2.2. The Label Pattern Field 5
 2.2.2.1. Single hyphen 5
 2.2.2.2. Numeric ranges 6
 2.2.2.3. String values 6
 2.2.3. The Replacement Pattern Field 6
 2.3. The BULK RR Presentation Format 6
 2.4. BULK RR Examples 7
 3. BULK Replacement . 7
 3.1. Matching BULK "owner" field 8
 3.2. Matching the BULK "Match Type" field 8
 3.3. Matching the BULK "Label Pattern" field 8
 3.3.1. Automatic Label Pattern matching 8
 3.3.2. Manual Label Pattern matching 9
 3.3.2.1. Manual Label Pattern matching examples . . . 9
 3.4. Record Generation using the BULK
 "Replacement Pattern" field 11
 3.4.1. Replacement Pattern Backreferences 11
 3.4.1.1. Backreference Notation 11
 3.4.1.1.1. Simple numeric backreference
 replacement 11
 3.4.1.1.2. Star backreference replacement 12
 3.4.1.1.3. Numeric range backreference
 replacement 12
 3.4.1.1.4. Numeric set backreference
 replacement 12
 3.4.1.1.5. Backreference delimiter 12
 3.4.1.1.6. Backreference delimiter interval 13
 3.4.1.1.7. Backreference padding length 13
 3.4.1.1.8. Backreference Position 13
 3.4.1.1.9. Backreference Position Negation 14
 3.4.2. Replacement Pattern examples 14
 4. The NPN Resource Record 16
 4.1. NPN RDATA Wire Format 16
 4.1.1. The Match Type field 16
 4.1.2. The Flags field 16
 4.1.3. The Owner Ignore field 17
 4.1.4. The Left Ignore field 17
 4.1.5. The Right Ignore field 17
 4.2. The NPN RR Presentation Format 17
 4.3. Normalization Processing of NPN RRs 18
 4.3.1. Pseudocode for NPN Normalization Processing . . . 19
 4.3.2. NPN Normalization Processing examples 19

Woodworth, et al. Expires: December 31, 2015 [Page 2]

Internet-Draft BULK DNS Resource Records June 2015

 5. Positive Side-Effects 23
 5.1. Record Superimposition 23
 5.2. Pattern Based DNSSEC support 24
 6. Known Limitations . 24
 6.1. Increased CPU utilization for NXDOMAIN RRs 24
 6.2. Pre-Adoption Nameserver Implications 24
 7. Security Considerations 25
 7.1. DNSSEC Signature Strategies 25
 7.1.1. On-the-fly (Live) Signatures 25
 7.1.2. Normalized (NPN Based) Signatures 25
 7.1.3. Non-DNSSEC Zone Support Only 26
 7.2. DNSSEC Verifier Details 26
 7.3. DDOS Attack Vectors and Mitigation 26
 8. IANA Considerations . 26
 9. Acknowledgements . 26
 10. References . 26
 10.1. Normative References 26
 10.2. Informative References 27

1. Introduction

 The BULK DNS Resource Record (BULK) defines a maskable pattern based
 method for real-time on-the-fly resource record generation.
 Specifically, it allows one to manage large blocks of DNS records
 based entirely on record owner data in the RR query and patterns
 (or templates) designed by knowledgeable zone administrators.
 Existing DNS resource records covered by this document are Address
 (A), IPv6 Address (AAAA), Pointer (PTR) and Canonical Name (CNAME).
 Although other RR types are not explicitly forbidden from use with
 BULK logic they fall outside of scope and will not be discussed in
 this document. This document defines the purpose of this new
 resource record (BULK), its RDATA format, its presentation format
 (ASCII representation) as well as generated responses to matched DNS
 queries.

 Two Key benefits of this record type are; a) the ability to transfer
 BULK RR intentions from primary to secondary nameservers with minimal
 bandwidth and memory requirements; and b) the ability to manage large
 volumes of pattern based records such as an IPv6 /64 CIDR or larger
 in a single entry.
 Support options for DNSSEC related complications resulting from BULK
 generated records are also provided in this document. One such
 option is in the form of the Numeric Pattern Normalization (NPN)
 record type described in further detail in this document.

Woodworth, et al. Expires: December 31, 2015 [Page 3]

Internet-Draft BULK DNS Resource Records June 2015

1.1. Background and Related Documents

 This document assumes the reader is familiar with the basic DNS
 concepts described in [RFC1034], [RFC1035], and the subsequent
 documents that update them, particularly [RFC2181] and [RFC2308].

 The reader is also assumed to be familiar with DNSSEC basics as
 described in [RFC4033], [RFC4034] and [RFC4035] as well as the DNS
 cryptographic signature generation process described in [RFC2535],
 [RFC2536], [RFC2931] and [RFC3110].

1.2. Reserved Words

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. The BULK Resource Record

 The BULK resource record consists of details which enable a DNS
 nameserver to generate RRs of other types based upon query received
 and patterns provided. Unless otherwise stated the letters used in
 hexadecimal numbers (a-f) MUST be case insensitive and are assumed
 to be lowercase. All examples in this document using hexadecimal are
 provided in lowercase.

 The Type value for the BULK RR type is XX.

 The BULK RR is class independent.

 The BULK RR has no special TTL requirements but some security
 guidelines are offered in a later section.

2.1. BULK OPTIONAL Hidden Wildcards

 The BULK RR extends current wildcard substitution logic as defined in
 [RFC1034] by allowing a single hyphen "-" in the leftmost label
 to represent the intent of leveraging a modified wildcard matching
 mechanism. If this condition exists wildcard logic SHALL be used for
 generated replacement records but not for the BULK resource records
 themselves. This will become clearer in the "BULK Replacement"
 section of this document. If an asterisk "*" (the standard wildcard
 character) is used default wildcard behavior MUST be used.

Woodworth, et al. Expires: December 31, 2015 [Page 4]

Internet-Draft BULK DNS Resource Records June 2015

2.2. BULK RDATA Wire Format

 The RDATA for a BULK RR consists of a 2 octet Match Type Field,
 a Label Pattern Field and the Replacement Pattern Field.

 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Match Type | /
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Label Pattern /
 / /
 +-+
 / /
 / Replacement Pattern /
 / /
 +-+

2.2.1. The Match Type Field

 The Match Type field identifies the type of the RRset identified by
 this BULK record.

2.2.2. The Label Pattern Field

 The Label Pattern Field consists of a text string which may be
 evaluated by the sections below. The character encoding for this
 field is US-ASCII and may not contain whitespace unless enclosed
 within double-quote characters. The value of a single hyphen "-"
 has special implications and will be discussed in greater detail
 below.

 <pattern> ::= "-" | {"} <part> <part>* {"}
 <part> ::= <range> | <string>
 <range> ::= "[" <numbers> { "-" <numbers> } "]"
 <numbers> ::= <number> <number>*
 <number> ::= 0 ... 9 | 0 ... f

 Label Patterns MUST NOT contain square braces "[" or "]" which are
 outside a numeric range as described in the following sections.

2.2.2.1. Single hyphen

 If the label pattern field consists of a single hyphen it is not
 necessary to evaluate for numeric ranges or strings. Implementors
 SHOULD simply set a flag indicating all ranges matching the query's
 label are true and backreferences (described in further detail in
 the "BULK Replacement" section) will be automatically set.

Woodworth, et al. Expires: December 31, 2015 [Page 5]

Internet-Draft BULK DNS Resource Records June 2015

2.2.2.2. Numeric ranges

 Numeric ranges include decimal or hexadecimal ranges depending on
 which record type was used in the query. This logic will be
 described in further detail in the "Replacement Logic" section.

 The numeric range pattern will be a range of allowed numbers lower
 and upper values separated by a single hyphen "-". If upper and
 lower values are identical a single numeric value (without hyphen)
 will suffice. To easily distinguish numeric range patterns from
 string values they MUST be enclosed within square braces "[" and "]".

2.2.2.3. String values

 All values found before or after Numeric ranges (excluding single-
 hyphen rule) are considered to be string values. These values will
 be taken literally when evaluating for pattern matches in the
 "BULK Replacement" section below.

2.2.3. The Replacement Pattern Field

 The Replacement Pattern field describes how the answer RRset SHOULD
 be generated for the matching query. It can either be a single
 hyphen "-" or a string containing backreferences (described in
 further detail in the "BULK Replacement" section). This field MUST
 be evaluated for proper syntax for resource records of its Match Type
 defined above. A "read" evaluation MAY be performed when a zone is
 first committed to memory either while converting from Text to Wire
 format (from stored zone files) or when a RR transfer is received
 (raw Wire format). Stage two "write" evaluations MUST be performed
 prior to returning generated replacement answers. Since logic to
 perform a stage two evaluation is already a requirement for DNS
 nameservers it may be easier for implementors to perform just stage
 two evaluations. Stage-two-only evaluation may be also preferred for
 performance purposes and is acceptable behavior. Any stage two
 evaluation errors MUST be processed as if the record did not exist
 and if all BULK generated records for a query answer-set evaluate to
 errors the original condition of an NXDOMAIN error state MUST be
 restored.

2.3. The BULK RR Presentation Format

 The Match Type field is represented as an RR type mnemonic. When the
 mnemonic is not known, the TYPE representation as described in
 [RFC3597], Section 5, MUST be used.

 The Label Pattern and Replacement Pattern fields MUST be presented
 as the TXT RR type described in [RFC1035], Section 3.3.14.

Woodworth, et al. Expires: December 31, 2015 [Page 6]

Internet-Draft BULK DNS Resource Records June 2015

2.4. BULK RR Examples

 EXAMPLE 1
 The following BULK RR stores a block of A RRs for example.com.

 *.example.com. 86400 IN BULK A (
 pool-A-[0-255]-[0-255].example.com.
 10.55.${1}.${2}
)

 The first four fields specify the owner name, TTL, Class, and RR
 type (BULK). Value "A" indicates that this BULK RR defines the A
 record type (Address). Value "pool-A-[0-255]-[0-255].example.com."
 indicates the Label Pattern. Value "10.55.${1}.${2}" indicates
 the Replacement Pattern. The owner in this example is a wildcard and
 matches any query ending with the string right of the asterisk.

 EXAMPLE 2
 The following BULK RR stores the reverse block of PTR records for
 the first example.

 *.55.10.in-addr.arpa. 86400 IN BULK PTR (
 [0-255].[0-255].55.10.in-addr.arpa.
 pool-A-${1}-${2}.example.com.
)

 The first four fields specify the owner name, TTL, Class, and RR
 type (BULK). Value "PTR" indicates that this BULK RR defines the PTR
 record type (Pointer). Value "[0-255].[0-255].55.10.in-addr.arpa."
 indicates the Label Pattern. Value "pool-A-${1}-${2}.example.com."
 indicates the Replacement Pattern. The owner in this example is a
 wildcard and matches any query ending with the string right of the
 asterisk.

 Additional examples can be found in the "BULK Replacement" section.

3. BULK Replacement

 The BULK Record is designed to enable DNS zone maintainers to
 manage large blocks of DNS RRs which all conform to a common pattern.
 The Label Pattern field provides both a tertiary filter (after owner
 and type) and a definition of all numeric pattern ranges.

 When a query is first received by a DNS nameserver it begins its job
 of locating an answer-set. In its simplest form this begins by
 locating the query owner (or wildcard suffix), class and type
 then returning any matching RR RDATA (or errors).

 In the event no matches for the query are found the nameserver of
 authority will return an error type defined as NXDOMAIN. In the case

Woodworth, et al. Expires: December 31, 2015 [Page 7]

Internet-Draft BULK DNS Resource Records June 2015

 of a "BULK" enabled authoritative nameserver an additional step MUST
 be performed. The nameserver MUST query its local RR database for
 any "BULK" RRs with a matching owner, class and compatible Match
 Type. If any such RRs are found the query's owner MUST then be
 matched against the Label Pattern and all matching BULK records MUST
 be placed into a temporary processing answer-set. This temporary
 processing answer-set MUST then follow the Replacement Pattern for
 each matched record and provided no errors are found SHALL then write
 this new answer-set to the query's complete answer set. Matching
 replacements will be of the type specified in the Match Type field of
 the corresponding BULK RR. Additional detail is provided in the
 following sections.

3.1. Matching BULK "owner" field

 The owner field of all BULK records MUST be that of either a wildcard
 or hidden wildcard as defined in previous sections. While a hidden
 wildcard will not be searched for BULK records it will be added to
 the database for use with the corresponding type field of each BULK
 RR. This allows location of BULK records to be less conspicuous
 to the public while still leveraging logic already included in the
 nameserver thus minimizing the complexity of implementation.

 A query SHALL pass the first filter stage (owner match) if an
 NXDOMAIN is set as the query's current answer set AND the query's
 owner ends with the BULK record's owner field past the leading
 hyphen "-" or asterisk "*".

3.2. Matching the BULK "Match Type" field

 The RR type of the received query must be compatible with that of
 the Match Type of owners matched in the section above. That is
 to say a query for an "A" record will only match BULK records with
 matching owner and Match Types of "A" (or "CNAME"). All other
 BULK records matching the query's owner are incompatible and MUST
 be ignored as part of the selected answer set.

3.3. Matching the BULK "Label Pattern" field

 Assuming the RR owner and Match Type fields match the next step is to
 find compatible Label Patterns. The logic for this falls into two
 categories; automatic and manual which are described in greater
 detail in the following sections.

3.3.1. Automatic Label Pattern matching

 Automatic Label Pattern matching is determined by use of a
 single hyphen "-" as the value for Label Pattern field. This
 assumes everything matches and all hexadecimal or decimal fields
 will be captured for use as backreferences in the Replacement

Woodworth, et al. Expires: December 31, 2015 [Page 8]

Internet-Draft BULK DNS Resource Records June 2015

 Pattern (described below). Automatic Label Pattern matching is
 often preferred for large blocks such as the reverse IPv6 address
 space for the simplicity of record management.

3.3.2. Manual Label Pattern matching

 Manual Label Pattern matching, while more complex is designed to
 be both simple to implement and simple to use. Below is an example
 implementation for label matching using a combination of parsing by
 regular expression and matching of numeric ranges.

 Label Patterns evaluate to current zone ORIGIN as defined
 in [RFC1034], Section 3. In short this means all Manual Label
 Patterns must be terminated with a period "." or are assumed
 relative to the RR's origin.

 Numeric Ranges are either decimal or hexadecimal as determined
 by conditions of query.

 If query type is "A" ranges are set to decimal.

 If query type is "AAAA" ranges are set to hexadecimal.

 If query type is PTR or CNAME the RR owner is used to determine
 decimal or hexadecimal.

 If RR owner ends in ".ip6.arpa." ranges are set to hexadecimal.

 If RR owner does _not_ end in ".ip6.arpa." ranges are set to
 decimal.

 Label Patterns MUST NOT contain square braces "[" or "]" which are
 not part of a numeric range.

3.3.2.1. Manual Label Pattern matching examples

 EXAMPLE 1
 For this example the query is defined as a PTR record for "10.2.3.4"
 with an origin of "2.10.in-addr.arpa." and the evaluating BULK RR as:

 -.2.10.in-addr.arpa. 86400 IN BULK PTR (
 [0-255].[0-10]
 pool-A-${1}-${2}.example.com.
)

 STEP 1
 Ensure "Label Pattern" is Fully Qualified

 [0-255].[0-10] == [0-255].[0-10].2.10.in-addr.arpa.

Woodworth, et al. Expires: December 31, 2015 [Page 9]

Internet-Draft BULK DNS Resource Records June 2015

 STEP 2
 Determine whether range is decimal or hexadecimal

 Query type == "PTR" AND RR owner != "*.ip6.arpa." so range is
 decimal.

 STEP 3
 Build regular expression based on fully qualified label pattern.

 [0-255].[0-10].2.10.in-addr.arpa. ==
 /^([0-9]{1,3})\.([0-9]{1,2})\.2\.10\.in-addr\.arpa\.$/

 The above regular expression simply matches numeric ranges based on
 decimal or hexadecimal and length. Numeric range validation occurs
 in the next step.

 STEP 4
 Compare captured numbers and validate ranges

 4.3.2.10.in-addr.arpa.
 =~ /^([0-9]{1,3})\.([0-9]{1,2})\.2\.10\.in-addr\.arpa\.$/

 "4" is captured and within range 0-255 (decimal)
 "3" is captured and within range 0-10 (decimal)

 EXAMPLE 2
 For this example the query is defined as an "AAAA" record for
 "pool-A-ff-aa.example.com." with an origin of "example.com." and
 the evaluating BULK RR as:

 -.example.com. 86400 IN BULK AAAA (
 pool-A-[0-ffff]-[0-ffff]
 fc00::${1}:${2}
)

 STEP 1
 Ensure Label Pattern is Fully Qualified

 pool-A-[0-ffff]-[0-ffff] == pool-A-[0-ffff]-[0-ffff].example.com.

 STEP 2
 Determine whether range is decimal or hexadecimal

 Query type == "AAAA" so range is hexadecimal.

 STEP 3
 Build regular expression based on fully qualified label pattern.

 pool-A-[0-ffff]-[0-ffff].example.com. ==
 /^pool-A-([0-9a-fA-F]{1,4})-([0-9a-fA-F]{1,4})\.example\.com\.$/

Woodworth, et al. Expires: December 31, 2015 [Page 10]

Internet-Draft BULK DNS Resource Records June 2015

 The above regular expression simply matches numeric ranges based on
 decimal or hexadecimal and length. Numeric range validation occurs
 in the next step.

 STEP 4
 Compare captured numbers and validate ranges

 pool-A-ff-aa.example.com.
 =~ /^pool-A-([0-9a-fA-F]{1,4})-([0-9a-fA-F]{1,4})\.example\.com\.$/

 "ff" is captured and within range 0-ffff (hexadecimal)
 "aa" is captured and within range 0-ffff (hexadecimal)

3.4. Record Generation using the BULK "Replacement Pattern" field

 Once it has been determined a query meets all criteria for a BULK
 record generation the below rules are followed to process captured
 numeric data and Replacement Pattern into RRs to apply to the
 answer-set.

3.4.1. Replacement Pattern Backreferences

 Before a record may be generated data must be captured in the Label
 Pattern comparison step above. Each provided numeric range is
 assigned to a temporary buffer to be used in this step. To make the
 jobs' of zone administrators easier the order of these buffers will
 change based on the Match Type and owner so they will default to feel
 more natural or intuitive. Captured patterns and backreferences are
 in the same vein as regular expressions and are intended to feel
 "familiar". This is described in further detail (with examples) in
 the sections below.

3.4.1.1. Backreference Notation

 BULK RRs use a dollar-sign "$" and curly braces "{" and "}" to
 enclose backreferences within the Replacement Pattern. The following
 rules are used to determine the final replacement string.

3.4.1.1.1. Simple numeric backreference replacement

 The simplest form of backreference notation is its numeric form. In
 this form only the backreference number falls between the curly
 braces "{" and "}". An example is "${1}" which would be replaced by
 the value in the first capture position. Position is described in
 detail in a later section.

Woodworth, et al. Expires: December 31, 2015 [Page 11]

Internet-Draft BULK DNS Resource Records June 2015

 Numeric backreference replacement indices start with one "1" to
 maintain consistency with regular expression backreferences.

3.4.1.1.2. Star backreference replacement

 The next form of backreference notation is its star (or asterisk "*")
 form. In this form only an asterisk falls between the curly braces
 "{" and "}". This form "${*}" would be replaced by all captured
 values in order of ascending position delimited by its default
 delimiter (described below). Position is described in detail in a
 later section.

3.4.1.1.3. Numeric range backreference replacement

 The next form of backreference notation is the numeric range form.
 In this form a range of numbers falls between the curly braces "{"
 and "}". An example of this is "${1-4}" which would be replaced by
 all captured values within this range (1-4) in order of positions
 provided delimited its default delimiter (described below). To
 reverse the order of positions in this example one could simply
 reverse the upper and lower values to look like "${4-1}". Position
 is described in detail in a later section.

3.4.1.1.4. Numeric set backreference replacement

 The next form of backreference notation is the numeric set form. In
 this form a set of numbers falls between the curly braces "{"
 and "}" separated by commas. An example of this is "${1,4}" which
 would be replaced by the first and fourth captured values in the
 order of position provided delimited its default delimiter (described
 below). Position is described in detail in a later section.

 This notation may be combined with the numeric range form allowing
 specific positions or position ranges to be used. Examples would be
 "${3,2,1,4-8}" and "${8-12,1-4}".

3.4.1.1.5. Backreference delimiter

 The above sections reference a default delimiter. In an effort to
 provide an intuitive zone management experience the default delimiter
 will be based on the BULK RR's Match Type. For Match Types "A" and
 "AAAA" the default delimiter will be a period "." and for Match
 Types "PTR" and "CNAME" the default delimiter will be a hyphen "-".
 In either case the delimiter may be overridden by including it in
 the backreference braces after the set selectors and a backreference
 field separator character, the pipe "|". An example would be
 "${*|-}" which would force a hyphen "-" delimiter. An empty or null
 delimiter is allowed by not specifying a delimiter character, for

Woodworth, et al. Expires: December 31, 2015 [Page 12]

Internet-Draft BULK DNS Resource Records June 2015

 example "${*|}", which would simply concatenate all captured values
 in order of capture position. Position is described in detail in a
 later section.

3.4.1.1.6. Backreference delimiter interval

 The default behavior of a backreference set is to combine each
 captured value specified with a delimiter between each. To allow
 captured backreferences to be delimited at another interval a third
 backreference field is provided. An example would be "${*|-|4}"
 which would concatenate all captured values but delimiting only every
 fourth value with hyphens "-". This can be a handy feature in the
 IPv6 reverse namespace where every nibble is captured as a separate
 value and generated hostnames include sets of 4 nibbles. An empty or
 null value MUST be interpreted as "1" or every captured value.

3.4.1.1.7. Backreference padding length

 When generating BULK based records a common requirement is to convert
 from one numeric format to another, padding is among the most common
 of these. The fourth and final backreference field determines what
 width to pad to. An example would be "${*|||4}" which would set the
 width of all captured values to 4 by inserting leading zeros to fill
 the void. The default is empty or null which MUST be interpreted
 as NO modification. A width of zero "0" has a special interpretation
 referred to as "unpad" meaning all leading zeros MUST be removed. If
 a value is provided captured values longer than this width MUST be
 truncated to fit the specified width. In the case where a delimiter
 interval is provided captured values between the intervals will be
 concatenated and the padding or unpadding applied as a unit and not
 individually. An example of this would be "${*||4|4}" which would
 combine each range of 4 captured values and pad them to a width of 4
 characters by inserting leading zeros where necessary.

3.4.1.1.8. Backreference Position

 Great effort has gone into providing zone maintainers an intuitive
 syntax. As part of this effort, the captured values will reverse
 direction depending on several factors.

 As a general rule of thumb, if it makes sense the numeric ranges are
 in reverse order from query to answer then they will be reversed.
 Otherwise they will be in the same order.

 Take for example a simple reverse DNS lookup, from "10.2.3.4" to
 "pool-A-3-4.example.com.". Since DNS zones are arranged according
 to management authority the records appear reversed numerically.
 In this example "10.2.3.4" becomes "4.3.2.10.in-addr.arpa.".
 One would intuitively expect this reversal to be reversed so
 positional indices of captured values would increment toward the

Woodworth, et al. Expires: December 31, 2015 [Page 13]

Internet-Draft BULK DNS Resource Records June 2015

 right of the Replacement Pattern. This expectation is especially
 important when using range based replacements.

 Formally, the rules for position reversal are as follows:

 Match Type RRs for "PTR" are reversed for zone owners ending in
 either ".in-addr.arpa." or "ip6.arpa.". All other Match Type RRs for
 "PTR" are forward.

 Match Type RRs for "A" (Address), "AAAA" (IPv6 Address) and "CNAME"
 (Canonical Name) are forward.

3.4.1.1.9. Backreference Position Negation

 To allow simple reversal of any backreference notation a single
 exclamation point character "!" MAY be used as the first character of
 a backreference set. Examples would be "${!*}" and "${!1-4,7}".
 In both of the examples the backreference positions SHALL be the
 exact mirror equivalent as those without the leading exclamation
 point "!". This can be very important if the BULK generated
 replacements have values in positions opposite to what is required
 or expected.

3.4.2. Replacement Pattern examples

 This section provides examples of several BULK RR Replacement
 Patterns. Each example is intended to further understanding for
 implementors and DNS administrators alike.

 EXAMPLE 1
 For this example the query is defined as a PTR record for "10.2.3.4"
 with an origin of "2.10.in-addr.arpa." and the evaluating BULK RR as:

 - 86400 IN BULK PTR - pool-${*}.example.com.

 This example contains several of the features described above.

 First, the record owner is simply a single hyphen "-" denoting it is
 a "hidden wildcard" (wildcard for generated records but not for
 BULK).

 Second, the Label Pattern is also a single hyphen "-" denoting all
 queries matching the owner's wildcard pattern for the "PTR" Match
 Type are accepted and will be captured for use in the Replacement
 Pattern.

 Third, the Replacement Pattern contains a single "star" backreference
 denoting all captured numeric (decimal) backreferences will be
 combined with its default delimiter of hyphen "-" (for PTR) and

Woodworth, et al. Expires: December 31, 2015 [Page 14]

Internet-Draft BULK DNS Resource Records June 2015

 placed into the backreference's position in the answer-set. Should
 this generate an invalid hostname the response will be NXDOMAIN
 unless other BULK records match and are successfully generated
 without error.

 The owner for "10.2.3.4" is "4.3.2.10.in-addr.arpa." and creates
 matching backreferences for "4", "3", "2" and "10" then reverses
 their indices so "${1}" resolves to "10", "${2}" to "2", "${3}" to
 "3" and "${4}" to "4" respectively. When applied to the Replacement
 Pattern the answer becomes "pool-10-2-3-4.example.com.".

 EXAMPLE 2
 For this example the query is defined as a PTR record for "10.2.3.4"
 with an origin of "2.10.in-addr.arpa." and the evaluating BULK RR as:

 - 86400 IN BULK PTR - pool-${*|||3}.example.com.

 This example expands on EXAMPLE 1 with the differences outlined
 below.

 The only change to the BULK RR is the Replacement Pattern includes
 additional fields, specifically null values for delimiter and
 interval and a padding width of 3.

 The owner for "10.2.3.4" is "4.3.2.10.in-addr.arpa." and creates
 matching backreferences for "4", "3", "2" and "10" and reverses their
 indices so "${1}" resolves to "10", "${2}" to "2", "${3}" to "3" and
 "${4}" to "4" respectively. When applied to the Replacement Pattern
 the answer becomes "pool-010002003004.example.com.".

 EXAMPLE 3
 This example contains a classless IPv4 delegation on the /22 CIDR
 boundary as defined by [RFC2317]. The network for this example is

 "10.2.0/22" delegated to a nameserver "ns1.sub.example.com.".
 RRs for this example are defined as:

 $ORIGIN 2.10.in-addr.arpa.
 0-3 86400 IN NS ns1.sub.example.com.
 - 86400 IN BULK CNAME [0-255].[0-3] ${*|.}.0-3

 For this example, the query would come in for
 "25.2.2.10.in-addr.arpa.". After matching the owner filter (ending
 in ".2.10.in-addr.arpa.") and the fully qualified label pattern of
 "[0-255].[0-3].2.10.in-addr.arpa." the answer-set would include a
 generated RR consisting of captured values "25" and "2" joined by the
 custom delimiter of period "." then joined by ".0-3" and made fully
 qualified. The resulting RR would be a "CNAME" with RDATA of

Woodworth, et al. Expires: December 31, 2015 [Page 15]

Internet-Draft BULK DNS Resource Records June 2015

 "25.2.0-3.2.10.in-addr.arpa.". This record is now one delegated to
 "ns1.sub.example.com." as its authority and the answer-set is
 complete.

4. The NPN Resource Record

 The NPN resource record provides pre-processing directives for
 Numeric Pattern Normalization (NPN) based RR signature generation.

 The Type value for the NPN RR type is XX.

 The NPN RR is class independent.

 The NPN RR has no special TTL requirements.

4.1. NPN RDATA Wire Format

 The RDATA for a NPN RR consists of a 2 octet Type Field, a 1 octet
 Label Ignore Field, a 1 octet Left Ignore Field and 1 octet Right
 Ignore field.

 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Match Type | Flags | Owner Ignore |
 +-+
 | Left Ignore | Right Ignore |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

4.1.1. The Match Type field

 The Match Type field identifies the type of the RRset identified by
 this NPN record.

4.1.2. The Flags field

 The Flags field defines additional processing parameters for data
 normalization. This document defines only the Period-As-Number
 flag "." (position 5), the Hyphen-As-Number "-" (position 6) and
 the hexadecimal flag "X" (position 7). All other flags are
 reserved for future use.

 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+
 |Reserved |.|-|X|
 +-+-+-+-+-+-+-+-+

 Bits 0-4: Reserved for future
 These flags have no default value if set to false (0).

Woodworth, et al. Expires: December 31, 2015 [Page 16]

Internet-Draft BULK DNS Resource Records June 2015

 Bit 5: Period As Number (.) Flag
 This flag indicates the period (dot) will be processed as a
 number.
 This flag has no default value if set to false (0).
 Bit 6: Hyphen As Number (-) Flag
 This flag indicates the hyphen (dash) will be processed as a
 number.
 This flag has no default value if set to false (0).
 Bit 7: Hexadecimal (X) Flag
 This flag indicates the highest value for Normalization Processing
 is "f". Normalization Processing will be described in a later
 section. This flag has a default value of "9" if set to
 false (0).

4.1.3. The Owner Ignore field

 The Owner Ignore field defines the length of characters as counted
 from the left-hand side of the owner which MUST be ignored by the
 normalization process. Normalization Processing will be described
 further in a later section.

4.1.4. The Left Ignore field

 The Left Ignore field defines the length of characters as counted
 from the left-hand side of the generated RDATA which MUST be ignored
 by the normalization process. Normalization Processing will be
 described further in a later section.

4.1.5. The Right Ignore field

 The Right Ignore field defines the length of characters as counted
 from the right-hand side of the generated RDATA which MUST be ignored
 by the normalization process. Normalization Processing will be
 described further in a later section.

4.2. The NPN RR Presentation Format

 The Match Type field is represented as an RR type mnemonic. When the
 mnemonic is not known, the TYPE representation as described in
 [RFC3597], Section 5, MUST be used.

 The Flags field MUST be presented as a string of characters
 representing each flag bit. This document defines only the period
 ".", hyphen "-" and hexadecimal "X" flags. Flags MAY appear in any
 order. For example; all three flags could appear as "-9." or ".f-"
 (without the quotes). If all bits are zero all default values (if
 defined) would be presented ("9" as currently defined).

Woodworth, et al. Expires: December 31, 2015 [Page 17]

Internet-Draft BULK DNS Resource Records June 2015

 All Ignore fields MUST be presented as an unsigned decimal integers
 and fall within the 0-255 range available to a single octet.

4.3. Normalization Processing of NPN RRs

 This document provides a minor yet significant modification to DNSSEC
 regarding how RRsets will be signed or verified. Specifically the
 Signature Field of [RFC2535], Section 4.1.8. Prior to processing
 into canonical form, signed zones may contain associated RRs where;
 owner, class and type of a non NPN RR directly corresponds with an
 NPN RR matching owner, class and Match Type. If this condition
 exists the NPN RR's RDATA defines details for processing the
 associated RDATA into a "Normalized" format. Normalized data is
 based on pre-canonical formatting and zero padded for "A" and "AAAA"
 RR types for acceptable precision during the process. This concept
 will become clearer in the NPN pseudocode and examples provided in
 the sections to follow.

 The rules for this transformation are simple:

 For RR's Owner field, characters from the beginning to the index
 of the Owner Ignore value or the final string of characters
 belonging to the zone's ORIGIN MUST NOT be modified by this
 algorithm. While the Owner Ignore value is not used for BULK
 records but is included with the expectation other pattern-based
 resource records may emerge and leverage NPN records for their
 DNSSEC support requirements.

 For RR's RDATA field, character from beginning to the index of
 Left Ignore value or characters with index of Right Ignore value
 to the end MUST NOT be modified by this algorithm.

 In the remaining portion of both Owner and RDATA strings of
 numeric data, defined as character "0" through "f" or "0" through
 "9" depending on whether or not the Hexadecimal flag is set or
 not, MUST be consolidated to a single character and set to the
 highest value defined by the Hexadecimal flag. Examples may be
 found in the following section. If period-as-number or
 hyphen-as-number flags are set whichever are used ("." or "-")
 would be treated as part of the number and consolidated where
 appropriate.

 Once the normalization has been performed the signature will continue
 processing into canonical form using the normalized RRs in the place
 of original ones.

 One thing to keep in mind when calculating values for the Ignore
 fields is the Label Pattern and Replacement Pattern fields are
 considered relative unless terminated by a period. When processing

Woodworth, et al. Expires: December 31, 2015 [Page 18]

Internet-Draft BULK DNS Resource Records June 2015

 NPN records the fully-qualified Patterns will be used for determining
 which characters should be ignored.

 NPN RRs MAY be included in the "Additional" section to provide a hint
 for NPN processing required for verification path.

 It is important to note, properly sizing the Ignore fields is
 critical to minimizing the risk of spoofed signatures. Never
 intentionally set all Ignore values to zero in order to make
 validation easier as it places the validity of zone data at risk.
 Only accompany RRs which are pattern derived (such as BULK) with
 NPN records as doing so may unnecessarily reduce the confidence level
 of generated signatures.

4.3.1. Pseudocode for NPN Normalization Processing

 This section provides a simple demonstration of process flow for NPN
 rdata normalization and DNSSEC signatures.

 The pseudocode provided below assumes all associated RRs are valid
 members of a DNSSEC compatible RRset (including BULK generated ones).

 for rr in rrset
 if (has_NPN<rr.owner, rr.class, rr.type>)
 rr.rdata_normal = NPN_normalize<rr.rdata>
 add_to_sigrrset<NPN.owner, rr.class, rr.type,
 rr.rdata_normal>
 next
 else
 add_to_sigrrset<rr.owner, rr.class, rr.type, rr.rdata>
 next

 process_canonical_form<sigrrset>

 dnssec_sign<sigrrset>

 Similar logic MUST be used for determining DNSSEC validity of RRsets
 in verification (validation) nameservers for signatures generated
 based on NPN normalization.

4.3.2. NPN Normalization Processing examples

 EXAMPLE 1
 For this example the query is defined as a PTR record for "10.2.3.44"
 with an origin of "2.10.in-addr.arpa." and the evaluating BULK and
 NPN RR as:

Woodworth, et al. Expires: December 31, 2015 [Page 19]

Internet-Draft BULK DNS Resource Records June 2015

 -.2.10.in-addr.arpa. 86400 IN BULK PTR (
 [0-255].[0-10]
 pool-A-${1}-${2}.example.com.
)
 *.2.10.in-addr.arpa. 86400 IN NPN PTR 9 0 7 13

 As shown previously in BULK RR examples the query would enter the
 nameserver with an owner of "44.3.2.10.in-addr.arpa." and a "PTR" RR
 with the RDATA of "pool-A-3-44.example.com." would be generated.

 By protecting the "Ignore" characters from the generated RR's RDATA
 the focus for normalization becomes "3-44" as illustrated below.

 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
 v---------
 p o o l - A - 3 - 4 4 . e x a m p l e . c o m .
 ---------^
 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

 Everything to the left of "3-44" will remain intact as will
 everything to its right. The remaining characters will be processed
 for numbers between "0" and "9" as indicated by the NPN record's
 hexadecimal flag "9" and each run replaced by the single character
 "9". The final Normalized RDATA would therefore become
 "pool-A-9-9.example.com." and its signature would be based on this
 "normalized" RDATA field. This new "normalized" string would be used
 as an RDATA for the wildcard label of "*.2.10.in-addr.arpa." now
 encompassing all possible permutations of the
 "pool-A-${1}-${2}.example.com." pattern.

 Since the verification (validation) nameserver would use the
 identical NPN record for processing and comparison, all RRs generated
 by the BULK record can now be verified with a single wildcard
 signature.

 EXAMPLE 2
 This example contains a classless IPv4 delegation on the /22 CIDR
 boundary as defined by [RFC2317]. The network for this example is
 "10.2.0/22" delegated to a nameserver "ns1.sub.example.com.".
 RRs for this example are defined as:

 $ORIGIN 2.10.in-addr.arpa.
 0-3 86400 IN NS ns1.sub.example.com.
 - 86400 IN BULK CNAME [0-255].[0-3] ${*|.}.0-3
 * 86400 IN NPN CNAME 9 0 0 23

Woodworth, et al. Expires: December 31, 2015 [Page 20]

Internet-Draft BULK DNS Resource Records June 2015

 For this example, a query of "10.2.2.65" would enter the nameserver
 as "65.2.2.10.in-addr.arpa." and a "CNAME" RR with the RDATA of
 "65.2.0-3.2.10.in-addr.arpa." would be generated.

 By protecting the "Ignore" characters from the generated RR's RDATA
 the focus for normalization becomes "65.2" as illustrated below.

 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
 v---------
 6 5 . 2 . 0 - 3 . 2 . 1 0 . i n - a d d r . a r p a .
 ---------^
 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

 Everything to the left of "65.2" will remain intact as will
 everything to its right. The remaining characters will be processed
 for numbers between "0" and "9" as indicated by the NPN record's
 hexadecimal flag "9" and each run replaced by the single character
 "9". The final Normalized RDATA would therefore become
 "9.9.0-3.2.10.in-addr.arpa." and its signature would be based on this
 "normalized" RDATA field. This new "normalized" string would be used
 as an RDATA for the wildcard label of "*.2.10.in-addr.arpa." now
 encompassing all possible permutations of the
 "${*|.}.0-3.2.10.in-addr.arpa." pattern.

 As in example 1, the verification (validation) nameserver would use
 the same NPN record for comparison.

 EXAMPLE 3
 This example provides reverse logic for example 1 by providing an
 IPv4 "A" record for a requested hostname. For this example the query
 is defined as an "A" record for "pool-A-3-44.example.com." with an
 origin of "example.com.". RRs for this example are defined as:

 -.example.com. 86400 IN BULK A (
 pool-A-[0-10]-[0-255]
 10.2.${*}
)
 *.example.com. 86400 IN NPN A 9 0 8 0

 By protecting the "Ignore" characters from the generated RR's RDATA
 the focus for normalization becomes "003.044" as illustrated below.

Woodworth, et al. Expires: December 31, 2015 [Page 21]

Internet-Draft BULK DNS Resource Records June 2015

 1 1 1 1 1 1 1 1 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8
 v--------------
 0 1 0 . 0 0 2 . 0 0 3 . 0 4 4
 ---------------^
 1 1 1 1 1 1 1 1 1
 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

 This example illustrates a key point about NPN records; since they
 are pre-canonical they MUST operate on a strict subset of WIRE
 formatted data. For "A" and "AAAA" records this means the "Ignore"
 fields are based on zero padded data. In this example our generated
 record MUST be converted into "010.002.003.044" (shown above) prior
 to processing. After processing, wire format would become
 "0x0A02032C" (shown in hexadecimal). This format would be too
 imprecise for normalization so padded decimal is used.

 Everything to the left of "003.044" will remain intact as will
 everything to its right. The remaining characters will be processed
 for numbers between "0" and "9" as indicated by the NPN record's
 hexadecimal flag "9" and each run replaced by the single character
 "9". The final Normalized RDATA would therefore become "10.2.9.9"
 and its signature would be based on this "normalized" RDATA field.
 This new "normalized" "A" RR would be used as an RDATA for the
 wildcard label of "*.example.com." now encompassing all possible
 permutations of the "10.2.${*}" pattern.

 EXAMPLE 4
 This example provides similar logic for an IPv6 AAAA record.
 For this example the query is defined as an "AAAA" record for
 "pool-A-ff-aa.example.com." with an origin of "example.com.".
 RRs for this example are defined as:

 -.example.com. 86400 IN BULK AAAA (
 pool-A-[0-ffff]-[0-ffff]
 fc00::${1}:${2}
)
 *.example.com. 86400 IN NPN AAAA X 0 30 0

 By protecting the "Ignore" characters from the generated RR's RDATA
 the focus for normalization becomes "00ff:00aa" as illustrated below.

 1 1 1 1 1 1 1 1 1 1 2 2
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 f c 0 0 : 0 0 0 0 : 0 0 0 0 : 0 0 0 0 : -/-/

 4 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 1
 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9

Woodworth, et al. Expires: December 31, 2015 [Page 22]

Internet-Draft BULK DNS Resource Records June 2015

 /-/-/- . -/-/-/
 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4
 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
 v------------------
 /-/- 0 0 0 0 : 0 0 0 0 : 0 0 f f : 0 0 a a
 -------------------^
 2 1 1 1 1 1 1 1 1 1 1
 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

 This example reinforces the point on pre-canonical processing of NPN
 records; they MUST operate on a strict subset of WIRE formatted data.
 For "A" and "AAAA" records this means the "Ignore" fields are based
 on zero padded data. In this example our generated record MUST be
 converted into "fc00:0000:0000:0000:0000:0000:00ff:00aa" (shown
 above) prior to processing. After processing, wire format would
 become "0xFC000000000000000000000000FF00AA" (shown in hexadecimal).
 This format is slightly misleading as it is truly only 16 bytes of
 WIRE data and would be too imprecise for normalization so padded
 hexadecimal is used.

 Everything to the left of "00ff:00aa" will remain intact as will
 everything to its right. The remaining characters will be processed
 for numbers between "0" and "f" as indicated by the NPN record's
 hexadecimal flag "X" and each run replaced by the single character
 "f". The final Normalized RDATA would therefore become "fc00::f:f"
 and its signature would be based on this "normalized" RDATA field.
 This new "normalized" "AAAA" RR would be used as an RDATA for the
 wildcard label of "*.example.com." now encompassing all possible
 permutations of the "fc00::${1}:${2}" pattern.

5. Positive Side-Effects

 This section highlights positive side effects of some architectural
 decisions regarding the BULK RR design.

5.1. Record Superimposition

 The main side-effect of the BULK RR design is superimposition. RRs
 created by the BULK generation process generally rely on the logic of
 wildcard assignment. This logic only provides answers where no
 others exist. This means in the reverse DNS world (network
 assignment) HUGE blocks of addresses can be assigned a single BULK
 record and where delegated to another customer or SWIP will be
 automatically overridden.

 When compared with bind's $GENERATE statement, if a singleton record
 such as CNAME appears within a $GENERATE range, either the CNAME or
 $GENERATE becomes invalid. While a BULK record range would

Woodworth, et al. Expires: December 31, 2015 [Page 23]

Internet-Draft BULK DNS Resource Records June 2015

 automatically notch out the CNAME without user intervention or
 creating a potential management problem for the future when two
 $GENERATES create a hole where the CNAME no longer exists. BULK RRs
 would again automatically reassign the missing record to one of its
 own.

5.2. Pattern Based DNSSEC support

 The NPN resource record can be used to support other dynamic RR types
 which do not currently exist.

6. Known Limitations

 This section defines known limitations of the BULK resource type.

6.1. Increased CPU utilization for NXDOMAIN RRs

 Nameserver requirements to support BULK RRs will minimally increase
 CPU utilization requirements compared to most RR types. However,
 since the inception of DNSSEC more is expected of DNS servers at a
 system resource level and it is the authors' belief the benefit
 outweighs the sacrifice.

 A quick comparison of BULK versus bind's $GENERATE expansion reveals
 much more memory would be sacrificed with $GENERATES to save the CPU
 cycles required to support BULK records. Additionally, $GENERATES
 cannot be transferred (i.e. AXFR) without expansion and an IPv6 CIDR
 even as small as /96 would be simply impossible. BULK on the other
 hand can easily support IPv6 CIDRs of /64 and much larger with very
 little effort.

6.2. Pre-Adoption Nameserver Implications

 While there is an added demand on authoritative nameservers, there
 are no new requirements to recursive (caching) resolvers for
 non-DNSSEC record handling. Even authoritative nameservers are able
 to transfer to and from supporting nameservers with no requirement
 (although would be unable to return BULK generated records without
 support).

 Prior to widespread adoption on the authoritative side all generated
 records would be invisible if served on nameservers lacking support.
 Since generated records are generally NOT service impacting records
 this should be understood but not of great concern.

 Once adoption has reached an appreciable level on the producer
 (authoritative) side only DNSSEC requirements remain for the consumer
 (resolver) side. This behavior is fully expected.

Woodworth, et al. Expires: December 31, 2015 [Page 24]

Internet-Draft BULK DNS Resource Records June 2015

7. Security Considerations

 Two known security considerations exist for the BULK resource record,
 DNSSEC and DDOS attack vectors. Both are addressed in the following
 sections.

7.1. DNSSEC Signature Strategies

 DNSSEC was designed to provide verification (validation) for DNS
 resource records. In a nutshell this requires each (owner, class,
 type) tuple to have its own signature. This essentially defeats the
 purpose of providing large generated blocks of RRs in a single RR as
 each generated RR would require its own legitimate RRSIG record.

 In the following sections several options are discussed to address
 this issue. Of the options, on-the-fly provides the most secure
 solution and NPN provides the most flexible.

7.1.1. On-the-fly (Live) Signatures

 This solution requires authoritative nameservers to sign generated
 records _as_they_are_generated_. Not all authoritative nameserver
 implementations offer on-the-fly (realtime) signatures so this
 solution would either require all implementations to support
 on-the-fly signing or be ignored by implementations which can not or
 will not comply.

 No changes to recursive (resolving) nameservers is required to
 support this solution.

7.1.2. Normalized (NPN Based) Signatures

 This solution provides the most flexible solution as nameservers
 without on-the-fly signing capabilities can still support signatures
 for BULK records. The down side to this solution is it requires
 recursive (resolving) nameserver support. Unless a recursive
 nameserver can verify the signature it is unverifiable.

 NPN records are likely to be a topic of great debate as to their own
 security limitations. It is, however, the authors' belief; while
 any logic which limits the input of digital signatures, lessens the
 validity of such signatures, the limitation is minimal and the gain
 is significant. The main reason for this is as a general rule, RRs
 used in a generic manner such as conventional $GENERATE RRs or scripted
 mass pattern generated RRs have a lesser importance than other RRs
 in managed zones. These therefore inherently pose less risk by means
 of attack and have a much less reward by defeating security measures.

Woodworth, et al. Expires: December 31, 2015 [Page 25]

Internet-Draft BULK DNS Resource Records June 2015

 This being said, care must still be taken to set the Ignore fields
 appropriately to minimize exposure and only use NPN RRs to secure
 pattern-based records such as BULK.

7.1.3. Non-DNSSEC Zone Support Only

 As a final option zones which wish to remain entirely without DNSSEC
 support may serve such zones without either of the above solutions
 and records generated based on BULK RRs will require zero support
 from recursive (resolving) nameservers.

7.2. DNSSEC Verifier Details

 Verification of DNSSEC signed BULK generated RRs may be performed
 against on-the-fly signatures with zero modification to their
 behavior. However, verification against NPN records would require
 changes to the logic to incorporate processing RDATA generated by
 BULK logic as described above so the results will be compatible.

7.3. DDOS Attack Vectors and Mitigation

 As an additional defense against Distributed Denial Of Service (DDOS)
 attacks against recursive (resolving) nameservers it is highly
 recommended shorter TTLs be used for BULK RRs than others. While
 disabling caching with a zero TTL is not recommended (as this would
 only result in a shift of the attack target) a balance will need to
 be found. While this document uses 24 hours (86400) in its examples
 values between 300 to 900 are likely more appropriate and is
 RECOMMENDED. What is ultimately deemed appropriate may differ from
 zone to zone and administrator to administrator.

8. IANA Considerations

 IANA is requested to assign numbers for two DNS resource record types
 identified in this document; BULK and NPN.

9. Acknowledgments

 This document was created as an extension to the DNS infrastructure.
 As such, many people over the years have contributed to its creation
 and the authors are appreciative to each of them even if not thanked
 or identified individually.

10. References

10.1. Normative References

 [RFC1034] Mockapetris, P., "Domain names - concepts and facilities",
 STD 13, RFC 1034, November 1987.

Woodworth, et al. Expires: December 31, 2015 [Page 26]

Internet-Draft BULK DNS Resource Records June 2015

 [RFC1035] Mockapetris, P., "Domain names - implementation and
 specification", STD 13, RFC 1035, November 1987.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2181] Elz, R. and R. Bush, "Clarifications to the DNS
 Specification", RFC 2181, July 1997.

 [RFC2308] Andrews, M., "Negative Caching of DNS Queries (DNS
 NCACHE)", RFC 2308, March 1998.

 [RFC2536] Eastlake 3rd, D., "DSA KEYs and SIGs in the Domain Name
 System (DNS)", RFC 2536, March 1999.

 [RFC2931] Eastlake 3rd, D., "DNS Request and Transaction Signatures
 (SIG(0)s)", RFC 2931, September 2000.

 [RFC3110] Eastlake 3rd, D., "RSA/SHA-1 SIGs and RSA KEYs in the
 Domain Name System (DNS)", RFC 3110, May 2001.

 [RFC4033] Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "DNS Security Introduction and Requirements", RFC
 4033, March 2005.

 [RFC4035] Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "Protocol Modifications for the DNS Security
 Extensions", RFC 4035, March 2005.

10.2. Informative References

 [RFC2535] Eastlake 3rd, D., "Domain Name System Security
 Extensions", RFC 2535, March 1999.

Authors' Addresses

 John Woodworth
 4250 North Fairfax Drive
 Arlington, VA 22203
 USA

 EMail: John.Woodworth@CenturyLink.com

 Dean Ballew
 2355 Dulles Corner Boulevard Suite 200 300
 Herndon, VA 20171
 USA

Woodworth, et al. Expires: December 31, 2015 [Page 27]

Internet-Draft BULK DNS Resource Records June 2015

 EMail: Dean.Ballew@CenturyLink.com

 Shashwath Bindinganaveli Raghavan
 2355 Dulles Corner Boulevard Suite 200 300
 Herndon, VA 20171
 USA

 EMail: Shashwath.Bindinganaveliraghavan@CenturyLink.com

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Woodworth, et al. Expires: December 31, 2015 [Page 28]

