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Abstract

   This draft describes the OPAQUE protocol, a secure asymmetric
   password authenticated key exchange (aPAKE) that supports mutual
   authentication in a client-server setting without any reliance on
   PKI.  OPAQUE is the first PKI-free aPAKE to accommodate secret salt
   and therefore is the first to be secure against pre-computation
   attacks upon server compromise.  In contrast, prior aPAKE protocols
   did not use salt and if they did, the salt was transmitted in the
   clear from server to user allowing for the building of targeted pre-
   computed dictionaries.  OPAQUE security has been proven by Jarecki et
   al.  (Eurocrypt 2018) in a strong and universally composable formal
   model of aPAKE security.  In addition, the protocol provides forward
   secrecy and the ability to hide the password from the server even
   during password registration.

   Strong security, good performance and an array of additional features
   make OPAQUE a natural candidate for practical use and for adoption as
   a standard.  To this end, this draft presents several optimized
   instantiations of OPAQUE and ways of integrating OPAQUE with TLS.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on April 4, 2019.
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Copyright Notice

   Copyright (c) 2018 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

1.  Introduction

   Password authentication is the prevalent form of authentication in
   the web and in most other applications.  In the most common
   implementation, a user authenticates to a server by entering its user
   id and password where both values are transmitted to the server under
   the protection of TLS.  This makes the password vulnerable to TLS
   failures, including many forms of PKI attacks, certificate
   mishandling, termination outside the security perimeter, visibility
   to middle boxes, and more.  Moreover, even under normal operation,
   passwords are always visible in plaintext form at the server upon TLS
   decryption.

   Asymmetric (or augmented) Password Authenticated Key Exchange (aPAKE)
   protocols are designed to provide password authentication and
   mutually authenticated key exchange without relying on PKI (except
   during user/password registration) and without disclosing passwords
   to servers or other entities other than the client machine.  A secure
   aPAKE should provide the best possible security for a password
   protocol, namely, it should only be open to inevitable attacks:
   Online impersonation attempts with guessed user passwords and offline
   dictionary attacks upon the compromise of a server and leakage of its
   "password file".  In the latter case, the attacker learns a mapping
   of a user's password under a one-way function and uses such a mapping
   to validate potential guesses for the password.  Crucially important
   is for the password protocol to use an unpredictable one-way mapping
   or otherwise the attacker can pre-compute a deterministic list of
   mapped passwords leading to almost instantaneous leakage of passwords
   upon server compromise.

   Quite surprisingly, in spite of the existence of multiple designs for
   (PKI-free) aPAKE protocols, none of these protocols is secure against
   pre-computation attacks.  In particular, none of these protocols can
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   use the standard technique against pre-computation that combines
   _secret_ random values ("salt") into the one-way password mappings.
   Either these protocols do not use salt at all or, if they do, they
   transmit the salt from server to user in the clear, hence losing the
   secrecy of the salt and its defense against pre-computation.
   Furthermore, the transmission of salt often incurs in additional
   protocol messages.

   This draft describes OPAQUE, the first PKI-free secure aPAKE that is
   secure against pre-computation attacks and capable of using secret
   salt.  OPAQUE has been recently defined and studied by Jarecki et al.
   [OPAQUE] who prove the security of the protocol in a strong aPAKE
   model that ensures security against pre-computation attacks and is
   formulated in the Universal Composability framework [Canetti01] under
   the random oracle model.  In contrast, very few aPAKE protocols have
   been proven formally and those proven were analyzed in a weak
   security model that allows for pre-computation attacks (e.g.,
   [GMR06]).  This is not just a formal issue: these protocols are
   actually vulnerable to such attacks!  Furthermore, as far as we know,
   none of the protocols discussed recently as candidates for
   standardization (e.g., SPAKE2+ [I-D.irtf-cfrg-spake2] and AugPAKE
   [RFC6628]) enjoys a proof of security, not even in a weak model.  The
   same holds for the SRP protocol [RFC2945] and none of these protocols
   accommodates secret salt.

   OPAQUE's design is based on the seminal work of Ford and Kaliski
   [FK00] with variants studied by Boyen [Boyen09] and Jarecki et al.
   [JKKX16], although none of these papers presented a proof of aPAKE
   security (not even in a weak model).

   In addition to its proven security against pre-computation attacks,
   OPAQUE's security features include forward secrecy (essential for
   protecting past communications in case of password leakage) and the
   ability to hide the password from the server even during password
   registration.  Moreover, good performance and an array of additional
   features make OPAQUE a natural candidate for practical use and for
   adoption as a standard.  Such features include the ability to
   increase the difficulty of offline dictionary attacks via iterated
   hashing and offloading these iterations to the client, extensibility
   of the protocol to support storage and retrieval of user's secrets
   solely based on a password, and being amenable to a multi-server
   distributed implementation where offline dictionary attacks are not
   possible without breaking into a threshold of servers (such
   distributed solution requires no change or awareness on the client
   side relative to a single-server implementation).

   OPAQUE is defined and proven as the composition of two
   functionalities: An Oblivious PRF (OPRF) and a key-exchange protocol.
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   It can be seen as a "compiler" for transforming any key-exchange
   protocol (with KCI security - see below) into a secure aPAKE
   protocol.  In OPAQUE, the user stores a secret private key at the
   server during password registration and retrieves this key each time
   it needs to authenticate to the server.  The OPRF security properties
   ensure that only the correct password can unlock the private key
   while at the same time avoiding potential offline guessing attacks.
   This general composability property provides great flexibility and
   enables a variety of OPAQUE instantiations, from optimized
   performance to integration with TLS.  The latter aspect is of prime
   importance as the use of OPAQUE with TLS constitutes a major security
   improvement relative to the standard password-over-TLS practice.  At
   the same time, the combination with TLS builds OPAQUE as a fully
   functional secure communications protocol and can help provide
   privacy to account information sent by the user to the server prior
   to authentication.

   The KCI property required from KE protocols for use with OPAQUE
   states that knowledge of a party's private key does not allow an
   attacker to impersonate others to that party.  This is an important
   security property achieved by most public-key based KE protocols,
   including protocols that use signatures or public key encryption for
   authentication.  It is also a property of many implicitly
   authenticated protocols (e.g., HMQV) but not all of them.  We also
   note that key exchange protocols based on shared keys do not satisfy
   the KCI requirement, hence they are not considered in the OPAQUE
   setting.

   This draft defines OPAQUE with a specific, efficient instantiation
   over elliptic curves of the OPRF component and with a few KE schemes,
   including the HMQV [HMQV] and SIGMA [SIGMA] protocols, as well as
   several suggestions for integrating OPAQUE with TLS 1.3
   [I-D.ietf-tls-tls13] offering different tradeoffs between simplicity,
   performance and user privacy.

   The computational cost of OPAQUE is determined by the cost of the
   OPRF, the cost of a regular Diffie-Hellman exchange, and the cost of
   authenticating such exchange.  In our elliptic-curve implementation
   of the OPRF, the cost for the client is two exponentiations (one or
   two of which can be fixed base) and one hashing-into-curve operation
   [I-D.irtf-cfrg-hash-to-curve]; for the server, it is just one
   exponentiation.  The cost of a Diffie-Hellman exchange is as usual
   two exponentiations per party (one of which is fixed-base).  Finally,
   the cost of authentication per party depends on the specific KE
   protocol: it is just 1/6 of an exponentiation with HMQV and it is one
   signature in the case of SIGMA and TLS 1.3.  These instantiations
   preserve the number of messages (two or three) in the underlying KE
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   protocol except in one of the TLS instantiations where user privacy
   requires an additional round trip.

1.1.  Terminology

   In this document, the key words "MUST", "MUST NOT", "REQUIRED",
   "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
   and "OPTIONAL" are to be interpreted as described in BCP 14, RFC 2119
   [RFC2119]

1.2.  Notation

   Throughout this document the first argument to a keyed function
   represents the key; separated by a semicolon are the function inputs
   typically implemented as a unambiguous concatenation of strings.

   Except if said otherwise, random choices in this specification refer
   to drawing with uniform distribution from a given set (i.e., "random"
   is short for "uniformly random").

   The name OPAQUE: A homonym of O-PAKE where O is for Oblivious (the
   name OPAKE was taken).

2.  DH-OPRF

   A fundamental piece in the definition of OPAQUE is an Oblivious
   Pseudo Random Function (OPRF).

   An Oblivious PRF (OPRF) is an interactive protocol between a server S
   and a user U defined by a special pseudorandom function (PRF),
   denoted F.  The server's input to the protocol is a key k for PRF F
   and the user's input is a value x in the domain of F.  At the end of
   the protocol, U learns F(k;x) and nothing else while S learns nothing
   from the protocol execution (in particular nothing about x or the
   value F(k;x)).

   OPAQUE uses a specific OPRF instantiation, called DH-OPRF, where the
   PRF, denoted F, is defined as follows.

   Parameters: Hash function H (e.g., a SHA2 or SHA3 function), a cyclic
   group G of prime order q (with a defined unique string representation
   of its elements), a generator g of G, and hash function H' mapping
   arbitrary strings into G (where H' is modeled as a random oracle).

   o  DH-OPRF domain: Any string

   o  DH-OPRF range: The range of the hash function H
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   o  DH-OPRF key: A random element k in [0..q-1]; denote v=g^k

   o  DH-OPRF Operation: F(k; x) = H(x, v, H'(x)^k)

   Protocol for computing DH-OPRF, U with input x and S with input k:

   o  U: choose random r in [0..q-1], send a=H'(x)*g^r to S

   o  S: upon receiving a value a, respond with v=g^k and b=a^k

   o  U: upon receiving values b and v, set the PRF output to 
      H(x, v, b*v^{-r})

   All received values (a, b, v) are checked to be non-unit elements in
   G.  A party aborts if the check fails.  In the case of Elliptic
   Curves this test is typically inexpensive - see
   [I-D.irtf-cfrg-spake2] for ways to deal with this check (including
   co-factor exponentiation) that apply to DH-OPRF as well.

   Note (exponential blinding): An alternative way of computing DH-OPRF
   is for U to send a=(H'(x))^r in the first message and set the
   function output to H(x,v,b^{1/r}) upon receiving S's response.
   However, note that the multiplicative blinding above is more
   efficient as the g^r exponentiation uses a fixed base.  Moreover, in
   cases where the user caches v (e.g., for sites it visits often) then
   one can also optimize the exponentiation v^{-r}.

   Note: For elliptic curve implementations of DH-OPRF, the hashing into
   the curve operation has been studied extensively with known efficient
   implementations, see [I-D.irtf-cfrg-hash-to-curve].

2.1.  Hardening OPRF via user iterations

   Protocol OPAQUE can be further strengthened against offline
   dictionary attacks by applying to the output of DH-OPRF an iterated
   hash for some number n of iterations.  This increases the cost of an
   offline attack upon the compromise of the server as the attacker will
   need to perform n iterations for each guess of PwdU it tries to
   validate.  For this purpose we re-define DH-OPRF as 
   F(k;x) = I^n( H(x, v, H'(x)^k) ) where I is a specialized hash function
   designed for hashing passwords such as Argon2 [I-D.irtf-cfrg-argon2] or
   scrypt [RFC7914].  The symbol I^n denotes n iterations of function I.  We
   note that in OPAQUE, it is the user who performs these iterations.  The
   value n can be a public constant or it can be communicated by the server as
   part of its OPAQUE message.
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3.  OPAQUE Specification

   OPAQUE consists of the concurrent run of an OPRF protocol and a key-
   exchange protocol KE (one that provides mutual authentication based
   on public keys and satisfies the KCI requirement).  We first define
   OPAQUE in a generic way based on any OPRF and any PK-based KE, and
   later show specific instantiation using DH-OPRF (defined in
   Section 2) and several KE protocols.  The user takes the role of
   initiator in these protocols and the server the responder's.  The
   private-public keys for the user are denoted PrivU and PubU, and for
   the server PrivS and PubS.

3.1.  Password registration

   Password registration is run between a user U and a server S.  It is
   assumed that the user can authenticate the server during this
   registration phase (this is the only part in OPAQUE that requires
   some form of authenticated channel, either physical, out-of-band,
   cryptographic, etc.)

   o  U chooses password PwdU and a pair of private-public keys PrivU
      and PubU for the given protocol KE.

   o  S chooses OPRF key kU (random and independent for each user U) and
      sets vU = g^kU; it also chooses its own pair of private-public
      keys PrivS and PubS for use with protocol KE (the server can use
      the same pair of keys with multiple users), and sends PubS to U.

   o  U and S run OPRF(kU;PwdU) with only U learning the result, denoted
      RwdU (mnemonics for "randomized password").

   o  U generates an "envelope" EnvU defined as

      EnvU = AuthEnc(RwdU; PrivU, PubU, PubS, vU)

      where AuthEnc is an authenticated encryption function with the
      "key committing" property (see note below).  In EnvU only PrivU
      requires encryption while all values (except vU) require
      authentication.  PubU can be omitted if it can be reconstructed
      from PrivU (although it will be generally more efficient to
      include it under EnvU). vU can be completely omitted from EnvU but
      then the server will have to send it with its OPRF response in
      addition to EnvU.

   o  U sends EnvU and PubU to S and erases PwdU, RwdU and all keys.  
      S stores (EnvU, PubS, PrivS, PubU, kU, vU) in a user-specific
      record.  If PrivS and PubS are used for different users, they can
      be stored separately and omitted from the record.
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   Note (password rules).  The above procedure has the significant
   advantage that the user's password is not disclosed to the server
   even during registration.  Some sites require learning the user's
   password for enforcing password rules.  Doing so voids this important
   security property of OPAQUE and is not recommended.  Moving the
   password check procedure to the client side is a more secure
   alternative.

   Note (key committing authenticated encryption).  The function AuthEnc
   used to compute EnvU needs to satisfy a property called "key
   committing".  That is, given a pair of random AuthEnc keys, it should
   be infeasible to create an authenticated ciphertext that successfully
   decrypts under the two keys.  One method is to use encrypt-then-MAC
   where the MAC is collision resistant with respect to keys, i.e.,
   given two random keys it is hard to find a message that has the same
   authentication tag under the two keys.  In particular, HMAC with an
   output of 256 or more bits has this property.

   Note (salt).  We note that in OPAQUE the OPRF key acts as the secret
   salt value that ensures the infeasibility of pre-computation attacks.

3.2.  Online OPAQUE protocol

   After registration, the user and server can run the OPAQUE protocol
   as a password-authenticated key exchange.  The protocol consists of:

   o  transmitting user/account information to the server so that the
      server can retrieve the user's record;

   o  OPRF execution between user and server through which the user
      obtains the value RwdU;

   o  the sending of EnvU from server to user;

   o  decryption by the user of EnvU using RwdU to obtain the user's
      private and public key as well as the authenticated server's
      public key;

   o  use of the public and private keys of each party to run the
      specified KE protocol.

   OPAQUE is optimized by running the OPRF and KE concurrently with
   interleaved and combined messages (while preserving the internal
   ordering of messages in each protocol).  In all cases, the user needs
   to obtain RwdU and EnvU before it can use its own private key PrivU
   and the server's public key PubS in the run of KE.
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3.3.  OPAQUE Instantiations

   We present several instantiations of OPAQUE using DH-OPRF as the OPRF
   and different KE protocols.  For the sake of concreteness and
   performance we focus on KE protocols consisting of two or three
   messages, denoted K1, K2, K3, and such that K1 and K2 include DH
   values sent by user and server, respectively.  These DH values will
   ensure forward secrecy.

   Generic OPAQUE with 3-message KE:

   o  C to S: Uid, a=H'(PwdU)^r, KE1

   o  S to C: b=a^k, EnvU, KE2

   o  C to S: KE3

      Key derivation and other details of the protocol are fully
      specified by the KE scheme.

      We provide two instantiations of OPAQUE (with HMQV and SIGMA-I)
      next and discuss integration with TLS in Section 4).

3.3.1.  Instantiation with HMQV

   The integration of OPAQUE with HMQV [HMQV] leads to the most
   efficient instantiation of OPAQUE.  It results in a full aAPKE
   protocol with implicit authentication in just two messages (this
   inludes the DH-OPRF messages) and with explicit mutual authentication
   in three.  Performance is close to optimal due to the negligible cost
   of authentication in HMQV: Just 1/6 of an exponentiation for each
   party over the cost of a regular DH exchange.  The private and public
   keys of the parties are Diffie-Hellman keys, namely, PubU=g^PrivU and
   PubS=g^PrivS.  The HMQV exchange can be represented schematically as
   follows:

   o  KE1 = g^x

   o  KE2 = g^y, Mac(Km1; g^x, g^y)

   o  KE3 = Mac(Km2; g^y, g^x)

      The third message can be removed (as well as the server's Mac) if
      one is to provide implicit authentication only (e.g., if explicit
      authentication is achieved by the subsequent protocol or
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      Keys in HMQV, namely, MAC keys Km1, Km2 and session/traffic keys
      are derived from a common key K computed as follows:

      C computes K = H((g^y * PubS^e)^{x + d*PrivU))

      S computes K = H((g^x * PubU^d)^{y + e*PrivS))

      where d = H(g^x, IdS) and e = H(g^y, IdU), and Idu, IdS represent
      the identities of user and server.  The computation of K involves
      a single multi-exponentiation whose cost is only 17% more than a
      regular exponentiation.

      This is a minimal skeleton.  A fully-specified protocol will
      include additional details and a careful key derivation scheme.
      In particular, the Mac computation will cover the whole preceding
      transcript.  In addition, the parties will check group membership
      for g^x, g^y or use co-factor computation [I-D.irtf-cfrg-spake2]
      (the check for PubU and PubS can be done only once at user
      registration).

      Note (HMQV patent): IBM has a patent that covers HMQV.  While the
      author does not speak in the name of IBM or with any legal
      authority, he has reason to believe that if there will be a
      serious interest in standardizing OPAQUE with HMQV, the patent may
      not be an impediment.

3.3.2.  Instantiation with SIGMA-I

   We show how OPAQUE can be built around the 3-message SIGMA-I protocol
   [SIGMA].  This example is significant as it shows integration with a
   signature-based KE protocol and because TLS 1.3 follows the design of
   SIGMA-I hence the example helps understanding the proposed
   integration of OPAQUE with TLS in Section 4).

   SIGMA-I can be represented schematically as follows:

   o  KE1 = g^x

   o  KE2 = g^y, Sig(PrivS; g^x, g^y), Mac(Km1; IdS)

   o  KE3 = Sig(PrivU; g^y, g^x), Mac(Km2; IdU)

      In this case, the private keys of both users and servers are
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      As before, this is only a skeleton to illustrate the protocol.
      Full details need to be filled in for a full specification.
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3.4.  Hardening OPAQUE via user iterations

   As noted in Section 2.1 one can add further security to OPAQUE by
   applying an iterated hash on top of the regular DH-OPRF.  For this
   one changes the computation of RwdU by the user (in the password
   registration stage and in each online run of OPAQUE) as follows.  The
   user computes DH-OPRF on its password (namely, the value F(kU; PwdU)
   = H(PwdU, v, (H'(PwdU))^kU)) in interaction with the server using the
   regular procedure from Section 2.  Then it computes RwdU by applying
   n iterations of a hardening password hash function (see Section 2.1)
   to F(kU; PwdU).  The iteration count n is set at the time of password
   registration and can be stored at the server and communicated to the
   user during OPAQUE executions together with the second OPRF message.

4.  Integrating OPAQUE with TLS 1.3

   Note: This section is intended as a basis for discussion on ways to
   integrate OPAQUE with TLS (particularly TLS 1.3).  Precise protocol
   details are left for a future specification.

   As stated in the introduction, the typical password-over-TLS
   mechanism for password authentication suffers from significant
   weaknesses due to the essential reliance of the protocol on PKI and
   the exposure of passwords to the server (and other observers) upon
   TLS decryption.  Here we propose integrating OPAQUE with TLS in order
   to remove these vulnerabilities while at the same time armoring TLS
   itself against PKI failures.  Such integration also benefits OPAQUE
   by leveraging the standardized negotiation and record-layer security
   of TLS.  Furthermore, TLS can offer an initial PKI-authenticated
   channel to protect the privacy of account information such as user
   name transmitted between client and server.

   If one is willing to forgo protection of user account information
   transmitted between user and server, integrating OPAQUE with TLS
   RELATIVELY 1.3 is straightforward and follows essentially the same
   approach as with SIGMA-I in Section 3.3.2.  Specifically, one reuses
   the Diffie-Hellman exchange from TLS and uses the user's private key
   PrivU retrieved from the server as a signature key for TLS client
   authentication.  The integrated protocol will have as its first
   message the TLS's Client Hello augmented with user account
   information and the DH-OPRF first message (the value a).  The
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   server's response includes the regular TLS 1.3 second flight
   augmented with the second OPRF message which includes the values b,
   vU and EnvU.  For its TLS signature, the server uses the private key
   PrivS whose corresponding public key PubS is authenticated as part of
   the user envelope EnvU (there is no need to send a regular TLS
   certificate in this case).  Finally, the third flight consists of the
   standard client Finish message with client authentication where the
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   client's signature is produced with the user's private key PrivU
   retrieved from EnvU and verified by the server with public key PubU.

   The above scheme is depicted in Figure 1 where the sign + indicates
   fields added by OPAQUE; in particular, DH-OPRF1 and DH-OPRF2 denote
   the two DH-OPRF messages.  Other messages in the figure are the same
   as in TLS 1.3.  Notation {...} indicates encryption under handshake
   keys.  Note that ServerSignature and ClientSignature are performed
   with the private keys defined by OPAQUE and they replace signatures
   by traditional TLS certificates.

        Client                                               Server

        ClientHello
        key_share
        + userid + DH-OPRF1     -------->
                                                        ServerHello
                                                          key_share
                                                {+ DH-OPRF2 + EnvU}
                                                {+ ServerSignature}
                                <--------          {ServerFinished}

        {+ ClientSignature}
        {ClientFinished}        -------->

  Figure 1: Integration of OPAQUE in TLS 1.3 (no userid confidentiality)

   Adding protection of user's account information is simple using TLS
   1.3 pre-shared/resumption mechanisms where the account information
   appended to the first handshake message would be encrypted under the
   pre-shared key.  The rest of the protocol follows the above
   description.

   When a resumable session or pre-shared key between the client and the
   server do not exist, user account protection requires a server
   certificate.  In this case, the TLS 1.3 handshake is augmented with
   the two OPAQUE messages interleaved between the second and third
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   flight of the regular TLS handshake.  That is, the protocol consists
   of five flights as follows: (i) A regular 2-flight 1-RTT handshake to
   produce handshake traffic keys authenticated by the server's TLS
   certificate; (ii) two messages that include user identification
   information, the DH-OPRF messages exchanged between client and
   server, and the retrieved EnvU, all encrypted under the handshake
   traffic keys (thus providing privacy to user account information);
   (iii) the TLS 1.3 client authentication flight where client
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   authentication uses the user's private signature key PrivU retrieved
   from the server in step (ii).

   Note that server authentication in (i) uses TLS certificates hence
   user privacy (but not user authentication) is dependent on PKI.  In
   cases where PKI authentication for the server is deemed acceptable
   then there is no need for further server authentication.  However, if
   one wants to enforce server authentication without reliance on PKI,
   then the server needs to authenticate using the private key PrivS
   whose corresponding public key PubS is sent to the user as part of
   EnvU.  There are two options: If PubS is the same as the public key
   the server used in the 1-RTT authentication (step (i)) then there is
   no need for further authentication.  In this case, U gets assurance
   from the authenticated EnvU, not from the PKI certificates.
   Otherwise, the server needs to send a signature under PrivS that is
   piggybacked to the second OPAQUE message in (ii).  In this case the
   signature would cover the running transcript hash as is standard in
   TLS 1.3.  The client signature in the last message also covers the
   transcript hash including the regular handshake and OPAQUE messages.

   The above scheme is depicted in Figure 2.  Please refer to the text
   before Figure 1 describing notation.  Note the asterisk in the
   ServerSignature message.  This indicates that this message is
   optional as it is used only if the server's key PubS in OPAQUE is
   different than the one in the server's certificate (transmitted in
   the second protocol flight).

        Client                                               Server

        ClientHello
        key_share               -------->
                                                         ServerHello
                                                           key_share
                                                       {Certificate}
                                                 {CertificateVerify}
                                <--------           {ServerFinished}
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        {+ userid + DH-OPRF1}   -------->

                                                 {+ DH-OPRF2 + EnvU}
                                <--------       {+ ServerSignature*}

        {ClientSignature}
        {ClientFinished}        -------->

Figure 2: Integration of OPAQUE in TLS 1.3 (with userid confidentiality)
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   We note that the above approaches for integarion of OPAQUE with TLS
   can benefit from the post-handshake client authentication mechanism
   of TLS 1.3 and the exported authenticators from
   [I-D.ietf-tls-exported-authenticator].  Also, formatting of messages
   and negotiation information suggested in [I-D.barnes-tls-pake] can be
   used in the OPAQUE setting.

5.  User enumeration

   User enumeration refers to attacks where the attacker tries to learn
   whether a given user identity is registered with a server.
   Preventing such attack requires the server to act with unknown user
   identities in a way that is indistinguishable from its behavior with
   existing users.  Supporting such defense in OPAQUE requires a
   modification of the protocol.  Note that the server's response to an
   existing user identity includes two values: a^kU and EnvU.  So for a
   non-existing user these two values need to be sent too.  Moreover,
   the response needs to be the same each time that the same user
   identity and value a are sent to the server.  To achieve this a
   server can choose the OPRF key kU for a (valid or fake) user "UId" as
   kU=f(MK; UId) where f is a regular PRF and MK is a server's global
   key.

   The above does not change the protocol as it is a matter of
   implementation.  However, dealing with EnvU for unknown users
   requires the following change in OPAQUE.  In addition to storing EnvU
   during password registration, the server will also store a value EEK
   (for EnvU Encryption Key) derived from RwdU by the user.  During
   login, instead of sending EnvU, the server will send a fresh
   randomized encryption of EnvU under key EEK which the user can
   decrypt to obtain EnvU after computing RwdU via the OPRF (the rest is
   the same as before).  Since different encryptions of EnvU by the
   server are independently randomized, the server can simulate such
   encryption for an unexisting user by encrypting a string of, say, all
   zeros (or simply sending a random string of the ciphertext's length
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   if the ciphertexts themselves are pseudorandom as in the case of
   counter mode).  Note that both the EEK and the key used to generate
   EnvU need to be derived from RwdU via a KDF.

   [Question: How significant is the user enumeration issue?  Should we
   define OPAQUE as above with built-in defense against enumeration?]

6.  Security considerations

   This is an early draft presenting the OPAQUE concept and its
   potential instantiations.  More information on implementation and
   security considerations will be provided in future drafts.  We note
   that the security of OPAQUE is formally proved in [OPAQUE] under a
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   strong model of aPAKE security assuming the security of the OPRF
   function and of the underlying key-exchange protocol.  In turn, the
   security of DH-OPRF is proven in the random oracle model under the
   One-More Diffie-Hellman assumption.

   While one can expect the practical security of the OPRF function
   (namely, the hardness of computing the function without knowing the
   key) to be in the order of computing discrete logarithms or solving
   Diffie-Hellman, Brown and Gallant [BG04] and Cheon [Cheon06] show an
   attack that slightly improves on generic attacks.  For the case that
   q-1 or q+1, where q is the order of the group G, has a t-bit divisor,
   they show an attack that calls the OPRF on 2^t chosen inputs and
   reduces security by t/2 bits, i.e., it can find the OPRF key in time
   2^{p/2-t/2} and 2^{p/2-t/2} memory.  For typical curves, the attack
   requires an infeasible number of calls and/or results in insignificant
   security loss [*].  Moreover, in the OPAQUE application, attempting such
   attacks is completely impractical as the number of calls to the function
   translates to an equal number of failed authentication attempts by a
   _single_ user (e.g., one would need a billion impersonation attempts to
   reduce security by 15 bits and a trillion to reduce it by 20 bits - and
   most curves will not even allow for such attacks in the first place).

   [*] Some examples (courtesy of Dan Brown): For P-384 2^90 calls
   reduce security from 192 to 147 bits; for NIST P-256 the options are
   6-bit reduction with 2153 OPRF calls, about 14 bit reduction with 187
   million calls and 20 bits with a trillion calls.  For Curve25519,
   attacks are completely infeasible (require over 2^100 calls) but its
   twist form allows an attack with 25759 calls that reduces security by
   7 bits and one with 117223 calls that reduces security by 8.4 bits.
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