
draft-krawczyk-cfrg-opaque-00-print.txt Page 1

Crypto Forum Research Group H. Krawczyk
Internet-Draft IBM Research
Intended status: Informational October 01, 2018
Expires: April 4, 2019

 The OPAQUE Asymmetric PAKE Protocol
 draft-krawczyk-cfrg-opaque-00

Abstract

 This draft describes the OPAQUE protocol, a secure asymmetric
 password authenticated key exchange (aPAKE) that supports mutual
 authentication in a client-server setting without any reliance on
 PKI. OPAQUE is the first PKI-free aPAKE to accommodate secret salt
 and therefore is the first to be secure against pre-computation
 attacks upon server compromise. In contrast, prior aPAKE protocols
 did not use salt and if they did, the salt was transmitted in the
 clear from server to user allowing for the building of targeted pre-
 computed dictionaries. OPAQUE security has been proven by Jarecki et
 al. (Eurocrypt 2018) in a strong and universally composable formal
 model of aPAKE security. In addition, the protocol provides forward
 secrecy and the ability to hide the password from the server even
 during password registration.

 Strong security, good performance and an array of additional features
 make OPAQUE a natural candidate for practical use and for adoption as
 a standard. To this end, this draft presents several optimized
 instantiations of OPAQUE and ways of integrating OPAQUE with TLS.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 4, 2019.

Krawczyk Expires April 4, 2019 [Page 1]

draft-krawczyk-cfrg-opaque-00-print.txt Page 2

Internet-Draft I-D October 2018

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

1. Introduction

 Password authentication is the prevalent form of authentication in
 the web and in most other applications. In the most common
 implementation, a user authenticates to a server by entering its user
 id and password where both values are transmitted to the server under
 the protection of TLS. This makes the password vulnerable to TLS
 failures, including many forms of PKI attacks, certificate
 mishandling, termination outside the security perimeter, visibility
 to middle boxes, and more. Moreover, even under normal operation,
 passwords are always visible in plaintext form at the server upon TLS
 decryption.

 Asymmetric (or augmented) Password Authenticated Key Exchange (aPAKE)
 protocols are designed to provide password authentication and
 mutually authenticated key exchange without relying on PKI (except
 during user/password registration) and without disclosing passwords
 to servers or other entities other than the client machine. A secure
 aPAKE should provide the best possible security for a password
 protocol, namely, it should only be open to inevitable attacks:
 Online impersonation attempts with guessed user passwords and offline
 dictionary attacks upon the compromise of a server and leakage of its
 "password file". In the latter case, the attacker learns a mapping
 of a user's password under a one-way function and uses such a mapping
 to validate potential guesses for the password. Crucially important
 is for the password protocol to use an unpredictable one-way mapping
 or otherwise the attacker can pre-compute a deterministic list of
 mapped passwords leading to almost instantaneous leakage of passwords
 upon server compromise.

 Quite surprisingly, in spite of the existence of multiple designs for
 (PKI-free) aPAKE protocols, none of these protocols is secure against
 pre-computation attacks. In particular, none of these protocols can

Krawczyk Expires April 4, 2019 [Page 2]

draft-krawczyk-cfrg-opaque-00-print.txt Page 3

Internet-Draft I-D October 2018

 use the standard technique against pre-computation that combines
 secret random values ("salt") into the one-way password mappings.
 Either these protocols do not use salt at all or, if they do, they
 transmit the salt from server to user in the clear, hence losing the
 secrecy of the salt and its defense against pre-computation.
 Furthermore, the transmission of salt often incurs in additional
 protocol messages.

 This draft describes OPAQUE, the first PKI-free secure aPAKE that is
 secure against pre-computation attacks and capable of using secret
 salt. OPAQUE has been recently defined and studied by Jarecki et al.
 [OPAQUE] who prove the security of the protocol in a strong aPAKE
 model that ensures security against pre-computation attacks and is
 formulated in the Universal Composability framework [Canetti01] under
 the random oracle model. In contrast, very few aPAKE protocols have
 been proven formally and those proven were analyzed in a weak
 security model that allows for pre-computation attacks (e.g.,
 [GMR06]). This is not just a formal issue: these protocols are
 actually vulnerable to such attacks! Furthermore, as far as we know,
 none of the protocols discussed recently as candidates for
 standardization (e.g., SPAKE2+ [I-D.irtf-cfrg-spake2] and AugPAKE
 [RFC6628]) enjoys a proof of security, not even in a weak model. The
 same holds for the SRP protocol [RFC2945] and none of these protocols
 accommodates secret salt.

 OPAQUE's design is based on the seminal work of Ford and Kaliski
 [FK00] with variants studied by Boyen [Boyen09] and Jarecki et al.
 [JKKX16], although none of these papers presented a proof of aPAKE
 security (not even in a weak model).

 In addition to its proven security against pre-computation attacks,
 OPAQUE's security features include forward secrecy (essential for
 protecting past communications in case of password leakage) and the
 ability to hide the password from the server even during password
 registration. Moreover, good performance and an array of additional
 features make OPAQUE a natural candidate for practical use and for
 adoption as a standard. Such features include the ability to
 increase the difficulty of offline dictionary attacks via iterated
 hashing and offloading these iterations to the client, extensibility
 of the protocol to support storage and retrieval of user's secrets
 solely based on a password, and being amenable to a multi-server
 distributed implementation where offline dictionary attacks are not
 possible without breaking into a threshold of servers (such
 distributed solution requires no change or awareness on the client
 side relative to a single-server implementation).

 OPAQUE is defined and proven as the composition of two
 functionalities: An Oblivious PRF (OPRF) and a key-exchange protocol.

Krawczyk Expires April 4, 2019 [Page 3]

draft-krawczyk-cfrg-opaque-00-print.txt Page 4

Internet-Draft I-D October 2018

 It can be seen as a "compiler" for transforming any key-exchange
 protocol (with KCI security - see below) into a secure aPAKE
 protocol. In OPAQUE, the user stores a secret private key at the
 server during password registration and retrieves this key each time
 it needs to authenticate to the server. The OPRF security properties
 ensure that only the correct password can unlock the private key
 while at the same time avoiding potential offline guessing attacks.
 This general composability property provides great flexibility and
 enables a variety of OPAQUE instantiations, from optimized
 performance to integration with TLS. The latter aspect is of prime
 importance as the use of OPAQUE with TLS constitutes a major security
 improvement relative to the standard password-over-TLS practice. At
 the same time, the combination with TLS builds OPAQUE as a fully
 functional secure communications protocol and can help provide
 privacy to account information sent by the user to the server prior
 to authentication.

 The KCI property required from KE protocols for use with OPAQUE
 states that knowledge of a party's private key does not allow an
 attacker to impersonate others to that party. This is an important
 security property achieved by most public-key based KE protocols,
 including protocols that use signatures or public key encryption for
 authentication. It is also a property of many implicitly
 authenticated protocols (e.g., HMQV) but not all of them. We also
 note that key exchange protocols based on shared keys do not satisfy
 the KCI requirement, hence they are not considered in the OPAQUE
 setting.

 This draft defines OPAQUE with a specific, efficient instantiation
 over elliptic curves of the OPRF component and with a few KE schemes,
 including the HMQV [HMQV] and SIGMA [SIGMA] protocols, as well as
 several suggestions for integrating OPAQUE with TLS 1.3
 [I-D.ietf-tls-tls13] offering different tradeoffs between simplicity,
 performance and user privacy.

 The computational cost of OPAQUE is determined by the cost of the
 OPRF, the cost of a regular Diffie-Hellman exchange, and the cost of
 authenticating such exchange. In our elliptic-curve implementation
 of the OPRF, the cost for the client is two exponentiations (one or
 two of which can be fixed base) and one hashing-into-curve operation
 [I-D.irtf-cfrg-hash-to-curve]; for the server, it is just one
 exponentiation. The cost of a Diffie-Hellman exchange is as usual
 two exponentiations per party (one of which is fixed-base). Finally,
 the cost of authentication per party depends on the specific KE
 protocol: it is just 1/6 of an exponentiation with HMQV and it is one
 signature in the case of SIGMA and TLS 1.3. These instantiations
 preserve the number of messages (two or three) in the underlying KE

Krawczyk Expires April 4, 2019 [Page 4]

draft-krawczyk-cfrg-opaque-00-print.txt Page 5

Internet-Draft I-D October 2018

 protocol except in one of the TLS instantiations where user privacy
 requires an additional round trip.

1.1. Terminology

 In this document, the key words "MUST", "MUST NOT", "REQUIRED",
 "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
 and "OPTIONAL" are to be interpreted as described in BCP 14, RFC 2119
 [RFC2119]

1.2. Notation

 Throughout this document the first argument to a keyed function
 represents the key; separated by a semicolon are the function inputs
 typically implemented as a unambiguous concatenation of strings.

 Except if said otherwise, random choices in this specification refer
 to drawing with uniform distribution from a given set (i.e., "random"
 is short for "uniformly random").

 The name OPAQUE: A homonym of O-PAKE where O is for Oblivious (the
 name OPAKE was taken).

2. DH-OPRF

 A fundamental piece in the definition of OPAQUE is an Oblivious
 Pseudo Random Function (OPRF).

 An Oblivious PRF (OPRF) is an interactive protocol between a server S
 and a user U defined by a special pseudorandom function (PRF),
 denoted F. The server's input to the protocol is a key k for PRF F
 and the user's input is a value x in the domain of F. At the end of
 the protocol, U learns F(k;x) and nothing else while S learns nothing
 from the protocol execution (in particular nothing about x or the
 value F(k;x)).

 OPAQUE uses a specific OPRF instantiation, called DH-OPRF, where the
 PRF, denoted F, is defined as follows.

 Parameters: Hash function H (e.g., a SHA2 or SHA3 function), a cyclic
 group G of prime order q (with a defined unique string representation
 of its elements), a generator g of G, and hash function H' mapping
 arbitrary strings into G (where H' is modeled as a random oracle).

 o DH-OPRF domain: Any string

 o DH-OPRF range: The range of the hash function H

Krawczyk Expires April 4, 2019 [Page 5]

draft-krawczyk-cfrg-opaque-00-print.txt Page 6

Internet-Draft I-D October 2018

 o DH-OPRF key: A random element k in [0..q-1]; denote v=g^k

 o DH-OPRF Operation: F(k; x) = H(x, v, H'(x)^k)

 Protocol for computing DH-OPRF, U with input x and S with input k:

 o U: choose random r in [0..q-1], send a=H'(x)*g^r to S

 o S: upon receiving a value a, respond with v=g^k and b=a^k

 o U: upon receiving values b and v, set the PRF output to
 H(x, v, b*v^{-r})

 All received values (a, b, v) are checked to be non-unit elements in
 G. A party aborts if the check fails. In the case of Elliptic
 Curves this test is typically inexpensive - see
 [I-D.irtf-cfrg-spake2] for ways to deal with this check (including
 co-factor exponentiation) that apply to DH-OPRF as well.

 Note (exponential blinding): An alternative way of computing DH-OPRF
 is for U to send a=(H'(x))^r in the first message and set the
 function output to H(x,v,b^{1/r}) upon receiving S's response.
 However, note that the multiplicative blinding above is more
 efficient as the g^r exponentiation uses a fixed base. Moreover, in
 cases where the user caches v (e.g., for sites it visits often) then
 one can also optimize the exponentiation v^{-r}.

 Note: For elliptic curve implementations of DH-OPRF, the hashing into
 the curve operation has been studied extensively with known efficient
 implementations, see [I-D.irtf-cfrg-hash-to-curve].

2.1. Hardening OPRF via user iterations

 Protocol OPAQUE can be further strengthened against offline
 dictionary attacks by applying to the output of DH-OPRF an iterated
 hash for some number n of iterations. This increases the cost of an
 offline attack upon the compromise of the server as the attacker will
 need to perform n iterations for each guess of PwdU it tries to
 validate. For this purpose we re-define DH-OPRF as
 F(k;x) = I^n(H(x, v, H'(x)^k)) where I is a specialized hash function
 designed for hashing passwords such as Argon2 [I-D.irtf-cfrg-argon2] or
 scrypt [RFC7914]. The symbol I^n denotes n iterations of function I. We
 note that in OPAQUE, it is the user who performs these iterations. The
 value n can be a public constant or it can be communicated by the server as
 part of its OPAQUE message.

draft-krawczyk-cfrg-opaque-00-print.txt Page 7

Krawczyk Expires April 4, 2019 [Page 6]

Internet-Draft I-D October 2018

3. OPAQUE Specification

 OPAQUE consists of the concurrent run of an OPRF protocol and a key-
 exchange protocol KE (one that provides mutual authentication based
 on public keys and satisfies the KCI requirement). We first define
 OPAQUE in a generic way based on any OPRF and any PK-based KE, and
 later show specific instantiation using DH-OPRF (defined in
 Section 2) and several KE protocols. The user takes the role of
 initiator in these protocols and the server the responder's. The
 private-public keys for the user are denoted PrivU and PubU, and for
 the server PrivS and PubS.

3.1. Password registration

 Password registration is run between a user U and a server S. It is
 assumed that the user can authenticate the server during this
 registration phase (this is the only part in OPAQUE that requires
 some form of authenticated channel, either physical, out-of-band,
 cryptographic, etc.)

 o U chooses password PwdU and a pair of private-public keys PrivU
 and PubU for the given protocol KE.

 o S chooses OPRF key kU (random and independent for each user U) and
 sets vU = g^kU; it also chooses its own pair of private-public
 keys PrivS and PubS for use with protocol KE (the server can use
 the same pair of keys with multiple users), and sends PubS to U.

 o U and S run OPRF(kU;PwdU) with only U learning the result, denoted
 RwdU (mnemonics for "randomized password").

 o U generates an "envelope" EnvU defined as

 EnvU = AuthEnc(RwdU; PrivU, PubU, PubS, vU)

 where AuthEnc is an authenticated encryption function with the
 "key committing" property (see note below). In EnvU only PrivU
 requires encryption while all values (except vU) require
 authentication. PubU can be omitted if it can be reconstructed
 from PrivU (although it will be generally more efficient to
 include it under EnvU). vU can be completely omitted from EnvU but
 then the server will have to send it with its OPRF response in
 addition to EnvU.

 o U sends EnvU and PubU to S and erases PwdU, RwdU and all keys.
 S stores (EnvU, PubS, PrivS, PubU, kU, vU) in a user-specific
 record. If PrivS and PubS are used for different users, they can
 be stored separately and omitted from the record.

draft-krawczyk-cfrg-opaque-00-print.txt Page 8

Krawczyk Expires April 4, 2019 [Page 7]

Internet-Draft I-D October 2018

 Note (password rules). The above procedure has the significant
 advantage that the user's password is not disclosed to the server
 even during registration. Some sites require learning the user's
 password for enforcing password rules. Doing so voids this important
 security property of OPAQUE and is not recommended. Moving the
 password check procedure to the client side is a more secure
 alternative.

 Note (key committing authenticated encryption). The function AuthEnc
 used to compute EnvU needs to satisfy a property called "key
 committing". That is, given a pair of random AuthEnc keys, it should
 be infeasible to create an authenticated ciphertext that successfully
 decrypts under the two keys. One method is to use encrypt-then-MAC
 where the MAC is collision resistant with respect to keys, i.e.,
 given two random keys it is hard to find a message that has the same
 authentication tag under the two keys. In particular, HMAC with an
 output of 256 or more bits has this property.

 Note (salt). We note that in OPAQUE the OPRF key acts as the secret
 salt value that ensures the infeasibility of pre-computation attacks.

3.2. Online OPAQUE protocol

 After registration, the user and server can run the OPAQUE protocol
 as a password-authenticated key exchange. The protocol consists of:

 o transmitting user/account information to the server so that the
 server can retrieve the user's record;

 o OPRF execution between user and server through which the user
 obtains the value RwdU;

 o the sending of EnvU from server to user;

 o decryption by the user of EnvU using RwdU to obtain the user's
 private and public key as well as the authenticated server's
 public key;

 o use of the public and private keys of each party to run the
 specified KE protocol.

 OPAQUE is optimized by running the OPRF and KE concurrently with
 interleaved and combined messages (while preserving the internal
 ordering of messages in each protocol). In all cases, the user needs
 to obtain RwdU and EnvU before it can use its own private key PrivU
 and the server's public key PubS in the run of KE.

draft-krawczyk-cfrg-opaque-00-print.txt Page 9

Krawczyk Expires April 4, 2019 [Page 8]

Internet-Draft I-D October 2018

3.3. OPAQUE Instantiations

 We present several instantiations of OPAQUE using DH-OPRF as the OPRF
 and different KE protocols. For the sake of concreteness and
 performance we focus on KE protocols consisting of two or three
 messages, denoted K1, K2, K3, and such that K1 and K2 include DH
 values sent by user and server, respectively. These DH values will
 ensure forward secrecy.

 Generic OPAQUE with 3-message KE:

 o C to S: Uid, a=H'(PwdU)^r, KE1

 o S to C: b=a^k, EnvU, KE2

 o C to S: KE3

 Key derivation and other details of the protocol are fully
 specified by the KE scheme.

 We provide two instantiations of OPAQUE (with HMQV and SIGMA-I)
 next and discuss integration with TLS in Section 4).

3.3.1. Instantiation with HMQV

 The integration of OPAQUE with HMQV [HMQV] leads to the most
 efficient instantiation of OPAQUE. It results in a full aAPKE
 protocol with implicit authentication in just two messages (this
 inludes the DH-OPRF messages) and with explicit mutual authentication
 in three. Performance is close to optimal due to the negligible cost
 of authentication in HMQV: Just 1/6 of an exponentiation for each
 party over the cost of a regular DH exchange. The private and public
 keys of the parties are Diffie-Hellman keys, namely, PubU=g^PrivU and
 PubS=g^PrivS. The HMQV exchange can be represented schematically as
 follows:

 o KE1 = g^x

 o KE2 = g^y, Mac(Km1; g^x, g^y)

 o KE3 = Mac(Km2; g^y, g^x)

 The third message can be removed (as well as the server's Mac) if
 one is to provide implicit authentication only (e.g., if explicit
 authentication is achieved by the subsequent protocol or

draft-krawczyk-cfrg-opaque-00-print.txt Page 10

 application).

Krawczyk Expires April 4, 2019 [Page 9]

Internet-Draft I-D October 2018

 Keys in HMQV, namely, MAC keys Km1, Km2 and session/traffic keys
 are derived from a common key K computed as follows:

 C computes K = H((g^y * PubS^e)^{x + d*PrivU))

 S computes K = H((g^x * PubU^d)^{y + e*PrivS))

 where d = H(g^x, IdS) and e = H(g^y, IdU), and Idu, IdS represent
 the identities of user and server. The computation of K involves
 a single multi-exponentiation whose cost is only 17% more than a
 regular exponentiation.

 This is a minimal skeleton. A fully-specified protocol will
 include additional details and a careful key derivation scheme.
 In particular, the Mac computation will cover the whole preceding
 transcript. In addition, the parties will check group membership
 for g^x, g^y or use co-factor computation [I-D.irtf-cfrg-spake2]
 (the check for PubU and PubS can be done only once at user
 registration).

 Note (HMQV patent): IBM has a patent that covers HMQV. While the
 author does not speak in the name of IBM or with any legal
 authority, he has reason to believe that if there will be a
 serious interest in standardizing OPAQUE with HMQV, the patent may
 not be an impediment.

3.3.2. Instantiation with SIGMA-I

 We show how OPAQUE can be built around the 3-message SIGMA-I protocol
 [SIGMA]. This example is significant as it shows integration with a
 signature-based KE protocol and because TLS 1.3 follows the design of
 SIGMA-I hence the example helps understanding the proposed
 integration of OPAQUE with TLS in Section 4).

 SIGMA-I can be represented schematically as follows:

 o KE1 = g^x

 o KE2 = g^y, Sig(PrivS; g^x, g^y), Mac(Km1; IdS)

 o KE3 = Sig(PrivU; g^y, g^x), Mac(Km2; IdU)

 In this case, the private keys of both users and servers are

draft-krawczyk-cfrg-opaque-00-print.txt Page 11

 signature keys. Key derivation is based on the DH value g^xy.

 As before, this is only a skeleton to illustrate the protocol.
 Full details need to be filled in for a full specification.

Krawczyk Expires April 4, 2019 [Page 10]

Internet-Draft I-D October 2018

3.4. Hardening OPAQUE via user iterations

 As noted in Section 2.1 one can add further security to OPAQUE by
 applying an iterated hash on top of the regular DH-OPRF. For this
 one changes the computation of RwdU by the user (in the password
 registration stage and in each online run of OPAQUE) as follows. The
 user computes DH-OPRF on its password (namely, the value F(kU; PwdU)
 = H(PwdU, v, (H'(PwdU))^kU)) in interaction with the server using the
 regular procedure from Section 2. Then it computes RwdU by applying
 n iterations of a hardening password hash function (see Section 2.1)
 to F(kU; PwdU). The iteration count n is set at the time of password
 registration and can be stored at the server and communicated to the
 user during OPAQUE executions together with the second OPRF message.

4. Integrating OPAQUE with TLS 1.3

 Note: This section is intended as a basis for discussion on ways to
 integrate OPAQUE with TLS (particularly TLS 1.3). Precise protocol
 details are left for a future specification.

 As stated in the introduction, the typical password-over-TLS
 mechanism for password authentication suffers from significant
 weaknesses due to the essential reliance of the protocol on PKI and
 the exposure of passwords to the server (and other observers) upon
 TLS decryption. Here we propose integrating OPAQUE with TLS in order
 to remove these vulnerabilities while at the same time armoring TLS
 itself against PKI failures. Such integration also benefits OPAQUE
 by leveraging the standardized negotiation and record-layer security
 of TLS. Furthermore, TLS can offer an initial PKI-authenticated
 channel to protect the privacy of account information such as user
 name transmitted between client and server.

 If one is willing to forgo protection of user account information
 transmitted between user and server, integrating OPAQUE with TLS
 RELATIVELY 1.3 is straightforward and follows essentially the same
 approach as with SIGMA-I in Section 3.3.2. Specifically, one reuses
 the Diffie-Hellman exchange from TLS and uses the user's private key
 PrivU retrieved from the server as a signature key for TLS client
 authentication. The integrated protocol will have as its first
 message the TLS's Client Hello augmented with user account
 information and the DH-OPRF first message (the value a). The

draft-krawczyk-cfrg-opaque-00-print.txt Page 12

 server's response includes the regular TLS 1.3 second flight
 augmented with the second OPRF message which includes the values b,
 vU and EnvU. For its TLS signature, the server uses the private key
 PrivS whose corresponding public key PubS is authenticated as part of
 the user envelope EnvU (there is no need to send a regular TLS
 certificate in this case). Finally, the third flight consists of the
 standard client Finish message with client authentication where the

Krawczyk Expires April 4, 2019 [Page 11]

Internet-Draft I-D October 2018

 client's signature is produced with the user's private key PrivU
 retrieved from EnvU and verified by the server with public key PubU.

 The above scheme is depicted in Figure 1 where the sign + indicates
 fields added by OPAQUE; in particular, DH-OPRF1 and DH-OPRF2 denote
 the two DH-OPRF messages. Other messages in the figure are the same
 as in TLS 1.3. Notation {...} indicates encryption under handshake
 keys. Note that ServerSignature and ClientSignature are performed
 with the private keys defined by OPAQUE and they replace signatures
 by traditional TLS certificates.

 Client Server

 ClientHello
 key_share
 + userid + DH-OPRF1 -------->
 ServerHello
 key_share
 {+ DH-OPRF2 + EnvU}
 {+ ServerSignature}
 <-------- {ServerFinished}

 {+ ClientSignature}
 {ClientFinished} -------->

 Figure 1: Integration of OPAQUE in TLS 1.3 (no userid confidentiality)

 Adding protection of user's account information is simple using TLS
 1.3 pre-shared/resumption mechanisms where the account information
 appended to the first handshake message would be encrypted under the
 pre-shared key. The rest of the protocol follows the above
 description.

 When a resumable session or pre-shared key between the client and the
 server do not exist, user account protection requires a server
 certificate. In this case, the TLS 1.3 handshake is augmented with
 the two OPAQUE messages interleaved between the second and third

draft-krawczyk-cfrg-opaque-00-print.txt Page 13

 flight of the regular TLS handshake. That is, the protocol consists
 of five flights as follows: (i) A regular 2-flight 1-RTT handshake to
 produce handshake traffic keys authenticated by the server's TLS
 certificate; (ii) two messages that include user identification
 information, the DH-OPRF messages exchanged between client and
 server, and the retrieved EnvU, all encrypted under the handshake
 traffic keys (thus providing privacy to user account information);
 (iii) the TLS 1.3 client authentication flight where client

Krawczyk Expires April 4, 2019 [Page 12]

Internet-Draft I-D October 2018

 authentication uses the user's private signature key PrivU retrieved
 from the server in step (ii).

 Note that server authentication in (i) uses TLS certificates hence
 user privacy (but not user authentication) is dependent on PKI. In
 cases where PKI authentication for the server is deemed acceptable
 then there is no need for further server authentication. However, if
 one wants to enforce server authentication without reliance on PKI,
 then the server needs to authenticate using the private key PrivS
 whose corresponding public key PubS is sent to the user as part of
 EnvU. There are two options: If PubS is the same as the public key
 the server used in the 1-RTT authentication (step (i)) then there is
 no need for further authentication. In this case, U gets assurance
 from the authenticated EnvU, not from the PKI certificates.
 Otherwise, the server needs to send a signature under PrivS that is
 piggybacked to the second OPAQUE message in (ii). In this case the
 signature would cover the running transcript hash as is standard in
 TLS 1.3. The client signature in the last message also covers the
 transcript hash including the regular handshake and OPAQUE messages.

 The above scheme is depicted in Figure 2. Please refer to the text
 before Figure 1 describing notation. Note the asterisk in the
 ServerSignature message. This indicates that this message is
 optional as it is used only if the server's key PubS in OPAQUE is
 different than the one in the server's certificate (transmitted in
 the second protocol flight).

 Client Server

 ClientHello
 key_share -------->
 ServerHello
 key_share
 {Certificate}
 {CertificateVerify}
 <-------- {ServerFinished}

draft-krawczyk-cfrg-opaque-00-print.txt Page 14

 {+ userid + DH-OPRF1} -------->

 {+ DH-OPRF2 + EnvU}
 <-------- {+ ServerSignature*}

 {ClientSignature}
 {ClientFinished} -------->

Figure 2: Integration of OPAQUE in TLS 1.3 (with userid confidentiality)

Krawczyk Expires April 4, 2019 [Page 13]

Internet-Draft I-D October 2018

 We note that the above approaches for integarion of OPAQUE with TLS
 can benefit from the post-handshake client authentication mechanism
 of TLS 1.3 and the exported authenticators from
 [I-D.ietf-tls-exported-authenticator]. Also, formatting of messages
 and negotiation information suggested in [I-D.barnes-tls-pake] can be
 used in the OPAQUE setting.

5. User enumeration

 User enumeration refers to attacks where the attacker tries to learn
 whether a given user identity is registered with a server.
 Preventing such attack requires the server to act with unknown user
 identities in a way that is indistinguishable from its behavior with
 existing users. Supporting such defense in OPAQUE requires a
 modification of the protocol. Note that the server's response to an
 existing user identity includes two values: a^kU and EnvU. So for a
 non-existing user these two values need to be sent too. Moreover,
 the response needs to be the same each time that the same user
 identity and value a are sent to the server. To achieve this a
 server can choose the OPRF key kU for a (valid or fake) user "UId" as
 kU=f(MK; UId) where f is a regular PRF and MK is a server's global
 key.

 The above does not change the protocol as it is a matter of
 implementation. However, dealing with EnvU for unknown users
 requires the following change in OPAQUE. In addition to storing EnvU
 during password registration, the server will also store a value EEK
 (for EnvU Encryption Key) derived from RwdU by the user. During
 login, instead of sending EnvU, the server will send a fresh
 randomized encryption of EnvU under key EEK which the user can
 decrypt to obtain EnvU after computing RwdU via the OPRF (the rest is
 the same as before). Since different encryptions of EnvU by the
 server are independently randomized, the server can simulate such
 encryption for an unexisting user by encrypting a string of, say, all
 zeros (or simply sending a random string of the ciphertext's length

draft-krawczyk-cfrg-opaque-00-print.txt Page 15

 if the ciphertexts themselves are pseudorandom as in the case of
 counter mode). Note that both the EEK and the key used to generate
 EnvU need to be derived from RwdU via a KDF.

 [Question: How significant is the user enumeration issue? Should we
 define OPAQUE as above with built-in defense against enumeration?]

6. Security considerations

 This is an early draft presenting the OPAQUE concept and its
 potential instantiations. More information on implementation and
 security considerations will be provided in future drafts. We note
 that the security of OPAQUE is formally proved in [OPAQUE] under a

Krawczyk Expires April 4, 2019 [Page 14]

Internet-Draft I-D October 2018

 strong model of aPAKE security assuming the security of the OPRF
 function and of the underlying key-exchange protocol. In turn, the
 security of DH-OPRF is proven in the random oracle model under the
 One-More Diffie-Hellman assumption.

 While one can expect the practical security of the OPRF function
 (namely, the hardness of computing the function without knowing the
 key) to be in the order of computing discrete logarithms or solving
 Diffie-Hellman, Brown and Gallant [BG04] and Cheon [Cheon06] show an
 attack that slightly improves on generic attacks. For the case that
 q-1 or q+1, where q is the order of the group G, has a t-bit divisor,
 they show an attack that calls the OPRF on 2^t chosen inputs and
 reduces security by t/2 bits, i.e., it can find the OPRF key in time
 2^{p/2-t/2} and 2^{p/2-t/2} memory. For typical curves, the attack
 requires an infeasible number of calls and/or results in insignificant
 security loss [*]. Moreover, in the OPAQUE application, attempting such
 attacks is completely impractical as the number of calls to the function
 translates to an equal number of failed authentication attempts by a
 single user (e.g., one would need a billion impersonation attempts to
 reduce security by 15 bits and a trillion to reduce it by 20 bits - and
 most curves will not even allow for such attacks in the first place).

 [*] Some examples (courtesy of Dan Brown): For P-384 2^90 calls
 reduce security from 192 to 147 bits; for NIST P-256 the options are
 6-bit reduction with 2153 OPRF calls, about 14 bit reduction with 187
 million calls and 20 bits with a trillion calls. For Curve25519,
 attacks are completely infeasible (require over 2^100 calls) but its
 twist form allows an attack with 25759 calls that reduces security by
 7 bits and one with 117223 calls that reduces security by 8.4 bits.

7. References

7.1. Normative References

draft-krawczyk-cfrg-opaque-00-print.txt Page 16

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

7.2. Informative References

 [Boyen09] Boyen, X., "HPAKE: Password authentication secure against
 cross-site user impersonation", Cryptology and Network
 Security (CANS) , 2009.

 [BG04] Brown, D. and R. Galant, "The static Diffie-Hellman
 problem", http://eprint.iacr.org/2004/306 , 2004.

Krawczyk Expires April 4, 2019 [Page 15]

Internet-Draft I-D October 2018

 [Canetti01]
 Canetti, R., "Universally composable security: A new
 paradigm for cryptographic protocols", IEEE Symposium on
 Foundations of Computer Science (FOCS) , 2001.

 [Cheon06] Cheon, J., "Security analysis of the strong Diffie-Hellman
 problem", Euroctypt 2006 , 2006.

 [FK00] Ford, W. and B. Kaliski, Jr, "Server-assisted generation
 of a strong secret from a password", WETICE , 2000.

 [GMR06] Gentry, C., MacKenzie, P., and . Z, Ramzan, "A method for
 making password-based key exchange resilient to server
 compromise", CRYPTO , 2006.

 [I-D.ietf-tls-exported-authenticator]
 Sullivan, N., "Exported Authenticators in TLS", draft-
 ietf-tls-exported-authenticator-07 (work in progress),
 June 2018.

 [I-D.barnes-tls-pake]
 Barnes, R. and O. Friel, "Usage of SPAKE with TLS 1.3",
 draft-barnes-tls-pake-02 (work in progress), June 2018.

 [I-D.irtf-cfrg-argon2]
 Biryukov, A., Dinu, D., Khovratovich, D., and S.
 Josefsson, "The memory-hard Argon2 password hash and
 proof-of-work function", draft-irtf-cfrg-argon2-03 (work
 in progress), August 2017.

 [I-D.irtf-cfrg-spake2]

draft-krawczyk-cfrg-opaque-00-print.txt Page 17

 Ladd, W. and B. Kaduk, "SPAKE2, a PAKE", draft-irtf-cfrg-
 spake2-05 (work in progress), February 2018.

 [I-D.ietf-tls-tls13]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", draft-ietf-tls-tls13-28 (work in progress),
 March 2018.

 [I-D.irtf-cfrg-hash-to-curve]
 Scott, S., Sullivan, N., and C. Wood, "Hashing to Elliptic
 Curves", draft-irtf-cfrg-hash-to-curve-01 (work in
 progress), July 2018.

 [OPAQUE] Jarecki, S., Krawczyk, H., and J. Xu, "OPAQUE: An
 Asymmetric PAKE Protocol Secure Against Pre-Computation
 Attacks", Eurocrypt , 2018.

Krawczyk Expires April 4, 2019 [Page 16]

Internet-Draft I-D October 2018

 [JKKX16] Jarecki, S., Kiayias, A., Krawczyk, H., and J. Xu,
 "Highly-efficient and composable password-protected secret
 sharing (or: how to protect your bitcoin wallet online)",
 IEEE European Symposium on Security and Privacy , 2016.

 [SIGMA] Krawczyk, H., "SIGMA: The SIGn-and-MAc approach to
 authenticated Diffie-Hellman and its use in the IKE
 protocols", CRYPTO , 2003.

 [HMQV] Krawczyk, H., "HMQV: A high-performance secure Diffie-
 Hellman protocol", CRYPTO , 2005.

 [RFC2945] Wu, T., "The SRP Authentication and Key Exchange System",
 RFC 2945, DOI 10.17487/RFC2945, September 2000,
 <https://www.rfc-editor.org/info/rfc2945>.

 [RFC6628] Shin, S. and K. Kobara, "Efficient Augmented Password-Only
 Authentication and Key Exchange for IKEv2", RFC 6628, DOI
 10.17487/RFC6628, June 2012, <https://www.rfc-
 editor.org/info/rfc6628>.

 [RFC7914] Percival, C. and S. Josefsson, "The scrypt Password-Based
 Key Derivation Function", RFC 7914, DOI 10.17487/RFC7914,
 August 2016, <https://www.rfc-editor.org/info/rfc7914>.

Author's Address

 Hugo Krawczyk
 IBM Research

draft-krawczyk-cfrg-opaque-00-print.txt Page 18

 Email: hugo@ee.technion,ac.il

Krawczyk Expires April 4, 2019 [Page 17]

