INTERNET-DRAFT Editor of this version: Request for Comments: -TM R. Presuhn STD: XXX BMC Software, Inc. Obsoletes: 1906 Authors of previous version: Category: Standards Track J. Case SNMP Research, Inc. K. McCloghrie Cisco Systems, Inc. M. Rose Dover Beach Consulting, Inc. S. Waldbusser International Network Services 2 June 2000 Transport Mappings for the Simple Network Management Protocol Status of this Memo This document is an Internet-Draft and is in full conformance with all provisions of Section 10 of RFC2026. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html Copyright Notice Copyright (C) The Internet Society (2000). All Rights Reserved. Abstract This document is intended to obsolete RFC 1906, Transport Mappings for Version 2 of the Simple Network Management Protocol (SNMPv2). It defines the transport of SNMP messages over various protocols. SNMPv3 Working Group Expires November 2000 [Page 1] Internet Draft Transport Mappings for SNMP 2 June 2000 Table of Contents 1. Introduction ................................................ 3 2. Definitions ................................................. 4 3. SNMP over UDP over IPv4 ..................................... 7 3.1. Serialization ............................................. 7 3.2. Well-known Values ......................................... 8 4. SNMP over OSI ............................................... 8 4.1. Serialization ............................................. 8 4.2. Well-known Values ......................................... 8 5. SNMP over DDP ............................................... 8 5.1. Serialization ............................................. 8 5.2. Well-known Values ......................................... 9 5.3. Discussion of AppleTalk Addressing ........................ 9 5.3.1. How to Acquire NBP names ................................ 10 5.3.2. When to Turn NBP names into DDP addresses ............... 10 5.3.3. How to Turn NBP names into DDP addresses ................ 11 5.3.4. What if NBP is broken ................................... 11 6. SNMP over IPX ............................................... 12 6.1. Serialization ............................................. 12 6.2. Well-known Values ......................................... 12 7. Proxy to SNMPv1 ............................................. 12 8. Serialization using the Basic Encoding Rules ................ 12 8.1. Usage Example ............................................. 13 9. Notice on Intellectual Property ............................. 14 10. Acknowledgments ............................................ 14 11. Security Considerations .................................... 16 12. References ................................................. 16 13. Editor's Address ........................................... 18 14. Changes from RFC 1906 ...................................... 19 15. Issues ..................................................... 20 16. Full Copyright Statement ................................... 21 SNMPv3 Working Group Expires November 2000 [Page 2] Internet Draft Transport Mappings for SNMP 2 June 2000 1. Introduction The SNMP Management Framework at the time of this writing consists of five major components: - An overall architecture, described in RFC 2571 [RFC2571]. - Mechanisms for describing and naming objects and events for the purpose of management. The first version of this Structure of Management Information (SMI) is called SMIv1 and described in STD 16, RFC 1155 [RFC1155], STD 16, RFC 1212 [RFC1212] and RFC 1215 [RFC1215]. The second version, called SMIv2, is described in STD 58, RFC 2578 [RFC2578], STD 58, RFC 2579 [RFC2579] and STD 58, RFC 2580 [RFC2580]. - Message protocols for transferring management information. The first version of the SNMP message protocol is called SNMPv1 and is described in STD 15, RFC 1157 [RFC1157]. A second version of the SNMP message protocol, which is not an Internet standards track protocol, is called SNMPv2c and is described in RFC 1901 [RFC1901] and this document. The third version of the message protocol is called SNMPv3 and described in this document, RFC 2572 [RFC2572] and RFC 2574 [RFC2574]. - Protocol operations for accessing management information. The first set of protocol operations and associated PDU formats is described in STD 15, RFC 1157 [RFC1157]. A second set of protocol operations and associated PDU formats is described RFC -PROTO [RFC-PROTO]. - A set of fundamental applications described in RFC 2573 [RFC2573] and the view-based access control mechanism described in RFC 2575 [RFC2575]. A more detailed introduction to the SNMP Management Framework at the time of this writing can be found in RFC 2570 [RFC2570]. Managed objects are accessed via a virtual information store, termed the Management Information Base or MIB. Objects in the MIB are defined using the mechanisms defined in the SMI. This document, Transport Mappings for the Simple Network Management Protocol, defines how the management protocol [RFC- PROTO] may be carried over a variety of protocol suites. It is the purpose of this document to define how the SNMP maps onto an initial set of transport domains. Other mappings may be defined in the future. SNMPv3 Working Group Expires November 2000 [Page 3] Internet Draft Transport Mappings for SNMP 2 June 2000 Although several mappings are defined, the mapping onto UDP over IPv4 is the preferred mapping. As such, to provide for the greatest level of interoperability, systems which choose to deploy other mappings should also provide for access via UDP over IPv4 mapping. 2. Definitions SNMPv2-TM DEFINITIONS ::= BEGIN IMPORTS MODULE-IDENTITY, OBJECT-IDENTITY, snmpModules, snmpDomains, snmpProxys FROM SNMPv2-SMI TEXTUAL-CONVENTION FROM SNMPv2-TC; snmpv2tm MODULE-IDENTITY LAST-UPDATED "200006030101Z" ORGANIZATION "IETF SNMPv3 Working Group" CONTACT-INFO "WG-EMail: snmpv3@tis.com Subscribe: majordomo@tis.com In message body: subscribe snmpv3 Chair: Russ Mundy TIS Labs at Network Associates postal: 3060 Washington Rd Glenwood MD 21738 USA EMail: mundy@tislabs.com phone: +1 301 854-6889 Editor: Randy Presuhn BMC Software, Inc. postal: 2141 North First Street San Jose, CA 95131 USA EMail: randy_presuhn@bmc.com phone: +1 408 546-1006" DESCRIPTION "The MIB module for SNMP transport mappings." REVISION "200006030101Z" DESCRIPTION "Clarifications, published as " SNMPv3 Working Group Expires November 2000 [Page 4] Internet Draft Transport Mappings for SNMP 2 June 2000 REVISION "199601010000Z" DESCRIPTION "Clarifications, published as RFC 1906." REVISION "199304010000Z" DESCRIPTION "The initial version, published as RFC 1449." ::= { snmpModules ?? } -- to be assigned by IANA?? -- SNMP over UDP over IPv4 snmpUDPDomain OBJECT-IDENTITY STATUS current DESCRIPTION "The SNMP over UDP over IPv4 transport domain. The corresponding transport address is of type SnmpUDPAddress." ::= { snmpDomains 1 } SnmpUDPAddress ::= TEXTUAL-CONVENTION DISPLAY-HINT "1d.1d.1d.1d/2d" STATUS current DESCRIPTION "Represents a UDP over IPv4 address: octets contents encoding 1-4 IP-address network-byte order 5-6 UDP-port network-byte order " SYNTAX OCTET STRING (SIZE (6)) -- SNMP over OSI snmpCLNSDomain OBJECT-IDENTITY STATUS current DESCRIPTION "The SNMP over CLNS transport domain. The corresponding transport address is of type SnmpOSIAddress." ::= { snmpDomains 2 } snmpCONSDomain OBJECT-IDENTITY STATUS current DESCRIPTION "The SNMP over CONS transport domain. The corresponding transport address is of type SnmpOSIAddress." ::= { snmpDomains 3 } SNMPv3 Working Group Expires November 2000 [Page 5] Internet Draft Transport Mappings for SNMP 2 June 2000 SnmpOSIAddress ::= TEXTUAL-CONVENTION DISPLAY-HINT "*1x:/1x:" STATUS current DESCRIPTION "Represents an OSI transport-address: octets contents encoding 1 length of NSAP 'n' as an unsigned-integer (either 0 or from 3 to 20) 2..(n+1) NSAP concrete binary representation (n+2)..m TSEL string of (up to 64) octets " SYNTAX OCTET STRING (SIZE (1 | 4..85)) -- SNMP over DDP snmpDDPDomain OBJECT-IDENTITY STATUS current DESCRIPTION "The SNMP over DDP transport domain. The corresponding transport address is of type SnmpNBPAddress." ::= { snmpDomains 4 } SnmpNBPAddress ::= TEXTUAL-CONVENTION STATUS current DESCRIPTION "Represents an NBP name: octets contents encoding 1 length of object 'n' as an unsigned integer 2..(n+1) object string of (up to 32) octets n+2 length of type 'p' as an unsigned integer (n+3)..(n+2+p) type string of (up to 32) octets n+3+p length of zone 'q' as an unsigned integer (n+4+p)..(n+3+p+q) zone string of (up to 32) octets For comparison purposes, strings are case-insensitive. All strings may contain any octet other than 255 (hex ff)." SYNTAX OCTET STRING (SIZE (3..99)) SNMPv3 Working Group Expires November 2000 [Page 6] Internet Draft Transport Mappings for SNMP 2 June 2000 -- SNMP over IPX snmpIPXDomain OBJECT-IDENTITY STATUS current DESCRIPTION "The SNMP over IPX transport domain. The corresponding transport address is of type SnmpIPXAddress." ::= { snmpDomains 5 } SnmpIPXAddress ::= TEXTUAL-CONVENTION DISPLAY-HINT "4x.1x:1x:1x:1x:1x:1x.2d" STATUS current DESCRIPTION "Represents an IPX address: octets contents encoding 1-4 network-number network-byte order 5-10 physical-address network-byte order 11-12 socket-number network-byte order " SYNTAX OCTET STRING (SIZE (12)) -- for proxy to SNMPv1 (RFC 1157) rfc1157Proxy OBJECT IDENTIFIER ::= { snmpProxys 1 } rfc1157Domain OBJECT-IDENTITY STATUS deprecated DESCRIPTION "The transport domain for SNMPv1 over UDP over IPv4. The corresponding transport address is of type SnmpUDPAddress." ::= { rfc1157Proxy 1 } -- ::= { rfc1157Proxy 2 } this OID is obsolete END 3. SNMP over UDP over IPv4 This is the preferred transport mapping. 3.1. Serialization Each instance of a message is serialized (i.e., encoded according to the convention of [ASN1]) onto a single UDP [RFC768] over IPv4 [RFC791] datagram, using the algorithm specified in Section 8. SNMPv3 Working Group Expires November 2000 [Page 7] Internet Draft Transport Mappings for SNMP 2 June 2000 3.2. Well-known Values It is suggested that administrators configure their SNMP entities supporting command responder applications to listen on UDP port 161. Further, it is suggested that SNMP entities supporting notification receiver applications be configured to listen on UDP port 162. When an SNMP entity uses this transport mapping, it must be capable of accepting messages up to and including 484 octets in size. It is recommended that implementations be capable of accepting messages of up to 1472 octets in size. Implementation of larger values is encouraged whenever possible. 4. SNMP over OSI This is an optional transport mapping. 4.1. Serialization Each instance of a message is serialized onto a single TSDU [IS8072] [IS8072A] for the OSI Connectionless-mode Transport Service (CLTS), using the algorithm specified in Section 8. 4.2. Well-known Values It is suggested that administrators configure their SNMP entities supporting command responder applications to listen on transport selector "snmp-l" (which consists of six ASCII characters), when using a CL-mode network service to realize the CLTS. Further, it is suggested that SNMP entities supporting notification receiver applications be configured to listen on transport selector "snmpt-l" (which consists of seven ASCII characters, six letters and a hyphen) when using a CL-mode network service to realize the CLTS. Similarly, when using a CO-mode network service to realize the CLTS, the suggested transport selectors are "snmp-o" and "snmpt-o", for command responders and notification receivers, respectively. When an SNMP entity uses this transport mapping, it must be capable of accepting messages that are at least 484 octets in size. Implementation of larger values is encouraged whenever possible. 5. SNMP over DDP This is an optional transport mapping. SNMPv3 Working Group Expires November 2000 [Page 8] Internet Draft Transport Mappings for SNMP 2 June 2000 5.1. Serialization Each instance of a message is serialized onto a single DDP datagram [APPLETALK], using the algorithm specified in Section 8. 5.2. Well-known Values SNMP messages are sent using DDP protocol type 8. SNMP entities supporting command responder applications listen on DDP socket number 8, while SNMP entities supporting notification receiver applications listen on DDP socket number 9. Administrators must configure their SNMP entities supporting command responder applications to use NBP type "SNMP Agent" (which consists of ten ASCII while those supporting notification receiver applications must be configured to use NBP type "SNMP Trap Handler" (which consists of seventeen ASCII characters). The NBP name for SNMP entities supporting command responders and notification receivers should be stable - NBP names should not change any more often than the IP address of a typical TCP/IP node. It is suggested that the NBP name be stored in some form of stable storage. When an SNMP entity uses this transport mapping, it must be capable of accepting messages that are at least 484 octets in size. Implementation of larger values is encouraged whenever possible. 5.3. Discussion of AppleTalk Addressing The AppleTalk protocol suite has certain features not manifest in the TCP/IP suite. AppleTalk's naming strategy and the dynamic nature of address assignment can cause problems for SNMP entities that wish to manage AppleTalk networks. TCP/IP nodes have an associated IP address which distinguishes each from the other. In contrast, AppleTalk nodes generally have no such characteristic. The network- level address, while often relatively stable, can change at every reboot (or more frequently). Thus, when SNMP is mapped over DDP, nodes are identified by a "name", rather than by an "address". Hence, all AppleTalk nodes that implement this mapping are required to respond to NBP lookups and confirms (e.g., implement the NBP protocol stub), which guarantees that a mapping from NBP name to DDP address will be possible. In determining the SNMP identity to register for an SNMP entity, it is suggested that the SNMP identity be a name which is associated with other network services offered by the machine. SNMPv3 Working Group Expires November 2000 [Page 9] Internet Draft Transport Mappings for SNMP 2 June 2000 NBP lookups, which are used to map NBP names into DDP addresses, can cause large amounts of network traffic as well as consume CPU resources. It is also the case that the ability to perform an NBP lookup is sensitive to certain network disruptions (such as zone table inconsistencies) which would not prevent direct AppleTalk communications between two SNMP entities. Thus, it is recommended that NBP lookups be used infrequently, primarily to create a cache of name-to-address mappings. These cached mappings should then be used for any further SNMP traffic. It is recommended that SNMP entities supporting command generator applications should maintain this cache between reboots. This caching can help minimize network traffic, reduce CPU load on the network, and allow for (some amount of) network trouble shooting when the basic name-to-address translation mechanism is broken. 5.3.1. How to Acquire NBP names An SNMP entity supporting command generator applications may have a pre-configured list of names of "known" SNMP entities supporting command responder applications. Similarly, an SNMP entity supporting command generator or notification receiver applications might interact with an operator. Finally, an SNMP entity supporting command generator or notification receiver applications might communicate with all SNMP entities supporting command responder or notification originator applications in a set of zones or networks. 5.3.2. When to Turn NBP names into DDP addresses When an SNMP entity uses a cache entry to address an SNMP packet, it should attempt to confirm the validity mapping, if the mapping hasn't been confirmed within the last T1 seconds. This cache entry lifetime, T1, has a minimum, default value of 60 seconds, and should be configurable. An SNMP entity supporting a command generator application may decide to prime its cache of names prior to actually communicating with another SNMP entity. In general, it is expected that such an entity may want to keep certain mappings "more current" than other mappings, e.g., those nodes which represent the network infrastructure (e.g., routers) may be deemed "more important". Note that an SNMP entity supporting command generator applications should not prime its entire cache upon initialization - rather, it should attempt resolutions over an extended period of time (perhaps in some pre- determined or configured priority order). Each of these resolutions might, in fact, be a wildcard lookup in a given zone. SNMPv3 Working Group Expires November 2000 [Page 10] Internet Draft Transport Mappings for SNMP 2 June 2000 An SNMP entity supporting command responder applications must never prime its cache. When generating a response, such an entity does not need to confirm a cache entry. An SNMP entity supporting notification originator applications should do NBP lookups (or confirms) only when it needs to send an SNMP trap or inform. 5.3.3. How to Turn NBP names into DDP addresses If the only piece of information available is the NBP name, then an NBP lookup should be performed to turn that name into a DDP address. However, if there is a piece of stale information, it can be used as a hint to perform an NBP confirm (which sends a unicast to the network address which is presumed to be the target of the name lookup) to see if the stale information is, in fact, still valid. An NBP name to DDP address mapping can also be confirmed implicitly using only SNMP transactions. For example, an SNMP entity acting supporting command generator applications issuing a retrieval operation could also retrieve the relevant objects from the NBP group [RFC1742] for the SNMP entity supporting the command responder application. This information can then be correlated with the source DDP address of the response. 5.3.4. What if NBP is broken Under some circumstances, there may be connectivity between two SNMP entities, but the NBP mapping machinery may be broken, e.g., o the NBP FwdReq (forward NBP lookup onto local attached network) mechanism might be broken at a router on the other entity's network; or, o the NBP BrRq (NBP broadcast request) mechanism might be broken at a router on the entity's own network; or, o NBP might be broken on the other entity's node. An SNMP entity supporting command generator applications which is dedicated to AppleTalk management might choose to alleviate some of these failures by directly implementing the router portion of NBP. For example, such an entity might already know all the zones on the AppleTalk internet and the networks on which each zone appears. Given an NBP lookup which fails, the entity could send an NBP FwdReq to the network in which the SNMP entity supporting the command responder or notification originator application was last located. If that failed, the station could then send an NBP LkUp (NBP lookup packet) as a directed (DDP) multicast to each network number on that network. Of the above (single) failures, this combined approach will SNMPv3 Working Group Expires November 2000 [Page 11] Internet Draft Transport Mappings for SNMP 2 June 2000 solve the case where either the local router's BrRq-to-FwdReq mechanism is broken or the remote router's FwdReq-to-LkUp mechanism is broken. 6. SNMP over IPX This is an optional transport mapping. 6.1. Serialization Each instance of a message is serialized onto a single IPX datagram [NOVELL], using the algorithm specified in Section 8. 6.2. Well-known Values SNMP messages are sent using IPX packet type 4 (i.e., Packet Exchange Protocol). It is suggested that administrators configure their SNMP entities supporting command responder applications to listen on IPX socket 36879 (900f hexadecimal). Further, it is suggested that those supporting notification receiver applications be configured to listen on IPX socket 36880 (9010 hexadecimal). When an SNMP entity uses this transport mapping, it must be capable of accepting messages that are at least 546 octets in size. Implementation of larger values is encouraged whenever possible. 7. Proxy to SNMPv1 Historically, in order to support proxy to SNMPv1, as defined in [RFC2576], it was deemed useful to define a transport domain, rfc1157Domain, which indicates the transport mapping for SNMP messages as defined in [RFC1157]. 8. Serialization using the Basic Encoding Rules When the Basic Encoding Rules [BER] are used for serialization: (1) When encoding the length field, only the definite form is used; use of the indefinite form encoding is prohibited. Note that when using the definite-long form, it is permissible to use more than the minimum number of length octets necessary to encode the length field. (2) When encoding the value field, the primitive form shall be used for all simple types, i.e., INTEGER, OCTET STRING, and OBJECT IDENTIFIER (either IMPLICIT or explicit). The constructed form SNMPv3 Working Group Expires November 2000 [Page 12] Internet Draft Transport Mappings for SNMP 2 June 2000 of encoding shall be used only for structured types, i.e., a SEQUENCE or an IMPLICIT SEQUENCE. (3) When encoding an object whose syntax is described using the BITS construct, the value is encoded as an OCTET STRING, in which all the named bits in (the definition of) the bitstring, commencing with the first bit and proceeding to the last bit, are placed in bits 8 (high order bit) to 1 (low order bit) of the first octet, followed by bits 8 to 1 of each subsequent octet in turn, followed by as many bits as are needed of the final subsequent octet, commencing with bit 8. Remaining bits, if any, of the final octet are set to zero on generation and ignored on receipt. These restrictions apply to all aspects of ASN.1 encoding, including the message wrappers, protocol data units, and the data objects they contain. 8.1. Usage Example As an example of applying the Basic Encoding Rules, suppose one wanted to encode an instance of the GetBulkRequest-PDU [RFC-PROTO]: [5] IMPLICIT SEQUENCE { request-id 1414684022, non-repeaters 1, max-repetitions 2, variable-bindings { { name sysUpTime, value { unspecified NULL } }, { name ipNetToMediaPhysAddress, value { unspecified NULL } }, { name ipNetToMediaType, value { unspecified NULL } } } } SNMPv3 Working Group Expires November 2000 [Page 13] Internet Draft Transport Mappings for SNMP 2 June 2000 Applying the BER, this would be encoded (in hexadecimal) as: [5] IMPLICIT SEQUENCE a5 82 00 39 INTEGER 02 04 52 54 5d 76 INTEGER 02 01 01 INTEGER 02 01 02 SEQUENCE (OF) 30 2b SEQUENCE 30 0b OBJECT IDENTIFIER 06 07 2b 06 01 02 01 01 03 NULL 05 00 SEQUENCE 30 0d OBJECT IDENTIFIER 06 09 2b 06 01 02 01 04 16 01 02 NULL 05 00 SEQUENCE 30 0d OBJECT IDENTIFIER 06 09 2b 06 01 02 01 04 16 01 04 NULL 05 00 Note that the initial SEQUENCE is not encoded using the minimum number of length octets. (The first octet of the length, 82, indicates that the length of the content is encoded in the next two octets.) 9. Notice on Intellectual Property The IETF takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on the IETF's procedures with respect to rights in standards-track and standards-related documentation can be found in BCP-11. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification can be obtained from the IETF Secretariat. The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to practice this standard. Please address the information to the IETF Executive Director. 10. Acknowledgments This document is the product of the SNMPv3 Working Group. Some SNMPv3 Working Group Expires November 2000 [Page 14] Internet Draft Transport Mappings for SNMP 2 June 2000 special thanks are in order to the following Working Group members: Randy Bush Jeffrey D. Case Mike Daniele Rob Frye Lauren Heintz Keith McCloghrie Russ Mundy David T. Perkins Randy Presuhn Aleksey Romanov Juergen Schoenwaelder Bert Wijnen This version of the document, edited by Randy Presuhn, was initially based on the work of a design team whose members were: Jeffrey D. Case Keith McCloghrie David T. Perkins Randy Presuhn Juergen Schoenwaelder The previous versions of this document, edited by Keith McCloghrie, was the result of significant work by four major contributors: Jeffrey D. Case Keith McCloghrie Marshall T. Rose Steven Waldbusser Additionally, the contributions of the SNMPv2 Working Group to the previous versions are also acknowledged. In particular, a special thanks is extended for the contributions of: Alexander I. Alten Dave Arneson Uri Blumenthal Doug Book Kim Curran Jim Galvin Maria Greene Iain Hanson Dave Harrington Nguyen Hien Jeff Johnson Michael Kornegay SNMPv3 Working Group Expires November 2000 [Page 15] Internet Draft Transport Mappings for SNMP 2 June 2000 Deirdre Kostick David Levi Daniel Mahoney Bob Natale Brian O'Keefe Andrew Pearson Dave Perkins Randy Presuhn Aleksey Romanov Shawn Routhier Jon Saperia Juergen Schoenwaelder Bob Stewart Kaj Tesink Glenn Waters Bert Wijnen 11. Security Considerations SNMPv1 by itself is not a secure environment. Even if the network itself is secure (for example by using IPSec), even then, there is no control as to who on the secure network is allowed to access and GET/SET (read/change) the objects accessible through a command responder application. It is recommended that the implementors consider the security features as provided by the SNMPv3 framework. Specifically, the use of the User-based Security Model RFC 2574 [RFC2574] and the View-based Access Control Model RFC 2575 [RFC2575] is recommended. It is then a customer/user responsibility to ensure that the SNMP entity giving access to a MIB is properly configured to give access to the objects only to those principals (users) that have legitimate rights to indeed GET or SET (change) them. 12. References [APPLETALK] Sidhu, G., Andrews, R., and A. Oppenheimer, Inside AppleTalk (second edition). Addison-Wesley, 1990. [BER] Information processing systems - Open Systems Interconnection - Specification of Basic Encoding Rules for Abstract Syntax Notation One (ASN.1), International Organization for Standardization. International Standard 8825, December 1987. SNMPv3 Working Group Expires November 2000 [Page 16] Internet Draft Transport Mappings for SNMP 2 June 2000 [IS8072] Information processing systems - Open Systems Interconnection - Transport Service Definition, International Organization for Standardization. International Standard 8072, June 1986. [IS8072A] Information processing systems - Open Systems Interconnection - Transport Service Definition - Addendum 1: Connectionless-mode Transmission, International Organization for Standardization. International Standard 8072/AD 1, December 1986. [NOVELL] Network System Technical Interface Overview. Novell, Inc, June 1989. [RFC768] Postel, J., "User Datagram Protocol", STD 6, RFC 768, August 1980. [RFC791] Postel, J., "Internet Protocol", STD 5, RFC 791, September 1981. [RFC1155] Rose, M., and K. McCloghrie, "Structure and Identification of Management Information for TCP/IP-based Internets", STD 16, RFC 1155, May 1990. [RFC1157] Case, J., Fedor, M., Schoffstall, M., and J. Davin, "Simple Network Management Protocol", STD 15, RFC 1157, May 1990. [RFC1212] Rose, M., and K. McCloghrie, "Concise MIB Definitions", STD 16, RFC 1212, March 1991. [RFC1215] Rose, M., "A Convention for Defining Traps for use with the SNMP", RFC 1215, March 1991. [RFC1742] Waldbusser, S. and K. Frisa, "AppleTalk Management Information Base II", RFC 1742, January 1995. [RFC1901] Case, J., McCloghrie, K., Rose, M., and S. Waldbusser, "Introduction to Community-based SNMPv2", RFC 1901, January 1996. [RFC2570] Case, J., Mundy, R., Partain, D., and B. Stewart, "Introduction to Version 3 of the Internet-standard Network Management Framework", RFC 2570, April 1999. [RFC2571] Harrington, D., Presuhn, R., and B. Wijnen, "An Architecture for Describing SNMP Management Frameworks", RFC 2571, April 1999. SNMPv3 Working Group Expires November 2000 [Page 17] Internet Draft Transport Mappings for SNMP 2 June 2000 [RFC2572] Case, J., Harrington D., Presuhn R., and B. Wijnen, "Message Processing and Dispatching for the Simple Network Management Protocol (SNMP)", RFC 2572, April 1999. [RFC2573] Levi, D., Meyer, P., and B. Stewart, "SNMPv3 Applications", RFC 2573, April 1999. [RFC2574] Blumenthal, U., and B. Wijnen, "User-based Security Model (USM) for version 3 of the Simple Network Management Protocol (SNMPv3)", RFC 2574, April 1999. [RFC2575] Wijnen, B., Presuhn, R., and K. McCloghrie, "View-based Access Control Model (VACM) for the Simple Network Management Protocol (SNMP)", RFC 2575, April 1999. [RFC2576] Frye, R., Levi, D., Routhier, S., and B. Wijnen, "Coexistence between Version 1, Version 2, and Version 3 of the Internet-standard Network Management Framework", RFC 2576, March, 2000. [RFC2578] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J., Rose, M., and S. Waldbusser, "Structure of Management Information Version 2 (SMIv2)", STD 58, RFC 2578, April 1999. [RFC2579] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J., Rose, M., and S. Waldbusser, "Textual Conventions for SMIv2", STD 58, RFC 2579, April 1999. [RFC2580] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J., Rose, M., and S. Waldbusser, "Conformance Statements for SMIv2", STD 58, RFC 2580, April 1999. [RFC-TM] Presuhn, R., Case, J., McCloghrie, K., Rose, M., and S. Waldbusser, "Transport Mappings for the Simple Network Management Protocol", , June 2000. [RFC-PROTO] Presuhn, R., Case, J., McCloghrie, K., Rose, M., and S. Waldbusser, "Protocol Operations for the Simple Network Management Protocol", , June 2000. SNMPv3 Working Group Expires November 2000 [Page 18] Internet Draft Transport Mappings for SNMP 2 June 2000 13. Editor's Address Randy Presuhn BMC Software, Inc. 2141 North First Street San Jose, CA 95131 USA Phone: +1 408 546-1006 EMail: randy_presuhn@bmc.com 14. Changes from RFC 1906 These are the changes from RFC 1906: - Corrected typo in IPR statement; - Updated copyright date; - Updated with new editor's name and contact information; - Cosmetic fixes to layout and typography; - Changed title, headers and footers; - Fixed typo in SnmpNBPAddress; - Clarified that one of the BER SEQUENCEs in the example is generated from the ASN.1 SEQUENCE OF construct; - Updated acknowledgements section; - Filled in the Security Considerations section; - Replaced manager/agent terminology with terms from architecture; - Updated references section; - Added MODULE-IDENTITY; - Re-wrote introduction section using current boilerplate; - Added recommendation for larger message size support; - Added historical background on use of rfc1157Domain with proxy and changed status to "deprecated". SNMPv3 Working Group Expires November 2000 [Page 19] Internet Draft Transport Mappings for SNMP 2 June 2000 15. Issues This section is to be deleted when it is time to publish this document as an RFC. The issue labels are the same as those used in the on-line issues list at ftp://amethyst.bmc.com/pub/snmpv3/Update567/rfc1906/index.html 1906-01 Done; title changed. 1906-02 Done; introduction clause replaced. 1906-03 1906-04 Done; resolution required no changes. 1906-05 Done; typo in SnmpNBPAddress fixed. 1906-06 See issue 1906-10. 1906-07 Done; use of manager/agent terminology replaced with terms from architecture. 1906-08 Done; added recommendation for support of 1472 byte messages. 1906-09 Done; resolution required no changes. 1906-10 Done; resolved by deprecating the definition. 1906-11 Done; resolution required no changes. 1906-12 Done; resolution required no changes. 1906-13 Done; resolution required no changes. 1906-14 Done; clarified that BER SEQUENCE comes from ASN.1 SEQUENCE OF. 1906-15 Done; security considerations text added. 1906-16 Done; references and acknowledgments updated. 1906-17 Done; IPR and copyright notices updated. 1906-18 Done; resolution required no changes. 1906-19 Done; MODULE-IDENTITY added. SNMPv3 Working Group Expires November 2000 [Page 20] Internet Draft Transport Mappings for SNMP 2 June 2000 1906-20 Done; resolution was to make no change. 16. Full Copyright Statement Copyright (C) The Internet Society (2000). All Rights Reserved. This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards process must be followed, or as required to translate it into languages other than English. The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its successors or assigns. This document and the information contained herein is provided on an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. SNMPv3 Working Group Expires November 2000 [Page 21]