
Network Working Group A. Atlas
Internet-Draft Juniper Networks
Intended status: Informational J. Halpern
Expires: August 16, 2014 Ericsson
 S. Hares
 Hickory Hill Consulting
 D. Ward
 Cisco Systems
 T. Nadeau
 Brocade
 February 12, 2014

 An Architecture for the Interface to the Routing System
 draft-ietf-i2rs-architecture-02

Abstract

 This document describes an architecture for a standard, programmatic
 interface for state transfer in and out of the Internet’s routing
 system. It describes the basic architecture, the components, and
 their interfaces with particular focus on those to be standardized as
 part of I2RS.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 16, 2014.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents

Atlas, et al. Expires August 16, 2014 [Page 1]

Internet-Draft I2RS Arch February 2014

 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Drivers for the I2RS Architecture 4
 1.2. Architectural Overview 4
 2. Terminology . 8
 3. Key Architectural Properties 10
 3.1. Simplicity . 10
 3.2. Extensibility . 10
 3.3. Model-Driven Programmatic Interfaces 11
 4. Security Considerations 11
 4.1. Identity and Authentication 12
 4.2. Authorization . 13
 5. Network Applications and I2RS Client 13
 5.1. Example Network Application: Topology Manager 14
 6. I2RS Agent Role and Functionality 14
 6.1. Relationship to its Routing Element 15
 6.2. I2RS State Storage 15
 6.2.1. I2RS Agent Failure 15
 6.2.2. Starting and Ending 16
 6.2.3. Reversion . 16
 6.3. Interactions with Local Config 17
 6.4. Routing Components and Associated I2RS Services 17
 6.4.1. Routing and Label Information Bases 18
 6.4.2. IGPs, BGP and Multicast Protocols 19
 6.4.3. MPLS . 19
 6.4.4. Policy and QoS Mechanisms 20
 6.4.5. Information Modeling, Device Variation, and
 Information Relationships 20
 6.4.5.1. Managing Variation: Object Classes/Types and
 Inheritance 20
 6.4.5.1.1. Managing Variation: Optionality 21
 6.4.5.1.2. Managing Variation: Templating 21
 6.4.5.1.3. Object Relationships 22
 7. I2RS Client Agent Interface 23
 7.1. One Control and Data Exchange Protocol 23
 7.2. Communication Channels 23
 7.3. Capability Negotiation 23
 7.4. Identity and Security Role 24
 7.4.1. Client Redundancy 24

Atlas, et al. Expires August 16, 2014 [Page 2]

Internet-Draft I2RS Arch February 2014

 7.5. Connectivity . 24
 7.6. Notifications . 25
 7.7. Information collection 26
 7.8. Multi-Headed Control 26
 7.9. Transactions . 27
 8. Manageability Considerations 27
 9. IANA Considerations . 28
 10. Acknowledgements . 28
 11. Informative References 28
 Authors’ Addresses . 28

1. Introduction

 Routers that form the Internet’s routing infrastructure maintain
 state at various layers of detail and function. For example, a
 typical router maintains a Routing Information Base (RIB), and
 implements routing protocols such as OSPF, ISIS, and BGP to exchange
 protocol state and other information about the state of the network
 with other routers.

 Routers know how to convert all of this information into the
 forwarding operations that are installed in the forwarding plane.
 The forwarding plane and the specified forwarding operations then
 contain active state information that describes the expected and
 observed operational behavior of the router and which is also needed
 by the network applications. Network-oriented applications require
 easy access to this information to learn the network topology, to
 verify that programmed state is installed in the forwarding plane, to
 measure the behavior of various flows, routes or forwarding entries,
 as well as to understand the configured and active states of the
 router.

 This document sets out an architecture for a common, standards-based
 interface to this information. This Interface to the Routing System
 (I2RS) facilitates control and observation of the routing-related
 state (for example, a Routing Element RIB manager’s state), as well
 as enabling network-oriented applications to be built on top of
 today’s routed networks. The I2RS is a programmatic asynchronous
 interface for transferring state into and out of the Internet’s
 routing system. This I2RS architecture recognizes that the routing
 system and a router’s OS provide useful mechanisms that applications
 could harness to accomplish application-level goals.

 Fundamental to the I2RS are clear data models that define the
 semantics of the information that can be written and read. The I2RS
 provides a framework for registering for and requesting the
 appropriate information for each particular application. The I2RS

Atlas, et al. Expires August 16, 2014 [Page 3]

Internet-Draft I2RS Arch February 2014

 provides a way for applications to customize network behavior while
 leveraging the existing routing system as desired.

 Although the I2RS architecture is general enough to support
 information and data models for a variety of data, the I2RS, and
 therefore this document, are specifically focused on an interface for
 routing data.

1.1. Drivers for the I2RS Architecture

 There are four key drivers that shape the I2RS architecture. First
 is the need for an interface that is programmatic, asynchronous, and
 offers fast, interactive access. Second is the access to structured
 information and state that is frequently not directly configurable or
 modeled in existing implementations or configuration protocols.
 Third is the ability to subscribe to structured, filterable event
 notifications from the router. Fourth, the operation of I2RS is to
 be data-model driven to facilitate extensibility and provide standard
 data-models to be used by network applications.

 I2RS is described as an asynchronous programmatic interface, the key
 properties of which are described in Section 5 of
 [I-D.ietf-i2rs-problem-statement].

 The I2RS facilitates obtaining information from the router. The I2RS
 provides the ability to not only read specific information, but also
 to subscribe to targeted information streams and filtered and
 thresholded events.

 Such an interface also facilitates the injection of ephemeral state
 into the routing system. A non-routing protocol or application could
 inject state into a routing element via the state-insertion
 functionality of the I2RS and that state could then be distributed in
 a routing or signaling protocol and/or be used locally (e.g. to
 program the co-located forwarding plane). I2RS will only permit
 modification of state that would be safe, conceptually, to modify via
 local configuration; no direct manipulation of protocol-internal
 dynamically determined data is envisioned.

1.2. Architectural Overview

 Figure 1 shows the basic architecture for I2RS between applications
 using I2RS, their associated I2RS Clients, and I2RS Agents.
 Applications access I2RS services through I2RS clients. A single
 client can provide access to one or more applications. In the
 figure, Clients A and B provide access to a single application, while
 Client P provides access to multiple applications.

Atlas, et al. Expires August 16, 2014 [Page 4]

Internet-Draft I2RS Arch February 2014

 Applications can access I2RS services through local or remote
 clients. In the figure, Applicatons A and B access I2RS services
 through local clients, while Applications C, D and E access I2RS
 services through a remote client.

 An I2RS Client can access one or more I2RS agents. In the figure,
 Clients B and P access I2RS Agents 1 and 2. Likewise, an I2RS Agent
 can provide service to one or more clients. In the figure, I2RS
 Agent 1 provides services to Clients A, B and P while Agent 2
 provides services to only Clients B and P.

 I2RS agents and clients communicate with one another using an
 asynchronous protocol. Therefore, a single client can post multiple
 simultaneous requests, either to a single agent or to multiple
 agents. Furthermore, an agent can process multiple requests, either
 from a single client or from multiple clients, simultaneously.

 The I2RS agent provides read and write access to selected data on the
 routing element that are organized into I2RS Services.
 Section Section 4 describes how access is mediated by authentication
 and access control mechanisms. In addition to read and write access,
 the I2RS agent allows clients to subscribe to different types of
 notifications about events affecting different object instances. An
 example not related to the creation, modification or deletion of an
 object instance is when a next-hop in the RIB is resolved enough to
 be used or when a particular route is selected by the RIB Manager for
 installation into the forwarding plane. Please see Section 7.6 and
 Section 7.7 for details.

 The scope of I2RS is to define the interactions between the I2RS
 agent and the I2RS client and the associated proper behavior of the
 I2RS agent and I2RS client.

 ****************** ***************** *****************
 * Application C * * Application D * * Application E *
 ****************** ***************** *****************
 ^ ^ ^
 | | | | |
 |--------------| | |--------------|
 | | |
 v v v

 * Client P *

 ^ ^
 | |-------------------------|
 *********************** | *********************** |

Atlas, et al. Expires August 16, 2014 [Page 5]

Internet-Draft I2RS Arch February 2014

 * Application A * | * Application B * |
 * * | * * |
 * +----------------+ * | * +----------------+ * |
 * | Client A | * | * | Client B | * |
 * +----------------+ * | * +----------------+ * |
 ******* ^ ************* | ***** ^ ****** ^ ****** |
 | | | | | | |
 | |-------------| | | |-----|
 | | -----------------------| | |
 | | | | |
 ************ v * v * v ********* ***************** v * v ********
 * +---------------------+ * * +---------------------+ *
 * | Agent 1 | * * | Agent 2 | *
 * +---------------------+ * * +---------------------+ *
 * ^ ^ ^ ^ * * ^ ^ ^ ^ *
 * | | | | * * | | | | *
 * v | | v * * v | | v *
 * +---------+ | | +--------+ * * +---------+ | | +--------+ *
 * | Routing | | | | Local | * * | Routing | | | | Local | *
 * | and | | | | Config | * * | and | | | | Config | *
 * |Signaling| | | +--------+ * * |Signaling| | | +--------+ *
 * +---------+ | | ^ * * +---------+ | | ^ *
 * ^ | |scoped | * * ^ | |scoped | *
 * | |----| | | * * | |----| | | *
 * v | v v * * v | v v *
 * +----------+ +------------+ * * +----------+ +------------+ *
 * | Dynamic | | Static | * * | Dynamic | | Static | *
 * | System | | System | * * | System | | System | *
 * | State | | State | * * | State | | State | *
 * +----------+ +------------+ * * +----------+ +------------+ *
 * * * *
 * Routing Element 1 * * Routing Element 2 *
 ******************************** ********************************

 Figure 1: Architecture of I2RS clients and agents

 Routing Element: A Routing Element implements some subset of the
 routing system. It does not need to have a forwarding plane
 associated with it. Examples of Routing Elements can include:

 * A router with a forwarding plane and RIB Manager that runs
 ISIS, OSPF, BGP, PIM, etc.

 * A server that runs BGP as a Route Reflector

 * An LSR that implements RSVP-TE, OSPF-TE, and PCEP and has a
 forwarding plane and associated RIB Manager.

Atlas, et al. Expires August 16, 2014 [Page 6]

Internet-Draft I2RS Arch February 2014

 * A server that runs ISIS, OSPF, BGP and uses ForCES to control a
 remote forwarding plane.

 A Routing Element may be locally managed, whether via CLI, SNMP,
 or NETCONF.

 Routing and Signaling: This block represents that portion of the
 Routing Element that implements part of the Internet routing
 system. It includes not merely standardized protocols (i.e. IS-
 IS, OSPF, BGP, PIM, RSVP-TE, LDP, etc.), but also the RIB Manager
 layer.

 Local Config: A Routing Element will provide the ability to
 configure and manage it. The Local Config may be provided via a
 combination of CLI, NETCONF, SNMP, etc. The black box behavior
 for interactions between the state that I2RS installs into the
 routing element and the Local Config must be defined.

 Dynamic System State: An I2RS agent needs access to state on a
 routing element beyond what is contained in the routing subsystem.
 Such state may include various counters, statistics, and local
 events. This is the subset of operational state that is needed by
 network applications based on I2RS that is not contained in the
 routing and signaling information. How this information is
 provided to the I2RS agent is out of scope, but the standardized
 information and data models for what is exposed are part of I2RS.

 Static System State: An I2RS agent needs access to static state on
 a routing element beyond what is contained in the routing
 subsystem. An example of such state is specifying queueing
 behavior for an interface or traffic. How the I2RS agent modifies
 or obtains this information is out of scope, but the standardized
 information and data models for what is exposed are part of I2RS.

 I2RS Agent: See the definition in Section 2.

 Application: A network application that needs to observe the
 network or manipulate the network to achieve its service
 requirements.

 I2RS Client: See the definition in Section 2.

 As can be seen in Figure 1, an I2RS client can communicate with
 multiple I2RS agents. An I2RS client may connect to one or more I2RS
 agents based upon its needs. Similarly, an I2RS agent may
 communicate with multiple I2RS clients - whether to respond to their
 requests, to send notifications, etc. Timely notifications are

Atlas, et al. Expires August 16, 2014 [Page 7]

Internet-Draft I2RS Arch February 2014

 critical so that several simultaneously operating applications have
 up-to-date information on the state of the network.

 As can also be seen in Figure 1, an I2RS Agent may communicate with
 multiple clients. Each client may send the agent a variety of write
 operations. In order to keep the protocol simple, the current view
 is that two clients should not be attempting to write (modify) the
 same piece of information. Such collisions may happen, but are
 considered error cases that should be resolved by the network
 applications and management systems.

 In contrast, although multiple I2RS clients may need to supply data
 into the same list (e.g. a prefix or filter list), this is not
 considered an error and must be correctly handled. The nuances so
 that writers do not normally collide should be handled in the
 information models.

 The architectural goal for the I2RS is that such errors should
 produce predictable behaviors, and be reportable to interested
 clients. The details of the associated policy is discussed in
 Section 7.8. The same policy mechanism (simple priority per I2RS
 client) applies to interactions between the I2RS agent and the CLI/
 SNMP/NETCONF as described in Section 6.3.

 In addition it must be noted that there may be indirect interactions
 between write operations. A tivial example of this is when two
 different but overlapping prefixes are written with different
 forwarding behavior. Detection and avoidance of such interactions is
 outside the scope of the I2RS work and is left to agent design and
 implementation.

2. Terminology

 The following terminology is used in this document.

 agent or I2RS Agent: An I2RS agent provides the supported I2RS
 services from the local system’s routing sub-systems by
 interacting with the routing element to provide specified
 behavior. The I2RS agent understands the I2RS protocol and can be
 contacted by I2RS clients.

 client or I2RS Client: A client implements the I2RS protocol, uses
 it to communicate with I2RS Agents, and uses the I2RS services to
 accomplish a task. It interacts with other elements of the
 policy, provisioning, and configuration system by means outside of
 the scope of the I2RS effort. It interacts with the I2RS agents
 to collect information from the routing and forwarding system.
 Based on the information and the policy oriented interactions, the

Atlas, et al. Expires August 16, 2014 [Page 8]

Internet-Draft I2RS Arch February 2014

 I2RS client may also interact with I2RS agents to modify the state
 of the routing system the client interacts with to achieve
 operational goals. An I2RS client can be seen as the part of an
 application that uses and supports I2RS and could be a software
 library.

 service or I2RS Service: For the purposes of I2RS, a service refers
 to a set of related state access functions together with the
 policies that control their usage. The expectation is that a
 service will be represented by a data-model. For instance, ’RIB
 service’ could be an example of a service that gives access to
 state held in a device’s RIB.

 read scope: The set of information which the I2RS client is
 authorized to read. The read scope specifies the access
 restrictions to both see the existence of data and read the value
 of that data.

 notification scope: The set of events and associated information
 that the I2RS Client can request be pushed by the I2RS Agent.
 I2RS Clients have the ability to register for specific events and
 information streams, but must be constrained by the access
 restrictions associated with their notification scope.

 write scope: The set of field values which the I2RS client is
 authorized to write (i.e. add, modify or delete). This access can
 restrict what data can be modified or created, and what specific
 value sets and ranges can be installed.

 scope: When unspecified as either read scope, write scope, or
 notification scope, the term scope applies to the read scope,
 write scope, and notification scope.

 resources: A resource is an I2RS-specific use of memory, storage,
 or execution that a client may consume due to its I2RS operations.
 The amount of each such resource that a client may consume in the
 context of a particular agent may be constrained based upon the
 client’s security role. An example of such a resource could
 include the number of notifications registered for. These are not
 protocol-specific resources or network-specific resources.

 role or security role: A security role specifies the scope,
 resources, priorities, etc. that a client or agent has.

 identity: A client is associated with exactly one specific
 identity. State can be attributed to a particular identity. It
 is possible for multiple communication channels to use the same

Atlas, et al. Expires August 16, 2014 [Page 9]

Internet-Draft I2RS Arch February 2014

 identity; in that case, the assumption is that the associated
 client is coordinating such communication.

 secondary identity: An I2RS Client may supply a secondary opaque
 identity that is not interpreted by the I2RS Agent. An example
 use is when the I2RS Client is a go-between for multiple
 applications and it is necessary to track which application has
 requested a particular operation.

3. Key Architectural Properties

3.1. Simplicity

 There have been many efforts over the years to improve the access to
 the information available to the routing and forwarding system.
 Making such information visible and usable to network management and
 applications has many well-understood benefits. There are two
 related challenges in doing so. First, the quantity and diversity of
 information potentially available is very large. Second, the
 variation both in the structure of the data and in the kinds of
 operations required tends to introduce protocol complexity.

 Having noted that, it is also critical to the utility of I2RS that it
 be easily deployable and robust. Complexity in the protocol hinders
 implementation, robustness, and deployability. Also, data models
 complexity may complicate extensibility.

 Thus, one of the key aims for I2RS is the keep the protocol and
 modeling architecture simple. So for each architectural component or
 aspect, we ask ourselves "do we need this complexity, or is the
 behavior merely nice to have?" Protocol parsimony is clearly a goal.

3.2. Extensibility

 Naturally, extensibility of the protocol and data model is very
 important. In particular, given the necessary scope limitations of
 the initial work, it is critical that the initial design include
 strong support for extensibility.

 The scope of the I2RS work is being restricted in the interests of
 achieving a deliverable and deployable result. The I2RS Working
 Group is modeling only a subset of the data of interest. It is
 clearly desirable for the data models defined in the I2RS to be
 useful in more general settings. It should be easy to integrate data
 models from the I2RS with other data. Other work should be able to
 easily extend it to represent additional aspects of the network
 elements or network systems. This reinforces the criticality of

Atlas, et al. Expires August 16, 2014 [Page 10]

Internet-Draft I2RS Arch February 2014

 designing the data models to be highly extensible, preferably in a
 regular and simple fashion.

 The I2RS Working Group is defining operations for the I2RS protocol.
 It would be optimistic to assume that more and different ones may not
 be needed when the scope of I2RS increases. Thus, it is important to
 consider extensibility not only of the underlying services’ data
 models, but also of the primitives and protocol operations.

3.3. Model-Driven Programmatic Interfaces

 A critical component of I2RS is the standard information and data
 models with their associated semantics. While many components of the
 routing system are standardized, associated data models for them are
 not yet available. Instead, each router uses different information,
 different mechanisms, and different CLI which makes a standard
 interface for use by applications extremely cumbersome to develop and
 maintain. Well-known data modeling languages exist and may be used
 for defining the data models for I2RS.

 There are several key benefits for I2RS in using model-driven
 architecture and protocol(s). First, it allows for transferring
 data-models whose content is not explicitly implemented or
 understood. Second, tools can automate checking and manipulating
 data; this is particularly valuable for both extensibility and for
 the ability to easily manipulate and check proprietary data-models.

 The different services provided by I2RS can correspond to separate
 data-models. An I2RS agent may indicate which data-models are
 supported.

4. Security Considerations

 This I2RS architecture describes interfaces that clearly require
 serious consideration of security. First, here is a brief
 description of the assumed security environment for I2RS. The I2RS
 Agent associated with a Routing Element is a trusted part of that
 Routing Element. For example, it may be part of a vendor-distributed
 signed software image for the entire Routing Element or it may be
 trusted signed application that an operator has installed. The I2RS
 Agent is assumed to have a separate authentication and authorization
 channel by which it can validate both the identity and permissions
 associated with an I2RS Client. To support numerous and speedy
 interactions between the I2RS Agent and I2RS Client, it is assumed
 that the I2RS Agent can also cache that particular I2RS Clients are
 trusted and their associated authorized scope. This implies that
 either in a pull model, the permission information may be old until
 the I2RS Agent rerequests it, or in a push model, that the

Atlas, et al. Expires August 16, 2014 [Page 11]

Internet-Draft I2RS Arch February 2014

 authentication and authorization channel can notify the I2RS Agent of
 changes.

 An I2RS Client is not automatically trustworthy. It has identity
 information and applications using that I2RS Client should be aware
 of the scope limitations of that I2RS Client. If the I2RS Client is
 acting as a broker for multiple applications, managing the security,
 authentication and authorization for that communication is out of
 scope; nothing prevents I2RS and a separate authentication and
 authorization channel from being used. Regardless of mechanism, an
 I2RS Client that is acting as a broker is responsible for determining
 that applications using it are trusted and permitted to make the
 particular requests.

 Different levels of integrity, confidentiality, and replay protection
 are relevant for different aspects of I2RS. The primary
 communication channel that is used for client authentication and then
 used by the client to write data requires integrity, privacy and
 replay protection. Appropriate selection of a default required
 transport protocol is the preferred way of meeting these
 requirements.

 Other communications via I2RS will not require integrity,
 confidentiality, and replay protection. For instance, if an I2RS
 Client subscribes to an information stream of prefix announcements
 from OSPF, those may require integrity but probably not
 confidentiality or replay protection. Similarly, an information
 stream of interface statistics may not even require guaranteed
 delivery. In Section 7.2, more reasoning for multiple communication
 channels is provided. From the security perspective, it is critical
 to realize that an I2RS Agent may open a new communication channel
 based upon information provided by an I2RS Client; to avoid an
 indirect attack, such a request must be done in the context of an
 authenticated and authorized client whose communications cannot have
 been altered.

4.1. Identity and Authentication

 As discussed above, all control exchanges between the I2RS client and
 agent should be authenticated and integrity protected (such that the
 contents cannot be changed without detection). Further, manipulation
 of the system must be accurately attributable. In an ideal
 architecture, even information collection and notification should be
 protected; this may be subject to engineering tradeoffs during the
 design.

 I2RS clients may be operating on behalf of other applications. While
 those applications’ identities are not needed for authentication or

Atlas, et al. Expires August 16, 2014 [Page 12]

Internet-Draft I2RS Arch February 2014

 authorization, each application should have a unique opaque
 identifier that can be provided by the I2RS client to the I2RS agent
 for purposes of tracking attribution of operations to support
 functionality such as accounting and troubleshooting.

4.2. Authorization

 All operations using I2RS, both observation and manipulation, should
 be subject to appropriate authorization controls. Such authorization
 is based on the identity and assigned role of the I2RS client
 performing the operations and the I2RS agent in the network element.

 I2RS Agents, in performing information collection and manipulation,
 will be acting on behalf of the I2RS clients. As such, each
 operation authorization will be based on the lower of the two
 permissions of the agent itself and of the authenticated client. The
 mechanism by which this authorization is applied within the device is
 outside of the scope of I2RS.

 The appropriate or necessary level of granularity for scope can
 depend upon the particular I2RS Service and the implementation’s
 granularity. An approach to a similar access control problem is
 defined in the NetConf Access Control Model[RFC6536]; it allows
 arbitrary access to be specified for a data node instance identifier
 while defining meaningful manipulable defaults. The ability to
 specify one or more groups or roles that a particular I2RS Client
 belongs and then define access controls in terms of those groups or
 roles is expected. When a client is authenticated, its group or role
 membership should be provided to the I2RS Agent. The set of access
 control rules that an I2RS Agent uses would need to be either
 provided via Local Config, exposed as an I2RS Service for
 manipulation by authorized clients, or via some other method.

5. Network Applications and I2RS Client

 I2RS is expected to be used by network-oriented applications in
 different architectures. While the interface between a network-
 oriented application and the I2RS client is outside the scope of
 I2RS, considering the different architectures is important to
 sufficiently specify I2RS.

 In the simplest architecture, a network-oriented application has an
 I2RS client as a library or driver for communication with routing
 elements.

 In the broker architecture, multiple network-oriented applications
 communicate in an unspecified fashion to a broker application that
 contains an I2RS Client. That broker application requires additional

Atlas, et al. Expires August 16, 2014 [Page 13]

Internet-Draft I2RS Arch February 2014

 functionality for authentication and authorization of the network-
 oriented applications; such functionality is out of scope for I2RS
 but similar considerations to those described in Section 4.2 do
 apply. As discussed in Section 4.1, the broker I2RS Client should
 determine distinct opaque identifiers for each network-oriented
 application that is using it. The the broker I2RS Client can pass
 along the appropriate value as a secondary identifier which can be
 used for tracking attribution of operations.

 In the third architecture, a routing element or network-oriented
 application that uses an I2RS Client to access services on a
 different routing element may also contain an I2RS agent to provide
 services to other network-oriented applications. However, where the
 needed information and data models for those services differs from
 that of a conventional routing element, those models are, at least
 initially, out of scope for I2RS. Below is an example of such a
 network application

5.1. Example Network Application: Topology Manager

 A Topology Manager includes an I2RS client that uses the I2RS data
 models and protocol to collect information about the state of the
 network by communicating directly with one or more I2RS agents. From
 these I2RS agents, the Topology Manager collects routing
 configuration and operational data, such as interface and label-
 switched path (LSP) information. In addition, the Topology Manager
 may collect link-state data in several ways - either via I2RS models,
 by peering with BGP-LS[I-D.ietf-idr-ls-distribution] or listening
 into the IGP.

 The set of functionality and collected information that is the
 Topology Manager may be embedded as a component of a larger
 application, such as a path computation application. As a stand-
 alone application, the Topology Manager could be useful to other
 network applications by providing a coherent picture of the network
 state accessible via another interface. That interface might use the
 same I2RS protocol and could provide a topology service using
 extensions to the I2RS data models.

6. I2RS Agent Role and Functionality

 The I2RS Agent is part of a routing element. As such, it has
 relationships with that routing element as a whole, and with various
 components of that routing element.

Atlas, et al. Expires August 16, 2014 [Page 14]

Internet-Draft I2RS Arch February 2014

6.1. Relationship to its Routing Element

 A Routing Element may be implemented with a wide variety of different
 architectures: an integrated router, a split architecture,
 distributed architecture, etc. The architecture does not need to
 affect the general I2RS agent behavior.

 For scalability and generality, the I2RS agent may be responsible for
 collecting and delivering large amounts of data from various parts of
 the routing element. Those parts may or may not actually be part of
 a single physical device. Thus, for scalability and robustness, it
 is important that the architecture allow for a distributed set of
 reporting components providing collected data from the I2RS agent
 back to the relevant I2RS clients. As currently envisioned, a given
 I2RS agent would have only one locus per I2RS service for
 manipulation of routing element state.

6.2. I2RS State Storage

 State modification requests are sent to the I2RS agent in a routing
 element by I2RS clients. The I2RS agent is responsible for applying
 these changes to the system, subject to the authorization discussed
 above. The I2RS agent will retain knowledge of the changes it has
 applied, and the client on whose behalf it applied the changes. The
 I2RS agent will also store active subscriptions. These sets of data
 form the I2RS data store. This data is retained by the agent until
 the state is removed by the client, overridden by some other
 operation such as CLI, or the device reboots. Meaningful logging of
 the application and removal of changes is recommended. I2RS applied
 changes to the routing element state will not be retained across
 routing element reboot. The I2RS data store is not preserved across
 routing element reboots; thus the I2RS agent will not attempt to
 reapply such changes after a reboot.

6.2.1. I2RS Agent Failure

 If it is possible for an I2RS Agent to fail independently of the
 associated routing element, the behavior for any associated ephemeral
 I2RS state needs to be clearly described. The I2RS state should be
 preserved until the associated routing element has itself rebooted or
 until the I2RS state is explicitly torn down. This is desirable
 since the I2RS Client has no way of learning that an I2RS Agent has
 unexpected failed until that I2RS Agent has restarted; in the
 interval between failure and recovery, the I2RS Client will be
 assuming that its ephemeral state remains. If failure of the I2RS
 agent causes the ephemeral I2RS state to be removed, then this should
 be indicated via a capability.

Atlas, et al. Expires August 16, 2014 [Page 15]

Internet-Draft I2RS Arch February 2014

 There are two different failure types that are possible and each has
 different behavior.

 Unexpected failure: In this case, the I2RS Agent has unexpectedly
 crashed and thus cannot notify its clients of anything. If an
 I2RS Agent can crash separately from its associated routing
 element, then that I2RS Agent must cache each known I2RS Client.
 When an I2RS Agent starts, it notifies each saved I2RS Client that
 the I2RS Agent is up and includes an agent-boot-count that
 indicates how many times the I2RS Agent has restarted since the
 associated routing element restarted. The agent-boot-count allows
 an I2RS Client to determine if the I2RS Agent has restarted; if
 so, the I2RS Client may need to resubscribe to notifications and
 information streams. The I2RS Agent should also indicate whether
 the I2RS ephemeral state was preserved in the Routing Element.

 Graceful failure: In this case, the I2RS Agent can do specific
 limited work as part of the process of being disabled. First, the
 I2RS Agent can optionally notify all its clients that their state
 is being torn down; if no such notification is sent, then that
 ephemeral state is not torn down. Second, the I2RS Agent must
 notify all its cached clients that the agent is going down.

6.2.2. Starting and Ending

 When an I2RS client applies changes via the I2RS protocol, those
 changes are applied and left until removed or the routing element
 reboots. The network application may make decisions about what to
 request via I2RS based upon a variety of conditions that imply
 different start times and stop times. That complexity is managed by
 the network application and is not handled by I2RS.

6.2.3. Reversion

 An I2RS Agent may decide that some state should no longer be applied.
 An I2RS Client may instruct an Agent to remove state it has applied.
 In all such cases, the state will revert to what it would have been
 without the I2RS; that state is generally whatever was specified via
 the CLI, NETCONF, SNMP, etc. I2RS Agents will not store multiple
 alternative states, nor try to determine which one among such a
 plurality it should fall back to. Thus, the model followed is not
 like the RIB, where multiple routes are stored at different
 preferences.

 An I2RS Client may register for notifications, subject to its
 notification scope, regarding state modification or removal by a
 particular I2RS Client.

Atlas, et al. Expires August 16, 2014 [Page 16]

Internet-Draft I2RS Arch February 2014

6.3. Interactions with Local Config

 Changes may originate from either Local Config or from I2RS. The
 modifications and data stored by I2RS are separate from the local
 device configuration, but conflicts between the two must be resolved
 in a deterministic manner that respects operator-applied policy.
 That policy can determine whether Local Config overrides a particular
 I2RS client’s request or vice versa. To achieve this end, either by
 default Local Config always wins or, optionally, a routing element
 may permit a priority to be configured on the device for the Local
 Config mechanism. The policy mechanism in the later case is
 comparing the I2RS client’s priority with that priority assigned to
 the Local Config.

 When the Local Config always wins, some communication between that
 subsystem and the I2RS Agent is still necessary. That communication
 contains the details of each specific device configuration change
 that the I2RS Agent is permitted to modify. In addition, when the
 system determines, that a client’s I2RS state is preempted, the I2RS
 agent must notify the affected I2RS agents; how the system determines
 this is implementation-dependent.

 It is critical that policy based upon the source is used because the
 resolution cannot be time-based. Simply allowing the most recent
 state to prevail could cause race conditions where the final state is
 not repeatably deterministic.

6.4. Routing Components and Associated I2RS Services

 For simplicity, each logical protocol or set of functionality that
 can be compactly described in a separable information and data model
 is considered as a separate I2RS Service. A routing element need not
 implement all routing components described nor provide the associated
 I2RS services. When a full implementation is not mandatory, an I2RS
 Service should include a capability model so that implementations can
 indicate which parts of the service are supported. Each I2RS Service
 requires an information model that describes at least the following:
 data that can be read, data that can be written, notifications that
 can be subscribed to, and the capability model mentioned above.

 The initial services included in the I2RS architecture are as
 follows.

Atlas, et al. Expires August 16, 2014 [Page 17]

Internet-Draft I2RS Arch February 2014

 *************************** ************** *****************
 * I2RS Protocol * * * * Dynamic *
 * * * Interfaces * * Data & *
 * +--------+ +-------+ * * * * Statistics *
 * | Client | | Agent | * ************** *****************
 * +--------+ +-------+ *
 * * ************** *************
 *************************** * * * *
 * Policy * * Base QoS *
 ******************** ******** * Templates * * Templates *
 * +--------+ * * * * * *************
 * BGP | BGP-LS | * * PIM * **************
 * +--------+ * * *
 ******************** ******** ****************************
 * MPLS +---------+ +-----+ *
 ********************************** * | RSVP-TE | | LDP | *
 * IGPs +------+ +------+ * * +---------+ +-----+ *
 * +--------+ | OSPF | | ISIS | * * +--------+ *
 * | Common | +------+ +------+ * * | Common | *
 * +--------+ * * +--------+ *
 ********************************** ****************************

 **
 * RIB Manager *
 * +-------------------+ +---------------+ +------------+ *
 * | Unicast/multicast | | Policy-Based | | RIB Policy | *
 * | RIBs & LIBs | | Routing | | Controls | *
 * | route instances | | (ACLs, etc) | +------------+ *
 * +-------------------+ +---------------+ *
 **

 Figure 2: Anticipated I2RS Services

 There are relationships between different I2RS Services - whether
 those be the need for the RIB to refer to specific interfaces, the
 desire to refer to common complex types (e.g. links, nodes, IP
 addresses), or the ability to refer to implementation-specific
 functionality (e.g. pre-defined templates to be applied to interfaces
 or for QoS behaviors that traffic is direct into).
 Section Section 6.4.5 discussing information modeling constructs and
 the range of relationship types that are applicable.

6.4.1. Routing and Label Information Bases

 Routing elements may maintain one or more Information Bases.
 Examples include Routing Information Bases such as IPv4/IPv6 Unicast
 or IPv4/IPv6 Multicast. Another such example includes the MPLS Label
 Information Bases, per-platform- or per-interface." This

Atlas, et al. Expires August 16, 2014 [Page 18]

Internet-Draft I2RS Arch February 2014

 functionality, exposed via an I2RS Service, must interact smoothly
 with the same mechanisms that the routing element already uses to
 handle RIB input from multiple sources, so as to safely change the
 system state. Conceptually, this can be handled by having the I2RS
 Agent communicate with a RIB Manager as a separate routing source.

 The point-to-multipoint state added to the RIB does not need to match
 to well-known multicast protocol installed state. The I2RS Agent can
 create arbitrary replication state in the RIB, subject to the
 advertised capabilities of the routing element.

6.4.2. IGPs, BGP and Multicast Protocols

 A separate I2RS Service can expose each routing protocol on the
 device. Such I2RS services may include a number of different kinds
 of operations:

 o reading the various internal RIB(s) of the routing protocol is
 often helpful for understanding the state of the network.
 Directly writing to these protocol-specific RIBs or databases is
 out of scope for I2RS.

 o reading the various pieces of policy information the particular
 protocol instance is using to drive its operations.

 o writing policy information such as interface attributes that are
 specific to the routing protocol or BGP policy that may indirectly
 manipulate attributes of routes carried in BGP.

 o writing routes or prefixes to be advertised via the protocol.

 o joining/removing interfaces from the multicast trees

 o subscribing to an information stream of route changes

 o receiving notifications about peers coming up or going down

 For example, the interaction with OSPF might include modifying the
 local routing element’s link metrics, announcing a locally-attached
 prefix, or reading some of the OSPF link-state database. However,
 direct modification of of the link-state database MUST NOT allowed in
 order to preserve network state consistency.

6.4.3. MPLS

 I2RS Services will be needed to expose the protocols that create
 transport LSPs (e.g. LDP and RSVP-TE) as well as protocols (e.g. BGP,
 LDP) that provide MPLS-based services (e.g. pseudowires, L3VPNs,

Atlas, et al. Expires August 16, 2014 [Page 19]

Internet-Draft I2RS Arch February 2014

 L2VPNs, etc). This should include all local information about LSPs
 originating in, transiting, or terminating in this Routing Element.

6.4.4. Policy and QoS Mechanisms

 Many network elements have separate policy and QoS mechanisms,
 including knobs which affect local path computation and queue control
 capabilities. These capabilities vary widely across implementations,
 and I2RS cannot model the full range of information collection or
 manipulation of these attributes. A core set does need to be
 included in the I2RS information models and supported in the expected
 interfaces between the I2RS Agent and the network element, in order
 to provide basic capabilities and the hooks for future extensibility.

 By taking advantage of extensibility and sub-classing, information
 models can specify use of a basic model that can be replaced by a
 more detailed model.

6.4.5. Information Modeling, Device Variation, and Information
 Relationships

 I2RS depends heavily on information models of the relevant aspects of
 the Routing Elements to be manipulated. These models drive the data
 models and protocol operations for I2RS. It is important that these
 informational models deal well with a wide variety of actual
 implementations of Routing Elements, as seen between different
 products and different vendors. There are three ways that I2RS
 information models can address these variations: class or type
 inheritance, optional features, and templating.

6.4.5.1. Managing Variation: Object Classes/Types and Inheritance

 Information modeled by I2RS from a Routing Element can be described
 in terms of classes or types or object. Different valid inheritance
 definitions can apply. What is appropriate for I2RS to use is not
 determined in this architecture; for simplicity, class and subclass
 will be used as the example terminology. This I2RS architecture does
 require the ability to address variation in Routing Elements by
 allowing information models to define parent or base classes and
 subclasses.

 The base or parent class defines the common aspects that all Routing
 Elements are expected to support. Individual subclasses can
 represent variations and additional capabilities. When applicable,
 there may be several levels of refinement. The I2RS protocol can
 then provide mechanisms to allow an I2RS client to determine which
 classes a given I2RS Agent has available. Clients which only want
 basic capabilities can operate purely in terms of base or parent

Atlas, et al. Expires August 16, 2014 [Page 20]

Internet-Draft I2RS Arch February 2014

 classes, while a client needing more details or features can work
 with the supported sub-class(es).

 As part of I2RS information modeling, clear rules should be specified
 for how the parent class and subclass can relate; for example, what
 changes a subclass can make to its parent? The description of such
 rules should be done so that it can apply across data modeling tools
 until the I2RS data modeling language is selected.

6.4.5.1.1. Managing Variation: Optionality

 I2RS Information Models must be clear about what aspects are
 optional. For instance, must an instance of a class always contain a
 particular data field X? If so, must the client provide a value for
 X when creating the object or is there a well-defined default value?
 From the Routing Element perspective, in the above example, is
 support of X required so that values for X can be accepted and
 processed? If not, how does the I2RS client determine whether the
 I2RS agent can accept and apply values for X?

 Optional behavior can also be extended to the ranges of values a
 given piece of information can take, the length of strings, the
 existence of particular events, and other aspects of information.
 The information model needs to be clear about what is required of the
 clients, what is required of agents, and what is permitted to each
 one.

6.4.5.1.2. Managing Variation: Templating

 A template is a collection of information to address a problem; it
 cuts across the notions of class and object instances. A template
 provides a set of defined values for a set of information fields and
 can specify a set of values that must be provided to complete the
 template. Further, a flexible template scheme may that some of the
 defined values can be over-written.

 For instance, assigning traffic to a particular service class might
 be done by specifying a template Queueing with a parameter to
 indicate Gold, Silver, or Best Effort. The details of how that is
 carried out are not modeled. This does assume that the necessary
 templates are made available on the Routing Element via some
 mechanism other than I2RS. The idea is that by providing suitable
 templates for tasks that need to be accomplished, with templates
 implemented differently for different kinds of Routing Elements, the
 client can easily interact with the Routing Element without concern
 for the variations which are handled by values included in the
 template.

Atlas, et al. Expires August 16, 2014 [Page 21]

Internet-Draft I2RS Arch February 2014

 If implementation variation can be exposed in other ways, templates
 may not be needed. However, templates themselves could be objects
 referenced in the protocol messages, with Routing Elements being
 configured with the proper templates to complete the operation. This
 is a topic for further discussion.

6.4.5.1.3. Object Relationships

 Objects (in a Routing Element or otherwise) do not exist in
 isolation. They are related to each other. One of the important
 things a class definition does is represent the relationships between
 instances of different classes. These relationships can be very
 simple, or quite complicated. The following lists the information
 relationships that the information models need to support.
 [[Editors’ note: All of these are for discussion, and it is expected
 that the list may be changed during WG discussion.]]

6.4.5.1.3.1. Initialization

 The simplest relationship is that one object instances is initialized
 by copying another. For example, one may have an object instance
 that represents the default setup for a tunnel, and all new tunnels
 have fields copied from there if they are not set as part of
 establishment. This is closely related to the templates discussed
 above, but not identical. Since the relationship is only momentary
 it is often not formally represented in modeling, but only captured
 in the semantic description of the default object.

6.4.5.1.3.2. Correlation Identification

 Often, it suffices to indicate in one object that it is related to a
 second object, without having a strong binding between the two. So
 an Identifier is used to represent the relationship. This can be
 used to allow for late binding, or a weak binding that does not even
 need to exist. A policy name in an object might indicate that if a
 policy by that name exists, it is to be applied under some
 circumstance. In modeling this is often represented by the type of
 the value.

6.4.5.1.3.3. Object References

 Sometimes the relationship between objects is stronger. A valid ARP
 entry has to point to the active interface over which it was derived.
 This is the classic meaning of an object reference in programming.
 It can be used for relationships like containment or dependence.
 This is usually represented by an explicit modeling link.

Atlas, et al. Expires August 16, 2014 [Page 22]

Internet-Draft I2RS Arch February 2014

6.4.5.1.3.4. Active Reference

 There is an even stronger form of coupling between objects if changes
 in one of the two objects are always to be reflected in the state of
 the other. For example, if a Tunnel has an MTU, and link MTU changes
 need to immediately propagate to the Tunnel MTU, then the tunnel is
 actively coupled to the link interface. This kind of active state
 coupling implies some sort of internal bookkeeping to ensure
 consistency, often conceptualized as a subscription model across
 objects.

7. I2RS Client Agent Interface

7.1. One Control and Data Exchange Protocol

 This I2RS Architecture presumes that there is one I2RS protocol for
 control and data exchange. This helps meet the goal of simplicity
 and thereby enhances deployability. Whether such a protocol is built
 upon extending existing mechanisms or requires a new mechanism is
 under active investigation. That protocol may use several underlying
 transports (TCP, SCTP, DCCP), with suitable authentication and
 integrity protection mechanisms. These different transports can
 support different types of communication (e.g. control, reading,
 notifications, and information collection) and different sets of
 data. Whatever transport is used for the data exchange, it must also
 support suitable congestion control mechanisms.

7.2. Communication Channels

 Multiple communication channels and multiple types of communication
 channels are required. There may be a range of requirements (e.g.
 confidentiality, reliability), and to support the scaling there may
 need to be channels originating from multiple sub-components of a
 routing element and/or to multiple parts of an I2RS client. All such
 communication channels will use the same higher level protocol. Use
 of additional channels for communication will be coordinated between
 the I2RS client and the I2RS agent.

7.3. Capability Negotiation

 The support for different protocol capabilities and I2RS Services
 will vary across I2RS Clients and Routing Elements supporting I2RS
 Agents. Since each I2RS Service is required to include a capability
 model (see Section 6.4), negotiation at the protocol level can be
 restricted to protocol specifics and which I2RS Services are
 supported.

Atlas, et al. Expires August 16, 2014 [Page 23]

Internet-Draft I2RS Arch February 2014

 Capability negotiation (such as which transports are supported beyond
 the minimum required to implement) will clearly be necessary. It is
 important that such negotiations be kept simple and robust, as such
 mechanisms are often a source of difficulty in implementation and
 deployment.

 The protocol capability negotiation can be segmented into the basic
 version negotiation (required to ensure basic communication), and the
 more complex capability exchange which can take place within the base
 protocol mechanisms. In particular, the more complex protocol and
 mechanism negotiation can be addressed by defining information models
 for both the I2RS Agent and the I2RS Client. These information
 models can describe the various capability options. This can then
 represent and be used to communicate important information about the
 agent, and the capabilities thereof.

7.4. Identity and Security Role

 Each I2RS Client will have a unique identity; it can also have
 secondary identities to be used for troubleshooting. A secondary
 identity is merely a unique, opaque identifier that may be helpful in
 troubleshooting. Via authentication and authorization mechanisms
 based on the primary unique identity, the I2RS Client will have a
 specific scope for reading data, for writing data, and limitations on
 the resources that can be consumed. The scopes need to specify both
 the data and the value ranges.

7.4.1. Client Redundancy

 I2RS must support client redundancy. At the simplest, this can be
 handled by having a primary and a backup network application that
 both use the same client identity and can successfully authenticate
 as such. Since I2RS does not require a continuous transport
 connection and supports multiple transport sessions, this can provide
 some basic redundancy. However, it does not address concerns for
 troubleshooting and accountability about knowing which network
 application is actually active. At a minimum, basic transport
 information about each connection and time can be logged with the
 identity.

7.5. Connectivity

 A client may or may not maintain an active communication channel with
 an agent. Therefore, an agent may need to open a communication
 channel to the client to communicate previously requested
 information. The lack of an active communication channel does not
 imply that the associated client is non-functional. When

Atlas, et al. Expires August 16, 2014 [Page 24]

Internet-Draft I2RS Arch February 2014

 communication is required, the agent or client can open a new
 communication channel.

 State held by an agent that is owned by a client should not be
 removed or cleaned up when a client is no longer communicating - even
 if the agent cannot successfully open a new communication channel to
 the client.

 For many applications, it may be desirable to clean up state if a
 network application dies before removing the state it has created.
 Typically, this is dealt with in terms of network application
 redundancy. If stronger mechanisms are desired, mechanisms outside
 of I2RS may allow a supervisory network application to monitor I2RS
 clients, and based on policy known to the supervisor clean up state
 if applications die. More complex mechanism instantiated in the I2RS
 agent would add complications to the I2RS protocol and are thus left
 for future work.

 Some examples of such a mechanism include the following. In one
 option, the client could request state clean-up if a particular
 transport session is terminated. The second is to allow state
 expiration, expressed as a policy associated with the I2RS client’s
 role. The state expiration could occur after there has been no
 successful communication channel to or from the I2RS client for the
 policy-specified duration.

7.6. Notifications

 As with any policy system interacting with the network, the I2RS
 Client needs to be able to receive notifications of changes in
 network state. Notifications here refers to changes which are
 unanticipated, represent events outside the control of the systems
 (such as interface failures on controlled devices), or are
 sufficiently sparse as to be anomalous in some fashion. A
 notification may also be due to a regular event.

 Such events may be of interest to multiple I2RS Clients controlling
 data handled by an I2RS Agent, and to multiple other I2RS clients
 which are collecting information without exerting control. The
 architecture therefore requires that it be practical for I2RS Clients
 to register for a range of notifications, and for the I2RS Agents to
 send notifications to a number of Clients. The I2RS Client should be
 able to filter the specific notifications that will be received; the
 specific types of events and filtering operations can vary by
 information model and need to be specified as part of the information
 model.

Atlas, et al. Expires August 16, 2014 [Page 25]

Internet-Draft I2RS Arch February 2014

 The I2RS information model needs to include representation of these
 events. As discussed earlier, the capability information in the
 model will allow I2RS clients to understand which events a given I2RS
 Agent is capable of generating.

 For performance and scaling by the I2RS client and general
 information privacy, an I2RS Client needs to be able to register for
 just the events it is interested in. It is also possible that I2RS
 might might provide a stream of notifications via a publish/subscribe
 mechanism that is not amenable to having the I2RS agent do the
 filtering.

7.7. Information collection

 One of the other important aspects of the I2RS is that it is intended
 to simplify collecting information about the state of network
 elements. This includes both getting a snapshot of a large amount of
 data about the current state of the network element, and subscribing
 to a feed of the ongoing changes to the set of data or a subset
 thereof. This is considered architecturally separate from
 notifications due to the differences in information rate and total
 volume.

7.8. Multi-Headed Control

 As was described earlier, an I2RS Agent interacts with multiple I2RS
 Clients who are actively controlling the network element. From an
 architecture and design perspective, the assumption is that by means
 outside of this system the data to be manipulated within the network
 element is appropriately partitioned so that any given piece of
 information is only being manipulated by a single I2RS Client.

 Nonetheless, unexpected interactions happen and two (or more) I2RS
 clients may attempt to manipulate the same piece of data. This is
 considered an error case. This architecture does not attempt to
 determine what the right state of data should be when such a
 collision happens. Rather, the architecture mandates that there be
 decidable means by which I2RS Agents handle the collisions. The
 mechanism for this is to have a simple priority associated with each
 I2RS clients, and the highest priority change remains in effect. In
 the case of priority ties, the first client whose attribution is
 associated with the data will keep control.

 In order for this approach to multi-headed control to be useful for
 I2RS Clients, it is important that it be possible for an I2RS Client
 to register for changes to any changes made by I2RS to data that it
 may care about. This is included in the I2RS event mechanisms. This
 also needs to apply to changes made by CLI/NETCONF/SNMP within the

Atlas, et al. Expires August 16, 2014 [Page 26]

Internet-Draft I2RS Arch February 2014

 write-scope of the I2RS Agent, as the same priority mechanism (even
 if it is "CLI always wins") applies there. The I2RS client may then
 respond to the situation as it sees fit.

7.9. Transactions

 In the interest of simplicity, the I2RS architecture does not include
 multi-message atomicity and rollback mechanisms. Rather, it includes
 a small range of error handling for a set of operations included in a
 single message. An I2RS Client may indicate one of the following
 three error handling for a given message with multiple operations
 which it sends to an I2RS Agent:

 Perform all or none: This traditional SNMP semantic indicates that
 other I2RS agent will keep enough state when handling a single
 message to roll back the operations within that message. Either
 all the operations will succeed, or none of them will be applied
 and an error message will report the single failure which caused
 them not to be applied. This is useful when there are, for
 example, mutual dependencies across operations in the message.

 Perform until error: In this case, the operations in the message
 are applied in the specified order. When an error occurs, no
 further operations are applied, and an error is returned
 indicating the failure. This is useful if there are dependencies
 among the operations and they can be topologically sorted.

 Perform all storing errors: In this case, the I2RS Agent will
 attempt to perform all the operations in the message, and will
 return error indications for each one that fails. This is useful
 when there is no dependency across the operation, or where the
 client would prefer to sort out the effect of errors on its own.

 In the interest of robustness and clarity of protocol state, the
 protocol will include an explicit reply to modification or write
 operations even when they fully succeed.

8. Manageability Considerations

 Manageability plays a key aspect in I2RS. Some initial examples
 include:

 Resource Limitations: Using I2RS, applications can consume
 resources, whether those be operations in a time-frame, entries in
 the RIB, stored operations to be triggered, etc. The ability to
 set resource limits based upon authorization is important.

Atlas, et al. Expires August 16, 2014 [Page 27]

Internet-Draft I2RS Arch February 2014

 Configuration Interactions: The interaction of state installed via
 the I2RS and via a router’s configuration needs to be clearly
 defined. As described in this architecture, a simple priority
 that is configured is used to provide sufficient policy
 flexibility.

9. IANA Considerations

 This document includes no request to IANA.

10. Acknowledgements

 Significant portions of this draft came from draft-ward-i2rs-
 framework-00 and draft-atlas-i2rs-policy-framework-00.

 The authors would like to thank Nitin Bahadur, Shane Amante, Ed
 Crabbe, Ken Gray, Carlos Pignataro, Wes George, Ron Bonica, Joe
 Clarke, Juergen Schoenwalder, Jamal Hadi Salim, Scott Brim, and
 Thomas Narten for their suggestions and review.

11. Informative References

 [I-D.ietf-i2rs-problem-statement]
 Atlas, A., Nadeau, T., and D. Ward, "Interface to the
 Routing System Problem Statement", draft-ietf-i2rs-
 problem-statement-00 (work in progress), August 2013.

 [I-D.ietf-idr-ls-distribution]
 Gredler, H., Medved, J., Previdi, S., Farrel, A., and S.
 Ray, "North-Bound Distribution of Link-State and TE
 Information using BGP", draft-ietf-idr-ls-distribution-04
 (work in progress), November 2013.

 [RFC6536] Bierman, A. and M. Bjorklund, "Network Configuration
 Protocol (NETCONF) Access Control Model", RFC 6536, March
 2012.

Authors’ Addresses

 Alia Atlas
 Juniper Networks
 10 Technology Park Drive
 Westford, MA 01886
 USA

 Email: akatlas@juniper.net

Atlas, et al. Expires August 16, 2014 [Page 28]

Internet-Draft I2RS Arch February 2014

 Joel Halpern
 Ericsson

 Email: Joel.Halpern@ericsson.com

 Susan Hares
 Hickory Hill Consulting

 Email: shares@ndzh.com

 Dave Ward
 Cisco Systems
 Tasman Drive
 San Jose, CA 95134
 USA

 Email: wardd@cisco.com

 Thomas D. Nadeau
 Brocade

 Email: tnadeau@lucidvision.com

Atlas, et al. Expires August 16, 2014 [Page 29]

