Network Working Group J. Jeong Internet-Draft C. Chung Intended status: Standards Track Sungkyunkwan University Expires: May 7, 2020 S. Hares L. Xia Huawei H. Birkholz Fraunhofer SIT November 4, 2019 I2NSF NSF Monitoring YANG Data Model draft-ietf-i2nsf-nsf-monitoring-data-model-02 Abstract This document proposes an information model and the corresponding YANG data model for monitoring Network Security Functions (NSFs) in the Interface to Network Security Functions (I2NSF) framework. If the monitoring of NSFs is performed in a comprehensive way, it is possible to detect the indication of malicious activity, anomalous behavior or the potential sign of denial of service attacks in a timely manner. This monitoring functionality is based on the monitoring information that is generated by NSFs. Thus, this document describes not only an information model for monitoring NSFs along with a YANG data diagram, but also the corresponding YANG data model for monitoring NSFs. Editorial Note (To be removed by RFC Editor) Please update these statements within the document with the RFC number to be assigned to this document: "This version of this YANG module is part of RFC 6087;" "RFC XXXX: I2NSF NSF Monitoring YANG Data Model" "reference: RFC 6087" Please update the "revision" date of the YANG module. Status of This Memo This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute Jeong, et al. Expires May 7, 2020 [Page 1] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 working documents as Internet-Drafts. The list of current Internet- Drafts is at https://datatracker.ietf.org/drafts/current/. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." This Internet-Draft will expire on May 7, 2020. Copyright Notice Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License. Table of Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 2. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1. Requirements Notation . . . . . . . . . . . . . . . . . . 4 2.2. Definitions . . . . . . . . . . . . . . . . . . . . . . . 4 2.3. YANG . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3. Use Cases for NSF Monitoring Data . . . . . . . . . . . . . . 4 4. Classification of NSF Monitoring Data . . . . . . . . . . . . 5 4.1. Retention and Emission . . . . . . . . . . . . . . . . . 6 4.2. Notifications and Events . . . . . . . . . . . . . . . . 7 4.3. Unsolicited Poll and Solicited Push . . . . . . . . . . . 8 4.4. I2NSF Monitoring Terminology for Retained Information . . 8 5. Conveyance of NSF Monitoring Information . . . . . . . . . . 9 5.1. Information Types and Acquisition Methods . . . . . . . . 10 6. Basic Information Model for All Monitoring Data . . . . . . . 11 7. Extended Information Model for Monitoring Data . . . . . . . 11 7.1. System Alarms . . . . . . . . . . . . . . . . . . . . . . 11 7.1.1. Memory Alarm . . . . . . . . . . . . . . . . . . . . 12 7.1.2. CPU Alarm . . . . . . . . . . . . . . . . . . . . . . 12 7.1.3. Disk Alarm . . . . . . . . . . . . . . . . . . . . . 12 7.1.4. Hardware Alarm . . . . . . . . . . . . . . . . . . . 13 7.1.5. Interface Alarm . . . . . . . . . . . . . . . . . . . 13 Jeong, et al. Expires May 7, 2020 [Page 2] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 7.2. System Events . . . . . . . . . . . . . . . . . . . . . . 13 7.2.1. Access Violation . . . . . . . . . . . . . . . . . . 13 7.2.2. Configuration Change . . . . . . . . . . . . . . . . 14 7.3. NSF Events . . . . . . . . . . . . . . . . . . . . . . . 14 7.3.1. DDoS Event . . . . . . . . . . . . . . . . . . . . . 14 7.3.2. Session Table Event . . . . . . . . . . . . . . . . . 15 7.3.3. Virus Event . . . . . . . . . . . . . . . . . . . . . 15 7.3.4. Intrusion Event . . . . . . . . . . . . . . . . . . . 16 7.3.5. Botnet Event . . . . . . . . . . . . . . . . . . . . 17 7.3.6. Web Attack Event . . . . . . . . . . . . . . . . . . 18 7.4. System Logs . . . . . . . . . . . . . . . . . . . . . . . 19 7.4.1. Access Log . . . . . . . . . . . . . . . . . . . . . 19 7.4.2. Resource Utilization Log . . . . . . . . . . . . . . 19 7.4.3. User Activity Log . . . . . . . . . . . . . . . . . . 20 7.5. NSF Logs . . . . . . . . . . . . . . . . . . . . . . . . 21 7.5.1. DDoS Log . . . . . . . . . . . . . . . . . . . . . . 21 7.5.2. Virus Log . . . . . . . . . . . . . . . . . . . . . . 21 7.5.3. Intrusion Log . . . . . . . . . . . . . . . . . . . . 22 7.5.4. Botnet Log . . . . . . . . . . . . . . . . . . . . . 22 7.5.5. DPI Log . . . . . . . . . . . . . . . . . . . . . . . 23 7.5.6. Vulnerability Scanning Log . . . . . . . . . . . . . 23 7.5.7. Web Attack Log . . . . . . . . . . . . . . . . . . . 24 7.6. System Counter . . . . . . . . . . . . . . . . . . . . . 24 7.6.1. Interface counter . . . . . . . . . . . . . . . . . . 25 7.7. NSF Counters . . . . . . . . . . . . . . . . . . . . . . 25 7.7.1. Firewall counter . . . . . . . . . . . . . . . . . . 26 7.7.2. Policy Hit Counter . . . . . . . . . . . . . . . . . 27 8. NSF Monitoring Management in I2NSF . . . . . . . . . . . . . 27 9. Tree Structure . . . . . . . . . . . . . . . . . . . . . . . 28 10. YANG Data Model . . . . . . . . . . . . . . . . . . . . . . . 37 11. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 72 12. Security Considerations . . . . . . . . . . . . . . . . . . . 72 13. Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . 73 14. Contributors . . . . . . . . . . . . . . . . . . . . . . . . 73 15. References . . . . . . . . . . . . . . . . . . . . . . . . . 73 15.1. Normative References . . . . . . . . . . . . . . . . . . 73 15.2. Informative References . . . . . . . . . . . . . . . . . 75 Appendix A. Changes from draft-ietf-i2nsf-nsf-monitoring-data- model-01 . . . . . . . . . . . . . . . . . . . . . . 77 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 77 1. Introduction According to [I-D.ietf-i2nsf-terminology], the interface provided by a Network Security Function (NSF) (e.g., Firewall, IPS, Anti-DDoS, or Anti-Virus function) to administrative entities (e.g., Security Controller) to enable remote management (i.e., configuring and monitoring) is referred to as an I2NSF NSF-Facing Interface Jeong, et al. Expires May 7, 2020 [Page 3] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 [I-D.ietf-i2nsf-nsf-facing-interface-dm]. Monitoring procedures intent to acquire vital types of data with respect to NSFs, (e.g., alarms, records, and counters) via data in motion (e.g., queries, notifications, and events). The monitoring of NSF plays an important role in an overall security framework, if it is done in a timely and comprehensive way. The monitoring information generated by an NSF can be a good, early indication of anomalous behavior or malicious activity, such as denial of service attacks (DoS). This document defines a comprehensive NSF monitoring information model that provides visibility for an NSF for Security Controller. It specifies the information and illustrates the methods that enable an NSF to provide the information required in order to be monitored in a scalable and efficient way via the NSF-Facing Interface. The information model for monitoring presented in this document is a complementary information model to the information model for the security policy provisioning functionality of the NSF-Facing Interface specified in [I-D.ietf-i2nsf-capability]. This document also defines a YANG [RFC7950] data model for monitoring NSFs, which is derived from the information model for NSF monitoring. 2. Terminology 2.1. Requirements Notation The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119] [RFC8174]. 2.2. Definitions The terms, which are used in this document, are defined in the I2NSF terminology document [I-D.ietf-i2nsf-terminology] [RFC8329]. 2.3. YANG This document follows the guidelines of [RFC6087], uses the common YANG types defined in [RFC6991], and adopts the Network Management Datastore Architecture (NMDA) [RFC8342]. The meaning of the symbols in tree diagrams is defined in [RFC8340]. 3. Use Cases for NSF Monitoring Data As mentioned earlier, monitoring plays a critical role in an overall security framework. The monitoring of the NSF provides very valuable information to the security controller in maintaining the provisioned Jeong, et al. Expires May 7, 2020 [Page 4] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 security posture. Besides this, there are various other reasons to monitor the NSF as listed below: o The security administrator with I2NSF User can configure a policy that is triggered on a specific event occurring in the NSF or the network [RFC8329] [I-D.ietf-i2nsf-consumer-facing-interface-dm]. If a security controller detects the specified event, it configures additional security functions as defined by policies. o The events triggered by an NSF as a result of security policy violation can be used by Security Information and Event Management (SIEM) to detect any suspicious activity in a larger correlation context. o The events and activity logs from an NSF can be used to build advanced analytics, such as behavior and predictive models to improve security posture in large deployments. o The security controller can use events from the NSF for achieving high availability. It can take corrective actions such as restarting a failed NSF and horizontally scaling up the NSF. o The events and activity logs from the NSF can aid in the root cause analysis of an operational issue, so it can improve debugging. o The activity logs from the NSF can be used to build historical data for operational and business reasons. 4. Classification of NSF Monitoring Data In order to maintain a strong security posture, it is not only necessary not only to configure an NSF's security policies but also to continuously monitor the NSF by consuming acquirable and observable information. This enables security administrators to assess the state of the network topology in a timely fashion. It is not possible to block all the internal and external threats based on static security posture. A more practical approach is supported by enabling dynamic security measures, for which continuous visibility is required. This document defines a set of information elements (and their scope) that can be acquired from an NSF and can be used as NSF monitoring information. In essence, these types of monitoring information can be leveraged to support constant visibility on multiple levels of granularity and can be consumed by the corresponding functions. Three basic domains about the monitoring information originating from a system entity [RFC4949] or an NSF are highlighted in this document. Jeong, et al. Expires May 7, 2020 [Page 5] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 o Retention and Emission o Notifications and Events o Unsolicited Poll and Solicited Push The Alarm Management Framework in [RFC3877] defines an Event as something that happens which may be of interest. It defines a fault as a change in status, crossing a threshold, or an external input to the system. In the I2NSF domain, I2NSF events [I-D.ietf-i2nsf-terminology] are created and the scope of the Alarm Management Framework's Events is still applicable due to its broad definition. The model presented in this document elaborates on the workflow of creating I2NSF events in the context of NSF monitoring and on the way initial I2NSF events are created. As with I2NSF components, every generic system entity can include a set of capabilities [I-D.ietf-i2nsf-terminology] that creates information about the context, composition, configuration, state or behavior of that system entity. This information is intended to be provided to other consumers of information and in the scope of this document, which deals with NSF information monitoring in an automated fashion. 4.1. Retention and Emission Typically, a system entity populates standardized interface, such as SNMP, NETCONF, RESTCONF or CoMI to provide and emit created information directly via NSF-Facing Interface [I-D.ietf-i2nsf-terminology]. Alternatively, the created information is retained inside the system entity (or a hierarchy of system entities in a composite device) via records or counters that are not exposed directly via NSF-Facing Interfaces. Information emitted via standardized interfaces can be consumed by an I2NSF User [I-D.ietf-i2nsf-terminology] that includes the capability to consume information not only via an I2NSF Interface(e.g., [I-D.ietf-i2nsf-consumer-facing-interface-dm]) but also via interfaces complementary to the standardized interfaces a generic system entity provides. Information retained on a system entity requires a corresponding I2NSF User to access aggregated records of information, typically in the form of log-files or databases. There are ways to aggregate records originating from different system entities over a network, for examples via Syslog Protocol [RFC5424] or Syslog over TCP [RFC6587]. But even if records are conveyed, the result is the same Jeong, et al. Expires May 7, 2020 [Page 6] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 kind of retention in form of a bigger aggregate of records on another system entity. An I2NSF User is required to process fresh [RFC4949] records created by I2NSF Functions in order to provide them to other I2NSF Components via the corresponding I2NSF Interfaces in a timely manner. This process is effectively based on homogenizing functions, which can access and convert specific kinds of records into information that can be provided and emitted via I2NSF interfaces. When retained or emitted, the information required to support monitoring processes has to be processed by an I2NSF User at some point in the workflow. Typical locations of these I2NSF Users are: o a system entity that creates the information o a system entity that retains an aggregation of records o an I2NSF Component that includes the capabilities of using standardized interfaces provided by other system entities that are not I2NSF Components o an I2NSF Component that creates the information 4.2. Notifications and Events A specific task of I2NSF User is to process I2NSF Policy Rules [I-D.ietf-i2nsf-terminology]. The rules of a policy are composed of three clauses: Events, Conditions, and Actions. In consequence, an I2NSF Event is specified to trigger an I2NSF Policy Rule. Such an I2NSF Event is defined as any important occurrence over time in the system being managed, and/or in the environment of the system being managed in [I-D.ietf-i2nsf-terminology], which aligns well with the generic definition of Event from [RFC3877]. The model illustrated in this document introduces a complementary type of information that can be a conveyed notification. Notification: An occurrence of a change of context, composition, configuration, state or behavior of a system entity that can be directly or indirectly observed by an I2NSF User and can be used as input for an event-clause in I2NSF Policy Rules. A notification is similar to an I2NSF Event with the exception that it is created by a system entity that is not an I2NSF Component and that its importance is yet to be assessed. Semantically, a notification is not an I2NSF Event in the context of I2NSF, although they can potentially use the exact same Jeong, et al. Expires May 7, 2020 [Page 7] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 information or data model. In respect to [RFC3877], a Notification is a specific subset of events, because they convey information about something that happens which may be of interest. In consequence, Notifications may contain information with very low expressiveness or relevance. Hence, additional post- processing functions, such as aggregation, correlation or simple anomaly detection, might have to be employed to satisfy a level of expressiveness that is required for an event-clause of an I2NSF Policy Rule. It is important to note that the consumer of a notification (the observer) assesses the importance of a notification and not the producer. The producer can include metadata in a notification that supports the observer in assessing the importance (even metadata about severity), but the deciding entity is an I2NSF User. 4.3. Unsolicited Poll and Solicited Push The freshness of the monitored information depends on the acquisition method. Ideally, an I2NSF User is accessing every relevant information about the I2NSF Component and is emitting I2NSF Events to a monitor entity(e.g., Security Controller and I2NSF User) NSF timely. Publication of events via a pubsub/broker model, peer-2-peer meshes, or static defined channels are only a few examples on how a solicited push of I2NSF Events can be facilitated. The actual mechanic implemented by an I2NSF Component is out of the scope of this document. Often, the corresponding management interfaces have to be queried in intervals or on-demand if required by an I2NSF Policy rule. In some cases, a collection of information has to be conducted via login mechanics provided by a system entity. Accessing records of information via this kind of unsolicited polls can introduce a significant latency in regard to the freshness of the monitored information. The actual definition of intervals implemented by an I2NSF Component is also out of scope of this document. 4.4. I2NSF Monitoring Terminology for Retained Information Records: Unlike information emitted via notifications and events, records do not require immediate attention from an analyst but may be useful for visibility and retroactive cyber forensic. Depending on the record format, there are different qualities in regard to structure and detail. Records are typically stored in log-files or databases on a system entity or NSF. Records in the form of log-files usually include less structures but potentially more detailed information in regard to the changes of a system entity's characteristics. In contrast, databases often use more Jeong, et al. Expires May 7, 2020 [Page 8] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 strict schemas or data models, therefore enforcing a better structure. However, they inhibit storing information that do not match those models ("closed world assumption"). Records can be continuously processed by I2NSF Agents that act as I2NSF Producer and emit events via functions specifically tailored to a certain type of record. Typically, records are information generated either by an NSF or a system entity about operational and informational data, or various changes in system characteristics, such as user activities, network/traffic status, and network activity. They are important for debugging, auditing and security forensic. Counters: A specific representation of continuous value changes of information elements that potentially occur in high frequency. Prominent example are network interface counters, e.g., PDU amount or byte amount, drop counters, and error counters. Counters are useful in debugging and visibility into operational behavior of an NSF. An I2NSF Agent that observes the progression of counters can act as an I2NSF Producer and emit events in respect to I2NSF Policy Rules. 5. Conveyance of NSF Monitoring Information As per the use cases of NSF monitoring data, information needs to be conveyed to various I2NSF Consumers based on requirements imposed by I2NSF Capabilities and workflows. There are multiple aspects to be considered in regard to the emission of monitoring information to requesting parties as listed below: o Pull-Push Model: A set of data can be pushed by an NSF to a requesting party or pulled by a requesting party from an NSF. Specific types of information might need both the models at the same time if there are multiple I2NSF Consumers with varying requirements. In general, any I2NSF Event including a high severity assessment is considered to be of great importance and should be processed as soon as possible (push-model). Records, in contrast, are typically not as critical (pull-model). The I2NSF Architecture does not mandate a specific scheme for each type of information and is therefore out of scope of this document. o Pub-Sub Model: In order for an I2NSF Provider to push monitoring information to multiple appropriate I2NSF Consumers, a subscription can be maintained by both I2NSF Components. Discovery of available monitoring information can be supported by an I2NSF Controller that takes the role of a broker and therefore includes I2NSF Capabilities that support registration. Jeong, et al. Expires May 7, 2020 [Page 9] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 o Export Frequency: Monitoring information can be emitted immediately upon generation by an NSF to requesting I2NSF Consumers or can be pushed periodically. The frequency of exporting the data depends upon its size and timely usefulness. It is out of the scope of I2NSF and left to each NSF implementation. o Authentication: There may be a need for authentication between an I2NSF Producer of monitoring information and its corresponding I2NSF Consumer to ensure that critical information remains confidential. Authentication in the scope of I2NSF can also require its corresponding content authorization. This may be necessary, for example, if an NSF emits monitoring information to an I2NSF Consumer outside its administrative domain. The I2NSF Architecture does not mandate when and how specific authentication has to be implemented. o Data-Transfer Model: Monitoring information can be pushed by an NSF using a connection-less model that does require a persistent connection or streamed over a persistent connection. An appropriate model depends on the I2NSF Consumer requirements and the semantics of the information to be conveyed. o Data Model and Interaction Model for Data in Motion: There are a lot of transport mechanisms such as IP, UDP, and TCP. There are also open source implementations for specific set of data such as systems counter, e.g. IPFIX [RFC7011] and NetFlow [RFC3954]. The I2NSF does not mandate any specific method for a given data set, so it is up to each implementation. 5.1. Information Types and Acquisition Methods In this document, most defined information types defined benefit from high visibility with respect to value changes, e.g., alarms and records. In contrast, values that change monotonically in a continuous way do not benefit from this high visibility. On the contrary, emitting each change would result in a useless amount of value updates. Hence, values, such as counter, are best acquired in periodic intervals. The mechanisms provided by YANG Push [I-D.ietf-netconf-yang-push] and YANG Subscribed Notifications [I-D.ietf-netconf-subscribed-notifications] address exactly these set of requirements. YANG also enables semantically well-structured information, as well as subscriptions to datastores or event streams - by changes or periodically. Jeong, et al. Expires May 7, 2020 [Page 10] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 In consequence, this information model in this document is intended to support data models used in solicited or unsolicited event streams that potentially are facilitated by a subscription mechanism. A subset of information elements defined in the information model address this domain of application. 6. Basic Information Model for All Monitoring Data As explained in the above section, there is a wealth of data available from the NSF that can be monitored. Firstly, there must be some general information with each monitoring message sent from an NSF that helps a consumer to identify meta data with that message, which are listed as below: o message_version: It indicates the version of the data format and is a two-digit decimal numeral starting from 01. o message_type: Event, Alert, Alarm, Log, Counter, etc. o time_stamp: It indicates the time when the message is generated. o vendor_name: The name of the NSF vendor. o NSF_name: The name (or IP) of the NSF generating the message. o Module_name: The module name outputting the message. o Severity: It indicates the level of the logs. There are total eight levels, from 0 to 7. The smaller the numeral is, the higher the severity is. 7. Extended Information Model for Monitoring Data This section covers the additional information associated with the system messages. The extended information model is only for the structured data such as alarm. Any unstructured data is specified with basic information model only. 7.1. System Alarms Characteristics: o acquisition_method: subscription o emission_type: on-change o dampening_type: no-dampening Jeong, et al. Expires May 7, 2020 [Page 11] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 7.1.1. Memory Alarm The following information should be included in a Memory Alarm: o event_name: MEM_USAGE_ALARM o module_name: It indicates the NSF module responsible for generating this alarm. o usage: specifies the amount of memory used. o threshold: The threshold triggering the alarm o severity: The severity of the alarm such as critical, high, medium, low o message: The memory usage exceeded the threshold 7.1.2. CPU Alarm The following information should be included in a CPU Alarm: o event_name: CPU_USAGE_ALARM o usage: Specifies the amount of CPU used. o threshold: The threshold triggering the event o severity: The severity of the alarm such as critical, high, medium, low o message: The CPU usage exceeded the threshold. 7.1.3. Disk Alarm The following information should be included in a Disk Alarm: o event_name: DISK_USAGE_ALARM o usage: Specifies the amount of disk space used. o threshold: The threshold triggering the event o severity: The severity of the alarm such as critical, high, medium, low o message: The disk usage exceeded the threshold. Jeong, et al. Expires May 7, 2020 [Page 12] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 7.1.4. Hardware Alarm The following information should be included in a Hardware Alarm: o event_name: HW_FAILURE_ALARM o component_name: It indicates the HW component responsible for generating this alarm. o threshold: The threshold triggering the alarm o severity: The severity of the alarm such as critical, high, medium, low o message: The HW component has failed or degraded. 7.1.5. Interface Alarm The following information should be included in an Interface Alarm: o event_name: IFNET_STATE_ALARM o interface_Name: The name of interface o interface_state: UP, DOWN, CONGESTED o threshold: The threshold triggering the event o severity: The severity of the alarm such as critical, high, medium, low o message: Current interface state 7.2. System Events Characteristics: o acquisition_method: subscription o emission_type: on-change o dampening_type: on-repetition 7.2.1. Access Violation The following information should be included in this event: o event_name: ACCESS_DENIED Jeong, et al. Expires May 7, 2020 [Page 13] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 o user: Name of a user o group: Group to which a user belongs o login_ip_address: Login IP address of a user o authentication_mode: User authentication mode. e.g., Local Authentication, Third-Party Server Authentication, Authentication Exemption, Single Sign-On (SSO) Authentication o message: access is denied. 7.2.2. Configuration Change The following information should be included in this event: o event_name: CONFIG_CHANGE o user: Name of a user o group: Group to which a user belongs o login_ip_address: Login IP address of a user o authentication_mode: User authentication mode. e.g., Local Authentication, Third-Party Server Authentication, Authentication Exemption, SSO Authentication o message: Configuration is modified. 7.3. NSF Events Characteristics: o acquisition_method: subscription o emission_type: on-change o dampening_type: none 7.3.1. DDoS Event The following information should be included in a DDoS Event: o event_name: SEC_EVENT_DDoS o sub_attack_type: Any one of SYN flood, ACK flood, SYN-ACK flood, FIN/RST flood, TCP Connection flood, UDP flood, ICMP flood, HTTPS Jeong, et al. Expires May 7, 2020 [Page 14] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 flood, HTTP flood, DNS query flood, DNS reply flood, SIP flood, and etc. o dst_ip: The IP address of a victim under attack o dst_port: The port number that the attack traffic aims at. o start_time: The time stamp indicating when the attack started o end_time: The time stamp indicating when the attack ended. If the attack is still undergoing when sending out the alarm, this field can be empty. o attack_rate: The PPS of attack traffic o attack_speed: the bps of attack traffic o rule_id: The ID of the rule being triggered o rule_name: The name of the rule being triggered o profile: Security profile that traffic matches. 7.3.2. Session Table Event The following information should be included in a Session Table Event: o event_name: SESSION_USAGE_HIGH o current: The number of concurrent sessions o max: The maximum number of sessions that the session table can support o threshold: The threshold triggering the event o message: The number of session table exceeded the threshold. 7.3.3. Virus Event The following information should be included in a Virus Event: o event_Name: SEC_EVENT_VIRUS o virus_type: Type of the virus. e.g., trojan, worm, macro virus type Jeong, et al. Expires May 7, 2020 [Page 15] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 o virus_name: Name of the virus o dst_ip: The destination IP address of the packet where the virus is found o src_ip: The source IP address of the packet where the virus is found o src_port: The source port of the packet where the virus is found o dst_port: The destination port of the packet where the virus is found o src_zone: The source security zone of the packet where the virus is found o dst_zone: The destination security zone of the packet where the virus is found o file_type: The type of the file where the virus is hided within o file_name: The name of the file where the virus is hided within o virus_info: The brief introduction of the virus o raw_info: The information describing the packet triggering the event. o rule_id: The ID of the rule being triggered o rule_name: The name of the rule being triggered o profile: Security profile that traffic matches. 7.3.4. Intrusion Event The following information should be included in an Intrusion Event: o event_name: The name of event. e.g., SEC_EVENT_Intrusion o sub_attack_type: Attack type, e.g., brutal force and buffer overflow o src_ip: The source IP address of the packet o dst_ip: The destination IP address of the packet o src_port:The source port number of the packet Jeong, et al. Expires May 7, 2020 [Page 16] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 o dst_port: The destination port number of the packet o src_zone: The source security zone of the packet o dst_zone: The destination security zone of the packet o protocol: The employed transport layer protocol. e.g.,TCP and UDP o app: The employed application layer protocol. e.g.,HTTP and FTP o rule_id: The ID of the rule being triggered o rule_name: The name of the rule being triggered o profile: Security profile that traffic matches o intrusion_info: Simple description of intrusion o raw_info: The information describing the packet triggering the event 7.3.5. Botnet Event The following information should be included in a Botnet Event: o event_name: The name of event. e.g., SEC_EVENT_Botnet o botnet_name: The name of the detected botnet o src_ip: The source IP address of the packet o dst_ip: The destination IP address of the packet o src_port: The source port number of the packet o dst_port: The destination port number of the packet o src_zone: The source security zone of the packet o dst_zone: The destination security zone of the packet o protocol: The employed transport layer protocol. e.g.,TCP and UDP o app: The employed application layer protocol. e.g.,HTTP and FTP o role: The role of the communicating parties within the botnet: 1. The packet from the zombie host to the attacker Jeong, et al. Expires May 7, 2020 [Page 17] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 2. The packet from the attacker to the zombie host 3. The packet from the IRC/WEB server to the zombie host 4. The packet from the zombie host to the IRC/WEB server 5. The packet from the attacker to the IRC/WEB server 6. The packet from the IRC/WEB server to the attacker 7. The packet from the zombie host to the victim o botnet_info: Simple description of Botnet o rule_id: The ID of the rule being triggered o rule_name: The name of the rule being triggered o profile: Security profile that traffic matches o raw_info: The information describing the packet triggering the event. 7.3.6. Web Attack Event The following information should be included in a Web Attack Alarm: o event_name: The name of event. e.g., SEC_EVENT_WebAttack o sub_attack_type: Concrete web attack type. e.g., SQL injection, command injection, XSS, CSRF o src_ip: The source IP address of the packet o dst_ip: The destination IP address of the packet o src_port: The source port number of the packet o dst_port: The destination port number of the packet o src_zone: The source security zone of the packet o dst_zone: The destination security zone of the packet o req_method: The method of requirement. For instance, "PUT" and "GET" in HTTP o req_url: Requested URL Jeong, et al. Expires May 7, 2020 [Page 18] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 o url_category: Matched URL category o filtering_type: URL filtering type. e.g., Blacklist, Whitelist, User-Defined, Predefined, Malicious Category, and Unknown o rule_id: The ID of the rule being triggered o rule_name: The name of the rule being triggered o profile: Security profile that traffic matches 7.4. System Logs Characteristics: o acquisition_method: subscription o emission_type: on-change o dampening_type: on-repetition 7.4.1. Access Log Access logs record administrators' login, logout, and operations on a device. By analyzing them, security vulnerabilities can be identified. The following information should be included in an operation report: o Administrator: Administrator that operates on the device o login_ip_address: IP address used by an administrator to log in o login_mode: Specifies the administrator logs in mode e.g. root, user o operation_type: The operation type that the administrator execute, e.g., login, logout, and configuration. o result: Command execution result o content: Operation performed by an administrator after login. 7.4.2. Resource Utilization Log Running reports record the device system's running status, which is useful for device monitoring. The following information should be included in running report: Jeong, et al. Expires May 7, 2020 [Page 19] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 o system_status: The current system's running status o CPU_usage: Specifies the CPU usage. o memory_usage: Specifies the memory usage. o disk_usage: Specifies the disk usage. o disk_left: Specifies the available disk space left. o session_number: Specifies total concurrent sessions. o process_number: Specifies total number of systems processes. o in_traffic_rate: The total inbound traffic rate in pps o out_traffic_rate: The total outbound traffic rate in pps o in_traffic_speed: The total inbound traffic speed in bps o out_traffic_speed: The total outbound traffic speed in bps 7.4.3. User Activity Log User activity logs provide visibility into users' online records (such as login time, online/lockout duration, and login IP addresses) and the actions that users perform. User activity reports are helpful to identify exceptions during a user's login and network access activities. o user: Name of a user o group: Group to which a user belongs o login_ip_address: Login IP address of a user o authentication_mode: User authentication mode. e.g., Local Authentication, Third-Party Server Authentication, Authentication Exemption, SSO Authentication o access_mode: User access mode. e.g., PPP, SVN, LOCAL o online_duration: Online duration o lockout_duration: Lockout duration Jeong, et al. Expires May 7, 2020 [Page 20] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 o type: User activities. e.g., Successful User Login, Failed Login attempts, User Logout, Successful User Password Change, Failed User Password Change, User Lockout, User Unlocking, Unknown o cause: Cause of a failed user activity 7.5. NSF Logs Characteristics: o acquisition_method: subscription o emission_type: on-change o dampening_type: on_repetition 7.5.1. DDoS Log Besides the fields in a DDoS Alarm, the following information should be included in a DDoS Logs: o attack_type: DDoS o attack_ave_rate: The average pps of the attack traffic within the recorded time o attack_ave_speed: The average bps of the attack traffic within the recorded time o attack_pkt_num: The number of attack packets within the recorded time o attack_src_ip: The source IP addresses of attack traffics. If there are a large number of IP addresses, then pick a certain number of resources according to different rules. o action: Actions against DDoS attacks. e.g., Allow, Alert, Block, Discard, Declare, Block-ip, and Block-service. 7.5.2. Virus Log Besides the fields in a Virus Alarm, the following information should be included in a Virus Logs: o attack_type: Virus o protocol: The transport layer protocol Jeong, et al. Expires May 7, 2020 [Page 21] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 o app: The name of the application layer protocol o times: The time of detecting the virus o action: The actions dealing with the virus. e.g., alert and block o os: The OS that the virus will affect. e.g., all, android, ios, unix, and windows 7.5.3. Intrusion Log Besides the fields in an Intrusion Alarm, the following information should be included in an Intrusion Logs: o attack_type: Intrusion o times: The times of intrusions happened in the recorded time o os: The OS that the intrusion will affect. e.g., all, android, ios, unix, and windows o action: The actions dealing with the intrusions. e.g., Allow, Alert, Block, Discard, Declare, Block-ip, and Block-service o attack_rate: NUM the pps of attack traffic o attack_speed: NUM the bps of attack traffic 7.5.4. Botnet Log Besides the fields in a Botnet Alarm, the following information should be included in a Botnet Logs: o attack_type: Botnet o botnet_pkt_num:The number of the packets sent to or from the detected botnet o action: The actions dealing with the detected packets. e.g., Allow, Alert, Block, Discard, Declare, Block-ip, and Block- service. o os: The OS that the attack aims at. e.g., all, android, ios, unix, and windows. Jeong, et al. Expires May 7, 2020 [Page 22] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 7.5.5. DPI Log DPI Logs provide statistics on uploaded and downloaded files and data, sent and received emails, and alert and block records on websites. It is helpful to learn risky user behaviors and why access to some URLs is blocked or allowed with an alert record. o type: DPI action types. e.g., File Blocking, Data Filtering, and Application Behavior Control o file_name: The file name o file_type: The file type o src_zone: Source security zone of traffic o dst_zone: Destination security zone of traffic o src_region: Source region of traffic o dst_region: Destination region of traffic o src_ip: Source IP address of traffic o src_user: User who generates traffic o dst_ip: Destination IP address of traffic o src_port: Source port of traffic o dst_port: Destination port of traffic o protocol: Protocol type of traffic o app: Application type of traffic o policy_id: Security policy id that traffic matches o policy_name: Security policy name that traffic matches o action: Action defined in the file blocking rule, data filtering rule, or application behavior control rule that traffic matches. 7.5.6. Vulnerability Scanning Log Vulnerability scanning logs record the victim host and its related vulnerability information that should to be fixed. The following information should be included in the report: Jeong, et al. Expires May 7, 2020 [Page 23] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 o victim_ip: IP address of the victim host which has vulnerabilities o vulnerability_id: The vulnerability id o vulnerability_level: The vulnerability level. e.g., high, middle, and low o OS: The operating system of the victim host o service: The service which has vulnerability in the victim host o protocol: The protocol type. e.g., TCP and UDP o port: The port number o vulnerability_info: The information about the vulnerability o fix_suggestion: The fix suggestion to the vulnerability. 7.5.7. Web Attack Log Besides the fields in a Web Attack Alarm, the following information should be included in a Web Attack Report: o attack_type: Web Attack o rsp_code: Response code o req_clientapp: The client application o req_cookies: Cookies o req_host: The domain name of the requested host o raw_info: The information describing the packet triggering the event. 7.6. System Counter Characteristics: o acquisition_method: subscription or query o emission_type: periodical o dampening_type: none Jeong, et al. Expires May 7, 2020 [Page 24] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 7.6.1. Interface counter Interface counters provide visibility into traffic into and out of an NSF, and bandwidth usage. o interface_name: Network interface name configured in NSF o in_total_traffic_pkts: Total inbound packets o out_total_traffic_pkts: Total outbound packets o in_total_traffic_bytes: Total inbound bytes o out_total_traffic_bytes: Total outbound bytes o in_drop_traffic_pkts: Total inbound drop packets o out_drop_traffic_pkts: Total outbound drop packets o in_drop_traffic_bytes: Total inbound drop bytes o out_drop_traffic_bytes: Total outbound drop bytes o in_traffic_ave_rate: Inbound traffic average rate in pps o in_traffic_peak_rate: Inbound traffic peak rate in pps o in_traffic_ave_speed: Inbound traffic average speed in bps o in_traffic_peak_speed: Inbound traffic peak speed in bps o out_traffic_ave_rate: Outbound traffic average rate in pps o out_traffic_peak_rate: Outbound traffic peak rate in pps o out_traffic_ave_speed: Outbound traffic average speed in bps o out_traffic_peak_speed: Outbound traffic peak speed in bps 7.7. NSF Counters Characteristics: o acquisition_method: subscription or query o emission_type: periodical o dampening_type: none Jeong, et al. Expires May 7, 2020 [Page 25] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 7.7.1. Firewall counter Firewall counters provide visibility into traffic signatures, bandwidth usage, and how the configured security and bandwidth policies have been applied. o src_zone: Source security zone of traffic o dst_zone: Destination security zone of traffic o src_region: Source region of traffic o dst_region: Destination region of traffic o src_ip: Source IP address of traffic o src_user: User who generates traffic o dst_ip: Destination IP address of traffic o src_port: Source port of traffic o dst_port: Destination port of traffic o protocol: Protocol type of traffic o app: Application type of traffic o policy_id: Security policy id that traffic matches o policy_name: Security policy name that traffic matches o in_interface: Inbound interface of traffic o out_interface: Outbound interface of traffic o total_traffic: Total traffic volume o in_traffic_ave_rate: Inbound traffic average rate in pps o in_traffic_peak_rate: Inbound traffic peak rate in pps o in_traffic_ave_speed: Inbound traffic average speed in bps o in_traffic_peak_speed: Inbound traffic peak speed in bps o out_traffic_ave_rate: Outbound traffic average rate in pps Jeong, et al. Expires May 7, 2020 [Page 26] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 o out_traffic_peak_rate: Outbound traffic peak rate in pps o out_traffic_ave_speed: Outbound traffic average speed in bps o out_traffic_peak_speed: Outbound traffic peak speed in bps. 7.7.2. Policy Hit Counter Policy Hit Counters record the security policy that traffic matches and its hit count. It can check if policy configurations are correct. o src_zone: Source security zone of traffic o dst_zone: Destination security zone of traffic o src_region: Source region of the traffic o dst_region: Destination region of the traffic o src_ip: Source IP address of traffic o src_user: User who generates traffic o dst_ip: Destination IP address of traffic o src_port: Source port of traffic o dst_port: Destination port of traffic o protocol: Protocol type of traffic o app: Application type of traffic o policy_id: Security policy id that traffic matches o policy_name: Security policy name that traffic matches o hit_times: The hit times that the security policy matches the specified traffic. 8. NSF Monitoring Management in I2NSF A standard model for monitoring data is required for an administrator to check the monitoring data generated by an NSF. The administrator can check the monitoring data through the following process. When the NSF monitoring data that is under the standard format is generated, the NSF forwards it to the security controller. The Jeong, et al. Expires May 7, 2020 [Page 27] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 security controller delivers it to I2NSF Consumer or Developer's Management System (DMS) so that the administrator can know the state of the I2NSF framework. In order to communicate with other components, an I2NSF framework [RFC8329] requires the interfaces. The three main interfaces in I2NSF framework are used for sending monitoring data as follows: o I2NSF Consumer-Facing Interface [I-D.ietf-i2nsf-consumer-facing-interface-dm]: When an I2NSF User makes a security policy and forwards it to the Security Controller via Consumer-Facing Interface, it can specify the threat-feed for threat prevention, the custom list, the malicious code scan group, and the event map group. They can be used as an event to be monitored by an NSF. o I2NSF Registration Interface [I-D.ietf-i2nsf-registration-interface-dm]: The Network Functions Virtualization (NFV) architecture provides the lifecycle management of a Virtual Network Function (VNF) via the Ve-Vnfm interface. The role of Ve-Vnfm is to request VNF lifecycle management (e.g., the instantiation and de-instantiation of an NSF, and load balancing among NSFs), exchange configuration information, and exchange status information for a network service. In the I2NSF framework, the DMS manages data about resource states and network traffic for the lifecycle management of an NSF. Therefore, the generated monitoring data from NSFs are delivered from the Security Controller to the DMS via Registration Interface. These data are delivered from the DMS to the VNF Manager in the Management and Orchestration (MANO) in the NFV system [I-D.yang-i2nsf-nfv-architecture]. o I2NSF NSF-Facing Interface [I-D.ietf-i2nsf-nsf-facing-interface-dm]: After a high-level security policy from I2NSF User is translated by security policy translator [I-D.yang-i2nsf-security-policy-translation] in the Security Controller, the translated security policy (i.e., low- level policy) is applied to an NSF via NSF-Facing Interface. The monitoring data model specifies the list of events that can trigger Event-Condition-Action (ECA) policies via NSF-Facing Interface. 9. Tree Structure The tree structure of the NSF monitoring YANG module is provided below: module: ietf-i2nsf-monitor Jeong, et al. Expires May 7, 2020 [Page 28] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 +--rw counters +--rw system-interface | +--rw acquisition-method? identityref | +--rw emission-type? identityref | +--rw dampening-type? identityref | +--rw interface-name? string | +--rw in-total-traffic-pkts? uint32 | +--rw out-total-traffic-pkts? uint32 | +--rw in-total-traffic-bytes? uint32 | +--rw out-total-traffic-bytes? uint32 | +--rw in-drop-traffic-pkts? uint32 | +--rw out-drop-traffic-pkts? uint32 | +--rw in-drop-traffic-bytes? uint32 | +--rw out-drop-traffic-bytes? uint32 | +--rw total-traffic? uint32 | +--rw in-traffic-ave-rate? uint32 | +--rw in-traffic-peak-rate? uint32 | +--rw in-traffic-ave-speed? uint32 | +--rw in-traffic-peak-speed? uint32 | +--rw out-traffic-ave-rate? uint32 | +--rw out-traffic-peak-rate? uint32 | +--rw out-traffic-ave-speed? uint32 | +--rw out-traffic-peak-speed? uint32 | +--rw message? string | +--rw time-stamp? yang:date-and-time | +--rw vendor-name? string | +--rw nsf-name? string | +--rw module-name? string | +--rw severity? severity +--rw nsf-firewall | +--rw acquisition-method? identityref | +--rw emission-type? identityref | +--rw dampening-type? identityref | +--rw src-ip? inet:ipv4-address | +--rw dst-ip? inet:ipv4-address | +--rw src-port? inet:port-number | +--rw dst-port? inet:port-number | +--rw src-zone? string | +--rw dst-zone? string | +--rw src-region? string | +--rw dst-region? string | +--rw policy-id? uint8 | +--rw policy-name? string | +--rw src-user? string | +--rw protocol? identityref | +--rw app? string | +--rw total-traffic? uint32 | +--rw in-traffic-ave-rate? uint32 Jeong, et al. Expires May 7, 2020 [Page 29] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 | +--rw in-traffic-peak-rate? uint32 | +--rw in-traffic-ave-speed? uint32 | +--rw in-traffic-peak-speed? uint32 | +--rw out-traffic-ave-rate? uint32 | +--rw out-traffic-peak-rate? uint32 | +--rw out-traffic-ave-speed? uint32 | +--rw out-traffic-peak-speed? uint32 +--rw nsf-policy-hits +--rw acquisition-method? identityref +--rw emission-type? identityref +--rw dampening-type? identityref +--rw src-ip? inet:ipv4-address +--rw dst-ip? inet:ipv4-address +--rw src-port? inet:port-number +--rw dst-port? inet:port-number +--rw src-zone? string +--rw dst-zone? string +--rw src-region? string +--rw dst-region? string +--rw policy-id? uint8 +--rw policy-name? string +--rw src-user? string +--rw protocol? identityref +--rw app? string +--rw message? string +--rw time-stamp? yang:date-and-time +--rw vendor-name? string +--rw nsf-name? string +--rw module-name? string +--rw severity? severity +--rw hit-times? uint32 notifications: +---n system-detection-alarm | +--ro alarm-category? identityref | +--ro acquisition-method? identityref | +--ro emission-type? identityref | +--ro dampening-type? identityref | +--ro usage? uint8 | +--ro threshold? uint8 | +--ro message? string | +--ro time-stamp? yang:date-and-time | +--ro vendor-name? string | +--ro nsf-name? string | +--ro module-name? string | +--ro severity? severity +---n system-detection-event | +--ro event-category? identityref Jeong, et al. Expires May 7, 2020 [Page 30] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 | +--ro acquisition-method? identityref | +--ro emission-type? identityref | +--ro dampening-type? identityref | +--ro user string | +--ro group string | +--ro login-ip-addr inet:ipv4-address | +--ro authentication? identityref | +--ro message? string | +--ro time-stamp? yang:date-and-time | +--ro vendor-name? string | +--ro nsf-name? string | +--ro module-name? string | +--ro severity? severity +---n nsf-detection-flood | +--ro event-name? identityref | +--ro dst-ip? inet:ipv4-address | +--ro dst-port? inet:port-number | +--ro rule-id uint8 | +--ro rule-name string | +--ro profile? string | +--ro raw-info? string | +--ro sub-attack-type? identityref | +--ro start-time yang:date-and-time | +--ro end-time yang:date-and-time | +--ro attack-rate? uint32 | +--ro attack-speed? uint32 | +--ro message? string | +--ro time-stamp? yang:date-and-time | +--ro vendor-name? string | +--ro nsf-name? string | +--ro module-name? string | +--ro severity? severity +---n nsf-detection-session-table | +--ro current-session? uint8 | +--ro maximum-session? uint8 | +--ro threshold? uint8 | +--ro message? string | +--ro time-stamp? yang:date-and-time | +--ro vendor-name? string | +--ro nsf-name? string | +--ro module-name? string | +--ro severity? severity +---n nsf-detection-virus | +--ro src-ip? inet:ipv4-address | +--ro dst-ip? inet:ipv4-address | +--ro src-port? inet:port-number | +--ro dst-port? inet:port-number | +--ro src-zone? string Jeong, et al. Expires May 7, 2020 [Page 31] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 | +--ro dst-zone? string | +--ro rule-id uint8 | +--ro rule-name string | +--ro profile? string | +--ro raw-info? string | +--ro virus? identityref | +--ro virus-name? string | +--ro file-type? string | +--ro file-name? string | +--ro message? string | +--ro time-stamp? yang:date-and-time | +--ro vendor-name? string | +--ro nsf-name? string | +--ro module-name? string | +--ro severity? severity +---n nsf-detection-intrusion | +--ro src-ip? inet:ipv4-address | +--ro dst-ip? inet:ipv4-address | +--ro src-port? inet:port-number | +--ro dst-port? inet:port-number | +--ro src-zone? string | +--ro dst-zone? string | +--ro rule-id uint8 | +--ro rule-name string | +--ro profile? string | +--ro raw-info? string | +--ro protocol? identityref | +--ro app? string | +--ro sub-attack-type? identityref | +--ro message? string | +--ro time-stamp? yang:date-and-time | +--ro vendor-name? string | +--ro nsf-name? string | +--ro module-name? string | +--ro severity? severity +---n nsf-detection-botnet | +--ro src-ip? inet:ipv4-address | +--ro dst-ip? inet:ipv4-address | +--ro src-port? inet:port-number | +--ro dst-port? inet:port-number | +--ro src-zone? string | +--ro dst-zone? string | +--ro rule-id uint8 | +--ro rule-name string | +--ro profile? string | +--ro raw-info? string | +--ro attack-type? identityref | +--ro protocol? identityref Jeong, et al. Expires May 7, 2020 [Page 32] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 | +--ro botnet-name? string | +--ro role? string | +--ro message? string | +--ro time-stamp? yang:date-and-time | +--ro vendor-name? string | +--ro nsf-name? string | +--ro module-name? string | +--ro severity? severity +---n nsf-detection-web-attack | +--ro src-ip? inet:ipv4-address | +--ro dst-ip? inet:ipv4-address | +--ro src-port? inet:port-number | +--ro dst-port? inet:port-number | +--ro src-zone? string | +--ro dst-zone? string | +--ro rule-id uint8 | +--ro rule-name string | +--ro profile? string | +--ro raw-info? string | +--ro sub-attack-type? identityref | +--ro request-method? identityref | +--ro req-uri? string | +--ro uri-category? string | +--ro filtering-type* identityref | +--ro message? string | +--ro time-stamp? yang:date-and-time | +--ro vendor-name? string | +--ro nsf-name? string | +--ro module-name? string | +--ro severity? severity +---n system-access-log | +--ro login-ip inet:ipv4-address | +--ro administrator? string | +--ro login-mode? login-mode | +--ro operation-type? operation-type | +--ro result? string | +--ro content? string | +--ro acquisition-method? identityref | +--ro emission-type? identityref | +--ro dampening-type? identityref +---n system-res-util-log | +--ro system-status? string | +--ro cpu-usage? uint8 | +--ro memory-usage? uint8 | +--ro disk-usage? uint8 | +--ro disk-left? uint8 | +--ro session-num? uint8 | +--ro process-num? uint8 Jeong, et al. Expires May 7, 2020 [Page 33] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 | +--ro in-traffic-rate? uint32 | +--ro out-traffic-rate? uint32 | +--ro in-traffic-speed? uint32 | +--ro out-traffic-speed? uint32 | +--ro acquisition-method? identityref | +--ro emission-type? identityref | +--ro dampening-type? identityref +---n system-user-activity-log | +--ro acquisition-method? identityref | +--ro emission-type? identityref | +--ro dampening-type? identityref | +--ro user string | +--ro group string | +--ro login-ip-addr inet:ipv4-address | +--ro authentication? identityref | +--ro access? identityref | +--ro online-duration? string | +--ro logout-duration? string | +--ro additional-info? string +---n nsf-log-ddos | +--ro attack-type? identityref | +--ro attack-ave-rate? uint32 | +--ro attack-ave-speed? uint32 | +--ro attack-pkt-num? uint32 | +--ro attack-src-ip? inet:ipv4-address | +--ro action? log-action | +--ro acquisition-method? identityref | +--ro emission-type? identityref | +--ro dampening-type? identityref | +--ro message? string | +--ro time-stamp? yang:date-and-time | +--ro vendor-name? string | +--ro nsf-name? string | +--ro module-name? string | +--ro severity? severity +---n nsf-log-virus | +--ro attack-type? identityref | +--ro action? log-action | +--ro os? string | +--ro time yang:date-and-time | +--ro acquisition-method? identityref | +--ro emission-type? identityref | +--ro dampening-type? identityref | +--ro message? string | +--ro time-stamp? yang:date-and-time | +--ro vendor-name? string | +--ro nsf-name? string | +--ro module-name? string Jeong, et al. Expires May 7, 2020 [Page 34] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 | +--ro severity? severity +---n nsf-log-intrusion | +--ro attack-type? identityref | +--ro action? log-action | +--ro time yang:date-and-time | +--ro attack-rate? uint32 | +--ro attack-speed? uint32 | +--ro acquisition-method? identityref | +--ro emission-type? identityref | +--ro dampening-type? identityref | +--ro message? string | +--ro time-stamp? yang:date-and-time | +--ro vendor-name? string | +--ro nsf-name? string | +--ro module-name? string | +--ro severity? severity +---n nsf-log-botnet | +--ro attack-type? identityref | +--ro action? log-action | +--ro botnet-pkt-num? uint8 | +--ro os? string | +--ro acquisition-method? identityref | +--ro emission-type? identityref | +--ro dampening-type? identityref | +--ro message? string | +--ro time-stamp? yang:date-and-time | +--ro vendor-name? string | +--ro nsf-name? string | +--ro module-name? string | +--ro severity? severity +---n nsf-log-dpi | +--ro attack-type? dpi-type | +--ro acquisition-method? identityref | +--ro emission-type? identityref | +--ro dampening-type? identityref | +--ro src-ip? inet:ipv4-address | +--ro dst-ip? inet:ipv4-address | +--ro src-port? inet:port-number | +--ro dst-port? inet:port-number | +--ro src-zone? string | +--ro dst-zone? string | +--ro src-region? string | +--ro dst-region? string | +--ro policy-id? uint8 | +--ro policy-name? string | +--ro src-user? string | +--ro protocol? identityref | +--ro app? string Jeong, et al. Expires May 7, 2020 [Page 35] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 | +--ro message? string | +--ro time-stamp? yang:date-and-time | +--ro vendor-name? string | +--ro nsf-name? string | +--ro module-name? string | +--ro severity? severity +---n nsf-log-vuln-scan | +--ro vulnerability-id? uint8 | +--ro victim-ip? inet:ipv4-address | +--ro protocol? identityref | +--ro port-num? inet:port-number | +--ro level? severity | +--ro os? string | +--ro vulnerability-info? string | +--ro fix-suggestion? string | +--ro service? string | +--ro acquisition-method? identityref | +--ro emission-type? identityref | +--ro dampening-type? identityref | +--ro message? string | +--ro time-stamp? yang:date-and-time | +--ro vendor-name? string | +--ro nsf-name? string | +--ro module-name? string | +--ro severity? severity +---n nsf-log-web-attack +--ro attack-type? identityref +--ro rsp-code? string +--ro req-clientapp? string +--ro req-cookies? string +--ro req-host? string +--ro raw-info? string +--ro acquisition-method? identityref +--ro emission-type? identityref +--ro dampening-type? identityref +--ro message? string +--ro time-stamp? yang:date-and-time +--ro vendor-name? string +--ro nsf-name? string +--ro module-name? string +--ro severity? severity Figure 1: Information Model for NSF Monitoring Jeong, et al. Expires May 7, 2020 [Page 36] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 10. YANG Data Model This section introduces a YANG data model for the information model of the NSF monitoring information model. file "ietf-i2nsf-monitor@2019-11-04.yang" module ietf-i2nsf-monitor { yang-version 1.1; namespace "urn:ietf:params:xml:ns:yang:ietf-i2nsf-monitor"; prefix iim; import ietf-inet-types{ prefix inet; reference "Section 4 of RFC 6991"; } import ietf-yang-types { prefix yang; reference "Section 3 of RFC 6991"; } organization "IETF I2NSF (Interface to Network Security Functions) Working Group"; contact "WG Web: WG List: WG Chair: Linda Dunbar Editor: Jaehoon Paul Jeong Editor: Chaehong Chung "; description "This module is a YANG module for monitoring NSFs. Copyright (c) 2018 IETF Trust and the persons identified as authors of the code. All rights reserved. Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Simplified BSD License Jeong, et al. Expires May 7, 2020 [Page 37] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 set forth in Section 4.c of the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info). This version of this YANG module is part of RFC 6087; see the RFC itself for full legal notices."; revision "2019-11-04" { description "The third revision"; reference "RFC XXXX: I2NSF NSF Monitoring YANG Data Model"; } typedef severity { type enumeration { enum high { description "high-level"; } enum middle { description "middle-level"; } enum low { description "low-level"; } } description "An indicator representing severity"; } typedef log-action { type enumeration { enum allow { description "If action is allowed"; } enum alert { description "If action is alert"; } enum block { description "If action is block"; } enum discard { description "If action is discarded"; Jeong, et al. Expires May 7, 2020 [Page 38] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 } enum declare { description "If action is declared"; } enum block-ip { description "If action is block-ip"; } enum block-service{ description "If action is block-service"; } } description "This is used for protocol"; } typedef dpi-type{ type enumeration { enum file-blocking{ description "DPI for blocking file"; } enum data-filtering{ description "DPI for filtering data"; } enum application-behavior-control{ description "DPI for controlling application behavior"; } } description "This is used for dpi type"; } typedef operation-type{ type enumeration { enum login{ description "Login operation"; } enum logout{ description "Logout operation"; } enum configuration{ description "Configuration operation"; Jeong, et al. Expires May 7, 2020 [Page 39] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 } } description "An indicator representing operation-type"; } typedef login-mode{ type enumeration { enum root{ description "Root login-mode"; } enum user{ description "User login-mode"; } enum guest{ description "Guest login-mode"; } } description "An indicator representing login-mode"; } identity characteristics { description "Base identity for monitoring information characteristics"; } identity acquisition-method { base characteristics; description "The type of acquisition-method. Can be multiple types at once."; } identity subscription { base acquisition-method; description "The acquisition-method type is subscription"; } identity query { base acquisition-method; description "The acquisition-method type is query"; } identity emission-type { base characteristics; description Jeong, et al. Expires May 7, 2020 [Page 40] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 "The type of emission-type."; } identity periodical { base emission-type; description "The emission-type type is periodical."; } identity on-change { base emission-type; description "The emission-type type is on-change."; } identity dampening-type { base characteristics; description "The type of dampening-type."; } identity no-dampening { base dampening-type; description "The dampening-type is no-dampening."; } identity on-repetition { base dampening-type; description "The dampening-type is on-repetition."; } identity none { base dampening-type; description "The dampening-type is none."; } identity authentication-mode { description "User authentication mode types: e.g., Local Authentication, Third-Party Server Authentication, Authentication Exemption, or Single Sign-On (SSO) Authentication."; } identity local-authentication { base authentication-mode; description "Authentication-mode : local authentication."; } identity third-party-server-authentication { base authentication-mode; Jeong, et al. Expires May 7, 2020 [Page 41] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 description "If authentication-mode is third-part-server-authentication"; } identity exemption-authentication { base authentication-mode; description "If authentication-mode is exemption-authentication"; } identity sso-authentication { base authentication-mode; description "If authentication-mode is sso-authentication"; } identity alarm-type { description "Base identity for detectable alarm types"; } identity MEM-USAGE-ALARM { base alarm-type; description "A memory alarm is alerted"; } identity CPU-USAGE-ALARM { base alarm-type; description "A CPU alarm is alerted"; } identity DISK-USAGE-ALARM { base alarm-type; description "A disk alarm is alerted"; } identity HW-FAILURE-ALARM { base alarm-type; description "A hardware alarm is alerted"; } identity IFNET-STATE-ALARM { base alarm-type; description "An interface alarm is alerted"; } identity event-type { description Jeong, et al. Expires May 7, 2020 [Page 42] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 "Base identity for detectable event types"; } identity ACCESS-DENIED { base event-type; description "The system event is access-denied."; } identity CONFIG-CHANGE { base event-type; description "The system event is config-change."; } identity flood-type { description "Base identity for detectable flood types"; } identity syn-flood { base flood-type; description "A SYN flood is detected"; } identity ack-flood { base flood-type; description "An ACK flood is detected"; } identity syn-ack-flood { base flood-type; description "An SYN-ACK flood is detected"; } identity fin-rst-flood { base flood-type; description "A FIN-RST flood is detected"; } identity tcp-con-flood { base flood-type; description "A TCP connection flood is detected"; } identity udp-flood { base flood-type; description "A UDP flood is detected"; } identity icmp-flood { Jeong, et al. Expires May 7, 2020 [Page 43] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 base flood-type; description "An ICMP flood is detected"; } identity https-flood { base flood-type; description "A HTTPS flood is detected"; } identity http-flood { base flood-type; description "A HTTP flood is detected"; } identity dns-reply-flood { base flood-type; description "A DNS reply flood is detected"; } identity dns-query-flood { base flood-type; description "A DNS query flood is detected"; } identity sip-flood { base flood-type; description "A SIP flood is detected"; } identity nsf-event-name { description "Base identity for detectable nsf event types"; } identity SEC-EVENT-DDOS { base nsf-event-name; description "The nsf event is sec-event-ddos."; } identity SESSION-USAGE-HIGH { base nsf-event-name; description "The nsf event is session-usage-high"; } identity SEC-EVENT-VIRUS { base nsf-event-name; description "The nsf event is sec-event-virus"; Jeong, et al. Expires May 7, 2020 [Page 44] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 } identity SEC-EVENT-INTRUSION { base nsf-event-name; description "The nsf event is sec-event-intrusion"; } identity SEC-EVENT-BOTNET { base nsf-event-name; description "The nsf event is sec-event-botnet"; } identity SEC-EVENT-WEBATTACK { base nsf-event-name; description "The nsf event is sec-event-webattack"; } identity attack-type { description "The root ID of attack-based notification in the notification taxonomy"; } identity system-attack-type { base attack-type; description "This ID is intended to be used in the context of system events"; } identity nsf-attack-type { base attack-type; description "This ID is intended to be used in the context of nsf event"; } identity botnet-attack-type { base nsf-attack-type; description "This is an ID stub limited to indicating that this attack type is botnet. The usual semantic and taxonomy is missing and name is used."; } identity virus-type { base nsf-attack-type; description "The type of virus. Can be multiple types at once. This attack type is associated with a detected system-log virus-attack"; } Jeong, et al. Expires May 7, 2020 [Page 45] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 identity trojan { base virus-type; description "The detected virus type is trojan"; } identity worm { base virus-type; description "The detected virus type is worm"; } identity macro { base virus-type; description "The detected virus type is macro"; } identity intrusion-attack-type { base nsf-attack-type; description "The attack type is associated with a detected system-log intrusion"; } identity brute-force { base intrusion-attack-type; description "The intrusion type is brute-force"; } identity buffer-overflow { base intrusion-attack-type; description "The intrusion type is buffer-overflow"; } identity web-attack-type { base nsf-attack-type; description "The attack type associated with a detected system-log web-attack"; } identity command-injection { base web-attack-type; description "The detected web attack type is command injection"; } identity xss { base web-attack-type; description "The detected web attack type is XSS"; } identity csrf { Jeong, et al. Expires May 7, 2020 [Page 46] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 base web-attack-type; description "The detected web attack type is CSRF"; } identity ddos-attack-type { base nsf-attack-type; description "The attack type is associated with a detected nsf-log event"; } identity req-method { description "A set of request types (if applicable). For instance, PUT or GET in HTTP"; } identity put-req { base req-method; description "The detected request type is PUT"; } identity get-req { base req-method; description "The detected request type is GET"; } identity filter-type { description "The type of filter used to detect, for example, a web-attack. Can be applicable to more than web-attacks. Can be more than one type."; } identity whitelist { base filter-type; description "The applied filter type is whitelist"; } identity blacklist { base filter-type; description "The applied filter type is blacklist"; } identity user-defined { base filter-type; description "The applied filter type is user-defined"; } Jeong, et al. Expires May 7, 2020 [Page 47] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 identity balicious-category { base filter-type; description "The applied filter is balicious category"; } identity unknown-filter { base filter-type; description "The applied filter is unknown"; } identity access-mode { description "Base identity for detectable access mode."; } identity ppp { base access-mode; description "Access-mode : ppp"; } identity svn { base access-mode; description "Access-mode : svn"; } identity local { base access-mode; description "Access-mode : local"; } identity protocol-type { description "An identity used to enable type choices in leaves and leaflists wrt protocol metadata."; } identity tcp { base ipv4; base ipv6; description "TCP protocol type."; reference "RFC 793: Transmission Control Protocol"; } identity udp { base ipv4; base ipv6; description Jeong, et al. Expires May 7, 2020 [Page 48] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 "UDP protocol type."; reference "RFC 768: User Datagram Protocol"; } identity icmp { base ipv4; base ipv6; description "General ICMP protocol type."; reference "RFC 792: Internet Control Message Protocol"; } identity icmpv4 { base ipv4; description "ICMPv4 protocol type."; } identity icmpv6 { base ipv6; description "ICMPv6 protocol type."; } identity ip { base protocol-type; description "General IP protocol type."; reference "RFC 791: Internet Protocol RFC 2460: Internet Protocol, Version 6 (IPv6)"; } identity ipv4 { base ip; description "IPv4 protocol type."; reference "RFC 791: Internet Protocol"; } identity ipv6 { base ip; description "IPv6 protocol type."; reference "RFC 2460: Internet Protocol, Version 6 (IPv6)"; } identity http { base tcp; description "HTPP protocol type."; Jeong, et al. Expires May 7, 2020 [Page 49] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 reference "RFC 2616: Hypertext Transfer Protocol"; } identity ftp { base tcp; description "FTP protocol type."; reference "RFC 959: File Transfer Protocol"; } grouping common-monitoring-data { description "The data set of common monitoring"; leaf message { type string; description "This is a freetext annotation of monitoring notification content"; } leaf time-stamp { type yang:date-and-time; description "Indicates the time of message generation"; } leaf vendor-name { type string; description "The name of the NSF vendor"; } leaf nsf-name { type string; description "The name (or IP) of the NSF generating the message"; } leaf module-name { type string; description "The module name outputting the message"; } leaf severity { type severity; description "The severity of the alarm such as critical, high, middle, low."; } } grouping characteristics{ Jeong, et al. Expires May 7, 2020 [Page 50] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 description "A set of monitoring information characteristics"; leaf acquisition-method { type identityref { base acquisition-method; } description "The acquisition-method for characteristics"; } leaf emission-type { type identityref { base emission-type; } description "The emission-type for characteristics"; } leaf dampening-type { type identityref { base dampening-type; } description "The dampening-type for characteristics"; } } grouping i2nsf-system-alarm-type-content { description "A set of system alarm type contents"; leaf usage { type uint8; description "specifies the amount of usage"; } leaf threshold { type uint8; description "The threshold triggering the alarm or the event"; } } grouping i2nsf-system-event-type-content { description "System event metadata associated with system events caused by user activity."; leaf user { type string; mandatory true; description "Name of a user"; } Jeong, et al. Expires May 7, 2020 [Page 51] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 leaf group { type string; mandatory true; description "Group to which a user belongs."; } leaf login-ip-addr { type inet:ipv4-address; mandatory true; description "Login IP address of a user."; } leaf authentication { type identityref { base authentication-mode; } description "The authentication-mode for authentication"; } } grouping i2nsf-nsf-event-type-content-extend { description "A set of common IPv4-related NSF event content elements"; leaf src-ip { type inet:ipv4-address; description "The source IP address of the packet"; } leaf dst-ip { type inet:ipv4-address; description "The destination IP address of the packet"; } leaf src-port { type inet:port-number; description "The source port of the packet"; } leaf dst-port { type inet:port-number; description "The destination port of the packet"; } leaf src-zone { type string; description "The source security zone of the packet"; Jeong, et al. Expires May 7, 2020 [Page 52] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 } leaf dst-zone { type string; description "The destination security zone of the packet"; } leaf rule-id { type uint8; mandatory true; description "The ID of the rule being triggered"; } leaf rule-name { type string; mandatory true; description "The name of the rule being triggered"; } leaf profile { type string; description "Security profile that traffic matches."; } leaf raw-info { type string; description "The information describing the packet triggering the event."; } } grouping i2nsf-nsf-event-type-content { description "A set of common IPv4-related NSF event content elements"; leaf dst-ip { type inet:ipv4-address; description "The destination IP address of the packet"; } leaf dst-port { type inet:port-number; description "The destination port of the packet"; } leaf rule-id { type uint8; mandatory true; description Jeong, et al. Expires May 7, 2020 [Page 53] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 "The ID of the rule being triggered"; } leaf rule-name { type string; mandatory true; description "The name of the rule being triggered"; } leaf profile { type string; description "Security profile that traffic matches."; } leaf raw-info { type string; description "The information describing the packet triggering the event."; } } grouping traffic-rates { description "A set of traffic rates for statistics data"; leaf total-traffic { type uint32; description "Total traffic"; } leaf in-traffic-ave-rate { type uint32; description "Inbound traffic average rate in pps"; } leaf in-traffic-peak-rate { type uint32; description "Inbound traffic peak rate in pps"; } leaf in-traffic-ave-speed { type uint32; description "Inbound traffic average speed in bps"; } leaf in-traffic-peak-speed { type uint32; description "Inbound traffic peak speed in bps"; Jeong, et al. Expires May 7, 2020 [Page 54] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 } leaf out-traffic-ave-rate { type uint32; description "Outbound traffic average rate in pps"; } leaf out-traffic-peak-rate { type uint32; description "Outbound traffic peak rate in pps"; } leaf out-traffic-ave-speed { type uint32; description "Outbound traffic average speed in bps"; } leaf out-traffic-peak-speed { type uint32; description "Outbound traffic peak speed in bps"; } } grouping i2nsf-system-counter-type-content{ description "A set of system counter type contents"; leaf interface-name { type string; description "Network interface name configured in NSF"; } leaf in-total-traffic-pkts { type uint32; description "Total inbound packets"; } leaf out-total-traffic-pkts { type uint32; description "Total outbound packets"; } leaf in-total-traffic-bytes { type uint32; description "Total inbound bytes"; } leaf out-total-traffic-bytes { type uint32; description Jeong, et al. Expires May 7, 2020 [Page 55] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 "Total outbound bytes"; } leaf in-drop-traffic-pkts { type uint32; description "Total inbound drop packets"; } leaf out-drop-traffic-pkts { type uint32; description "Total outbound drop packets"; } leaf in-drop-traffic-bytes { type uint32; description "Total inbound drop bytes"; } leaf out-drop-traffic-bytes { type uint32; description "Total outbound drop bytes"; } uses traffic-rates; } grouping i2nsf-nsf-counters-type-content{ description "A set of nsf counters type contents"; leaf src-ip { type inet:ipv4-address; description "The source IP address of the packet"; } leaf dst-ip { type inet:ipv4-address; description "The destination IP address of the packet"; } leaf src-port { type inet:port-number; description "The source port of the packet"; } leaf dst-port { type inet:port-number; description "The destination port of the packet"; } leaf src-zone { Jeong, et al. Expires May 7, 2020 [Page 56] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 type string; description "The source security zone of the packet"; } leaf dst-zone { type string; description "The destination security zone of the packet"; } leaf src-region { type string; description "Source region of the traffic"; } leaf dst-region{ type string; description "Destination region of the traffic"; } leaf policy-id { type uint8; description "The ID of the policy being triggered"; } leaf policy-name { type string; description "The name of the policy being triggered"; } leaf src-user{ type string; description "User who generates traffic"; } leaf protocol { type identityref { base protocol-type; } description "Protocol type of traffic"; } leaf app { type string; description "Application type of traffic"; } } Jeong, et al. Expires May 7, 2020 [Page 57] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 notification system-detection-alarm { description "This notification is sent, when a system alarm is detected."; leaf alarm-category { type identityref { base alarm-type; } description "The alarm category for system-detection-alarm notification"; } uses characteristics; uses i2nsf-system-alarm-type-content; uses common-monitoring-data; } notification system-detection-event { description "This notification is sent, when a security-sensitive authentication action fails."; leaf event-category { type identityref { base event-type; } description "The event category for system-detection-event"; } uses characteristics; uses i2nsf-system-event-type-content; uses common-monitoring-data; } notification nsf-detection-flood { description "This notification is sent, when a specific flood type is detected"; leaf event-name { type identityref { base SEC-EVENT-DDOS; } description "The event name for nsf-detection-flood"; } uses i2nsf-nsf-event-type-content; leaf sub-attack-type { type identityref { base flood-type; } description Jeong, et al. Expires May 7, 2020 [Page 58] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 "Any one of Syn flood, ACK flood, SYN-ACK flood, FIN/RST flood, TCP Connection flood, UDP flood, Icmp flood, HTTPS flood, HTTP flood, DNS query flood, DNS reply flood, SIP flood, etc."; } leaf start-time { type yang:date-and-time; mandatory true; description "The time stamp indicating when the attack started"; } leaf end-time { type yang:date-and-time; mandatory true; description "The time stamp indicating when the attack ended"; } leaf attack-rate { type uint32; description "The PPS rate of attack traffic"; } leaf attack-speed { type uint32; description "The BPS speed of attack traffic"; } uses common-monitoring-data; } notification nsf-detection-session-table { description "This notification is sent, when a session table event is detected"; leaf current-session { type uint8; description "The number of concurrent sessions"; } leaf maximum-session { type uint8; description "The maximum number of sessions that the session table can support"; } leaf threshold { type uint8; description "The threshold triggering the event"; Jeong, et al. Expires May 7, 2020 [Page 59] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 } uses common-monitoring-data; } notification nsf-detection-virus { description "This notification is sent, when a virus is detected"; uses i2nsf-nsf-event-type-content-extend; leaf virus { type identityref { base virus-type; } description "The virus type for nsf-detection-virus notification"; } leaf virus-name { type string; description "The name of the detected virus"; } leaf file-type { type string; description "The type of file virus code is found in (if applicable)."; } leaf file-name { type string; description "The name of file virus code is found in (if applicable)."; } uses common-monitoring-data; } notification nsf-detection-intrusion { description "This notification is sent, when an intrusion event is detected."; uses i2nsf-nsf-event-type-content-extend; leaf protocol { type identityref { base protocol-type; } description "The protocol type for nsf-detection-intrusion notification"; } leaf app { Jeong, et al. Expires May 7, 2020 [Page 60] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 type string; description "The employed application layer protocol"; } leaf sub-attack-type { type identityref { base intrusion-attack-type; } description "The sub attack type for intrusion attack"; } uses common-monitoring-data; } notification nsf-detection-botnet { description "This notification is sent, when a botnet event is detected"; uses i2nsf-nsf-event-type-content-extend; leaf attack-type { type identityref { base botnet-attack-type; } description "The attack type for botnet attack"; } leaf protocol { type identityref { base protocol-type; } description "The protocol type for nsf-detection-botnet notification"; } leaf botnet-name { type string; description "The name of the detected botnet"; } leaf role { type string; description "The role of the communicating parties within the botnet"; } uses common-monitoring-data; } notification nsf-detection-web-attack { description "This notification is sent, when an attack event is Jeong, et al. Expires May 7, 2020 [Page 61] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 detected"; uses i2nsf-nsf-event-type-content-extend; leaf sub-attack-type { type identityref { base web-attack-type; } description "Concrete web attack type, e.g., sql injection, command injection, XSS, CSRF"; } leaf request-method { type identityref { base req-method; } description "The method of requirement. For instance, PUT or GET in HTTP"; } leaf req-uri { type string; description "Requested URI"; } leaf uri-category { type string; description "Matched URI category"; } leaf-list filtering-type { type identityref { base filter-type; } description "URL filtering type, e.g., Blacklist, Whitelist, User-Defined, Predefined, Malicious Category, Unknown"; } uses common-monitoring-data; } notification system-access-log { description "The notification is sent, if there is a new system log entry about a system access event"; leaf login-ip { type inet:ipv4-address; mandatory true; description Jeong, et al. Expires May 7, 2020 [Page 62] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 "Login IP address of a user"; } leaf administrator { type string; description "Administrator that maintains the device"; } leaf login-mode { type login-mode; description "Specifies the administrator log-in mode"; } leaf operation-type { type operation-type; description "The operation type that the administrator executes"; } leaf result { type string; description "Command execution result"; } leaf content { type string; description "The Operation performed by an administrator after login"; } uses characteristics; } notification system-res-util-log { description "This notification is sent, if there is a new log entry representing resource utilization updates."; leaf system-status { type string; description "The current systems running status"; } leaf cpu-usage { type uint8; description "Specifies the relative amount of cpu usage wrt platform resources"; } leaf memory-usage { Jeong, et al. Expires May 7, 2020 [Page 63] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 type uint8; description "Specifies the amount of memory usage"; } leaf disk-usage { type uint8; description "Specifies the amount of disk usage"; } leaf disk-left { type uint8; description "Specifies the amount of disk left"; } leaf session-num { type uint8; description "The total number of sessions"; } leaf process-num { type uint8; description "The total number of process"; } leaf in-traffic-rate { type uint32; description "The total inbound traffic rate in pps"; } leaf out-traffic-rate { type uint32; description "The total outbound traffic rate in pps"; } leaf in-traffic-speed { type uint32; description "The total inbound traffic speed in bps"; } leaf out-traffic-speed { type uint32; description "The total outbound traffic speed in bps"; } uses characteristics; } notification system-user-activity-log { description Jeong, et al. Expires May 7, 2020 [Page 64] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 "This notification is sent, if there is a new user activity log entry"; uses characteristics; uses i2nsf-system-event-type-content; leaf access { type identityref { base access-mode; } description "The access type for system-user-activity-log notification"; } leaf online-duration { type string; description "Online duration"; } leaf logout-duration { type string; description "Lockout duration"; } leaf additional-info { type string; description "User activities. e.g., Successful User Login, Failed Login attempts, User Logout, Successful User Password Change, Failed User Password Change, User Lockout, User Unlocking, Unknown"; } } notification nsf-log-ddos { description "This notification is sent, if there is a new DDoS event log entry in the nsf log"; leaf attack-type { type identityref { base ddos-attack-type; } description "The ddos attack type for nsf-log-ddos notification"; } leaf attack-ave-rate { type uint32; description Jeong, et al. Expires May 7, 2020 [Page 65] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 "The ave PPS of attack traffic"; } leaf attack-ave-speed { type uint32; description "the ave bps of attack traffic"; } leaf attack-pkt-num { type uint32; description "the number of attack packets"; } leaf attack-src-ip { type inet:ipv4-address; description "The source IP addresses of attack traffics. If there are a large amount of IP addresses, then pick a certain number of resources according to different rules."; } leaf action { type log-action; description "Action type: allow, alert, block, discard, declare, block-ip, block-service"; } uses characteristics; uses common-monitoring-data; } notification nsf-log-virus { description "This notification is sent, if there is a new virus event log entry in the nsf log"; leaf attack-type { type identityref { base virus-type; } description "The virus type for nsf-log-virus notification"; } leaf action { type log-action; description "Action type: allow, alert, block, discard, declare, block-ip, block-service"; Jeong, et al. Expires May 7, 2020 [Page 66] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 } leaf os{ type string; description "simple os information"; } leaf time { type yang:date-and-time; mandatory true; description "Indicate the time when the message is generated"; } uses characteristics; uses common-monitoring-data; } notification nsf-log-intrusion { description "This notification is sent, if there is a new intrusion event log entry in the nsf log"; leaf attack-type { type identityref { base intrusion-attack-type; } description "The intrusion attack type for nsf-log-intrusion notification"; } leaf action { type log-action; description "Action type: allow, alert, block, discard, declare, block-ip, block-service"; } leaf time { type yang:date-and-time; mandatory true; description "Indicate the time when the message is generated"; } leaf attack-rate { type uint32; description "The PPS of attack traffic"; } leaf attack-speed { Jeong, et al. Expires May 7, 2020 [Page 67] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 type uint32; description "The bps of attack traffic"; } uses characteristics; uses common-monitoring-data; } notification nsf-log-botnet { description "This notification is sent, if there is a new botnet event log in the nsf log"; leaf attack-type { type identityref { base botnet-attack-type; } description "The botnet attack type for nsf-log-botnet notification"; } leaf action { type log-action; description "Action type: allow, alert, block, discard, declare, block-ip, block-service"; } leaf botnet-pkt-num{ type uint8; description "The number of the packets sent to or from the detected botnet"; } leaf os{ type string; description "simple os information"; } uses characteristics; uses common-monitoring-data; } notification nsf-log-dpi { description "This notification is sent, if there is a new dpi event in the nsf log"; leaf attack-type { type dpi-type; description "The type of the dpi"; Jeong, et al. Expires May 7, 2020 [Page 68] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 } uses characteristics; uses i2nsf-nsf-counters-type-content; uses common-monitoring-data; } notification nsf-log-vuln-scan { description "This notification is sent, if there is a new vulnerability-scan report in the nsf log"; leaf vulnerability-id { type uint8; description "The vulnerability id"; } leaf victim-ip { type inet:ipv4-address; description "IP address of the victim host which has vulnerabilities"; } leaf protocol { type identityref { base protocol-type; } description "The protocol type for nsf-log-vuln-scan notification"; } leaf port-num { type inet:port-number; description "The port number"; } leaf level { type severity; description "The vulnerability severity"; } leaf os { type string; description "simple os information"; } leaf vulnerability-info { type string; description "The information about the vulnerability"; } Jeong, et al. Expires May 7, 2020 [Page 69] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 leaf fix-suggestion { type string; description "The fix suggestion to the vulnerability"; } leaf service { type string; description "The service which has vulnerability in the victim host"; } uses characteristics; uses common-monitoring-data; } notification nsf-log-web-attack { description "This notification is sent, if there is a new web-attack event in the nsf log"; leaf attack-type { type identityref { base web-attack-type; } description "The web attack type for nsf-log-web-attack notification"; } leaf rsp-code { type string; description "Response code"; } leaf req-clientapp { type string; description "The client application"; } leaf req-cookies { type string; description "Cookies"; } leaf req-host { type string; description "The domain name of the requested host"; } leaf raw-info { type string; description Jeong, et al. Expires May 7, 2020 [Page 70] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 "The information describing the packet triggering the event."; } uses characteristics; uses common-monitoring-data; } container counters { description "This is probably better covered by an import as this will not be notifications. Counter are not very suitable as telemetry, maybe via periodic subscriptions, which would still violate principle of least surprise."; container system-interface { description "The system counter type is interface counter"; uses characteristics; uses i2nsf-system-counter-type-content; uses common-monitoring-data; } container nsf-firewall { description "The nsf counter type is firewall counter"; uses characteristics; uses i2nsf-nsf-counters-type-content; uses traffic-rates; } container nsf-policy-hits { description "The counters of policy hit"; uses characteristics; uses i2nsf-nsf-counters-type-content; uses common-monitoring-data; leaf hit-times { type uint32; description "The hit times for policy"; } } } } Figure 2: Data Model of Monitoring Jeong, et al. Expires May 7, 2020 [Page 71] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 11. IANA Considerations This document requests IANA to register the following URI in the "IETF XML Registry" [RFC3688]: URI: urn:ietf:params:xml:ns:yang:ietf-i2nsf-monitor Registrant Contact: The IESG. XML: N/A; the requested URI is an XML namespace. This document requests IANA to register the following YANG module in the "YANG Module Names" registry [RFC6020][RFC7950]. name: ietf-i2nsf-monitor namespace: urn:ietf:params:xml:ns:yang:ietf-i2nsf-monitor prefix: iim reference: RFC XXXX 12. Security Considerations The YANG module described in this document defines a schema for data that is designed to be accessed via network management protocols such as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer is the secure transport layer, and the mandatory-to-implement secure transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer is HTTPS, and the mandatory-to-implement secure transport is TLS [RFC8446]. The NETCONF access control model [RFC8341] provides the means to restrict access for particular NETCONF or RESTCONF users to a preconfigured subset of all available NETCONF or RESTCONF protocol operations and content. All data nodes defined in the YANG module which can be created, modified and deleted (i.e., config true, which is the default) are considered sensitive. Write operations (e.g., edit-config) applied to these data nodes without proper protection can negatively affect framework operations. The monitoring YANG module should be protected by the secure communication channel, to ensure its confidentiality and integrity. In another side, the NSF and security controller can all be faked, which lead to undesirable results (i.e., leakage of an NSF's important operational information, and faked NSF sending false information to mislead security controller). The mutual authentication is essential to protected against this kind of attack. The current mainstream security technologies (i.e., TLS, DTLS, IPSEC, and X.509 PKI) can be employed appropriately to provide the above security functions. Jeong, et al. Expires May 7, 2020 [Page 72] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 In addition, to defend against the DDoS attack caused by a lot of NSFs sending massive notifications to the security controller, the rate limiting or similar mechanisms should be considered in an NSF and security controller, whether in advance or just in the process of DDoS attack. 13. Acknowledgments This work was supported by Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Ministry of Science and ICT (MSIT), Korea, (R-20160222-002755, Cloud based Security Intelligence Technology Development for the Customized Security Service Provisioning). This work was supported in part by the MSIT under the Information Technology Research Center (ITRC) support program (IITP- 2019-2017-0-01633) supervised by the IITP. 14. Contributors This document is made by the group effort of I2NSF working group. Many people actively contributed to this document. The following are considered co-authors: o Jinyong Tim Kim (Sungkyunkwan University) o Dongjin Hong (Sungkyunkwan University) o Dacheng Zhang (Huawei) o Yi Wu (Aliababa Group) o Rakesh Kumar (Juniper Networks) o Anil Lohiya (Juniper Networks) 15. References 15.1. Normative References [I-D.ietf-netconf-subscribed-notifications] Voit, E., Clemm, A., Prieto, A., Nilsen-Nygaard, E., and A. Tripathy, "Subscription to YANG Event Notifications", draft-ietf-netconf-subscribed-notifications-26 (work in progress), May 2019. Jeong, et al. Expires May 7, 2020 [Page 73] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 [I-D.ietf-netconf-yang-push] Clemm, A. and E. Voit, "Subscription to YANG Datastores", draft-ietf-netconf-yang-push-25 (work in progress), May 2019. [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, . [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688, DOI 10.17487/RFC3688, January 2004, . [RFC3877] Chisholm, S. and D. Romascanu, "Alarm Management Information Base (MIB)", RFC 3877, DOI 10.17487/RFC3877, September 2004, . [RFC4949] Shirey, R., "Internet Security Glossary, Version 2", FYI 36, RFC 4949, DOI 10.17487/RFC4949, August 2007, . [RFC5424] Gerhards, R., "The Syslog Protocol", RFC 5424, DOI 10.17487/RFC5424, March 2009, . [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for the Network Configuration Protocol (NETCONF)", RFC 6020, DOI 10.17487/RFC6020, October 2010, . [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed., and A. Bierman, Ed., "Network Configuration Protocol (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011, . [RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011, . [RFC6587] Gerhards, R. and C. Lonvick, "Transmission of Syslog Messages over TCP", RFC 6587, DOI 10.17487/RFC6587, April 2012, . [RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types", RFC 6991, DOI 10.17487/RFC6991, July 2013, . Jeong, et al. Expires May 7, 2020 [Page 74] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 [RFC7011] Claise, B., Ed., Trammell, B., Ed., and P. Aitken, "Specification of the IP Flow Information Export (IPFIX) Protocol for the Exchange of Flow Information", STD 77, RFC 7011, DOI 10.17487/RFC7011, September 2013, . [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language", RFC 7950, DOI 10.17487/RFC7950, August 2016, . [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017, . [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, May 2017, . [RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration Access Control Model", STD 91, RFC 8341, DOI 10.17487/RFC8341, March 2018, . [RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K., and R. Wilton, "Network Management Datastore Architecture (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018, . [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018, . 15.2. Informative References [I-D.ietf-i2nsf-capability] Xia, L., Strassner, J., Basile, C., and D. Lopez, "Information Model of NSFs Capabilities", draft-ietf- i2nsf-capability-05 (work in progress), April 2019. [I-D.ietf-i2nsf-consumer-facing-interface-dm] Jeong, J., Kim, E., Ahn, T., Kumar, R., and S. Hares, "I2NSF Consumer-Facing Interface YANG Data Model", draft- ietf-i2nsf-consumer-facing-interface-dm-06 (work in progress), July 2019. Jeong, et al. Expires May 7, 2020 [Page 75] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 [I-D.ietf-i2nsf-nsf-facing-interface-dm] Kim, J., Jeong, J., J., J., PARK, P., Hares, S., and Q. Lin, "I2NSF Network Security Function-Facing Interface YANG Data Model", draft-ietf-i2nsf-nsf-facing-interface- dm-07 (work in progress), July 2019. [I-D.ietf-i2nsf-registration-interface-dm] Hyun, S., Jeong, J., Roh, T., Wi, S., J., J., and P. PARK, "I2NSF Registration Interface YANG Data Model", draft- ietf-i2nsf-registration-interface-dm-05 (work in progress), July 2019. [I-D.ietf-i2nsf-terminology] Hares, S., Strassner, J., Lopez, D., Xia, L., and H. Birkholz, "Interface to Network Security Functions (I2NSF) Terminology", draft-ietf-i2nsf-terminology-08 (work in progress), July 2019. [I-D.yang-i2nsf-nfv-architecture] Yang, H., Kim, Y., Jeong, J., and J. Kim, "I2NSF on the NFV Reference Architecture", draft-yang-i2nsf-nfv- architecture-05 (work in progress), July 2019. [I-D.yang-i2nsf-security-policy-translation] Jeong, J., Yang, J., Chung, C., and J. Kim, "Security Policy Translation in Interface to Network Security Functions", draft-yang-i2nsf-security-policy- translation-04 (work in progress), July 2019. [RFC3954] Claise, B., Ed., "Cisco Systems NetFlow Services Export Version 9", RFC 3954, DOI 10.17487/RFC3954, October 2004, . [RFC6087] Bierman, A., "Guidelines for Authors and Reviewers of YANG Data Model Documents", RFC 6087, DOI 10.17487/RFC6087, January 2011, . [RFC8329] Lopez, D., Lopez, E., Dunbar, L., Strassner, J., and R. Kumar, "Framework for Interface to Network Security Functions", RFC 8329, DOI 10.17487/RFC8329, February 2018, . [RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams", BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018, . Jeong, et al. Expires May 7, 2020 [Page 76] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 Appendix A. Changes from draft-ietf-i2nsf-nsf-monitoring-data-model-01 The following changes are made from draft-ietf-i2nsf-nsf-monitoring- data-model-01: o Section 7 is reorganized such that the subsections for the monitored objects (i.e., event, log, and counter) of System and NSF are listed up pairwisely with a pair of System and NSF except alarm because alarm is a monitored object to only System. Authors' Addresses Jaehoon Paul Jeong Department of Computer Science and Engineering Sungkyunkwan University 2066 Seobu-Ro, Jangan-Gu Suwon, Gyeonggi-Do 16419 Republic of Korea Phone: +82 31 299 4957 Fax: +82 31 290 7996 EMail: pauljeong@skku.edu URI: http://iotlab.skku.edu/people-jaehoon-jeong.php Chaehong Chung Department of Electronic, Electrical and Computer Engineering Sungkyunkwan University 2066 Seobu-Ro, Jangan-Gu Suwon, Gyeonggi-Do 16419 Republic of Korea Phone: +82 31 299 4957 EMail: darkhong@skku.edu Susan Hares Huawei 7453 Hickory Hill Saline, MI 48176 USA Phone: +1-734-604-0332 EMail: shares@ndzh.com Jeong, et al. Expires May 7, 2020 [Page 77] Internet-Draft I2NSF NSF Monitoring YANG Data Model November 2019 Liang Xia (Frank) Huawei 101 Software Avenue, Yuhuatai District Nanjing, Jiangsu China EMail: Frank.xialiang@huawei.com Henk Birkholz Fraunhofer Institute for Secure Information Technology Rheinstrasse 75 Darmstadt 64295 Germany EMail: henk.birkholz@sit.fraunhofer.de Jeong, et al. Expires May 7, 2020 [Page 78]