
CoRE Z. Shelby
Internet-Draft ARM
Intended status: Informational M. Vial
Expires: April 21, 2016 Schneider-Electric
 M. Koster
 ARM
 October 19, 2015

 Reusable Interface Definitions for Constrained RESTful Environments
 draft-ietf-core-interfaces-04

Abstract

 This document defines a set of reusable REST resource design patterns
 suitable for use in constrained environments, based on IETF CoRE
 standards for information representation and information exchange.

 Interface types for Sensors, Actuators, Parameters, and resource
 Collections are defined using the "if" link attribute defined by CoRE
 Link Format [RFC6690]. Clients may use the "if" attribute to
 determine how to consume resources.

 Dynamic linking of state updates between resources, either on an
 endpoint or between endpoints, is defined with the concept of Link
 Bindings. We also define conditional observation attributes that
 work with Link Bindings or with simple CoAP Observe [RFC7641].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 21, 2016.

Shelby, et al. Expires April 21, 2016 [Page 1]

Internet-DrafReusable Interface Definitions for Constrained October 2015

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Terminology . 4
 3. Interface Types . 5
 4. Collections . 5
 4.1. Introduction to Collections 5
 4.2. Use Cases for Collections 6
 4.3. Content-Formats for Collections 7
 4.4. Links and Items in Collections 7
 4.5. Queries on Collections 9
 4.6. Observing Collections 9
 4.7. Hypermedia Controls on Collections 9
 4.8. Collection Types . 10
 4.9. The collection+senml+json Content-Format 10
 5. Link Bindings and Observe Attributes 11
 5.1. Format . 12
 5.2. Binding methods . 13
 5.3. Binding table . 14
 5.4. Resource Observation Attributes 14
 6. Interface Descriptions 15
 6.1. Link List . 17
 6.2. Batch . 17
 6.3. Linked Batch . 18
 6.4. Hypermedia Collection 19
 6.5. Sensor . 20
 6.6. Parameter . 21
 6.7. Read-only Parameter 21
 6.8. Actuator . 21
 6.9. Binding . 22
 6.10. Future Interfaces . 23
 6.11. WADL Description . 23
 7. Function Sets and Profiles 29

Shelby, et al. Expires April 21, 2016 [Page 2]

Internet-DrafReusable Interface Definitions for Constrained October 2015

 7.1. Defining a Function Set 29
 7.1.1. Path template . 30
 7.1.2. Resource Type . 30
 7.1.3. Interface Description 30
 7.1.4. Data type . 31
 7.2. Discovery . 31
 7.3. Versioning . 31
 8. Security Considerations 31
 9. IANA Considerations . 32
 10. Acknowledgments . 32
 11. Changelog . 32
 12. References . 34
 12.1. Normative References 34
 12.2. Informative References 34
 Appendix A. Profile example 35
 Authors’ Addresses . 36

1. Introduction

 IETF Standards for machine to machine communication in constrained
 environments describe a REST protocol and a set of related
 information standards that may be used to represent machine data and
 machine metadata in REST interfaces.. CoRE Link-format is a standard
 for doing Web Linking [RFC5988] in constrained environments. SenML
 is a simple data model and representation format for composite and
 complex structured resources. CoRE Link-Format and SenML can be used
 by CoAP [RFC7252] or HTTP servers.

 The discovery of resources offered by a constrained server is very
 important in machine-to-machine applications where there are no
 humans in the loop. Machine application clients must be able to
 adapt to different resource organizations without advance knowledge
 of the specific data structures hosted by each connected thing. The
 use of Web Linking for the description and discovery of resources
 hosted by constrained web servers is specified by CoRE Link Format
 [RFC6690]. CoRE Link Format additionally defines a link attribute
 for Interface Type ("if") that can be used to describe the REST
 interface of a resource, and may include a link to a description
 document.

 This document defines a set of Link Format compatible Interface Types
 for some common design patterns that enable the server side
 composition and organization, and client side discovery and
 consumption, of machine resources using Web Linking. An Interface
 Type may describe a resource in terms of it’s associated content
 formats, data types, URI templates, REST methods, parameters, and
 responses. Basic interface types are defined for sensors, actuators,
 and properties. A set of collection types is defined for organizing

Shelby, et al. Expires April 21, 2016 [Page 3]

Internet-DrafReusable Interface Definitions for Constrained October 2015

 resources for discovery, and for various forms of bulk interaction
 with resource sets using typed embedding links.

 This document introduces the concept of a Link Binding, which defines
 a new link relation type to create a dynamic link between resources
 over which to exchange state updates. Specifically, a Link Binding
 is a link for binding the state of 2 resources together such that
 updates to one are sent over the link to the other. CoRE Link Format
 representations are used to configure, inspect, and maintain Link
 Bindings. This document additionally defines a set of conditional
 Observe Attributes for use with Link Bindings and with the standalone
 CoRE Observe [RFC7641] method.

 Interface Types may be used in the composition of Function Sets and
 Profiles. Function Sets and Profiles are described and an example is
 given of a sensor and actuator device profile using Function Sets
 composed from the Interface Types described in this document.

 This document describes a set of Interface Types which are referenced
 by the "if" link attribute and used to implement reusable design
 patterns and functional abstractions. A client discovering the "if"
 link attribute will be able to consume resources based on its
 knowledge of the expected interface types. In this sense the
 Interface Type acts in a similar way as a Content-Format, but as a
 selector for a high level functional abstraction. Interface types
 may also be provided with hypermedia controls and affordances to
 drive client interaction using the principles of HATEOAS. In this
 case, the Interface Types serve as constructor templates for resource
 organization and hypermedia annotation.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 This specification requires readers to be familiar with all the terms
 and concepts that are discussed in [RFC5988] and [RFC6690]. This
 specification makes use of the following additional terminology:

 Interface Type: A resource attribute which describes the interface
 exposed by the resource in terms of content formats, REST methods,
 parameters, and other related characteristics.

 Collection: A resource which contains set of related resources,
 referenced by a list of links and optionally consisting of
 subresources.

Shelby, et al. Expires April 21, 2016 [Page 4]

Internet-DrafReusable Interface Definitions for Constrained October 2015

 Link Binding: A unidirectional logical link between a source
 resource and a destination resource, over which state information
 is synchronized.

 Resource Discovery: The process allowing a web client to identify
 resources being hosted on a web server.

 Gradual Reveal: A REST design where resources are discovered
 progressively using Web Linking.

 Function Set: A group of well-known REST resources that provides a
 particular service.

 Profile: A group of well-known Function Sets defined by a
 specification.

 Device: An IP smart object running a web server that hosts a group
 of Function Set instances from a profile.

 Service Discovery: The process making it possible for a web client
 to automatically detect devices and Function Sets offered by these
 devices on a CoRE network.

3. Interface Types

 An Interface Type definition may describe a resource in terms of it’s
 associated content formats, data types, URI templates, REST methods,
 parameters, and responses.

4. Collections

4.1. Introduction to Collections

 A Collection is a resource which represents one or more related
 resources. Within this document, a collection refers to a collection
 with characteristics defined in this document. A Collection
 Interface Type consists of a set of links and a set of items pointed
 to by the links which may be sub-resources of the collection
 resource. The collection types described in this document are Link
 List, Batch, Linked Batch, and Hypermedia Collection.

 The links in a collection are represented in CoRE Link-Format
 Content-Formats including JSON and CBOR variants, and the items in
 the collection may be represented by senml, including JSON and CBOR
 variants. In general, a collection may support items of any
 available Content-Format.

Shelby, et al. Expires April 21, 2016 [Page 5]

Internet-DrafReusable Interface Definitions for Constrained October 2015

 A particular resource item may be a member of more than one
 collection at a time by being linked to, but may only be a
 subresource of one collection.

 Some collections may have pre-configured items and links, and some
 collections may support dynamic creation and removal of items and
 links. Likewise, modification of items in some collections may be
 permitted, and not in others.

 Collections may support link embedding, which is analogous to an
 image tag (link) causing the image to display inline in a browser
 window. Resources pointed to by embedded links in collections may be
 interacted with using bulk operations on the collection resource.
 For example, performing a GET on a collection resource may return a
 single representation containing all of the linked resources.

 Links in collections may be selected for processing by a particular
 request by using Query Filtering as described in CoRE Link-Format
 [RFC6690].

4.2. Use Cases for Collections

 Collections may be used to provide gradual reveal of resources on an
 endpoint. There may be a small set of links at the .well-known/core
 location, which may in turn point to other collections of resources
 that represent device information, device configuration, device
 management, and various functional clusters of resources on the
 device.

 A collection may provide resource encapsulation, where link embedding
 may be used to provide a single resource with which a client may
 interact to obtain a set of related resource values. For example, a
 collection for manufacturer parameters may consist of manufacturer
 name, date of manufacture, location of manufacture, and serial number
 resources which can be read as a single senml data object.

 A collection may be used to group a set of like resources for bulk
 state update or actuation. For example, the brightness control
 resources of a number of luminaries may be grouped by linking to them
 in a collection. The collection type may support receiving a single
 update form a client and sending that update to each resource item in
 the collection.

 Items may be sub-resources of the collection resource. This enables
 updates to to multiple items in the collection to be processed
 together within the context of the collection resource.

Shelby, et al. Expires April 21, 2016 [Page 6]

Internet-DrafReusable Interface Definitions for Constrained October 2015

 Items may be dynamically created in a collection along with their
 hyperlinks. This provides an "item factory" pattern which can serve
 as a resource creation mechanism for dynamic resources. This pattern
 is also useful for creating temporary resources for the
 implementation of dynamic phenomena like commands, actions, and
 events using REST design patterns. Item creation uses the collection
 Content-Format which allows specification of links and item state in
 a single representation.

4.3. Content-Formats for Collections

 The collection interfaces by default use CoRE Link-Format for the
 link representations and SenML or text/plain for representations of
 items. The examples given are for collections that expose resources
 and links in these formats. In addition, a new "collection" Content-
 Format is defined based on the SenML framework which represents both
 links and items in the collection.

 The choice of whether to return a representation of the links or of
 the items or of the collection format is determined by the accepts
 header option in the request. Likewise, the choice of updating link
 metadata or item data or the collection resource itself is determined
 by the Content-Format option in the header of the update request
 operation.

 The default Content-Formats for collection types described in this
 document are:

 Links: application/link-format, application/link-format+json

 Items: application/senml+json, text/plain

 Collection: application/collection+senml+json

4.4. Links and Items in Collections

 Links use CoRE Link-Format representation by default and may point to
 any resource reachable from the context of the collection. This
 includes absolute links and links that point to other network
 locations if the context of the collection allows. Links to sub-
 resources in the collection MUST have a path-element starting with
 the resource name, as per RFC3986 [RFC3986]. Links to resources in
 the global context MUST start with a root path identifier
 [RFC5988].Links to other collections are formed per RFC3986.

 Examples of links:

Shelby, et al. Expires April 21, 2016 [Page 7]

Internet-DrafReusable Interface Definitions for Constrained October 2015

 </sen/>;if="core.lb" : Link to the /sen/ collection describing it as
 a core.lb type collection (Linked Batch)

 </sen/>;rel="grp" : Link to the /sen/ collection indicating that
 /sen/ is a member of a group in the collection in which the link
 appears.

 <"/sen/temp">;rt="temperature" : An absolute link to the resource at
 the path /sen/temp

 <temp>;rt="temperature" : Link to the temp subresource of the
 collection in which this link appears.

 <temp>;anchor="/sen/" : A link to the temp subresource of the
 collection /sen/ which is assumed not to be a subresource of the
 collection in which the link appears ,but is expected to be
 identified in the collection by resource name.

 Links in the collection MAY be Read, Updated, Added, or Removed using
 the CoRE Link-Format or JSON Merge-Patch Content-Formats on the
 collection resource. Reading links uses the GET method and returns
 an array or list containing the link-values of all selected links.
 Links may be added to the collection using POST or PATCH methods.
 Updates to links MUST use the PATCH method and MAY use query
 filtering to select links for updating. The PATCH method on links
 MUST use the JSON Merge-Patch Content-Format (application/merge-
 patch+json) specified in RFC7396 [RFC7396] .

 Items in the collection SHOULD be represented using the SenML
 (application/senml+json) or plain text (text/plain) Content-Formats,
 depending on whether the representation is of a single data point or
 multiple data points. Items MAY be represented using any supported
 Content-Format.

 Link Embedding enables the bulk processing of items in the collection
 using a single operation targeting the collection resource. A subset
 of resources in the collection may be selected for operation using
 Query Filtering. Bulk Read operations using GET return a SenML
 representation of all selected resources. Bulk item Update
 operations using PUT or POST apply the payload document to all
 selected resource items in the collection, using a either a Batch or
 Group update policy. A Batch update is performed by applying the
 resource values in the payload document to all resources in the
 collection that match any resource name in the payload document.
 Group updates are performed by applying the payload document to each
 item in the collection. Group updates are indicated by the link
 relation type rel="grp" in the link.

Shelby, et al. Expires April 21, 2016 [Page 8]

Internet-DrafReusable Interface Definitions for Constrained October 2015

 The collection resource SHOULD represented using the
 collection+senml+json Content-Format. The Hypermedia Collection type
 is the only collection type which supports this representation.
 Reading a collection using this content-format returns a
 representation of the links and the items in the collection.
 Performing a POST operation using this Content-Format MAY create one
 or more new item(s) and their corresponding links in the collection.
 Performing a PUT operation on this resource replaces the entire set
 of links and items with the payload. This Content-Format is
 described in section Section 4.9. Implementations MAY provide an
 alternate method using POST in a Content-Format used by the items in
 the collection which creates a default link-value and system-assigned
 resource name. Such implementations MAY create sub-resources of the
 collection resource.

4.5. Queries on Collections

 Collections MAY support query filtering as defined in CoRE Link-
 Format [RFC6690]. Operations targeting either the links or the items
 MAY select a subset of links and items in the collection by using
 query filtering. The Content-Format specified in the request header
 selects whether links or items are targeted by the operation.

4.6. Observing Collections

 Resource Observation using CoAP [RFC7252] MAY be supported on items
 in a collection. A subset of the conditional observe parameters MAY
 be specified to apply. In most cases pmin and pmax are useful.
 Resource observation on a collection’s items resource MAY report any
 changes of resource state in any item in the collection. Observation
 Responses, or notifications, SHOULD provide representations of the
 resources that have changed in SenML Content-Format. Notifications
 MAY include multiple observations of a particular resource, with
 SenML time stamps indicating the observation times.

4.7. Hypermedia Controls on Collections

 Additional Hypermedia controls may be defined to enable clients to
 automatically consume the collection resources. Typically, the
 developer may map application level semantics onto collection
 operations. For example, invoking an Action on an actuator may be
 defined as creating an Action item resource in a collection of
 Actions associated with the actuator, each item in the collection
 representing a past, current, or future action to be processed by the
 actuator. Removing the item could cancel any pending or curent long-
 running action, and removing a completed action could free up
 resources for new actions to be invoked. A Hypermedia control for
 this pattern might provide a semantic name for the action, for

Shelby, et al. Expires April 21, 2016 [Page 9]

Internet-DrafReusable Interface Definitions for Constrained October 2015

 example "Change Brightness", and might direct the client to supply a
 SenML representation of parameters for the action as well as provide
 instructions on what method (POST) to use and how to construct the
 URI (the collection URI in this case) if required. An example of
 this hypermedia control is shown below.

4.8. Collection Types

 There are four collection types defined in this document:

 +---------------------+----------+----------------------------------+
 | Collection Type | if= | Content-Formats |
 +---------------------+----------+----------------------------------+
Link List	core.ll	link-format
Batch	core.b	link-format, senml
Linked Batch	core.lb	link-format, senml
Hypermedia	core.hc	link-format, senml,
Collection		collection+senml
Binding	core.bnd	link-format
 +---------------------+----------+----------------------------------+

 Each collection type MAY support a subset of the methods and
 functions described above. For the first three collection types, the
 methods and functions are defined in the corresponding Interface
 Description. The Hypermedia Collection SHOULD expose hypermedia
 controls to applications to indicate which methods and functions are
 supported.

4.9. The collection+senml+json Content-Format

 The collection+senml+json Content-Format is used to represent all of
 the attributes and resources of a collection in a single format.
 This is accomplished by extending the SenmL format by adding a links
 element "l". The links element is formatted as an array of links in
 the application/link-format+json Content-Format with the tag "l"
 which follows the structure of the "e" element. An example of this
 format is given below.

Shelby, et al. Expires April 21, 2016 [Page 10]

Internet-DrafReusable Interface Definitions for Constrained October 2015

 {
 "bn":"/ep/sen/"
 "e":[
 { "n": "light", "v": 123, "u": "lx" },
 { "n": "temp", "v": 27.2, "u": "degC" },
 { "n": "humidity", "v": 80, "u": "%RH" }],
 "l":[
 { "href":"/ep/sen/", "rel":"self", "if": "core.hc", "rt": "ms" },
 { "href":"light", "rt":"core.s" },
 { "href":"temp", "rt":"core.s" },
 { "href":"humidity", "rt":"core.s" }]
 }

5. Link Bindings and Observe Attributes

 In a M2M RESTful environment, endpoints may directly exchange the
 content of their resources to operate the distributed system. For
 example, a light switch may supply on-off control information that
 may be sent directly to a light resource for on-off control.
 Beforehand, a configuration phase is necessary to determine how the
 resources of the different endpoints are related to each other. This
 can be done either automatically using discovery mechanisms or by
 means of human intervention and a so-called commissioning tool. In
 this document the abstract relationship between two resources is
 called a link Binding. The configuration phase necessitates the
 exchange of binding information so a format recognized by all CoRE
 endpoints is essential. This document defines a format based on the
 CoRE Link-Format to represent binding information along with the
 rules to define a binding method which is a specialized relationship
 between two resources. The purpose of a binding is to synchronize
 the content between a source resource and a destination resource.
 The destination resource MAY be a group resource if the authority
 component of the destination URI contains a group address (either a
 multicast address or a name that resolves to a multicast address).
 Since a binding is unidirectional, the binding entry defining a
 relationship is present only on one endpoint. The binding entry may
 be located either on the source or the destination endpoint depending
 on the binding method. The following table gives a summary of the
 binding methods described in more detail in Section 5.2.

 +---------+------------+-------------+---------------+
 | Name | Identifier | Location | Method |
 +---------+------------+-------------+---------------+
 | Polling | poll | Destination | GET |
 | Observe | obs | Destination | GET + Observe |
 | Push | push | Source | PUT |
 +---------+------------+-------------+---------------+

Shelby, et al. Expires April 21, 2016 [Page 11]

Internet-DrafReusable Interface Definitions for Constrained October 2015

5.1. Format

 Since Binding involves the creation of a link between two resources,
 Web Linking and the CoRE Link-Format are a natural way to represent
 binding information. This involves the creation of a new relation
 type, purposely named "boundto". In a Web link with this relation
 type, the target URI contains the location of the source resource and
 the context URI points to the destination resource. The Web link
 attributes allow a fine-grained control of the type of
 synchronization exchange along with the conditions that trigger an
 update. This specification defines the attributes below:

 +--------------------+-----------+------------------+
 | Attribute | Parameter | Value |
 +--------------------+-----------+------------------+
 | Binding method | bind | xsd:string |
 | Minimum Period (s) | pmin | xsd:integer (>0) |
 | Maximum Period (s) | pmax | xsd:integer (>0) |
 | Change Step | st | xsd:decimal (>0) |
 | Greater Than | gt | xsd:decimal |
 | Less Than | lt | xsd:decimal |
 +--------------------+-----------+------------------+

 Bind Method: This is the identifier of a binding method which
 defines the rules to synchronize the destination resource. This
 attribute is mandatory.

 Minimum Period: When present, the minimum period indicates the
 minimum time to wait (in seconds) before sending a new
 synchronization message (even if it has changed). In the absence
 of this parameter, the minimum period is up to the notifier.

 Maximum Period: When present, the maximum period indicates the
 maximum time in seconds between two consecutive state
 synchronization messages (regardless if it has changed). In the
 absence of this parameter, the maximum period is up to the
 notifier. The maximum period MUST be greater than the minimum
 period parameter (if present).

 Change Step: When present, the change step indicates how much the
 value of a resource SHOULD change before sending a new
 notification (compared to the value of the last notification).
 This parameter has lower priority than the period parameters, thus
 even if the change step has been fulfilled, the time since the
 last notification SHOULD be between pmin and pmax.

 Greater Than: When present, Greater Than indicates the upper limit
 value the resource value SHOULD cross before sending a new

Shelby, et al. Expires April 21, 2016 [Page 12]

Internet-DrafReusable Interface Definitions for Constrained October 2015

 notification. This parameter has lower priority than the period
 parameters, thus even if the Greater Than limit has been crossed,
 the time since the last notification SHOULD be between pmin and
 pmax.

 Less Than: When present, Less Than indicates the lower limit value
 the resource value SHOULD cross before sending a new notification.
 This parameter has lower priority than the period parameters, thus
 even if the Less Than limit has been crossed, the time since the
 last notification SHOULD be between pmin and pmax.

5.2. Binding methods

 A binding method defines the rules to generate the web-transfer
 exchanges that will effectively send content from the source resource
 to the destination resource. The description of a binding method
 must define the following aspects:

 Identifier: This is value of the "bind" attribute used to identify
 the method.

 Location: This information indicates whether the binding entry is
 stored on the source or on the destination endpoint.

 REST Method: This is the REST method used in the Request/Response
 exchanges.

 Conditions: A binding method definition must state how the condition
 attributes of the abstract binding definition are actually used in
 this specialized binding.

 This specification supports 3 binding methods described below.

 Polling: The Polling method consists of sending periodic GET
 requests from the destination endpoint to the source resource and
 copying the content to the destination resource. The binding
 entry for this method MUST be stored on the destination endpoint.
 The destination endpoint MUST ensure that the polling frequency
 does not exceed the limits defined by the pmin and pmax attributes
 of the binding entry. The copying process MAY filter out content
 from the GET requests using value-based conditions (e.g Change
 Step, Less Than, Greater Than).

 Observe: The Observe method creates an observation relationship
 between the destination endpoint and the source resource. On each
 notification the content from the source resource is copied to the
 destination resource. The creation of the observation
 relationship requires the CoAP Observation mechanism [RFC7641]

Shelby, et al. Expires April 21, 2016 [Page 13]

Internet-DrafReusable Interface Definitions for Constrained October 2015

 hence this method is only permitted when the resources are made
 available over CoAP. The binding entry for this method MUST be
 stored on the destination endpoint. The binding conditions are
 mapped as query string parameters (see Section 5.4).

 Push: When the Push method is assigned to a binding, the source
 endpoint sends PUT requests to the destination resource when the
 binding condition attributes are satisfied for the source
 resource. The source endpoint MUST only send a notification
 request if the binding conditions are met. The binding entry for
 this method MUST be stored on the source endpoint.

5.3. Binding table

 The binding table is a special resource that gives access to the
 bindings on a endpoint. A binding table resource MUST support the
 Binding interface defined in Section 6.9. A profile SHOULD allow
 only one resource table per endpoint.

5.4. Resource Observation Attributes

 When resource interfaces following this specification are made
 available over CoAP, the CoAP Observation mechanism [RFC7641] MAY be
 used to observe any changes in a resource, and receive asynchronous
 notifications as a result. In addition, a set of query string
 parameters are defined here to allow a client to control how often a
 client is interested in receiving notifications and how much a
 resource value should change for the new representation to be
 interesting. These query parameters are described in the following
 table. A resource using an interface description defined in this
 specification and marked as Observable in its link description SHOULD
 support these observation parameters. The Change Step parameter can
 only be supported on resources with an atomic numeric value.

 These query parameters MUST be treated as resources that are read
 using GET and updated using PUT, and MUST NOT be included in the
 Observe request. Multiple parameters MAY be updated at the same time
 by including the values in the query string of a PUT. Before being
 updated, these parameters have no default value.

Shelby, et al. Expires April 21, 2016 [Page 14]

Internet-DrafReusable Interface Definitions for Constrained October 2015

 +----------------+------------------+------------------+
 | Resource | Parameter | Data Format |
 +----------------+------------------+------------------+
 | Minimum Period | /{resource}?pmin | xsd:integer (>0) |
 | Maximum Period | /{resource}?pmax | xsd:integer (>0) |
 | Change Step | /{resource}?st | xsd:decimal (>0) |
 | Less Than | /{resource}?lt | xsd:decimal |
 | Greater Than | /{resource}?gt | xsd:decimal |
 +----------------+------------------+------------------+

 Minimum Period: When present, the minimum period indicates the
 minimum time to wait (in seconds) before sending a new
 synchronization message (even if it has changed). In the absence
 of this parameter, the minimum period is up to the notifier.

 Maximum Period: When present, the maximum period indicates the
 maximum time in seconds between two consecutive state
 synchronization messages (regardless if it has changed). In the
 absence of this parameter, the maximum period is up to the
 notifier. The maximum period MUST be greater than the minimum
 period parameter (if present).

 Change Step: When present, the change step indicates how much the
 value of a resource SHOULD change before sending a new
 notification (compared to the value of the last notification).
 This parameter has lower priority than the period parameters, thus
 even if the change step has been fulfilled, the time since the
 last notification SHOULD be between pmin and pmax.

 Greater Than: When present, Greater Than indicates the upper limit
 value the resource value SHOULD cross before sending a new
 notification. This parameter has lower priority than the period
 parameters, thus even if the Greater Than limit has been crossed,
 the time since the last notification SHOULD be between pmin and
 pmax.

 Less Than: When present, Less Than indicates the lower limit value
 the resource value SHOULD cross before sending a new notification.
 This parameter has lower priority than the period parameters, thus
 even if the Less Than limit has been crossed, the time since the
 last notification SHOULD be between pmin and pmax.

6. Interface Descriptions

 This section defines REST interfaces for Link List, Batch, Sensor,
 Parameter, Actuator and Binding table resources. Variants such as
 Linked Batch or Read-Only Parameter are also presented. Each type is
 described along with its Interface Description attribute value and

Shelby, et al. Expires April 21, 2016 [Page 15]

Internet-DrafReusable Interface Definitions for Constrained October 2015

 valid methods. These are defined for each interface in the table
 below. These interfaces can support plain text and/or SenML Media
 types.

 The if= column defines the Interface Description (if=) attribute
 value to be used in the CoRE Link Format for a resource conforming to
 that interface. When this value appears in the if= attribute of a
 link, the resource MUST support the corresponding REST interface
 described in this section. The resource MAY support additional
 functionality, which is out of scope for this specification.
 Although these interface descriptions are intended to be used with
 the CoRE Link Format, they are applicable for use in any REST
 interface definition.

 The Methods column defines the methods supported by that interface,
 which are described in more detail below.

 +-----------------+----------+-----------------+--------------------+
 | Interface | if= | Methods | Content-Formats |
 +-----------------+----------+-----------------+--------------------+
Link List	core.ll	GET	link-format
Batch	core.b	GET, PUT, POST	link-format, senml
Linked Batch	core.lb	GET, PUT, POST,	link-format, senml
		DELETE	
Sensor	core.s	GET	link-format,
			text/plain
Parameter	core.p	GET, PUT	link-format,
			text/plain
Read-only	core.rp	GET	link-format,
Parameter			text/plain
Actuator	core.a	GET, PUT, POST	link-format,
			text/plain
Binding	core.bnd	GET, POST,	link-format
		DELETE	
 +-----------------+----------+-----------------+--------------------+

 The following is an example of links in the CoRE Link Format using
 these interface descriptions. The resource hierarchy is based on a
 simple profile defined in Appendix A. These links are used in the
 subsequent examples below.

Shelby, et al. Expires April 21, 2016 [Page 16]

Internet-DrafReusable Interface Definitions for Constrained October 2015

 Req: GET /.well-known/core
 Res: 2.05 Content (application/link-format)
 </s/>;rt="simple.sen";if="core.b",
 </s/lt>;rt="simple.sen.lt";if="core.s",
 </s/tmp>;rt="simple.sen.tmp";if="core.s";obs,
 </s/hum>;rt="simple.sen.hum";if="core.s",
 </a/>;rt="simple.act";if="core.b",
 </a/1/led>;rt="simple.act.led";if="core.a",
 </a/2/led>;rt="simple.act.led";if="core.a",
 </d/>;rt="simple.dev";if="core.ll",
 </l/>;if="core.lb",

6.1. Link List

 The Link List interface is used to retrieve (GET) a list of resources
 on a web server. The GET request SHOULD contain an Accept option
 with the application/link-format content format; however if the
 resource does not support any other form of GET methods the Accept
 option MAY be elided. The Accept option SHOULD only include the
 application/link-format content format. The request returns a list
 of URI references with absolute paths to the resources as defined in
 CoRE Link Format. This interface is typically used with a parent
 resource to enumerate sub-resources but may be used to reference any
 resource on a web server.

 Link List is the base interface to provide gradual reveal of
 resources on a CoRE web server, hence the root resource of a Function
 Set SHOULD implement this interface or an extension of this
 interface.

 The following example interacts with a Link List /d containing
 Parameter sub-resources /d/name, /d/model.

 Req: GET /d/ (Accept:application/link-format)
 Res: 2.05 Content (application/link-format)
 </d/name>;rt="simple.dev.n";if="core.p",
 </d/model>;rt="simple.dev.mdl";if="core.rp"

6.2. Batch

 The Batch interface is used to manipulate a collection of sub-
 resources at the same time. The Batch interface type supports the
 same methods as its sub-resources, and can be used to read (GET),
 update (PUT) or apply (POST) the values of those sub-resource with a
 single resource representation. The sub-resources of a Batch MAY be
 heterogeneous, a method used on the Batch only applies to sub-

Shelby, et al. Expires April 21, 2016 [Page 17]

Internet-DrafReusable Interface Definitions for Constrained October 2015

 resources that support it. For example Sensor interfaces do not
 support PUT, and thus a PUT request to a Sensor member of that Batch
 would be ignored. A batch requires the use of SenML Media types in
 order to support multiple sub-resources.

 In addition, The Batch interface is an extension of the Link List
 interface and in consequence MUST support the same methods.

 The following example interacts with a Batch /s/ with Sensor sub-
 resources /s/light, /s/temp and /s/humidity.

 Req: GET /s/
 Res: 2.05 Content (application/senml+json)
 {"e":[
 { "n": "light", "v": 123, "u": "lx" },
 { "n": "temp", "v": 27.2, "u": "degC" },
 { "n": "humidity", "v": 80, "u": "%RH" }],
 }

6.3. Linked Batch

 The Linked Batch interface is an extension of the Batch interface.
 Contrary to the basic Batch which is a collection statically defined
 by the web server, a Linked Batch is dynamically controlled by a web
 client. A Linked Batch resource has no sub-resources. Instead the
 resources forming the batch are referenced using Web Linking
 [RFC5988] and the CoRE Link Format [RFC6690]. A request with a POST
 method and a content format of application/link-format simply appends
 new resource links to the collection. The links in the payload MUST
 reference a resource on the web server with an absolute path. A
 DELETE request removes the entire collection. All other requests
 available for a basic Batch are still valid for a Linked Batch.

 The following example interacts with a Linked Batch /l/ and creates a
 collection containing /s/light, /s/temp and /s/humidity in 2 steps.

Shelby, et al. Expires April 21, 2016 [Page 18]

Internet-DrafReusable Interface Definitions for Constrained October 2015

 Req: POST /l/ (Content-Format: application/link-format)
 </s/light>,</s/temp>
 Res: 2.04 Changed

 Req: GET /l/
 Res: 2.05 Content (application/senml+json)
 {"e":[
 { "n": "/s/light", "v": 123, "u": "lx" },
 { "n": "/s/temp", "v": 27.2, "u": "degC" },
 }

 Req: POST /l/ (Content-Format: application/link-format)
 </s/humidity>
 Res: 2.04 Changed

 Req: GET /l/ (Accept: application/link-format)
 Res: 2.05 Content (application/link-format)
 </s/light>,</s/temp>,</s/humidity>

 Req: GET /l/
 Res: 2.05 Content (application/senml+json)
 {"e":[
 { "n": "/s/light", "v": 123, "u": "lx" },
 { "n": "/s/temp", "v": 27.2, "u": "degC" },
 { "n": "/s/humidity", "v": 80, "u": "%RH" }],
 }

 Req: DELETE /l/
 Res: 2.02 Deleted

6.4. Hypermedia Collection

 The Hypermedia Collection interface MAY provide a full set of the
 methods and link relation types described in section Section 4 of
 this document.

 The following example interacts with a Hypermedia Collection at
 /act1/actions/ by creating a new resource with Parameter sub-
 resources newVal, tTime. The example depicts an actuation operation
 with a new actuator value of 86.3% and a transition time of 10
 seconds. The returned location of the created resource is then read,
 and a response is returned which includes the remaining time for the
 operation to complete "rTime". Then, the operation is cancelled by
 sending a DELETE operation to the location of the created resource
 that represents the running action.

Shelby, et al. Expires April 21, 2016 [Page 19]

Internet-DrafReusable Interface Definitions for Constrained October 2015

 Req: POST /Act1/Actions/
 Content-Format: application/collection+senml_json
 Pl: [{"n":newVal", "v":86.3}, {"n":tTime", "v":10}]
 Res: 2.01 Created
 Location: Action1234

 Req: GET /Act1/Actions/Action1234
 Accepts: application/senml+json
 Res: 2.05 Content
 Pl: [{"n":newVal", "v":86.3},
 {"n":tTime", "v":10},
 {"n":"rTime", "v":"8.87"}]

 Req: DELETE /Act1/Actions/Action1234
 Res: 2.02 Deleted

 Req: GET /Act1/Actions/Action1234
 Res: 4.04 Not Found

6.5. Sensor

 The Sensor interface allows the value of a sensor resource to be read
 (GET). The Media type of the resource can be either plain text or
 SenML. Plain text MAY be used for a single measurement that does not
 require meta-data. For a measurement with meta-data such as a unit
 or time stamp, SenML SHOULD be used. A resource with this interface
 MAY use SenML to return multiple measurements in the same
 representation, for example a list of recent measurements.

 The following are examples of Sensor interface requests in both text/
 plain and application/senml+json.

 Req: GET /s/humidity (Accept: text/plain)
 Res: 2.05 Content (text/plain)
 80

 Req: GET /s/humidity (Accept: application/senml+json)
 Res: 2.05 Content (application/senml+json)
 {"e":[
 { "n": "humidity", "v": 80, "u": "%RH" }],
 }

Shelby, et al. Expires April 21, 2016 [Page 20]

Internet-DrafReusable Interface Definitions for Constrained October 2015

6.6. Parameter

 The Parameter interface allows configurable parameters and other
 information to be modeled as a resource. The value of the parameter
 can be read (GET) or update (PUT). Plain text or SenML Media types
 MAY be returned from this type of interface.

 The following example shows request for reading and updating a
 parameter.

 Req: GET /d/name
 Res: 2.05 Content (text/plain)
 node5

 Req: PUT /d/name (text/plain)
 outdoor
 Res: 2.04 Changed

6.7. Read-only Parameter

 The Read-only Parameter interface allows configuration parameters to
 be read (GET) but not updated. Plain text or SenML Media types MAY
 be returned from this type of interface.

 The following example shows request for reading such a parameter.

 Req: GET /d/model
 Res: 2.05 Content (text/plain)
 SuperNode200

6.8. Actuator

 The Actuator interface is used by resources that model different
 kinds of actuators (changing its value has an effect on its
 environment). Examples of actuators include for example LEDs,
 relays, motor controllers and light dimmers. The current value of
 the actuator can be read (GET) or the actuator value can be updated
 (PUT). In addition, this interface allows the use of POST to change
 the state of an actuator, for example to toggle between its possible
 values. Plain text or SenML Media types MAY be returned from this
 type of interface. A resource with this interface MAY use SenML to
 include multiple measurements in the same representation, for example
 a list of recent actuator values or a list of values to updated.

Shelby, et al. Expires April 21, 2016 [Page 21]

Internet-DrafReusable Interface Definitions for Constrained October 2015

 The following example shows requests for reading, setting and
 toggling an actuator (turning on a led).

 Req: GET /a/1/led
 Res: 2.05 Content (text/plain)
 0

 Req: PUT /a/1/led (text/plain)
 1
 Res: 2.04 Changed

 Req: POST /a/1/led (text/plain)
 Res: 2.04 Changed

 Req: GET /a/1/led
 Res: 2.05 Content (text/plain)
 0

6.9. Binding

 The Binding interface is used to manipulate a binding table. A
 request with a POST method and a content format of application/link-
 format simply appends new bindings to the table. All links in the
 payload MUST have a relation type "boundTo". A GET request simply
 returns the current state of a binding table whereas a DELETE request
 empties the table.

 The following example shows requests for adding, retrieving and
 deleting bindings in a binding table.

 Req: POST /bnd/ (Content-Format: application/link-format)
 <coap://sensor.example.com/s/light>;
 rel="boundto";anchor="/a/light";bind="obs";pmin="10";pmax="60"
 Res: 2.04 Changed

 Req: GET /bnd/
 Res: 2.05 Content (application/link-format)
 <coap://sensor.example.com/s/light>;
 rel="boundto";anchor="/a/light";bind="obs";pmin="10";pmax="60"

 Req: DELETE /bnd/
 Res: 2.04 Changed

Shelby, et al. Expires April 21, 2016 [Page 22]

Internet-DrafReusable Interface Definitions for Constrained October 2015

6.10. Future Interfaces

 It is expected that further interface descriptions will be defined in
 this and other specifications.

6.11. WADL Description

 This section defines the formal Web Application Description Langauge
 (WADL) definition of these CoRE interface descriptions.

<?xml version="1.0" standalone="yes"?>

<application xmlns="http://research.sun.com/wadl/2006/10"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:senml="urn:ietf:params:xml:ns:senml">

 <grammars>
 <include href="http://tools.ietf.org/html/draft-jennings-senml"/>
 </grammars>

 <doc title="CoRE Interfaces"/>

 <resource_type id="s">
 <doc title="Sensor interface type"/>
 <method href="#read"/>
 <method href="#observe"/>
 <method href="#observe-cancel"/>
 <method href="#getattr"/>
 <method href="#setattr"/>
 </resource_type>

 <resource_type id="p">
 <doc title="Parameter interfacee type"/>
 <method href="#read"/>
 <method href="#observe"/>
 <method href="#observe-cancel"/>
 <method href="#getattr"/>
 <method href="#setattr"/>
 <method href="#update"/>
 </resource_type>

 <resource_type id="rp">
 <doc title="Read-only Parameter interface type"/>
 <method href="#read"/>
 <method href="#observe"/>
 <method href="#observe-cancel"/>
 <method href="#getattr"/>

Shelby, et al. Expires April 21, 2016 [Page 23]

Internet-DrafReusable Interface Definitions for Constrained October 2015

 <method href="#setattr"/>
 </resource_type>

 <resource_type id="a">
 <doc title="Actuator interface type"/>
 <method href="#read"/>
 <method href="#observe"/>
 <method href="#observe-cancel"/>
 <method href="#getattr"/>
 <method href="#setattr"/>
 <method href="#update"/>
 <method href="#apply"/>
 </resource_type>

 <resource_type id="ll">
 <doc title="Link List interface type"/></doc>
 <method href="#listLinks"/>
 </resource_type>

 <resource_type id="b">
 <doc title="Batch of sub-resources interface type">The methods read,
 observe, update and apply are applied to each sub-
 resource of the requested resource that supports it. Mixed
 sub-resource types can be supported.</doc>
 <method href="#read"/>
 <method href="#observe"/>
 <method href="#observe-cancel"/>
 <method href="#getattr"/>
 <method href="#setattr"/>
 <method href="#update"/>
 <method href="#apply"/>
 <method href="#listLinks"/>
 </resource_type>

 <resource_type id="lb">
 <doc title="Linked Batch interface type">. The methods read,
 obervableRead, update and apply are applied to each linked
 resource of the requested resource that supports it. Mixed
 linked resource types can be supported.</doc>
 <method href="#read"/>
 <method href="#observe"/>
 <method href="#observe-cancel"/>
 <method href="#getattr"/>
 <method href="#setattr"/>
 <method href="#update"/>
 <method href="#apply"/>
 <method href="#listLinks"/>
 <method href="#appendLinks"/>

Shelby, et al. Expires April 21, 2016 [Page 24]

Internet-DrafReusable Interface Definitions for Constrained October 2015

 <method href="#clearLinks"/>
 </resource_type>

 <resource_type id="hc">
 <doc title="Hypermedia Collection interface type">.</doc>
 <method href="#read"/>
 <method href="#observe"/>
 <method href="#observe-cancel"/>
 <method href="#getattr"/>
 <method href="#setattr"/>
 <method href="#update"/>
 <method href="#apply"/>
 <method href="#listLinks"/>
 <method href="#appendLinks"/>
 <method href="#clearLinks"/>
 <method href="#updateLinks"/>
 <method href="#readCollection"/>
 <method href="#addItem"/>
 </resource_type>

 <resource_type id="bnd">
 <doc title="Binding table resource type">A modifiable list of
 links. Each link MUST have the relation type "boundTo".</doc>
 <method href="#listLinks"/>
 <method href="#appendLinks"/>
 <method href="#clearLinks"/>
 </resource_type>

 <method id="read" name="GET">
 <doc>Retrieve the value of a sensor, an actuator or a parameter.
 Both HTTP and CoAP support this method.</doc>
 <request>
 </request>
 <response status="200">
 <representation mediaType="text/plain"/>
 <representation mediaType="application/senml+exi"/>
 <representation mediaType="application/senml+xml"/>
 <representation mediaType="application/senml+json"/>
 </response>
 <response status="2.05">
 <representation mediaType="text/plain"/>

 <representation mediaType="application/senml+exi"/>
 <representation mediaType="application/senml+xml"/>
 <representation mediaType="application/senml+json"/>
 </response>
 </method>

Shelby, et al. Expires April 21, 2016 [Page 25]

Internet-DrafReusable Interface Definitions for Constrained October 2015

 <method id="observe" name="GET">
 <doc>Observe the value of a sensor, an actuator or a parameter.
 Only CoAP supports this method since it requires the CoRE
 Observe mechanism.</doc>
 <request>
 <param name="observe" style="header" type="xsd:integer">
 <option value = 0/>
 </param>
 </request>
 <response status="2.05">
 <representation mediaType="text/plain"/>
 <representation mediaType="application/senml+exi"/>
 <representation mediaType="application/senml+xml"/>
 <representation mediaType="application/senml+json"/>
 </response>
 </method>

 <method id="observe-cancel" name="GET">
 <doc>Cancel observation in progress.
 Only CoAP supports this method since it requires the CoRE
 Observe mechanism.</doc>
 <request>
 <param name="observe" style="header" type="xsd:integer">
 <option value = 1/>
 </param>
 </request>
 <response status="2.05">
 <representation mediaType="text/plain"/>
 <representation mediaType="application/senml+exi"/>
 <representation mediaType="application/senml+xml"/>
 <representation mediaType="application/senml+json"/>
 </response>
 </method>

 <method id="update" name="PUT">
 <doc>Control the actuator or update a parameter with a new value
 or command. Both HTTP and CoAP support this method.</doc>
 <request>
 <representation mediaType="text/plain"/>
 <representation mediaType="application/senml+exi"/>
 <representation mediaType="application/senml+xml"/>
 <representation mediaType="application/senml+json"/>
 </request>
 <response status="200"/>
 <response status="2.04"/>
 </method>

 <method id="getattr" name="GET">

Shelby, et al. Expires April 21, 2016 [Page 26]

Internet-DrafReusable Interface Definitions for Constrained October 2015

 <doc>Retrieve the observe attributes associated with a resource.
 Both HTTP and CoAP support this method.</doc>
 <request>
 <doc>This request MUST contain an Accept option with
 application/link-format when the resource supports
 other GET methods.</doc>
 <representation mediaType="application/link-format"/>
 </request>
 <response status="200">
 <representation mediaType="application/link-format"/>
 </response>
 <response status="2.05">
 <representation mediaType="application/link-format"/>
 </response>
 </method>

 <method id="setattr" name="PUT">
 <doc>Set the values of some or all of the observe attributes
 associated with a resource.
 Both HTTP and CoAP support this method.</doc>
 <request>
 <param name="pmin" style="query" type="xsd:integer"/>
 <param name="pmax" style="query" type="xsd:integer"/>
 <param name="lt" style="query" type="xsd:decimal"/>
 <param name="gt" style="query" type="xsd:decimal"/>
 <param name="st" style="query" type="xsd:decimal"/>
 </request>
 <response status="200">
 </response>
 <response status="2.04">
 </response>
 </method>

 <method id="apply" name="POST">
 <doc>Apply the value, if supplied, to resources. Both HTTP and CoAP
 support this method.</doc>
 <request>
 <doc>The apply function may contain a payload to be applied.</doc>
 </request>
 <response status="200"/>
 <response status="2.04"/>
 </method>

 <method id="listLinks" name="GET">
 <doc>Retrieve the list of Web links associated to a resource.
 Both HTTP and CoAP support this method.</doc>
 <request>
 <doc>This request MUST contain an Accept option with

Shelby, et al. Expires April 21, 2016 [Page 27]

Internet-DrafReusable Interface Definitions for Constrained October 2015

 application/link-format when the resource supports
 other GET methods.</doc>
 </request>
 <response status="200">
 <representation mediaType="application/link-format"/>
 </response>
 <response status="2.05">
 <representation mediaType="application/link-format"/>
 </response>
 </method>

 <method id="appendLinks" name="POST">
 <doc>Append new Web links to a resource which is a collection
 of links. Both HTTP and CoAP support this method.</doc>
 <request>
 <representation mediaType="application/link-format"/>
 </request>
 <response status="200"/>
 <response status="2.04"/>
 </method>

 <method id="clearLinks" name="DELETE">
 <doc>Clear all Web Links in a resource which is a collection
 of links. Both HTTP and CoAP support this method.</doc>
 <request>
 </request>
 <response status="200"/>
 <response status="2.02"/>
 </method>

 <method id="updateLinks" name="PATCH">
 <doc>Update all Web Links in a resource which is a collection
 of links. Both HTTP and CoAP support this method.</doc>
 <doc>This request MUST contain a Content-Format option with
 application/merge-patch+json.</doc>
 <request>
 </request>
 <response status="200"/>
 <response status="2.04"/>
 </method>

 <method id="addItem" name="POST">
 <doc>Add zero or more items to the collection with their links. Both HTT
P and CoAP support this method.</doc>
 <doc>This request MAY contain a Content-Format option with
 application/collection+senml+json.</doc>
 <doc>This request MAY contain a Content-Format option with
 application/senml+json.</doc>
 <request>

Shelby, et al. Expires April 21, 2016 [Page 28]

Internet-DrafReusable Interface Definitions for Constrained October 2015

 </request>
 <response status="200"/>
 <response status="2.01"/>
 </method>

 <method id="readCollection" name="GET">
 <doc>REturn a representation of both links and items in the collection.
Both HTTP and CoAP support this method.</doc>
 <doc>This request MUST contain an Accepts option with
 application/collection+senml+json.</doc>
 <request>
 </request>
 <response status="200"/>
 <response status="2.05"/>
 </method>

</application>

7. Function Sets and Profiles

 This section defines how a set of REST resources can be created
 called a function set. A Function Set is similar to a function block
 in the sense that it consists of input, output and parameter
 resources and contains internal logic. A Function Set can have a
 subset of mandatory inputs, outputs and parameters to provide minimum
 interoperability. It can also be extended with manufacturer/user-
 specific resources. A device is composed of one or more Function Set
 instances.

 An example of function sets can be found from the CoRE Resource
 Directory specification that defines REST interfaces for
 registration, group and lookup [I-D.ietf-core-resource-directory].
 The OMA Lightweight M2M standard [REF] also defines a function set
 structure called an Objects that use integer path, instance and
 resource URI segments. OMA Objects can be defined and then
 registered with an OMA maintained registry [REF]. This section is
 simply meant as a guideline for the definition of other such REST
 interfaces, either custom or part of other specifications.

7.1. Defining a Function Set

 In a Function Set, types of resources are defined. Each type
 includes a human readable name, a path template, a Resource Type for
 discovery, the Interface Definition and the data type and allowed
 values. A Function Set definition may also include a field
 indicating if a sub-resource is mandatory or optional.

Shelby, et al. Expires April 21, 2016 [Page 29]

Internet-DrafReusable Interface Definitions for Constrained October 2015

7.1.1. Path template

 A Function Set is a container resource under which its sub-resources
 are organized. The profile defines the path to each resource of a
 Function Set in a path template. The template can contain either
 relative paths or absolute paths depending on the profile needs. An
 absolute Function Set should be located at its recommended root path
 on a web server, however it can be located under an alternative path
 if necessary (for example multi-purpose devices, gateways etc.). A
 relative Function Set can be instantiated as many times as needed on
 a web server with an arbitrary root path. However some Function Sets
 (e.g. device description) only make sense as singletons.

 The path template includes a possible index {#} parameter, and
 possible fixed path segments. The index {#} allows for multiple
 instances of this type of resource, and can be any string. The root
 path and the indexes are the only variable elements in a path
 template. All other path segments should be fixed.

7.1.2. Resource Type

 Each root resource of a Function Set is assigned a Resource Type
 parameter, therefore making it possible to discover it. Each sub-
 resource of a Function Set is also assigned a Resource Type
 parameter. This Resource Type is used for resource discovery and is
 usually necessary to discover optional resources supported on a
 specific device. The Resource Type of a Function Set may also be
 used for service discovery and can be exported to DNS-SD [RFC6763]
 for example.

 The Resource Type parameter defines the value that should be included
 in the rt= field of the CoRE Link Format when describing a link to
 this resource. The value SHOULD be in the form "namespace.type" for
 root resources and "namespace.type.subtype" for sub-resources. This
 naming convention facilitates resource type filtering with the
 /.well-known/core resource. However a profile could allow mixing in
 foreign namespace references within a Function Set to import external
 references from other object models (e.g. SenML and UCUM).

7.1.3. Interface Description

 The Interface Description parameter defines the REST interface for
 that type of resource. Several base interfaces are defined in
 Section 6 of this document. For a given profile, the Interface
 Description may be inferred from the Resource Type. In that case the
 Interface Description MAY be elided from link descriptions of
 resource types defined in the profile, but should be included for
 custom extensions to the profile.

Shelby, et al. Expires April 21, 2016 [Page 30]

Internet-DrafReusable Interface Definitions for Constrained October 2015

 The root resource of a Function Set should provide a list of links to
 its sub-resources in order to offer gradual reveal of resources. The
 CoRE Link List interface defined in Section 6.1 offers this
 functionality so a root resource should support this interface or a
 derived interface like CoRE Batch (See Section 6.2).

7.1.4. Data type

 The Data Type field defines the type of value (and possible range)
 that is returned in response to a GET for that resource or accepted
 with a PUT. The interfaces defined in Section 6 make use of plain
 text and SenML Media types for the actual format of this data. A
 profile may restrict the list of supported content formats for the
 CoRE interfaces or define new interfaces with new content types.

7.2. Discovery

 A device conforming to a profile SHOULD make its resources
 discoverable by providing links to the resources on the path /.well-
 known/core as defined in [RFC6690]. All resources hosted on a device
 SHOULD be discoverable either with a direct link in /.well-known/core
 or by following successive links starting from /.well-known/core.

 The root path of a Function Set instance SHOULD be directly
 referenced in /.well-known/core in order to offer discovery at the
 first discovery stage. A device with more than 10 individual
 resources SHOULD only expose Function Set instances in /.well-known/
 core to limit the size of this resource.

 In addition, a device MAY register its resources to a Resource
 Directory using the registration interface defined in
 [I-D.ietf-core-resource-directory] if such a directory is available.

7.3. Versioning

 A profile should track Function Set changes to avoid incompatibility
 issues. Evolutions in a Function Set SHOULD be backward compatible.

8. Security Considerations

 An implementation of a client needs to be prepared to deal with
 responses to a request that differ from what is specified in this
 document. A server implementing what the client thinks is a resource
 with one of these interface descriptions could return malformed
 representations and response codes either by accident or maliciously.
 A server sending maliciously malformed responses could attempt to
 take advantage of a poorly implemented client for example to crash
 the node or perform denial of service.

Shelby, et al. Expires April 21, 2016 [Page 31]

Internet-DrafReusable Interface Definitions for Constrained October 2015

9. IANA Considerations

 The interface description types defined require registration.

 The new link relations type "boundto" and "grp" require registration.

10. Acknowledgments

 Acknowledgement is given to colleagues from the SENSEI project who
 were critical in the initial development of the well-known REST
 interface concept, to members of the IPSO Alliance where further
 requirements for interface types have been discussed, and to Szymon
 Sasin, Cedric Chauvenet, Daniel Gavelle and Carsten Bormann who have
 provided useful discussion and input to the concepts in this
 document.

11. Changelog

 Changes from -03 to -04

 o Fixed tickets #385 and #386

 o Changed abstract and into to better describe content

 o Focus on Interface and not function set/profiles in intro

 o Changed references from draft-core-observe to RFC7641

 o Moved Function sets and Profiles to section after Interfaces

 o Moved Observe Attributes to the Link Binding section

 o Add a Collection section to describe the collection types

 o Add the Hypermedia Collection Interface Description

 Changes from -02 to -03

 o Added lt and gt to binding format section.

 o Added pmin and pmax observe parameters to Observation Attributes

 o Changed the definition of lt and gt to limit crossing.

 o Added definitions for getattr and setattr to WADL.

 o Added getattr and setattr to observable interfaces.

Shelby, et al. Expires April 21, 2016 [Page 32]

Internet-DrafReusable Interface Definitions for Constrained October 2015

 o Removed query parameters from Observe definition.

 o Added observe-cancel definition to WADL and to observable
 interfaces.

 Changes from -01 to -02

 o Updated the date and version, fixed references.

 o Removed pmin and pmax observe parameters [Ticket #336]

 Changes from -00 to WG Document -01

 o Improvements to the Function Set section.

 Changes from -05 to WG Document -00

 o Updated the date and version.

 Changes from -04 to -05

 o Made the Observation control parameters to be treated as resources
 rather than Observe query parameters. Added Less Than and Greater
 Than parameters.

 Changes from -03 to -04

 o Draft refresh

 Changes from -02 to -03

 o Added Bindings

 o Updated all rt= and if= for the new Link Format IANA rules

 Changes from -01 to -02

 o Defined a Function Set and its guidelines.

 o Added the Link List interface.

 o Added the Linked Batch interface.

 o Improved the WADL interface definition.

 o Added a simple profile example.

Shelby, et al. Expires April 21, 2016 [Page 33]

Internet-DrafReusable Interface Definitions for Constrained October 2015

12. References

12.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC5988] Nottingham, M., "Web Linking", RFC 5988,
 DOI 10.17487/RFC5988, October 2010,
 <http://www.rfc-editor.org/info/rfc5988>.

 [RFC6690] Shelby, Z., "Constrained RESTful Environments (CoRE) Link
 Format", RFC 6690, DOI 10.17487/RFC6690, August 2012,
 <http://www.rfc-editor.org/info/rfc6690>.

12.2. Informative References

 [I-D.ietf-core-resource-directory]
 Shelby, Z., Koster, M., Bormann, C., and P. Stok, "CoRE
 Resource Directory", draft-ietf-core-resource-directory-04
 (work in progress), July 2015.

 [I-D.jennings-core-senml]
 Jennings, C., Shelby, Z., Arkko, J., and A. Keranen,
 "Media Types for Sensor Markup Language (SENML)", draft-
 jennings-core-senml-01 (work in progress), July 2015.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <http://www.rfc-editor.org/info/rfc3986>.

 [RFC6763] Cheshire, S. and M. Krochmal, "DNS-Based Service
 Discovery", RFC 6763, DOI 10.17487/RFC6763, February 2013,
 <http://www.rfc-editor.org/info/rfc6763>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <http://www.rfc-editor.org/info/rfc7252>.

 [RFC7396] Hoffman, P. and J. Snell, "JSON Merge Patch", RFC 7396,
 DOI 10.17487/RFC7396, October 2014,
 <http://www.rfc-editor.org/info/rfc7396>.

Shelby, et al. Expires April 21, 2016 [Page 34]

Internet-DrafReusable Interface Definitions for Constrained October 2015

 [RFC7641] Hartke, K., "Observing Resources in the Constrained
 Application Protocol (CoAP)", RFC 7641,
 DOI 10.17487/RFC7641, September 2015,
 <http://www.rfc-editor.org/info/rfc7641>.

Appendix A. Profile example

 The following is a short definition of simple profile. This
 simplistic profile is for use in the examples of this document.

 +--------------------+-----------+------------+---------+
 | Function Set | Root Path | RT | IF |
 +--------------------+-----------+------------+---------+
 | Device Description | /d | simple.dev | core.ll |
 | Sensors | /s | simple.sen | core.b |
 | Actuators | /a | simple.act | core.b |
 +--------------------+-----------+------------+---------+

 List of Function Sets

 +-------+----------+----------------+---------+------------+
 | Type | Path | RT | IF | Data Type |
 +-------+----------+----------------+---------+------------+
 | Name | /d/name | simple.dev.n | core.p | xsd:string |
 | Model | /d/model | simple.dev.mdl | core.rp | xsd:string |
 +-------+----------+----------------+---------+------------+

 Device Description Function Set

 +-------------+-------------+----------------+--------+-------------+
 | Type | Path | RT | IF | Data Type |
 +-------------+-------------+----------------+--------+-------------+
Light	/s/light	simple.sen.lt	core.s	xsd:decimal
				(lux)
Humidity	/s/humidity	simple.sen.hum	core.s	xsd:decimal
				(%RH)
Temperature	/s/temp	simple.sen.tmp	core.s	xsd:decimal
				(degC)
 +-------------+-------------+----------------+--------+-------------+

 Sensors Function Set

Shelby, et al. Expires April 21, 2016 [Page 35]

Internet-DrafReusable Interface Definitions for Constrained October 2015

 +------+------------+----------------+--------+-------------+
 | Type | Path | RT | IF | Data Type |
 +------+------------+----------------+--------+-------------+
 | LED | /a/{#}/led | simple.act.led | core.a | xsd:boolean |
 +------+------------+----------------+--------+-------------+

 Actuators Function Set

Authors’ Addresses

 Zach Shelby
 ARM
 150 Rose Orchard
 San Jose 95134
 FINLAND

 Phone: +1-408-203-9434
 Email: zach.shelby@arm.com

 Matthieu Vial
 Schneider-Electric
 Grenoble
 FRANCE

 Phone: +33 (0)47657 6522
 Email: matthieu.vial@schneider-electric.com

 Michael Koster
 ARM
 150 Rose Orchard
 San Jose 95134
 USA

 Email: michael.koster@arm.com

Shelby, et al. Expires April 21, 2016 [Page 36]

