
Network Working Group T. Eckert
Internet-Draft Cisco Systems, Inc.
Intended status: Standards Track G. Cauchie
Expires: January 6, 2016 Bouygues Telecom
 July 5, 2015

 Traffic Enginering for Bit Index Explicit Replication BIER-TE
 draft-eckert-bier-te-arch-01

Abstract

 This document proposes an architecture for BIER-TE: Traffic
 Engineering for Bit Index Explicit Replication (BIER).

 BIER-TE shares part of its architecture with BIER as described in
 [I-D.wijnands-bier-architecture]. It also proposes to share the
 packet format with BIER.

 BIER-TE forwards and replicates packets like BIER based on a
 BitString in the packet header but it does not require an IGP. It
 does support traffic engineering by explicit hop-by-hop forwarding
 and loose hop forwarding of packets. It does support Fast ReRoute
 (FRR) for link and node protection and incremental deployment.
 Because BIER-TE like BIER operates without explicit in-network tree-
 building but also supports traffic engineering, it is more similar to
 SR than RSVP-TE.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 6, 2016.

Eckert & Cauchie Expires January 6, 2016 [Page 1]

Internet-Draft BIER-TE ARCH July 2015

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Overview . 3
 1.2. Requirements Language 4
 2. Layering . 4
 2.1. The Multicast Flow Overlay 4
 2.2. The BIER-TE Controller Host 5
 2.2.1. Assignment of BitPositions to adjacencies of the
 network topology 5
 2.2.2. Changes in the network topology 5
 2.2.3. Set up per-multicast flow BIER-TE state 6
 2.2.4. Link/Node Failures and Recovery 6
 2.3. The BIER-TE Forwarding Layer 6
 2.4. The Routing Underlay 6
 3. BIER-TE Forwarding . 7
 3.1. The Bit Index Forwarding Table (BIFT) 7
 3.2. Adjacency Types . 8
 3.2.1. Forward Connected 8
 3.2.2. Forward Routed 8
 3.2.3. ECMP . 8
 3.2.4. Local Decap . 9
 3.3. Encapsulation considerations 9
 3.4. Basic BIER-TE Forwarding Example 9
 4. BIER-TE Controller Host BitPosition Assignments 11
 4.1. P2P Links . 11
 4.2. BFER . 12
 4.3. Leaf BFIRs . 12
 4.4. LANs . 12
 4.5. Hub and Spoke . 13
 4.6. Rings . 13
 4.7. Equal Cost MultiPath (ECMP) 13
 4.8. Routed adjacencies 16

Eckert & Cauchie Expires January 6, 2016 [Page 2]

Internet-Draft BIER-TE ARCH July 2015

 4.8.1. Reducing BitPositions 16
 4.8.2. Supporting nodes without BIER-TE 16
 4.9. Using multiple BIFTs 16
 5. Avoiding loops and duplicates 16
 5.1. Loops . 17
 5.2. Duplicates . 17
 6. BIER-TE FRR . 17
 6.1. The BIER-TE Adjacency FRR Table (BTAFT) 18
 6.2. FRR in BIER-TE forwarding 18
 6.3. FRR in the BIER-TE Controller Host 18
 6.4. BIER-TE FRR Benefits 19
 7. BIER-TE Forwarding Pseudocode 19
 8. Further considerations 22
 8.1. BIER-TE and existing FRR 22
 8.2. BIER-TE and Segment Routing 22
 9. Security Considerations 22
 10. IANA Considerations . 22
 11. Acknowledgements . 23
 12. Change log [RFC Editor: Please remove] 23
 13. References . 23
 Authors’ Addresses . 23

1. Introduction

1.1. Overview

 This document specifies the architecture for BIER-TE: traffic
 engineering for Bit Index Explicit Replication BIER.

 BIER-TE shares architecture and packet formats with BIER as described
 in [I-D.wijnands-bier-architecture].

 BIER-TE forwards and replicates packets like BIER based on a
 BitString in the packet header but it does not require an IGP. It
 does support traffic engineering by explicit hop-by-hop forwarding
 and loose hop forwarding of packets. It does support Fast ReRoute
 (FRR) for link and node protection and incremental deployment.
 Because BIER-TE like BIER operates without explicit in-network tree-
 building but also supports traffic engineering, it is more similar to
 SR than RSVP-TE.

 The key differences over BIER are:

 o BIER-TE replaces in-network autonomous path calculation by
 explicit paths calculated offpath by the BIER-TE controller host.

 o In BIER-TE every BitPosition of the BitString of a BIER-TE packet
 indicates one or more adjacencies - instead of a BFER as in BIER.

Eckert & Cauchie Expires January 6, 2016 [Page 3]

Internet-Draft BIER-TE ARCH July 2015

 o BIER-TE in each BFR has no routing table but only a BIER-TE
 Forwarding Table (BIFT) indexed by BitPosition and populated with
 only those adjacencies to which the BFR should replicate packets
 to.

 Currently, BIER-TE does not support BIER-sub-domains and it does not
 not use BFR-id. BIER-TE headers use the same format as BIER headers
 (BFR-id is set to 0).

1.2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2. Layering

 End to end BIER-TE operations consists of four components: The
 "Multicast Flow Overlay", the "BIER-TE Controller Host", the "Routing
 Underlay" and the "BIER-TE forwarding layer".

 Picture 2: Layers of BIER-TE

 <------BGP/PIM----->
 |<-IGMP/PIM-> multicast flow <-PIM/IGMP->|
 overlay

 [Bier-TE Controller Host]
 ^ ^ ^
 / | \ BIER-TE control protocol
 | | | eg.: Netconf/Restconf/Yang
 v v v
 Src -> Rtr1 -> BFIR-----BFR-----BFER -> Rtr2 -> Rcvr

 |--------------------->|
 BIER-TE forwarding layer

 |<- BIER-TE domain-->|

 |<--------------------->|
 Routing underlay

2.1. The Multicast Flow Overlay

 The Multicast Flow Overlay operates as in BIER. See
 [I-D.wijnands-bier-architecture]. Instead of interacting with the
 BIER layer, it interacts with the BIER-TE Controller Host

Eckert & Cauchie Expires January 6, 2016 [Page 4]

Internet-Draft BIER-TE ARCH July 2015

2.2. The BIER-TE Controller Host

 The BIER-TE controller host is representing the control plane of
 BIER-TE. It communicates two sets of informations with BFRs:

 During bring-up or modifications of the network topology, the
 controller discovers the network topology, assigns BitPositions to
 adjacencies and signals the resulting mapping of BitPositions to
 adjacencies to each BFR connecting to the adjacency.

 During day-to-day operations of the network, the controller signals
 to BFIRs what multicast flows are mapped to what BitStrings.

 Communications between the BIER-TE controller host to BFRs is ideally
 via standardized protocols and data-models such as Netconf/Retconf/
 Yang. This is currently outside the scope of this document. Vendor-
 specific CLI on the BFRs is also a posible stopgap option (as in many
 other SDN solutions lacking definition of standardized data model).

 For simplicity, the procedures of the BIER-TE controller host are
 described in this document as if it is a single, centralized
 automated entity, such as an SDN controller. It could equally be an
 operator setting up CLI on the BFRs. Distribution of the functions
 of the BIER-TE controller host is currently outside the scope of this
 document.

2.2.1. Assignment of BitPositions to adjacencies of the network
 topology

 The BIER-TE controller host tracks the BFR topology of the BIER-TE
 domain. It determines what adjacencies require BitPositions so that
 BIER-TE explicit paths can be built through them as desired by
 operator policy.

 The controller then pushes the BitPositions/adjacencies to the BIFT
 of the BFRs, populating only those BitPositions to the BIFT of each
 BFR to which that BFR should be able to send packets to - adjacencies
 connecting to this BFR.

2.2.2. Changes in the network topology

 If the network topology changes (not failure based) so that
 adjacencies that are assigned to BitPositions are no longer needed,
 the controller can re-use those BitPositions for new adjacencies.
 First, these BitPositions need to be removed from any BFIR flow state
 and BFR BIFT state (and BTAFT if FRR is supported, see below), then
 they can be repopulated, first into BIFT (and if FRR is supported
 BTAFT), then into BFIR.

Eckert & Cauchie Expires January 6, 2016 [Page 5]

Internet-Draft BIER-TE ARCH July 2015

2.2.3. Set up per-multicast flow BIER-TE state

 The BIER-TE controller host tracks the multicast flow overlay to
 determine what multicast flow needs to be sent by a BFIR to which set
 of BFER. It calculates the desired distribution tree across the
 BIER-TE domain based on algorithms outside the scope of this document
 (eg.: CSFP, Steiner Tree,...). It then pushes the calculated
 BitString into the BFIR.

2.2.4. Link/Node Failures and Recovery

 When link or nodes fail or recover in the topology, BIER-TE can
 quickly respond with the optional FRR procedures described below. It
 can also more slowly react by recalculating the BitStrings of
 affected multicast flows. This reaction is slower than the FR
 procedure because the controller needs to receive link/node up/down
 indications, recalculate the desired BitStrings and push them down
 into the BFIRs. with FRR, this is all performed locally on a BFR
 receiving the adjacency up/down notification.

2.3. The BIER-TE Forwarding Layer

 When the BIER-TE Forwarding Layer receives a packet, it simply looks
 up the BitPositions that are set in the BitString of the packet in
 the Bit Index Forwarding Table (BIFT) that was populated by the BIER-
 TE controller host. For every BP that is set in the BitString, and
 that has one or more adjacencies in the BIFT, a copy is made
 according to the type of adjacencies for that BP in the BIFT. Before
 sending any copy, the BFR resets all BitPositions in the BitString of
 the packet to which it can create a copy. This is done to inhibit
 that packets can loop.

 If the BFR support BIER-TE FRR operations, then the BIER-TE
 forwarding layer will receive fast adjacency up/down notification
 uses the BIER-TE FRR Adjacency Table to modify the BitString of the
 packet before it performs BIER-TE forwarding. This is detailed in
 the FRR section.

2.4. The Routing Underlay

 BIER-TE is sending BIER packets to directly connected BIER-TE
 neighbors as L2 (unicasted) BIER packets without requiring a routing
 underlay. BIER-TE forwarding uses the Routing underlay for
 forward_routed adjacencies which copy BIER-TE packets to not-
 directly-connected BFRs (see below for adjacency definitions).

 If the BFR intends to support FRR for BIER-TE, then the BIER-TE
 forwarding plane needs to receive fast adjacency up/down

Eckert & Cauchie Expires January 6, 2016 [Page 6]

Internet-Draft BIER-TE ARCH July 2015

 notifications: Link up/down or neighbor up/down, eg.: from BFD.
 Providing these notifications is considered to be part of the routing
 underlay in this document.

3. BIER-TE Forwarding

3.1. The Bit Index Forwarding Table (BIFT)

 The Bit Index Forwarding Table (BIFT) exists in every BFR. It is a
 table indexed by BitPosition and is populated by the BIER-TE control
 plane. Each index can be empty or contain a list of one or more
 adjacencies.

 If the network is so large that the number of BitPositions in a
 single BIFT does not suffice to identify the necessary adjacencies,
 multiple BIFT need to be used, each identified via a separate SI (Set
 Identifier) value.

 --
 | Index | Adjacencies |
 ==
 | 1 | forward_connected(interface,neighbor,DNR) |
 --
 | 2 | forward_connected(interface,neighbor,DNR) |
 | | forward_connected(interface,neighbor,DNR) |
 --
 | 3 | local_decap([VRF]) |
 --
 | 4 | forward_routed([VRF,]l3-neighbor) |
 --
 | 5 | <empty> |
 --
 | 6 | ECMP({adjacency1,...adjacencyN}, seed) |
 --
 ...
 | BitStringLength | ... |
 --
 Bit Index Forwarding Table

 The BIFT is programmed into the data plane of BFRs by the BIER-TE
 controller host and used to forward packets, according to the rules
 specified in the BIER-TE Forwarding Procedures.

 Adjacencies for the same BP when populated in more than one BFR by
 the controller do not have to have the same adjacencies. This is up
 to the controller. BPs for p2p links are one case (see below).

Eckert & Cauchie Expires January 6, 2016 [Page 7]

Internet-Draft BIER-TE ARCH July 2015

3.2. Adjacency Types

3.2.1. Forward Connected

 A "forward_connected" adjacency is towards a directly connected BFR
 neighbor using an interface address of that BFR on the connecting
 interface. A forward_connected adjacency does not route packets but
 only L2 forwards them to the neighbor.

 Packets sent to an adjacency with "DoNotReset" (DNR) set in the BIFT
 will not have the BitPosition for that adjacency reset when the BFR
 creates a copy for it. The BitPosition will still be reset for
 copies of the packet made towards other adjacencies. The can be used
 for example in ring topologies as explained below.

3.2.2. Forward Routed

 A "forward_routed" adjacency is an adjacency towards a BFR that is
 not a forward_connected adjacency: towards a loopback address of a
 BFR or towards an interface address that is non-directly connected.
 Forward_routed packets are forwarded via the Routing Underlay.

 If the Routing Underlay has multiple paths for a forward_routed
 adjacency, it will perform ECMP independent of BIER-TE for packets
 forwarded across a forward_routed adjacency.

 If the Routing Underlay has FRR, it will perform FRR independent of
 BIER-TE for packets forwarded across a forward_routed adjacency.

3.2.3. ECMP

 The ECMP mechanisms in BIER are tied to the BIER BIFT and are are
 therefore not directly useable with BIER-TE. The following
 procedures describe ECMP for BIER-TE that we consider to be
 lightweight but also well manageable. It leverages the existing
 entropy parameter in the BIER header to keep packets of the flows on
 the same path anbd it introduces a "seed" parameter to allow
 engineering traffic to be polarized or randomized across multiple
 hops.

 An "Equal Cost Multipath" (ECMP) adjacency has a list of two or more
 adjacencies included in it. It copies the BIER-TE to one of those
 adjacencies based on the ECMP hash calculation. The BIER-TE ECMP
 hash algorithm must select the same adjacency from that list for all
 packets with the same "entropy" value in the BIER-TE header if the
 same number of adjacencies and same seed are given as parameters.
 Further use of the seed parameter is explained below.

Eckert & Cauchie Expires January 6, 2016 [Page 8]

Internet-Draft BIER-TE ARCH July 2015

3.2.4. Local Decap

 A "local_decap" adjacency passes a copy of the payload of the BIER-TE
 packet to the packets NextProto within the BFR (IPv4/IPv6,
 Ethernet,...). A local_decap adjacency turns the BFR into a BFER for
 matching packets. Local_decap adjacencies require the BFER to
 support routing or switching for NextProto to determine how to
 further process the packet.

3.3. Encapsulation considerations

 Specifications for BIER-TE encapsulation are outside the scope of
 this document. This section gives explanations and guidelines.

 Because a BFR needs to interpret the BitString of a BIER-TE packet
 differently from a BIER packet, it is necessary to distinguish BIER
 from BIER-TE packets. BIER MPLS encapsulation for example assigns
 one label by which BFRs recognize BIER packets. BIER-TE packets
 should be recognized via a second equally assigned label. If an
 encapsulation does not permit such differentiation, then
 modifications in the BIER header may be necessary to support
 simultaneous BIER and BIER-TE forwarding.

 "forward_routed" requires an encapsulation permitting to unicast
 BIER-TE packets to a specific interface address on a target BFR.
 With MPLS encapsulation, this can simply be done via a label stack
 with that addresses label as the top label - followed by the label
 identifying BIER-TE packets. With a non-MPLS encapsulation, some
 form of IP tunneling (IP in IP, LISP, GRE) would be required.

 The encapsulation used for "forward_routed" adjacencies can equally
 support existing advanced adjacency information such as "loose source
 routes" via eg: MPLS label stacks or appropriate header extensions
 (eg: for IPv6).

3.4. Basic BIER-TE Forwarding Example

 Step by step example of basic BIER-TE forwarding. This does not use
 ECMP or forward_routed adjacencies nor does it try to minimize the
 number of required BitPositions for the topology.

Eckert & Cauchie Expires January 6, 2016 [Page 9]

Internet-Draft BIER-TE ARCH July 2015

 Picture 1: Forwarding Example

 [Bier-Te Controller Host]
 / | \
 v v v

 | p13 p1 |
 +- BFIR2 --+ |
 | | p2 p6 | LAN2
 | +-- BFR3 --+ |
 | | | p7 p11 |
 Src -+ +-- BFER1 --+
 | | p3 p8 | |
 | +-- BFR4 --+ +-- Rcv1
 | | | |
 | |
 | p14 p4 |
 +- BFIR1 --+ |
 | +-- BFR5 --+ p10 p12 |
 LAN1 | p5 p9 +-- BFER2 --+
 | +-- Rcv2
 |
 LAN3

 IP |..... BIER-TE network......| IP

 pXX indicate the BitPositions number assigned by the BIER-TE
 controller host to adjacencies in the BIER-TE topology. For example,
 p9 is the adjacency towards BFR9 on the LAN connecting to BFER2.

 BIFT BFIR2:
 p13: local_decap()
 p2: forward_connected(BFR3)

 BIFT BFR3:
 p1: forward_connected(BFIR2)
 p7: forward_connected(BFER1)
 p8: forward_connected(BFR4)

 BIFT BFER1:
 p11: local_decap()
 p6: forward_connected(BFR3)
 p8: forward_connected(BFR4)

 ...and so on.

 Traffic needs to flow from BFIR2 towards Rcv1, Rcv2. The controller
 determines it wants it to pass across the following paths:

Eckert & Cauchie Expires January 6, 2016 [Page 10]

Internet-Draft BIER-TE ARCH July 2015

 -> BFER1 ---------------> Rcv1
 BFIR2 -> BFR3
 -> BFR4 -> BFR5 -> BFER2 -> Rcv2

 These paths equal to the following BitString: p2, p5, p7, p8, p10,
 p11, p12

 This BitString is set up in BFIR2. Multicast packets arriving at
 BFIR2 from Src are assigned this BitString.

 BFIR2 forwards based on that BitString. It has p2 and p13 populated.
 Only p13 is in BitString which has an adjacency towards BFR3. BFIR2
 resets p2 in BitString and sends a copy towards BFR2.

 BFR3 sees a BitString of p5,p7,p8,p10,p11,p12. It is only interested
 in p1,p7,p8. It creates a copy of the packet to BFER1 (due to p7)
 and one to BFR4 (due to p8). It resets p7, p8 before sending.

 BFER1 sees a BitString of p5,p10,p11,p12. It is only interested in
 p6,p7,p8,p11 and therefore considers only p11. p11 is a "local_decap"
 adjacency installed by the BIER-TE controller host because BFER1
 should pass packets to IP multicast. The local_decap adjacency
 instructs BFER1 to create a copy, decapsulate it from the BIER header
 and pass it on to the NextProtocol, in this example IP multicast. IP
 multicast will then forward the packet out to LAN2 because it did
 receive PIM or IGMP joins on LAN2 for the traffic.

 Further processing of the packet in BFR4, BFR5 and BFER2 accordingly.

4. BIER-TE Controller Host BitPosition Assignments

 This section describes how the BIER-TE controller host can use the
 different BIER-TE adjacency types to define the BitPositions of a
 BIER-TE domain.

 Because the size of the BitString is limiting the size of the BIER-TE
 domain, many of the options described exist to support larger
 topologies with fewer BitPositions (4.1, 4.3, 4.4, 4.5, 4.6, 4.7,
 4.8).

4.1. P2P Links

 Each P2p link in the BIER-TE domain is assigned one unique
 BitPosition with a forward_connected adjacency pointing to the
 neighbor on the p2p link.

Eckert & Cauchie Expires January 6, 2016 [Page 11]

Internet-Draft BIER-TE ARCH July 2015

4.2. BFER

 Every BFER is given a unique BitPosition with a local_decap
 adjacency.

4.3. Leaf BFIRs

 Leaf BFIRs are BFIRs where incoming BIER-TE packets never need to be
 forwarded to another BFR but are only sent to the BFIR to exit the
 BIER-TE domain. For example, in networks where PEs are spokes
 connected to P routers, those PEs are Leaf BFIRs unless there is a
 U-turn between two PEs.

 All leaf-BFIR in a BIER-TE domain can share a single BitPosition.
 This is possible because the BitPosition for the adjacency to reach
 the BFIR can be used to distinguish whether or not packets should
 reach the BFIR.

 This optimization will not work if an upstream interface of the BFIR
 is using a BitPosition optimized as described in the following two
 sections (LAN, Hub and Spoke).

4.4. LANs

 In a LAN, the adjacency to each neighboring BFR on the LAN is given a
 unique BitPosition. The adjacency of this BitPosition is a
 forward_connected adjacency towards the BFR and this BitPosition is
 populated into the BIFT of all the other BFRs on that LAN.

 BFR1
 |p1
 LAN1-+-+---+-----+
 p3| p4| p2|
 BFR3 BFR4 BFR7

 If Bandwidth on the LAN is not an issue and most BIER-TE traffic
 should be copied to all neighbors on a LAN, then BitPositions can be
 saved by assigning just a single BitPosition to the LAN and
 populating the BitPosition of the BIFTs of each BFRs on the LAN with
 a list of forward_connected adjacencies to all other neighbors on the
 LAN.

 This optimization does not work in the face of BFRs redundantly
 connected to more than one LANs with this optimization because these
 BFRs would receive duplicates and forward those duplicates into the
 opposite LANs. Adjacencies of such BFRs into their LANs still need a
 separate BitPosition.

Eckert & Cauchie Expires January 6, 2016 [Page 12]

Internet-Draft BIER-TE ARCH July 2015

4.5. Hub and Spoke

 In a setup with a hub and multiple spokes connected via separate p2p
 links to the hub, all p2p links can share the same BitPosition. The
 BitPosition on the hubs BIFT is set up with a list of
 forward_connected adjacencies, one for each Spoke.

 This option is similar to the BitPosition optimization in LANs:
 Redundantly connected spokes need their own BitPositions.

4.6. Rings

 In L3 rings, instead of assigning a single BitPosition for every p2p
 link in the ring, it is possible to save BitPositions by setting the
 "Do Not Reset" (DNR) flag on forward_connected adjacencies.

 For the rings shown in the following picture, a single BitPosition
 will suffice to forward traffic entering the ring at BFRa or BFRb all
 the way up to BFR1:

 On BFRa, BFRb, BFR30,... BFR3, the BitPosition is populated with a
 forward_connected adjacency pointing to the clockwise neighbor on the
 ring and with DNR set. On BFR2, the adjacency also points to the
 clockwise neighbor BFR1, but without DNR set. Handling DNR this way
 ensures that copies forwarded from any BFR in the ring to a BFR
 outside the ring will not have this BitPosition, therefore minimizing
 the chance to create loops.

 v v
 | |
 L1 | L2 | L3
 /-------- BFRa ---- BFRb --------------------\
 | |
 \- BFR1 - BFR2 - BFR3 - ... - BFR29 - BFR30 -/
 | | L4 | |
 p33| p15|
 BFRd BFRc

4.7. Equal Cost MultiPath (ECMP)

 The ECMP adjacency allows to use just one BP per link bundle between
 two BFRs instead of one BP for each p2p member link of that link
 bundle. In the following picture, one BP is used across L1,L2,L3 and
 BFR1/BFR2 have for the BP

Eckert & Cauchie Expires January 6, 2016 [Page 13]

Internet-Draft BIER-TE ARCH July 2015

 --L1-----
 BFR1 --L2----- BFR2
 --L3-----

 BIFT entry in BFR1:
 --
 | Index | Adjacencies |
 ==
 | 6 | ECMP({L1-to-BFR2,L2-to-BFR2,L3-to-BFR2}, seed) |
 --

 BIFT entry in BFR2:
 --
 | Index | Adjacencies |
 ==
 | 6 | ECMP({L1-to-BFR1,L2-to-BFR1,L3-to-BFR1}, seed) |
 --

 In the following example, all traffic from BFR1 towards BFR10 is
 intended to be ECMP load split equally across the topology. This
 example is not mean as a likely setup, but to illustrate that ECMP
 can be used to share BPs not only across link bundles, and it
 explains the use of the seed parameter.

Eckert & Cauchie Expires January 6, 2016 [Page 14]

Internet-Draft BIER-TE ARCH July 2015

 BFR1
 / \
 /L11 \L12
 BFR2 BFR3
 / \ / \
 /L21 \L22 /L31 \L32
 BFR4 BFR5 BFR6 BFR7
 \ / \ /
 \ / \ /
 BFR8 BFR9
 \ /
 \ /
 BFR10

 BIFT entry in BFR1:
 --
 | 6 | ECMP({L11-to-BFR2,L12-to-BFR3}, seed) |
 --

 BIFT entry in BFR2:
 --
 | 6 | ECMP({L21-to-BFR4,L22-to-BFR5}, seed) |
 --

 BIFT entry in BFR3:
 --
 | 6 | ECMP({L31-to-BFR6,L32-to-BFR7}, seed) |
 --

 With the setup of ECMP in above topology, traffic would not be
 equally load-split. Instead, links L22 and L31 would see no traffic
 at all: BFR2 will only see traffic from BFR1 for which the ECMP hash
 in BFR1 selected the first adjacency in a list of 2 adjacencies: link
 L11-to-BFR2. When forwarding in BFR2 performs again an ECMP with two
 adjacencies on that subset of traffic, then it will again select the
 first of its two adjacencies to it: L21-to-BFR4. And therefore L22
 and BFR5 sees no traffic.

 To resolve this issue, the ECMP adjaceny on BFR1 simply needs to be
 set up with a different seed than the ECMP adjacncies on BFR2/BFR3

 This issue is called polarization. It depends on the ECMP hash. It
 is possible to build ECMP that does not have polarization, for
 example by taking entropy from the actual adjacency members into
 account, but that can make it harder to achieve evenly balanced load-
 splitting on all BFR without making the ECMP hash algorithm
 potentially too complex for fast forwarding in the BFRs.

Eckert & Cauchie Expires January 6, 2016 [Page 15]

Internet-Draft BIER-TE ARCH July 2015

4.8. Routed adjacencies

4.8.1. Reducing BitPositions

 Routed adjacencies can reduce the number of BitPositions required
 when the traffic engineering requirement is not hop-by-hop explicit
 path selection, but loose-hop selection.

 BFR1--... Redundant ...--L1-- BFR2... Redundant ...---
 \--... Network ...--L2--/ ... Network ...---
 BFR4--... Segment 1 ...--L3-- BFR3... Segment 2 ...---

 Assume the requirement in above network is to explicitly engineer
 paths such that specific traffic flows are passed from segment 1 to
 segment 2 via link L1 (or via L2 or via L3).

 To achieve this, BFR1 and BFR4 are set up with a forward_routed
 adjacency BitPosition towards an address of BFR2 on link L1 (or link
 L2 BFR3 via L3).

 For paths to be engineered through a specific node BFR2 (or BFR3),
 BFR1 and BFR4 are set up up with a forward_routed adjacency
 BitPosition towards a loopback address of BFR2 (or BFR3).

4.8.2. Supporting nodes without BIER-TE

 Routed adjacencies also enable incremental deployment of BIER-TE.
 Only the nodes through which BIER-TE traffic needs to be steered -
 with or without replication - need to support BIER-TE. Where they
 are not directly connected to each other, forward_routed adjacencies
 are used to pass over non BIER-TE enabled nodes.

4.9. Using multiple BIFTs

 In a large network, multiple BIFT may be necessary, each one
 identified by a different SI value in the BIER header. Transit
 adjacencies may need to be given BitPositions in multiple BIFTs to
 achieve the desired path engineering for packets replicated with
 different SIs/BIFTs.

5. Avoiding loops and duplicates

Eckert & Cauchie Expires January 6, 2016 [Page 16]

Internet-Draft BIER-TE ARCH July 2015

5.1. Loops

 Whenever BIER-TE creates a copy of a packet, the BitString of that
 copy will have all BitPositions cleared that are associated with
 adjacencies in the BFR. This inhibits looping of packets. The only
 exception are adjacencies with DNR set.

 With DNR set, looping can happen. Consider in the ring picture that
 link L4 from BFR3 is plugged into the L1 interface of BFRa. This
 creates a loop where the rings clockwise BitPosition is never reset
 for copies of the packets traveling clockwise around the ring.

 To inhibit looping in the face of such physical misconfiguration,
 only forward_connected adjacencies are permitted to have DNR set, and
 the link layer destination address of the adjacency (eg.: MAC
 address) protects against closing the loop. Link layers without port
 unique link layer addresses should not used with the DNR flag set.

5.2. Duplicates

 Duplicates happen when the topology of the BitString is not a tree
 but redundantly connecting BFRs with each other. The controller must
 therefore ensure to only create BitStrings that are trees in the
 topology.

 When links are incorrectly physically re-connected before the
 controller updates BitStrings in BFIRs, duplicates can happen. Like
 loops, these can be inhibited by link layer addressing in
 forward_connected adjacencies.

 If interface or loopback addresses used in forward_routed adjacencies
 are moved from one BFR to another, duplicates can equally happen.
 Such re-addressing operations must be coordinated with the
 controller.

6. BIER-TE FRR

 FRR is an optional procedure. To leverage it, the BIER-TE controller
 host and BFRs need to support it. It does not have to be supported
 on all BFRs, but only those that are attached to a link/adjacency for
 which FRR support is required.

 If BIER-TE FRR is supported by the BIER-TE controller host, then it
 needs to calculate the desired backup paths for link and/or node
 failures in the BIER-TE domain and download this information into the
 BIER-TE Adjacency FRR Table (BTAFT) of the BFRs. The BTAFT then
 drives FRR operations in the BIER-TE forwarding plane of that BFR.

Eckert & Cauchie Expires January 6, 2016 [Page 17]

Internet-Draft BIER-TE ARCH July 2015

6.1. The BIER-TE Adjacency FRR Table (BTAFT)

 The BIER-TE IF FRR Table exists in every BFR that is supporting BIER-
 TE FRR procedures. It is indexed by FRR Adjacency Index. Associated
 with each FRR Adjacency Index is a ResetBitmask, AddBitmask and
 BitPosition.

 | FRR Adjacency | BitPosition | ResetBitmask | AddBitmask |
 | Index | | | |
 ===
 | 1 | 5 | ..0010000 | ..11000000 |

 ...

 An FRR Adjacency is an adjacency that is used in the BIFT of the BFR.
 The BFR has to be able to determine whether the adjacency is up or
 down in less than 50msec. An FRR adjacency can be a
 forward_connected adjacency with fast L2 link state Up/Down state
 notifications or a forward_connected or forward_routed adjacency with
 a fast aliveness mechanism such as BFD. Details of those mechanism
 are outside the scope of this architecture.

 The FRR Adjacency Index is the index that would be indicated on the
 fast Up/Down notifications to the BIER-TE forwarding plane

 The BitPosition is the BP in the BIFT in which the FRR Adjacency is
 used

6.2. FRR in BIER-TE forwarding

 The BIER-TE forwarding plane receives fast Up/Down notifications with
 the FRR Adjacency Index. From the BitPosition in the BTAFT entry, it
 remembers which BPs are currently affected (have a down adjacency).

 When a packet is received, BIER-TE forwarding checks if it has
 affected BPs to which it would forward. If it does, it will remove
 the ResetBitmask bits from the packets BitString and add the
 AddBitmask bits to the packets BitString.

 Afterwards, normal BIER-TE forwarding occurs, taking the modified
 BitString into account.

6.3. FRR in the BIER-TE Controller Host

 The basic rules how the BIER-TE controller host would calculate
 ResetBitMask and AddBitmask are as follows:

Eckert & Cauchie Expires January 6, 2016 [Page 18]

Internet-Draft BIER-TE ARCH July 2015

 1. The BIER-TE controller host has to determine whether a failure of
 the adjacency should be taken to indicate link or node failure.
 This is a policy decision.

 2. The ResetBitmask has the BitPosition of the failed adjacency.

 3. In the case of link protection, the AddBitmask are the segments
 forming a path from the BFR over to the BFR on the other end of
 the failed link.

 4. In the case of node protection, the AddBitmask are the segments
 forming a tree from the BFR over to all necessary BFR downstream
 of the (assumed to be failed) BFR across the failed adjacency.

 5. The ResetBitmask is extended with those segments that could lead
 to duplicate packets if the AddBitmask is added to possible
 BitStrings of packets using the failing BitPosition.

6.4. BIER-TE FRR Benefits

 Compared to other FRR solutions, such as RSVP-TE/P2MP FRR, BIER-TE
 FRR has two key distinctions

 o It maintains the goal of BIER-TE not to establish in-network per
 multicast traffic flow state. For that reason, the backup path/
 trees are only tied to the topology but not to individual
 distribution trees.

 o For the case of node failure, it allows to build a path engineered
 backup tree (4.) as opposed to only a set of p2p backup tunnels.

7. BIER-TE Forwarding Pseudocode

 The following sections of Pseudocode are meant to illustrate the
 BIER-TE forwarding plane. This code is not meant to be normative but
 to serve both as a potentially easier to read and more precise
 representation of the forwarding functionality and to illustrate how
 simple BIER-TE forwarding is and that it can be efficiently be
 implemented.

 The following procedure is executed on a BFR whenever the BIFT is
 changed by the BIER-TE controller host:

Eckert & Cauchie Expires January 6, 2016 [Page 19]

Internet-Draft BIER-TE ARCH July 2015

 global MyBitsOfInterest

 void BIFTChanged()
 {

 for (Index = 0; Index++ ; Index <= BitStringLength)
 if(BIFT[Index] != <empty>)
 MyBitsOfInterest != 2<<(Index-1)
 }

 The following procedure is executed whenever an adjacency used for
 BIER-TE FRR changes state:

 global ResetBitMaskByBT[BitStringLength]
 global AddtBitMaskByBT[BitStringLength]
 global FRRaffectedBP

 void FrrUpDown(FrrAdjacencyIndex, UpDown)
 {
 global FRRAdjacenciesDown
 local Idx = FrrAdjacencyIndex

 if (UpDown == Up)
 FRRAdjacenciesDown &= ˜ 2<<(FrrAdjacencyIndex-1)
 else
 FRRAdjacenciesDown |= 2<<(FrrAdjacencyIndex-1)

 for (Index = GetFirstBitPosition(FRRAdjacenciesDown); Index ;
 Index = GetNextBitPosition(FRRAdjacenciesDown, Index))

 local BP = BTAFT[Index].BitPosition
 FRRaffectedBP |= 2<<(Index)
 ResetBitMaskByBT[BP] |= BTAFT[Index].ResetBitMask
 AddBitMaskByBT[BP] |= BTAFT[Index].AddBitMask
 }

 The following procedure is executed whenever a BIER-TE packet is to
 be forwarded:

Eckert & Cauchie Expires January 6, 2016 [Page 20]

Internet-Draft BIER-TE ARCH July 2015

 void ForwardBierTePacket (Packet)
 {
 // We calculate in BitMask the subset of BPs of the BitString
 // for which we have adjacencies. This is purely an
 // optimization to avoid to replicate for every BP
 // set in BitString only to discover that for most of them,
 // the BIFT has no adjacency.

 local BitMask = Packet->BitString
 Packet->BitString &= ˜MyBitsOfInterest
 BitMask &= MyBitsOfInterest

 // FRR Operations
 // Note: this algorithm is not optimal yet for ECMP cases
 // it performs FRR replacement for all candidate ECMP paths

 local MyFRRBP = BitMask & FRRaffectedBP
 for (BP = GetFirstBitPosition(MyFRRNP); BP ;
 BP = GetNextBitPosition(MyFRRNP, BP))
 BitMask &= ˜ResetBitMaskByBT[BP]
 BitMask |= ResetBitMaskByBT[BT]

 // Replication
 for (Index = GetFirstBitPosition(BitMask); Index ;
 Index = GetNextBitPosition(BitMask, Index))
 foreach adjacency BIFT[Index]

 if(adjacency == ECMP(ListOfAdjacencies, seed))
 I = ECMP_hash(sizeof(ListOfAdjacencies),
 Packet->Entropy, seed)
 adjacency = ListOfAdjacencies[I]

 PacketCopy = Copy(Packet)

 switch(adjacency)
 case forward_connected(interface,neighbor,DNR):
 if(DNR)
 PacketCopy->BitString |= 2<<(Index-1)
 SendToL2Unicast(PacketCopy,interface,neighbor)

 case forward_routed([VRF],neighbor):
 SendToL3(PacketCopy,[VRF,]l3-neighbor)

 case local_decap([VRF],neighbor):
 DecapBierHeader(PacketCopy)
 PassTo(PacketCopy,[VRF,]Packet->NextProto)
 }

Eckert & Cauchie Expires January 6, 2016 [Page 21]

Internet-Draft BIER-TE ARCH July 2015

8. Further considerations

8.1. BIER-TE and existing FRR

 BIER-TE as described above is an advanced method for mode-protection
 where the replication in a failed node is on the fly replaced by
 another replication tree through bit operations on the BitString.

 If BIER-TE is not feasible or necessary, it is also possible for
 BIER-TE to leverage any existing form of "link" protection. For
 example: instead of dorectly setting up a forward_connected adjacency
 to a next-hop neighbor, this can be a "protected" adjacency that is
 maintained by RSVP-TE (or another FRR mechanism) and passes via a
 backup path if the link fails.

8.2. BIER-TE and Segment Routing

 Segment Routing aims to achieve lightweight path engineering via
 loose source routing. Compared for example to RSVP-TE, it does not
 require per-path signaling to each of these hops.

 BIER-TE is supports the same design philosophy for multicast. Like
 in SR, it relies on source-routing - via the definition of a
 BitString. Like SR, it only requires to consider the "hops" on which
 either replication has to happen, or across which the traffic should
 be steered (even without replication). Any other hops can be skipped
 via the use of routed adjacencies.

 Instead of defining BitPositions for non-replicating hops, it is
 equally possible to use segment routing encapsulations (eg: MPLS
 label stacks) for "forward_routed" adjacencies.

9. Security Considerations

 The security considerations are the same as for BIER with the
 following differences:

 BFR-ids and BFR-prefixes are not used in BIER-TE, nor are procedures
 for their distribution, so these are not attack vectors against BIER-
 TE.

10. IANA Considerations

 This document requests no action by IANA.

Eckert & Cauchie Expires January 6, 2016 [Page 22]

Internet-Draft BIER-TE ARCH July 2015

11. Acknowledgements

 The authors would like to thank Greg Shepherd, Ijsbrand Wijnands and
 Neale Ranns for their extensive review and suggestions.

12. Change log [RFC Editor: Please remove]

 01: Added explanation of SI, difference to BIER ECMP,
 consideration for Segment Routing, unicast FRR, considerations for
 encapsulation, explanations of BIER-TE controller host and CLI.

 00: Initial version.

13. References

 [I-D.wijnands-bier-architecture]
 Wijnands, I., Rosen, E., Dolganow, A., Przygienda, T., and
 S. Aldrin, "Multicast using Bit Index Explicit
 Replication", draft-wijnands-bier-architecture-05 (work in
 progress), March 2015.

 [I-D.wijnands-mpls-bier-encapsulation]
 Wijnands, I., Rosen, E., Dolganow, A., Tantsura, J., and
 S. Aldrin, "Encapsulation for Bit Index Explicit
 Replication in MPLS Networks", draft-wijnands-mpls-bier-
 encapsulation-02 (work in progress), December 2014.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

Authors’ Addresses

 Toerless Eckert
 Cisco Systems, Inc.

 Email: eckert@cisco.com

 Gregory Cauchie
 Bouygues Telecom

 Email: GCAUCHIE@bouyguestelecom.fr

Eckert & Cauchie Expires January 6, 2016 [Page 23]

